Topological Spaces Related to Linear Algebra

2011-10-04

Multiplications on the cartesian spaces

A structure of a normed associative and commutative \mathbb{R} -algebra (i.e. a sensible multiplication) can be defined only on the caretesian spaces \mathbb{R}^n for n=1,2 where $\mathbb{R}^1=\mathbb{R}$ - real numbers $\mathbb{R}^2=\mathbb{C}$ - complex numbers (pairs of real numbers). A structure of an associative but not commutative \mathbb{R} -algebra can be defined for n=4 on pairs of complex numbers $\mathbb{R}^4=\mathbb{H}$ - quaternions. Further, if we omit the associativity assumption, then a \mathbb{R} -bilinear multiplication can be defined for n=8 on pairs of quaternions $\mathbb{R}^8=\mathbb{O}$ -octonions. Moreover, we have inclusions of \mathbb{R} -algebras $\mathbb{R}\subset\mathbb{C}\subset\mathbb{H}\subset\mathbb{O}$ and a conjugation on \mathbb{O} restricts to the usual conjugation of quaternions and complex numbers. A norm on \mathbb{O} is defined as usual $\|o\|^2=oo^*$ thus $\|oo'\|=\|o\|\|o'\|$. If $\mathbb{F}=\mathbb{R},\mathbb{C},\mathbb{H},\mathbb{O}$ then any cartesian space \mathbb{F}^n carries a structure of an \mathbb{F} -module (vector space) via multiplications of coordinates and an \mathbb{F} -valued (hermitian) scalar product is defined in the usual way: $(v,w):=\Sigma$ $v_iw_i^*$, where * denotes conjugation. Vectors of length 1 constitute a group for $\mathbb{F}=\mathbb{R},\mathbb{C},\mathbb{H}$ and an H-space for $\mathbb{F}=\mathbb{O}$. If not otherwise stated, in problems below $\mathbb{F}=\mathbb{R},\mathbb{C},\mathbb{H}$ (not \mathbb{O}).

The Stiefel manifolds

Noncompact Stiefel manifold For $k \leq n$ denote by $\bar{V}_k(\mathbb{F}^n)$ the set of k-tuples of \mathbb{F} -lineary independent vectors in \mathbb{F}^n . Clearly $\bar{V}_k(\mathbb{F}^n)$ is an open subspace of $(\mathbb{F}^n)^k = \mathbb{F}^{nk}$ thus it is a topological space, even a noncompact nk-dimensional manifold.

Compact Stiefel manifold For $k \leq n$ denote by $V_k(\mathbb{F}^n)$ the set of k-orthonormal tuples vectors in \mathbb{F}^n . Clearly $V_k(\mathbb{F}^n) \subset \bar{V}_k(\mathbb{F}^n)$. Compact Stiefel manifolds are called Stiefel manifolds, for short.

- **Zad. 1.** Note that $\bar{V}_1(\mathbb{F}^n)$ consists of all nonzero vectors, $V_1(\mathbb{F}^n)$ is a sphere, $\bar{V}_n(\mathbb{F}^n)$ is homeomorphic to the full linear group denoted by $GL(n,\mathbb{F})$, and $V_n(\mathbb{F}^n)$ is homeomorphic to the group of the norm preserving automorphisms of \mathbb{F}^n , denoted by $O(n,\mathbb{F})$.
- **Zad. 2.** Prove that the compact Stiefiel manifold $V_k(\mathbb{F}^n) \subset \bar{V}_k(\mathbb{F}^n)$ is indeed compact and it is a strong deformation retract of the noncompact Stiefiel manifold.
- **Zad. 3.** How many connected components does $V_k(\mathbb{F}^n)$ have?
- **Zad. 4.** Prove that the compact Stiefiel manifold $V_k(\mathbb{F}^n)$ is indeed a smooth manifold and its dimension is $2nk 1/2(d_{\mathbb{F}}k^2 d_Fk + 2k)$ where $d = \dim_{\mathbb{R}} \mathbb{F}$
- **Zad. 5.** The natural action of $GL(n, \mathbb{F})$ on \mathbb{F}^n induces an action on $\overline{V}_k(\mathbb{F}^n)$. Show that the action is transitive and identify the isotropy group (in particular the stabilizer of the tuple $(e_1, ..., e_k)$). Similarly for the compact Stiefel manifold and the group of isometries $O(n, \mathbb{F})$.
- **Zad. 6.** Let $r \leq s \leq n$ then there exist a projection $V_s(\mathbb{F}^n) \to V_r(\mathbb{F}^n)$. Show that it is locally trivial and identify its fiber (also a Stiefel manifold.)

The Grassmann manifolds

Grassmann manifold (or Grassmannian.) Let $k \leq n$ the Grassmann manifold $G_k(\mathbb{F}^n)$ is a set of k-dimensional subspaces in \mathbb{F}^n . There is an obvious projection $p: \bar{V}_k(\mathbb{F}^n) \to G_k(\mathbb{F}^n)$ which assigns to each k-tuple a linear subspace generated by it. The map p defines a quotient topology on $G_k(\mathbb{F}^n)$.

- **Zad. 7.** Prove that $G_k(\mathbb{F}^n)$ is Hausdorff, thus a compact space.
- **Zad. 8.** Prove that there exist a homeomorphism $G_k(\mathbb{F}^n) \simeq G_{n-k}(\mathbb{F}^n)$
- **Zad. 9.** Prove that $G_k(\mathbb{F}^n)$ is a connected, compact manifold of dimension dk(n-k).
- **Zad. 10.** There is an embedding of the Grassmannian $G_k(\mathbb{F}^n)$ in the cartesian space \mathbb{F}^{n^2} = Hom (F^n, F^n) which assigns to every subsapce the orthogonal projection on it. The embedding defines a natural (operator) metric on $G_k(\mathbb{F}^n)$.
- **Zad. 11.** The Grassmannians $G_1(\mathbb{F}^n)$ are the well-known projective spaces, denoted $\mathbb{F}P(n)$. Note that $G_1(\mathbb{F}^2) = S^d$ and if we identify S^d with the one-point compactification of \mathbb{F} the projection p corresponds to the map $p_d: S^{2d-1} \to S^d$ given by $p_d(z_0, z_1) = z_0/z_1$ where $z_i \in \mathbb{F}$. Note, that the same formula works for $\mathbb{F} = \mathbb{O}$, however the higher dimensional projective spaces over octonions do not exist. The maps $p_d: S^{2d-1} \to S^d$ for d = 1, 2, 4, 8 are called the Hopf maps and they play a very important role in homotopy theory; a fiber of p_d is a sphere S^{d-1} . Check directly that the Hopf maps are locally trivial, thus fibrations.
- **Zad. 12.** The natural action of $GL(n, \mathbb{F})$ (resp. $O(n, \mathbb{F})$) on \mathbb{F}^n induces an action on $G_k(\mathbb{F}^n)$. Show that the actions are transitive and describe the isotropy groups (in particular of the canonical subspace $F^k \subset F^n$)
- **Zad. 13.** Prove that there is a free action of the group $O(k, \mathbb{F})$ on $V_k(\mathbb{F}^n)$ such that the orbit space is homeomorphic to $G_k(\mathbb{F}^n)$. Similarly for the noncompact Stiefel manifold.
- **Zad. 14.** Prove that the map $p: V_k(\mathbb{F}^n) \to G_k(\mathbb{F}^n)$ is locally trivial (even a principal $O(k, \mathbb{F})$ -bundle), thus a fibration.