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Multiplications on the cartesian spaces

A structure of a normed associative and commutative R-algebra (i.e. a sensible multiplication)
can be defined only on the caretesian spaces Rn for n = 1, 2 where R1 = R - real numbers ,R2 = C
- complex numbers (pairs of real numbers). A structure of an associative but not commutative
R-algebra can be defined for n = 4 on pairs of complex numbers R4 = H - quaternions. Further,
if we omit the associativity assumption, then a R-bilinear multiplication can be defined for n = 8
on pairs of quaternions R8 = O-octonions. Moreover, we have inclusions of R-algebras R ⊂ C ⊂
H ⊂ O and a conjugation on O restricts to the usual conjugation of quaternions and complex
numbers. A norm on O is defined as usual ‖o‖2 = oo∗ thus ‖oo′‖ = ‖o‖‖o′‖. If F = R,C,H,O
then any cartesian space Fn carries a structure of an F-module (vector space) via multiplications
of coordinates and an F-valued (hermitian) scalar product is defined in the usual way: (v, w) :=
Σ viw∗i , where ∗ denotes conjugation. Vectors of lenght 1 constitute a group for F = R,C,H and
an H-space for F = O. If not otherwise stated, in problems below F = R,C,H (not O).

The Stiefel manifolds

Noncompact Stiefel manifold For k ¬ n denote by V̄k(Fn) the set of k-tuples of F-lineary inde-
pendent vectors in Fn. Clearly V̄k(Fn) is an open subspace of (Fn)k = Fnk thus it is a topological
space, even a noncompact nk-dimensional manifold.
Compact Stiefel manifold For k ¬ n denote by Vk(Fn) the set of k-orthonormal tuples vectors in
Fn. Clearly Vk(Fn) ⊂ V̄k(Fn). Compact Stiefel manifolds are called Stiefel manifolds, for short.

Zad. 1. Note that V̄1(Fn) consists of all nonzero vectors, V1(Fn) is a sphere, V̄n(Fn) is home-
omorphic to the full linear group denoted by GL(n,F), and Vn(Fn) is homeomorphic to the group
of the norm preserving automorphisms of Fn, denoted by O(n,F).

Zad. 2. Prove that the compact Stiefiel manifold Vk(Fn) ⊂ V̄k(Fn) is indeed compact and it is a
strong deformation retract of the noncompact Stiefiel manifold.

Zad. 3. How many connected components does Vk(Fn) have?

Zad. 4. Prove that the compact Stiefiel manifold Vk(Fn) is indeed a smooth manifold and its
dimension is 2nk − 1/2(dFk2 − dFk + 2k) where d = dimR F

Zad. 5. The natural action of GL(n,F) on Fn induces an action on V̄k(Fn). Show that the action
is transitive and identify the isotropy group (in particular the stabilizer of the tuple (e1, .., ek)).
Similarly for the compact Stiefel manifold and the group of isometries O(n,F).

Zad. 6. Let r ¬ s ¬ n then there exist a projection Vs(Fn) → Vr(Fn). Show that it is locally
trivial and identify its fiber (also a Stiefel manifold.)
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The Grassmann manifolds

Grassmann manifold (or Grassmannian.) Let k ¬ n the Grassmann manifold Gk(Fn) is a set
of k-dimensional subspaces in Fn. There is an obvious projection p : V̄k(Fn) → Gk(Fn) which
assigns to each k-tuple a linear subspace generated by it. The map p defines a quotient topology
on Gk(Fn).

Zad. 7. Prove that Gk(Fn) is Hausdorff, thus a compact space.

Zad. 8. Prove that there exist a homeomorphism Gk(Fn) ' Gn−k(Fn)

Zad. 9. Prove that Gk(Fn) is a connected, compact manifold of dimension dk(n− k).

Zad. 10. There is an embedding of the Grassmannian Gk(Fn) in the cartesian space Fn2 =
Hom (Fn, Fn) which assigns to every subsapce the orthogonal projection on it. The embedding
defines a natural (operator) metric on Gk(Fn).

Zad. 11. The Grassmannians G1(Fn) are the well-known projective spaces, denoted FP (n). Note
that G1(F2) = Sd and if we identify Sd with the one-point compactification of F the projection p
corresponds to the map pd : S2d−1 → Sd given by pd(z0, z1) = z0/z1 where zi ∈ F. Note, that the
same formula works for F = O, however the higher dimensional projective spaces over octonions
do not exist. The maps pd : S2d−1 → Sd for d = 1, 2, 4, 8 are called the Hopf maps and they play
a very important role in homotopy theory; a fiber of pd is a sphere Sd−1. Check directly that the
Hopf maps are locally trivial, thus fibrations.

Zad. 12. The natural action of GL(n,F) (resp. O(n,F)) on Fn induces an action on Gk(Fn). Show
that the actions are transitive and describe the isotropy groups (in particular of the canonical
subspace F k ⊂ Fn)

Zad. 13. Prove that there is a free action of the group O(k,F) on Vk(Fn) such that the orbit
space is homeomorphic to Gk(Fn). Similarly for the noncompact Stiefel manifold.

Zad. 14. Prove that the map p : Vk(Fn) → Gk(Fn) is locally trivial (even a principal O(k,F)-
bundle), thus a fibration.
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