
1

Post Correspondence Problem with
Partially Commutative Alphabets

Barbara Klunder, Wojciech Rytter

Instytut Informatyki,

Uniwersytet Warszawski,

Warszawa

2

Post correspondence problem (PCP, in short):

given the set P of binary words:

P = {(l1, r1), (l2, r2), . . . , (lk, rk)}, gdzie: li, ri ∈ Σ∗ (1 ≤ i ≤ k)

Is there a sequence of indices for which the system P has a solution

(∃ w1w2 . . . ws ∈ (1 + 2 + . . . k)+)

lw1 lw2 . . . lws = rw1rw2 . . . rws

3

The problem PCP has been posed by Emil L. Post in 1946.

It can be also formulated as a coding problem, for two codings

(morphisms) h, g : Σ → (0 + 1)+ does it exist x such that

h(x) = g(x).

The constrained version (upper-bounding x) is NP-complete

If |Σ| = 2 then there is a deterministic polynomial time algorithm

(without length restriction).

|Σ| = 7 - PCP unsolvable

2 < |Σ| < 7, solvability is open

4

For example if P is give by morphisms:

h(1)=0 h(2)=10 h(3)=10

g(1)=01 g(2)=0 g(3)=01

to h(132) = g(132) = 01010

0 10 10

01 01 0

Ale dla kodowania

h(1)=1101, h(2)=0110 h(3)=1

g(1)=1 g(2)=11 g(3)=110

shortest x such that h(x) = g(x) has length 252. There is no

sensible bound on the length of the solution

5

We introduce a version of PCP generalized to words over partially

commutative alphabets. Solvability is shown for the partially

commutative PCP for two special cases: the binary case of PCP

(denoted by PCP(2)), and the case with one periodic morphism.

This extends solvability results for the classical PCP for these cases.

A weaker version of PCP, named here Weak-PCP, is discussed.

This version distinguishes (in the sense of solvability) the case of

noncommutative from the case of partially commutative alphabets.

We consider also a solvable (though NP-hard) simple version of

Weak-PCP. Our solvability results demonstrate the power of

Ibarra’s algorithms for reversal bounded multi-counter machines.

6

The origins of partial commutativity is the theory of traces (i.e.

monoids with partial commutations). Trace languages are regarded

as a powerful means for description of behaviors of concurrent

systems.

Usually traces are more complicated than standard

noncommutative words, for example rational expressions with

classical meaning are less powerful then expressions for alphabets

which are partially commutative. In the theory of traces the

symbols represent some atomic processes and two symbols

commute iff they are concurrent (the corresponding processes can

be executed in any order).

7

A partially commutative alphabet (p.c. alphabet, in short) is a

finite set A of symbols with a relation I ⊆ A×A which is

symmetric and irreflexive.

Such a relation is named the independency relation or the relation

of partial commutativity. The complement D of I is named the

dependency relation.

For a given p.c. alphabet A and two words x, y we write x ≈I y

iff the word x can be transformed to y commuting neighboring

symbols which are in the relation I.

Example. Let A = {a, b, c} and I = {(a, b), (b, a)}, then

aaabbcab ≈I bbaaacba.

8

We interpret PCP as a problem about equality sets: for an

n-element alphabet X we are given two morphisms

h, g : X⋆ 7→ A⋆ ,

and the problem is to decide whether the following set, called the

equality set, is nonempty:

EQ-SET(h, g) = {w ∈ X+ : h(w) = g(w)}.

In the case of p.c. alphabet we define the equality set with respect

to the relation I of partial commutation:

EQ-SETI(h, g) = {w ∈ X+ : h(w) ≈I g(w)}

Now the partially commutative PCP problem is defined as follows:

given h, g and an independency relation I,

check if EQ-SETI(h, g) = ∅.

9

As an algorithmic tool (to show solvability) we use the algorithm

testing emptiness of reversal bounded multicounter machines.

A reversal-bounded k-counter machine operates in such a way that

in every accepting computation the input head reverses direction at

most p times and the count in each counter alternately increases

and decreases at most q times, where p, q are some constants.

The emptiness problem for M is to check if L(M) = ∅. We will use

Ibarra’s result.

Lemma 1 The emptiness problem for reversal-bounded

multicounter machines is solvable.

10

For a pair of symbols (a, b) we denote by πa,b the projection which

for a word w removes all letters but a, b.

Example. πa,b(accbacb) = abab, πa,c(accbacb) = accac.

The following result reduces the relation ≈ to multiple application

of equality of classical strings over noncommutative alphabet.

Lemma 2 u ≈I w ⇔ (∀ (a, b) /∈ I) πa,b(u) = πa,b(w).

Hence we can express the equality set for PCP with p.c. alphabets

as a finite intersection of equality sets for standard

(noncommutative) alphabets.

Lemma 3

EQ-SETI(h, g) =
∩

(a,b)/∈I EQ-SET(πa,b · h, πa,b · g).

11

Assume that n = 2 and X = {0, 1}. The problem PCP(2) is

solvable as was proved by Ehrenfeucht, Karhumäki and Rozenberg

in 1982. On the other hand Matiyasevich and Sénizergues showed

that PCP(7) is unsolvable.

We say that a morphism h : X⋆ 7→ A⋆ is periodic if h(X) ⊆ u⋆ for

some word u. For a symbol s, |w|s denotes the number of

occurrences of s in w.

Lemma 4

(a) If h and g are periodic then either

EQ-SET(h, g) = ∅ or EQ-SET(h, g) = {w ∈ X⋆ : |w|0
|w|1 = k}

for some fixed k ≥ 0 or k = ∞.

(b) If h is periodic and g is not then EQ-SET(h, g) is empty or

equal to u+ for some nonempty word u.

12

Hence equality sets are regular or accepted by a reversal bounded

one-counter machines. The number r(w) = |w|0
|w|1 is called the ratio

of a word and it is decidable if the intersection of regular sets and

(or) sets of words of a given ratio is nonempty.

In the case of two non-periodic morphisms the equality set is

always regular. For two periodic morphisms, EQ-SET(h, g) can be

nonempty only when h(X), g(X) ⊆ u⋆ and then r can be easily

found.

13

Lemma 5 Let (h, g) be a pair of non-periodic morphisms over a

binary alphabet. If the equality set EQ-SET(h, g) is nonempty then

it is of the form (u+ v)+ for some words u, v.

Lemma 6 Assume the size of the lists is n = 2 and h, g are two

nonperiodic morphisms. Then EQ-SET(h, g) can be effectively

found (as a regular expression or finite automaton).

A combination of these results implies the following fact.

Theorem 1

Partially commutative PCP(2) is solvable

14

Aanother easily solvable case: periodic morphisms.

We say that a morphism h into a p.c. alphabet is periodic if there

is a word w such that for each x, h(x) ≈I wi for some natural i.

Theorem 2

Partially commutative PCP is decidable for instances (h, g), where

h is periodic.

15

Proof:

Let h, g : X⋆ 7→ A⋆ and assume that h is periodic Let (a, b) ∈ D,

then the equality set of (πa,b · h, πa,b · g) is a multicounter reversal

bounded language.

Now the equality set of (h, g) is the intersection of multicounter

reversal bounded languages too. Define the morphism ρ by

ρ(a) = |h(a)| − |g(a)| for all a ∈ X.

Define also the set R = g−1(u⋆ \ {ε}}. We have:

1. ρ−1(0) = {v : |h(v)| = |g(v)|}

2. w ∈ ρ−1(0) ∩R ⇔ w ̸= ε, g(w) ∈ u⋆ and |g(w)| = |h(w)|.

Hence g(w) = h(w) for some w ̸= ε if and only if ρ−1(0) ∩R ̸= ∅.
The language ρ−1(0) ∩R is recognizable by a reversal-bounded

multicounter machine. Hence emptiness is solvable. 2

16

Partially commutative weak PCP

There is a version of PCP which is easily solvable for

noncommutative alphabets but surprisingly the same version is

unsolvable for partially commutative alphabets.

Define the partially commutative problem, named here Weak PCP,

with parameters r, s as follows:

given p.c. words x1, x2, . . . , xr, y1, y2, . . . , ys,

test if there are nonempty sequences

(i1, i2, . . . , ip), (j1, j2, . . . jq)

such that

xi1xi2 . . . xip ≈I yj1yj2 . . . yjq .

17

We can redefine it using the concept of equality sets as follows:

given two morphisms h, g into p.c. words, test emptiness of the set

Weak-EQ-SET(h, g) = {(z1, z2) : h(z1) ≈I g(z2)}.

The set Weak-EQ-SET(h, g) is called here the weak equality set.

If we do not write partially commutative this means that we

consider the case of classical noncommutative alphabet (special

case of partially commutative).

Denote by Weak-PCP(s, r) the weak PCP in which the domain of h

is of size s and the domain of g is of size r.

18

noindent Assume we have an instance of PCP given by (ui, vi) for

i = 1, . . . k, where ui, vi ∈ A+ and A ∩ {1, . . . , k} = ∅.

Let the p.c. alphabet be A ∪ {1, . . . , k}, where all letters in A

commute with all letters in {1, . . . , k}, and no other pairs of

different letters commute.

Define

h(i) = i · ui, g(i) = i · vi for each 1 ≤ i ≤ k

Then we can express in a natural way the PCP(k) problem as a

Weak-PCP(k, k) with morphisms h, g defined above.

19

It is known, that PCP(7) is unsolvable, hence we have proved that

partially commutative Weak-PCP(7, 7) is unsolvable. We improve

this slightly below.

We know that PCP(2) is decidable (also for p.c. alphabets), this

would suggest that Weak-PCP(2, k) is solvable. However this

suggestion is wrong.

Theorem 3

(a) Weak-PCP(s,r) is solvable for any s, r and noncommutative

alphabets.

(b) Partially commutative Weak-PCP(2, 7) is unsolvable.

20

We consider a solvable case of Weak PCP, the situation when one

of the lists is of size 1. Especially simple is the case k = 1, i.e. the

partially commutative Weak-PCP(1, 1). The case of totally

noncommutative alphabet is simple: for two words u, v we have

(∃ i, j) ui = vj ⇔ (uv = vu).

Using projections πa,b we can reduce the p.c. case to the

noncommutative case:

Partially commutative Weak-PCP(1, 1) for the words u, v is

reducible to the test of uv ≈ I vu, in other words:

((∃ (natural) i, j > 0) ui ≈ I v
j) ⇔ (uv ≈ I vu).

Corollary.

Partially commutative Weak-PCP(1, 1) is solvable in deterministic

polynomial time.

21

Theorem 4 Weak-PCP(1, k) is solvable.

Proof: Assume we have an instance of Weak-PCP(1, k), given by

the words x1, x2, . . . xk and the word w.

In this problem we ask if there is a word x ∈ {1, . . . , k}+ and a

natural m such that h(x) ≈ I w
m.

We can construct a reversal-bounded multicounter machine M

which accepts all such strings x. Assume we have r pairs of the

letters a, b which do not commute. The machine M has r counters,

intially it is guessing the number m and is storing it in each

counter. Assume the i-th pair is (ai, bi), the machine M reads the

input x on-line from left to right and using the i-th counter checks

if πai,bi(h(x)) = πai,bi(w
m)

Then the problem Weak-PCP(1, k) is reducible to emptiness of

reversal-bounded multicounter machine, which is solvable. 2

22

Theorem 5 Assume k is a part of the input, then

Weak-PCP(1, k) is NP-hard.

Proof

The following problem called Exact Cover by 3-sets is NP-complete:

given family of sets Xi ⊂ U = {1, 2, ..., n}, where 1 ≤ i ≤ r, each of

cardinality 3, check if U is a disjoint union of a subfamily of these

sets.

For a subset Xi let xi be the string which is a list of elements of

Xi. We can take the alphabet U , totally commutative, then the

problem above is reduced to the problem if the string

z = 1 2 3 ...n is equivalent (modulo permutation) to a

concatenation of some of strings xi.

23

W construct the instance of PCP(1,r+1) with lists:

w = z ·#, (x1, x2, . . . xr, xr+1 = #),

where # is an additional symbol noncommuting with any other

symbol.

Then Exact Cover by 3-sets is reduced to the problem if some

concatenation of strings from the family x1, x2, . . . xr+1 is

equivalent (modulo our partial commutation) to wm, for some

natural m. In this way we have a deterministic polynomial time

reduction of Exact Cover by 3-sets to partially commutative

PCP(1,r+1). Therefore the last problem is NP-hard. 2

We do not know if partially commutative Weak PCP (1, k) is in

NP, however we prove that it is in P for the lists of words over an

alphabet of a constant size.

24

Define:

∆(Σ) = {w ∈ Σ+ : (∀ s1, s2 ∈ Σ) |w|s1 = |w|s2}.

In other words ∆(Σ) is the set of words over the alphabet Σ in

which the number of occurrences of letters are the same. Let L(M)

be the language accepted by a nodeterministic finite automaton M .

We consider the following problem for M .

(diagonal emptiness problem)

L(M) ∩∆(Σ) = ∅ ?

25

The following lemma can be shown using an Euler tour technique

in multigraphs. This allows to describe the membership problem as

an integer linear program, where multiplicities are treated as

variables, and the Euler condition related to indegree-outdegree of

nodes can be expressed as a set of equations. This gives singly

exponential upper bounds for the size of the solution.

Lemma 7

The diagonal emptiness problem for finite automata is in NP;

If z is a shortest word in L(M) ∩∆(Σ) then it is of singly

exponential length (if there is any such z).

26

Another (quite new) algorithmic tool has been invented recently

We use the following fact, shown recently by Eryk Kopczynski.

Lemma 8

Assume the alphabet is of a constant size. Then the membership

problem for a commutative word, given as a Parikh vector with

coefficients written in binary, in a given regular language is in P.

Lemma 9

For a nondeterministic automaton M with input alphabet Σ of a

constant size the diagonal emptiness problem is in P (solved by a

deterministic polynomial time algorithm).

27

Proof We can transform M to an equivalent nondeterministic

automaton of polynomial size such that its accepting states are

sinks (there are no outgoing edges). Assume now that M is of this

form. For an integer j let

Σ = {a1, a2, . . . ar}, Σ(j) = aj1a
j
2 . . . a

j
r

Change M to the automaton M ′, by adding for each accepting

state q the loop (transition) from q to q labeled by Σ(1).

Due to Lemma 7 there is a constant c such that the length of the

shortest word in L(M) ∩∆(Σ) is upper bounded by K = 2cn.

Now the diagonal emptiness problem is reduced to the problem

whether Σ(K) is commutatively equivalent to some word accepted

by M ′. This problem is in P .

Remark. The above problem is NP-complete for nonconstant

alphabet

28

Theorem 6 If the alphabet A of words in the lists defining a

partially commutative Weak PCP(1,k) is of a constant size then

such an instance of the partially commutative Weak PCP(1,k) is in

P .

Proof.

Let r be the number of pairs of symbols (a, b) which do not

commute. We have r = O(1). Let (aj , bj) be the j-th such pair and

denote:

πj = πaj ,bj ; w(j) = πj(w)

We are to check if there is a sequence of indexes i1, i2, . . . im such

that:

(∃ N ≥ 1) (∀ 1 ≤ j ≤ r) πj(xi1xi2 . . . xim) = wN
(j).

29

We construct a nondeterministic automaton M similar to the

construction of a graph for testing unique decipherability of a set of

words.

The set of states of M is the set of r-tuples, the j-th component is

some proper prefix α (possibly empty) of w(j).

For proper prefixes α, β of w(j) and a word xi assume that

α · πj(xi) = wc
(j) · β

Then we write

nextj(α, i) = β, countj(α, i) = c

If there is no such s, β then define nextj(α, i) = ∅.

30

Let A′ = {a1, a2, . . . ar} be some additional symbols (acting as

counters). For a state q = (α1, α2, . . . αr) and each 1 ≤ i ≤ k we

create the transition

(α1, α2, . . . αr) ⇒ (next1(α1, i), next2(α2, i), . . . nextr(αr, i))

if nextj(αj , i) ̸= ∅ for each j.

Such a transition is labeled by the string

ac11 ac22 ac33 . . . acrr ,

where cj = countj(α, i) for each j. Hence each edge of the graph of

the automaton M is labeled by a string over the alphabet A′ of

counters. In this way the automaton M is following some

nondeterministically guessed xi’s and keeps on the edges the count

of the number of copies of w(j).

31

Hence it is enough to check additionally if for any two aj , as we

have the same number of occurrences of these symbols on some

(the same for all components) nondeterministically guessed path

from a source (empty prefix) to a sink (also empty prefix). The

path corresponds to the choice of a sequence xi1xi2 . . . xim and

some natural nonzero N such that

xi1xi2 . . . xim = wN

Hence our problem is reduced to the diagonal emptiness problem

for M . The machine M is of a polynomial size since we have only a

constant number of non-commuting pairs (aj , bj), hence the

dimension of r-tuples is constant and the alphabet A′ (of counters)

is of a constant size. Due to Lemma 9 the diagonal emptiness

problem for this automaton is in P .

32

Open problems

1. Is partially commutative Weak-PCP(2, 2) solvable ?

2. What about the complexity status of partially commutative

Weak-PCP(1, k), we showed it is NP -hard when k is a part of

the input, and is in P for constant sized alphabet when k is

fixed . What about general alphabets, is it in NP ? Is it

NP -hard in case of a fixed k ?

33

3. For which partially commutative alphabets I the problem

Weak-PCP is solvable ? We suspect that it is solvable in case

of transitively closed dependency relations D (the complement

of I).

4. What is the minimal k such that partially commutative

PCP(k) is unsolvable (in case of noncommutative alphabet the

smallest known k is k = 7).

