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Wojciech Rytter Runs in Sturmian Words

The runs are maximal repetitions in a string.

a    a    b    a    b    a    a    b    a    b b    a    b    a    a    b    a    b    a    a

The structure of RUNS((aabab)2(babaa)2).
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Denote by S the class of standard Sturmian words. It is a class of

highly compressed words extensively studied in combinatorics of

words, including the well known Fibonacci words.

The suffix automata for these words have a very particular

structure. This implies a simple characterization (described in the

paper by the Structural Lemma) of the periods of runs (maximal

repetitions) in Sturmian words.

Using this characterization we derive an explicit formula for the

number ρ(w) of runs in words w ∈ S, with respect to their

recurrences (directive sequences). We show that

ρ(w)
|w| ≤ 4

5 for each w ∈ S,

CIAA 2008, San Francisco 3



Wojciech Rytter Runs in Sturmian Words

There is an infinite sequence of strictly growing words wk ∈ S such

that

limk→∞
ρ(wk)
|wk| = 4

5

The complete understanding of the function ρ for a large class S of

complicated words is a step towards better understanding of the

structure of runs in words. We also show how to compute the

number of runs in a standard Sturmian word in linear time with

respect to the size of its compressed representation (recurrences

describing the word). This is an example of a very fast

computation on texts given implicitly in terms of a special

grammar-based compressed representation (usually of logarithmic

size with respect to the explicit text).
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The standard words are a generalization of Fibonacci words and,

like Fibonacci words are described by recurrences.

The recurrence for a standard word is related to so called directive

sequence - an integer sequence of the form

γ = (γ0, γ1, ..., γn), where γ0 ≥ 0, γi > 0 for 0 < i ≤ n.

The standard word corresponding to γ, denoted by S(γ) = xn+1, is

defined by recurrences:

x−1 = b, x0 = a, x1 = xγ0
0 x−1, x2 = xγ1

1 x0, (1)

x3 = xγ2
2 x1, . . . xn = x

γn−1
n−1 xn−2, xn+1 = xγn

n xn−1 (2)
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For example the recurrence for the 4-th Fibonacci word is:

fib−1 = b, fib0 = a, fib1 = fib1
0b, fib2 = fib1

1fib0,

fib3 = fib1
2fib1, fib4 = fib1

3fib2.

Hence

fib4 = abaababa = S(γ0, γ1, γ2, γ3)

where

(γ0, γ1, γ2, γ3) = (1, 1, 1, 1)
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We consider here standard words starting with the letter a,

hence assume γ0 > 0. The case γ0 = 0 can be considered similarly.

For even n > 0 a word xn has suffix ba, and for odd n it has suffix

ab.

The number N = |xn+1| is the (real) size, while n can be thought of

as the compressed size.
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Consider more complicated example (used later to demonstrate

counting of runs), let

γ = (1, 2, 1, 3, 1)

we have

S(γ) = ababaabababaabababaabababaababaab

The corresponding recurrence is:

x−1 = b; x0 = a, x1 = x1
0x−1, x2 = x2

1x0,

x3 = x1
2x1, x4 = x3

3x2, x5 = x1
4x3.
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a   b   a   b   a   a   b   a   b   a   b   a   a   b   a   b   a   b   a   a   b   a   b   a   b   a   a   b   a   b   a   a   b

a   b   a   b   a   a   b   a   b   a   b   a   a   b   a   b   a   b   a   a   b   a   b   a   b   a   a   b   a   b   a   a   b

a   b   a   b   a   a   b   a   b   a   b   a   a   b   a   b   a   b   a   a   b   a   b   a   b   a   a   b   a   b   a   a   b

a   b   a   b   a   a   b   a   b   a   b   a   a   b   a   b   a   b   a   a   b   a   b   a   b   a   a   b   a   b   a   a   b

a   b   a   b   a   a   b   a   b   a   b   a   a   b   a   b   a   b   a   a   b   a   b   a   b   a   a   b   a   b   a   a   b

The structure of runs of S(1, 2, 1, 3, 1).There are 5 runs with period

|a|, 5 with period |ab|. We have 10 short runs (period of size at

most |x1| = |ab|), 8 medium (with period |x1| < p ≤ |x2| = 5, and 1
large run. Consequently ρ(1, 2, 1, 3, 1) = 19.
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The computation of runs in S(γ0, γ1, . . . γn) is reduced to a similar

computation for S(γ1, γ2, . . . γn).
The relation between S(γ0, γ1, . . . γn) and S(γ1, γ2, . . . γn) is described

in terms of morphisms transforming one of them to the other.

For γ = (γ0, γ1, . . . , γn) define the sequence of morphisms:

hi(a) = aγib, hi(b) = a , for 0 ≤ i ≤ n

FOr example for Fibonacci words we have:

hi(a) = ab, hi(b) = a
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Lemma 1

Assume 0 ≤ i < n.

We have

S(γn) = hn(a),

S(γi, γi+1 . . . , γn) = hi(S(γi+1, γi+2 . . . , γn)).

For Fibonaci words we have:

S(1) = h(a) = ab,

S(1, 1) = h(S(1)) = h(ab) = aba,

S(1, 1, 1) = h(S(1, 1)) = h(aba) = abaab.
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Let |w|r denote the number of occurrences of a letter r ∈ {a, b} in

the word w. Denote

Nγ(k) = |S(γk, γk+1, . . . γn)|a

Mγ(k) = |S(γk, γk+1, . . . γn)|b

The numbers Nγ(k), Mγ(k) satisfy the equation:

Nγ(k) = γk Nγ(k + 1) + Nγ(k + 2); Mγ(k) = Nγ(k + 1) (3)
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Example

In case of the directive sequence (1, 1, . . . 1) describing the Fibonacci

word the numbers Nγ(k) are Fibonacci numbers, since the number

of letters a in fibn equals the size of fibn−1.

For the word

S(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab

from Figure 1 we have γ = (1, 2, 1, 3, 1) and:

S(1) = ab, S(3, 1) = aaaba, S(1, 3, 1) = (ab)3a ab,

S(2, 1, 3, 1) = ((aaba)3 aab) aaba, S(1, 2, 1, 3, 1) = x5

Nγ(2) = |S(1, 3, 1)|a = 5, Nγ(1) = |S(2, 1, 3, 1)|a = 14, Nγ(0) = 19.
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Lemma 2 Let

A = Nγ(2), B = Nγ(3) and w = S(γ0, γ1, . . . γn). Then

|w| = ((γ0 + 1) γ1 + 1) A + (γ0 + 1) B

For Fibonacci words we have

|S(γ)| = fibn+1, Nγ(1) = fibn−1,

A = Nγ(2) = fibn−2, B = Nγ(3) = fibn−3

We have

fibn+1 = (2 + 1) A + 2 ·B = 3 · fibn−2 + 2 · fibn−3

For example

13 = 3 · 3 + 2 · 2
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Theorem 1 [Formula for the number of runs]

Let n ≥ 3. The number of runs in S(γ0, . . . , γn) equals:

ρ(γ) =





2 A + 2 B + ∆(γ)− 1 if γ0 = γ1 = 1

(γ1 + 2) A + B + ∆(γ)− odd(n) if γ0 = 1; γ1 > 1

2A + 3B + ∆(γ)− even(n) if γ0 > 1; γ1 = 1

(2 γ1 + 1) A + 2 B + ∆(γ) Otherwise

,

where:

∆(γ) = n− 1− (γ1 + . . . + γn)− unary(γn).

A = Nγ(2) = |S(γ2, γ3 . . . , γn)|a,

B = Nγ(3) = |S(γ3, γ4 . . . , γn)|a
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Example.

We show how to compute ρ(1, 2, 1, 3, 1), using our formula. In this

case

γ = (γ0, γ1γ2, γ3, γ4) = (1, 2, 1, 3, 1) and n = 4

A = Nγ(2) = 5, B = Nγ(3) = 4, ∆ = (4− 1)− 7 = 4, even(n) = 1

Theorem 1 implies correctly:

ρ(γ) = (γ1 + 2)A + B + ∆− even(4)

= 4A + B − 4− 1 = 4 · 5 + 4− 4− 1 = 19.
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Example.

As the next example derive the formula for the number of runs in

Fibonacci word fibn = S(1, 1, . . . 1) (n ones) for n ≥ 3.

Let Fn be the n-th Fibonacci number. In this case Nγ(k) = Fn−k−1.

According to formula from Theorem 1 we have

ρ(fibn) = 2Nγ(2) + 2Nγ(3) + n− 1− n− 1− 1

ρ(fibn) = 2 Fn−3 + 2 Fn−4 − 3 = 2 Fn−2 − 3.
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We have ∆(γ) < 0,

we ignore ∆ and estimate ρ(γ)/|S(γ)| in terms of A, B.

Four cases should be considered, depending on

γ0 > 1, γ1 > 1

Tedious technical estimations give the following result

Theorem 2 [Upper Bound]

For each w ∈ S:

ρ(w) ≤ 4
5 |w|
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Theorem 3 [Lower Bound]

For the class S of standard words we have

sup { ρ(w)
|w| : w ∈ S } = 0.8.

Proof: Let

wk = S(1, 2, k, k) =
(
(ababa)k ab

)k

ababa,

We have |wk| = 5k2 + 2k + 5.

Theorem 1 implies that |ρ(1, 2, k, k)| = 4k2 − k + 3. Consequently

lim
k→∞

ρ(wk)
|wk| = lim

k→∞
4k2 − k + 3
5k2 + 2k + 5

= 0.8

2
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a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  b  a

a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  b  a

a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  b  a

a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  a  b  a  b  a  b  a

The structure of runs of S(1, 2, k, k)
for k = 3, there are 4k2 − k + 3 = 36 runs.
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Theorem 4

We can count number of runs in standard word S(γ0, . . . , γn) in time

O(n).

Proof: We need only to compute in O(n) time the numbers Nγ(k)
for k = 1, 2, 3. We can compute it iterating Equation 2.

Algorithm Compute Nγ(k);
x := γn−1; y := 1;
for i := n− 2 downto k do

(x, y) := (γi · x + y, x)
return x;

Now we apply the formulas from Theorem 1 and Lemmas 1,2. 2
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Assume that xi’ are as given by recurrences described in Equations

1,2.

The structure of subword graphs for standard Sturmian words is

very special, in particular it implies the following fact.

Lemma 3 [Structural Lemma]

The period of each run of S(γ0, γ1, . . . , γn) is of the form

xj
ixi−1,

where 0 ≤ j < γi.
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a b a b a a b a b a b a a b a b a b a a b a b a b a a b a b a a b

b b

a

a

aa

a

The structure of the subword graph of Word(1, 2, 1, 3, 1).
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The compacted version of the subword graph. We have on edges

the reversed words xk, denoted by yk.

y0 = a; y1 = ba; y2 = ababa; y3 = baababa

Word(1, 2, 1, 3, 1) = a ba ba ababa baababa baababa baababa ab = y0y
2
1y2y

3
3 ŷ4.
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We say that a run is

short:

period ≤ |x1|,

large:

period > |x2|,

medium:

|x2| < period ≤ |x2|.

Denote by

ρmed(γ), ρmed(γ), ρlarge(γ)

the number of short, medium and large runs in S(γ)
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Example.

Let = S(1,2,1,3.1).

W have 10 short runs with periods: a, ab,

8 medium runs with periods: aba, ababa,

1 large run with period : ababaab,

Next each type of runs is counted separately.

CIAA 2008, San Francisco 25



Wojciech Rytter Runs in Sturmian Words

Lemma 4 [Short Runs] The number of short runs in S(γ) is:

ρshort(γ) =





Nγ(2) + Nγ(3)− 1 if γ0 = γ1 = 1

2 Nγ(2)− odd(n) if γ0 = 1; γ1 > 1

Nγ(1) + Nγ(3)− even(n) if γ0 > 1; γ1 = 1

Nγ(1) + Nγ(2) otherwise

Lemma 5 [Medium Runs, n ≥ 3] If n ≥ 3 then

ρmed(γ) = Nγ(1)−Nγ(2)− γ1 + 1

Lemma 6 [Medium Runs, n=2] If n = 2 then

ρmed(γ) = Nγ(1)−Nγ(2)− γ1 + 1− unary(γn)
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We say that a subword w of x is synchronized with h in x iff each

occurrence of w in x starts at the beginning of some h-block and

ends at the end of some h-block.

Lemma 7 [Synchronization Lemma]

The large run-periods are synchronized with h0 in S(γ0, . . . , γn)
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The figure shows examples of synchronized and non-synchronized

subwords with the morphism h0 : S(2, 1, 3, 1) → S(1, 2, 1, 3, 1) related

to the morphic structure of S(1, 2, 1, 3, 1). We have:

h0(a) = aγ0b, h0(b) = a

a  ba  b a  b a a  b a  b a  b a a  b a  b a  b a a  b a  b a  b a a  b a  b a

a a a a a a a a a a a a a ab b bb b

h0

aba ababa ababaab

The medium run-periods x1x0 = aba and x2 = ababa do not

synchronize with morphism h0, while the large run-period

x3 = ababaab is synchronized with h0.

CIAA 2008, San Francisco 28



Wojciech Rytter Runs in Sturmian Words

As a consequence of the Synchronization Lemma we have:

Lemma 8 [Recurrence Lemma]

ρlarge(γ0, γ1, . . . γn) = ρlarge(γ1, , γ2, . . . γn) + ρmed(γ1, γ2, . . . γn).

Lemma 9 [Large Runs]

ρlarge + ρmed = Nγ(1) + n− 1 − (γ1 + ... + γn) − unary(γn)
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Now the formula in Theorem 1 results by combining the formulas

for ρshort and for the sum ρlarge + ρmed using the equalities

ρ(γ) = ρshort(γ) + ρmed(γ) + ρlarge(γ)

and

Nγ(1) = γ1Nγ(2) + Nγ(3).
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