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Abstract

We use automata-theoretic approach to analyze properties of Fibonacci words. The directed acyclic subword graph (dawg) is
a useful deterministic automaton accepting all suffixes of the word. We show that dawg’s of Fibonacci words have particularly
simple structure. Our main result is a unifying framework for a large collection of relatively simple properties of Fibonacci words.
The simple structure of dawgs of Fibonacci words gives in many cases simplified alternative proofs and new interpretation of
several well-known properties of Fibonacci words. In particular, the structure of lengths of paths corresponds to a number-theoretic
characterization of occurrences of any subword. Using the structural properties of dawg’s it can be easily shown that for a string w
we can check if w is a subword of a Fibonacci word in time O(Jw|) and O(1) space. Compact dawg’s of Fibonacci words show a
very regular structure of their suffix trees and show how the suffix tree for the Fibonacci word grows (extending the leaves in a very
simple way) into the suffix tree for the next Fibonacci word.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Fibonacci words form a famous family of words, due to many interesting properties related to text algorithms and
combinatorics on words, see [7,18]. In particular, Fibonacci words have ®(n logn) positioned squares and they have
linear number of runs: maximal periodic subsegments of the string, see [11,17]. The string x is said to be periodic iff
period(x) < |x|/2. The structure of runs in general strings is rather mysterious, and the structure of runs in Fibonacci
words helps to understand this structure. In this sense Fibonacci words are very representative. A very good source for
properties of these words is for example the book [18]. We rediscover several known/unknown properties of Fibonacci
words in a novel way: analyzing the automaton for the set of subwords. Let F}, be the nth Fibonacci word, where

Fo=a, Fy=ab, Fy1=F,- F,1.

Denote by &,, the nth Fibonacci number, where |F,,| = ®&,.. Define also the infinite Fibonacci word Fo, = Foo(1, 2,
3,4, ...), such that each F}, is a prefix of F~,. Hence

s = abaababaabaababaababaabaababaabaababaababaabaababaababaabaababaab . . .
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The structure of lengths of paths in the dawg’s of Fibonacci words is closely related to the Fibonacci number system.
This system consists in representing a number as a sum of Fibonacci numbers, in such a way that no two consecutive
Fibonacci numbers are used. The sum of zero number of integers equals zero. The corresponding representation of the
number is called Z-representation.

Let Z, be the set of nonnegative integers which do not use Fibonacci numbers @, @1, ..., ®,_ in their Fibonacci
representation.

If X is a set of integers then define:

X®j={x+j:xeX}

Denote by g; (the ith truncated Fibonacci word) the word F; with the last two letters removed. Denote by wk the
reverse of a word w. Let R; = FiR , and let for |w|>2 twolast(w) denote the word of length 2 composed of the last
two letters of w. It can be shown, see [2,12], that for n >2:

gn=RoR1Ry...Ry_2, gR =g, twolast(F)® = twolast(F,11). )
It follows directly from Eq. (1) and definition of g, that:
Ry+1 = twolast(Fy) g1 = twolast(Fyi1)" g1 2

By an occurrence of u in Fo, we mean a position i such that Fo[i + 1...i 4 |u|] = u. Denote by first-occ(u) the first
occurrence of u in Fo,, and by occ(u) the set of all occurrences. Using the dawg’s we show:
for each nonempty subword u of F, we have:

occ(u) = occ(gi) ®first-occ(u),

where g; is the shortest truncated Fibonacci word containing u.
Similarly, it is shown that:

occ(gn+1) = occ(Fy) = 2, forn > 1,
and occ(F1) = occ(Fy), occ(Fy) = Zy.

It follows also easily from the structure of the dawg’s that every run in F, (except aa, (ab)z) is of the form (F,-)k gi—1,
where k € {2, 3}. In case of runs a similar analysis of the structure of runs of squares has been already done by
Tliopoulos et al. [9]. However their proofs were syntactic, we present different graph-theoretic proofs, based on a
natural number-theoretic interpretation of the sets of lengths of paths of the dawg of F.

2. The structure of subword graphs

We construct the infinite labelled graph G,. The nodes of G, are all nonnegative integers and fori > 0 we construct
the edges:

(-0 a2 S ey - 3)

where

a ifeveni,
s = .
b otherwise.

The graph G is, in a certain sense, a subword graph of the infinite Fibonacci word F. The initial segments of this
graph are dawg’s of finite Fibonacci words.

Let G,, be the subgraph of G, induced by the nodes [0. .. ®,], see Fig. 1.

The edges of the form (i, i + 1) of G are called main edges. Other edges are called jump edges.

Denote by dawg(w) the acyclic directed subword graph of a word w. It is a minimal deterministic finite automaton
accepting all suffixes of w, in which we ignore accepting states and transitions leading to the sink (the rejecting state in
which the automaton loops), see for example [7,5,18] for more detailed definition. Each path leading from the source
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Fig. 1. The subgraph of G, induced by the nodes [0. .. Pg]: the subword graph dawg(Fg), the fork nodes (of out-degree 2) are drawn as squares.
The arrows show the ends of prefixes which are Fibonacci words.

periodic part

P
| |

Fn+1

Fig. 2. The word g;,42 (F,42 with the last two letters cut off) has a period @,,. The last two symbols of F}, 1, are the swap of the last two symbols
of Fy1. The figure shows the case of even n.

node of this graph corresponds to a subword of w, and conversely, each subword corresponds to a unique path in
dawg(w). This graph has always at most 2n nodes, in our case the number of nodes is even smaller.

The main branch in dawg(w) corresponds to the whole word w. We assume that the nodes on the main branch
(corresponding to main edges) of such a graph are consecutive integers starting with 0.

Fact 1. For eachn > 1dawg(F,) = G, and paths(G,) = suffixes(Fy,).

Proof. The thesis follows by induction on n. Consider how G,42 grows from G,y using the linear-time on-line
algorithm, see [7]. In this construction the main branch [0. .. @, ] of the dawg G, is extended to the set of nodes
[0...®,4>]. It is enough to show that no extra node outside the main branch is created.

Claim 2. g, is a prefix and suffix of gn+2.

The claim follows from Eq. (1). We know that g, is a prefix of g,12, since F, is a prefix of g,42. Due to
Eq. (1) the word g,42, hence the reverse of each of its prefixes is also its suffix. However, g,41 is symmetric also.
Hence g, is also a suffix of g,4+>. This completes the proof of the claim. [J

If dawg(Fy,+1) = Gn+1 then the next | F,, 11| — 2 symbols do not create new nodes or new edges outside the main
branch since, due to the claim, g, is a prefix and suffix of g,,. Consequently, g,+> has the period |F,|. This is
illustrated in Fig. 2.

One extra edge is created from |Fj, 41| — 2 to |F,42| — 1 because the next read symbol terminates the period
of | Fy1l.

Hence dawg(F;,2) results from dawg(F, 1) by adding the path labelled F}, and creating a jump edge from | F}, ;1| —2
to | F,,42| — 1 with the label different from the main edge from |F,, 1| — 2 to | F,,41| — 1. In this way the labels of the
edges are as in Eq. (2). This completes the proof.

Denote by finite-paths(G) the set of all finite words spelled by the paths of G, originating at 0, and by finite-
subwords(F) the set of all finite sub-words of F.

The following fact follows directly from Fact 1.
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Fig. 3. The structure of the intermediate compressed version of dawg(F7) from Fig. 1. The dashed edges labelled g; correspond to compressed
chains.

Rgba

R, ba

Fig. 4. The compacted subword graph cdawg(F1) of the Fibonacci word of length 233. All labels (but one) are reverses R; of Fibonacci words.

Fact 3. finite-paths(Geo) = finite-subwords(Fxo).

The graph dawg(F;) can be compactly described in O(n) space. In the first intermediate compaction each chain
(a sequence of nodes of indegree and outdegree one) is represented by a single edge, see Fig. 3.

We can further compact the graph. The nodes of G, and G, of outdegree greater than one are called fork nodes. We
say that a path starting from 0 is a fork-path iff it ends at a fork node in G,. In case of G, the sink node is also consider
as a fork node.

Only the fork nodes and compacted fork paths remain in the fully compacted version of F,. We remove all nodes
except fork nodes. Then for each edge outgoing from a remaining node replace it by an edge going to the next remaining
node, with label representing the word “spelled” by the compressed path, see Fig. 4. The resulting compacted subword
graph is denoted by cdawg(F) for the infinite graph and as cdawg(F;,) for the compacted version of the finite graph
dawg(Fy).

We say that a path is an a-path if it is an infinite path in G, which starts at 0, and chooses the edge labelled a
whenever there is a choice. Similarly, define b-path.

Denote by a-path(Goo) the infinite word spelled by the a-path, similarly define b-path(Gso). The b-path(G,) can be
treated as the infinite lexicographically maximal pseudo-suffix of Foo (each prefix of b-path(G) is a prefix of maximal
suffix of some finite Fibonacci word).

The suffixes of F are infinite words resulting by cutting off a finite prefix of the infinite word F.

Denote by R; = Fl.R the reverse of the Fibonacci word F;. Due to Eq. (1) we have:

Foo = RoR1RyR3R4R5Rg . . . . 4)

Fact 4.

(@) a-path(Geo) = a - Foo, b-path(Go) = b - Feo.

(b) a-path(Goo) and b-path(Gso) are not suffixes of Foo-

(¢) The infinite string corresponding to a path T of Geo is a suffix of Feo iff almost all edges of © (all but a finite number)
are main edges.

Proof. Fig. 3 shows the compact version of G, the labels on edges are words ab - g, for even n and ba - g, for odd
n. These words are reverses of the Fibonacci words. Hence

a-path(Goo) = a RyR4RgRgR ¢ ... and b-path(Goo) = R1R3R5R7 ... .

The thesis follows from Eq. (1) and the fact that Ry = Ry Ri+1.
The points (b) and (c) follow directly from (a), since the infinite string F, is not periodic. This completes the
proof. [
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The critical factorization point is a word w is a position k in w for which minimal local period at k equals the (global)
minimal period of w. A positive integer p is a local period at k iff w[k — i] = w[k 4+ i — 1] for all 1< p for which
wlk —i], w[k +i — 1] are defined. We refer the reader to [7] for more detailed definition of the critical factorization
point. The starting position of a lexicographically maximal suffix, maximized over all possible orders of the alphabet,
is a critical factorization point, see [6,7]. This implies the following fact:

Fact 5. &, — min{|a-path(G,)|, |b-path(G,)|} is the critical factorization point of the nth Fibonacci word.
This gives alternative proof, see [8], of the following fact.
Fact 6. @,_1 — 1 is a critical factorization point of F,,.

A word w € {a, b} is well balanced iff for each two subwords u1, u2 of w of the same length we have |#,(u1) —
#,(u2)| <1, where #,(v) denotes the number of a’s in v. It is known that each subword of a Fibonacci word is well
balanced and one can test if a word is well balanced in quadratic time, see [16]. We give a linear test for subwords of
Fibonacci words working in a constant space.

By O(1) space we mean constant number of nonnegative integers not greater than .

Fact 7. We can test if a word w is a subword of a Fibonacci word in time O(Jw|) and O(1) space.

Proof. It is easy to see that we can test if a specified subword of w is a Fibonacci word in linear time and O(1) space.
Then we can traverse G without remembering it explicitly. In some places we have to test if a subword of w is a
Fibonacci word. [J

3. The structure of occurrences of subwords in Fibonacci words

Recall that occ(u) is the set of occurrences of u in F,, we define also the set of final positions of occurrences of a
word u:

fin(u) = occ(u)®|u| and first-fin(u) = min(fin(u)).
Observe that
first-fin(u) = first-occ(u) @ |u|.

Fact 8.
(a) For each pair of nonempty subwords u, w of Foo we have:

first-fin(u) = first-fin(w) < fin(u) = fin(w).
(b) For each nonempty subword u of Foc we have
occ(u) = occ(gi) ®first-occ(u),
where g; is the shortest truncated Fibonacci word containing u.
Proof. First, we show a fact which follows from the properties of the dawgs.

Claim 9. For a subword w of Fu the node in G reached by the path labelled by w is first-fin(w).

Proof of the claim. Each finite subword graph has the following property, see [7]:

If the path corresponding to a subword w terminates in a node k, then the set of words corresponding to paths
terminating at k is {u : fin(u) = fin(w)}.
This property also holds for G, as a limit of a series of finite subword graphs.
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first—occ(u)

Fig. 5. w is a shortest prefix of Foo with the suffix equal to u, and wo is the shortest extension of w such that wo = g; for some i. This g; is the
shortest g; containing u as a subword. The string o can be empty. We have: first-occ(u) = |w| — |u].

Assume the path labelled w leads to a node k. Then fin(u) = fin(w) for any other word u which leads to k. In
particular, the prefix u of G of length k leads to k. We have that first-fin(u) = k, hence also first-fin(w) = k, due to
the equality fin(u) = fin(w). Therefore, the path corresponding to w leads to first-fin(w) in G This completes the
proof of the claim. [J

The point (a) follows directly from Claim 9. We show now the point (b).

Let g; be the shortest truncated Fibonacci word containing u, and w be the shortest prefix of F, containing u as a
suffix, see Fig. 5. Then, according to Claim 9 fin(u#) = fin(w). On the other hand occ(w) = occ(g;), since there is no
fork node between |w| and |g;| — 1. If X is a set of integers then define:

Xoj={x—j:xeX}.
We use the following equality:

(X=A0jandY =AQi )= X=YDU — )). 5)
Observe that occ(u) = fin(u) ©|u|. We have now the equalities:

occ(u) = fin(u) ©lu| = fin(w)Olul,  occ(gi) = occ(w) = fin(w) Slw.

Consequently occ(u) = fin(w) Olul|, occ(gi) = fin(w) ©|w|. Now, Eq. (5) and equality |w| — |u| = first-occ(u) imply
that

occ(u) = occ(g) D (Iw| — |ul) = occ(gi) Bfirst-occ(u).
This completes the proof. [
Example. The shortest truncated Fibonacci word containing aa, as well as F3 = abaab is g4 = abaaba. We have
occ(F3) = occ(gq) = {0,5,8, 13,18, 21, 26,29, ...}, and first-occ(aa) = 2, hence occ(aa) = occ(F3)P2 =
occ(gy)®2 =1{2,7,10, 15,20, 23, 28, 31, .. .}.
For k > 1 we investigate also the structure of the set
FIN (k) = {first-fin(u) : u is a subword of Fo, of size k}.

Lemma 1. The set FIN (k) consists of a single interval or of two disjoint intervals. In particular, FIN(®, — 1) =
(&, —1...2-®, —1];

Proof. The structure of the set FIN (k) easily follows from the way how paths of length k — 1 are extended into paths of
length k. Only fork nodes i € FIN (k — 1) generate two elements of FIN (k), each other node i in FIN (k — 1) generates
a single element i + 1 in FIN (k), see Fig. 6. We have:

FIN(k+1) = (FIN(k)®1) U {®;11 — 1} where &; —2 € FIN(k).
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Fig. 6. The structure of the sets FIN (k) of endpoints of first occurrences of all k + 1 different strings of length k. The set FIN (k) is illustrated as a
set of nodes in the kth line of the table. For example FIN (6) = {6, 7, 8,9, 10, 12, 13}. We have: |FIN (k)| = k + 1. The end-positions of Fibonacci
prefixes are indicated by vertical arrows.

Hence the set FIN (k + 1) results from FIN (k) by shifting each position by 1 to the right and adding one extra position
b —1. O

We say that a subword w of F is a right special subword, iff wa and wb are subwords of F,. Such subwords are
responsible for the increase of the number of subwords with respect to their length. These are the words corresponding
to paths to fork nodes, they are considered for example in [3]. It follows from the structure of G that right special
subwords are exactly suffixes of g;’s. On the other hand, each suffix of g; is a reverse of a prefix of Fao. Let w® denote
the reverse of w.

In this way we give a new proof of another property of Fuo:

a word w is a right special factor of oo iff w® is a prefix of Foo.

This property is already known, see for example [2], where the proof is different.
Recall that the Fibonacci number system consists in representing a number as a sum of Fibonacci numbers, in such
a way that no two consecutive Fibonacci numbers are used. The sum of zero number of integers equals zero.

Lemma 2 (Zeckendorff Lemma [19]). Every nonnegative integer is uniquely represented in the Fibonacci number
system.

Define the dual Fibonacci system: In this system each positive integer x is represented as a sum of different Fibonacci
numbers, however, we require that if @; is not taken then &; | is taken in the sum, whenever any Fibonacci number
after @; is taken. It follows directly from Zeckendorff’s Lemma that:

Lemma 3. Every integer k > 0 is uniquely represented in the dual Fibonacci number system.

The next fact follows from the structure of the compacted infinite dawg Go.

Fact 10. For each k > 1 there is exactly one fork-path of length k in Go.

Proof. Representation of a non-negative integer x in the dual Fibonacci system is given by a sequence y = (¢;,, ¢, ,
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3 8 21 55
/_\ 34 55
1 vl 2 Kv\ 3 (v3 3 v4, 8 @ 13 (V6 - - @ v9
2 5 13 34

m
3 13
) ©

60=2+3+8+13+34

Fig. 7. We put the lengths of the edges as the lengths of compacted paths in cdawg(Goo). The representation y = (2,3, 8, 13,34)
= (¢1. ¢2. 4. ¢5.p7) of x = 60 in the dual Fibonacci system corresponds to a fork-path m = (vg. v, v3, vs, v, vg). We have
Y(n) =7, length(m) = val(y) = 60.

bi,» - - - ¢;,), which satisfies the conditions:
(a) ¢;, is the ixth Fibonacci number;
() i1 €{0, 1}
(c) foreachk =1,2,...n wehave 1 <ip —i;_1<2.
Let val(y) denote the integer x represented by 7, it is the sum of the Fibonacci numbers which appear in y. Denote by
I’ the set of all such representations 7.

Consider now the set I1 of finite fork paths 7 in cdawg(Fo). Denote the fork nodes in cdawg(Fx) by vg, v, v2, .. .,
where the number of v; in G is the sum of the first i consecutive Fibonacci numbers. Each edge between fork nodes
is of a type

Vi — Vi1 Or VU — Vj42.

The length of the label of the edge v; — v is @;_;.
Each path © € II is a sequence of nodes m = (vo, v;;, Vi, ...V;,), Where vop = 0 and 1<iy — ix—1 <2 for each
k =1,2,...n. The length of this path is

n
length(n) = Z bi—1-
k=1

We describe a function ¥ : IT — I as follows:

nz(vOa vi]v vizv"'vi,l) = le(n) =(¢il—]7 ¢i2—]7 ¢i3—]7--~¢in7])-

Fig. 7 illustrates the correspondence between a representation y of ax = 60 in the dual Fibonacci system and a fork-path
7 in cdawg(Geoo). The function ¥ is the bijection between IT and I'. Moreover, it satisfies:

V1 ell length(n) = val(¥Y(m)).

Each integer x >0 has a unique representation y € I" with val(y) = x. Hence, due to bijection of ¥ there is a unique
fork-path of a given length in G,. This completes the proof. [

Recall that Z, is the set of nonnegative integers which do not use Fibonacci numbers @, @1, ..., @,_; in their
Fibonacci representation. The representation of each number in Z), is called a Z,,-representation.

Example. We have the following Zg-representation

1000000 = F9 + F11 + Fa3 + Fas + Fa.

The sorted set Z¢[0], Zx[1], 2x[2], .. . is closely related to Fibonacci words, denote by Dy, the displacement structure
of Z:

Dy = (Z¢[1] = Z¢[0], Zk[2] — Zk[1], Zk[3] — Zk[2], Zk[4] — Zk[3], ...).
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Example. For k = 3 we have hi(a) = &3 =5, hi(b) = &2 = 3, hence in this case:
Z3=1{0,5,8,13,18,21,26,29,34,39,42, ...} ={0,04+5,5+3,8+5,13+5,1843,214+5,...}
D3 =(5,3,5,5,3,5,3,5,5,3,5,5,3,5,3,5, ...,
Foo =a,b,a,a,b,a,b,a,a,b,a,a,b,a,b,a,...

The remarkable property of Zj is that its displacement sequence is structurally isomorphic to the infinite Fibonacci
word with large difference corresponding to a, and smaller one to the symbol b. It can be shown by induction that:

Lemma 4. D, = hy(Fo), where hi(a) = @, hi(b) = &p_1.

The structure of the graph G implies several number-theoretic properties of the set of occurrences of subwords in
Fibonacci words. It follows from Fact 8 and the structure of the graph G, see Fig. 7, that:

Fact 11.

(1) occ(gn+1) = occ(Fy) = 2, forn > 1.

(2) occ(Fy) = occ(Fy), occ(Fy) = Z.

(3) For each subword u ¢ {Fy, F1} of Foo we have occ(u) = Z; @first-occ(u), where g; is the smallest truncated
Fibonacci word containing u as a subword.

Proof. The subword u “moves” to the right by starting at first-occ(u) in G and making shortcuts. Each shortcut
corresponds to taking a Fibonacci number, no two consecutive Fibonacci numbers are taken. [

4. The structure of runs in Fibonacci words

We say that a run w is a p-run iff period(w) = p. The run is short if |w| < 3 - period (w), otherwise the run is called
long. The structure of runs has been already investigated in [13,9]. Some of our results are similar to those from [13,9]
but our approach is different, it follows from the role played by words g, with respect to occurrences of other words.
This role of words g, is expressed in Fact 8 and is a consequence of the structure of subword graphs dawg(F,).

Due to Fact 8 every repetitive occurrence of a subword in F, implies an occurrence of an overlap of some word g;,
see Fig. 8. Hence the runs correspond to adjacent occurrences (or overlaps) of words g;, see Fig. 9.

I. abaabal g,
I- Slabaaba

abaababaabaabab abaababaabaabab

Fig. 8. An occurrence of a square baa - baa occurs always inside an overlap of g4 = abaaba, since occ(baa) = occ(gq)D1.

(A) F» k-2 (B)

Fig. 9. There are two possibilities of the relative structure of two consecutive occurrences of g, for k >4, they can have overlap of size @_, or
@1, which give rise to two types of runs: o = F/?,zgk% and fi, = sz,lgk—z
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—
abaababaabaab abaababa abaababaabaab abaababaabaab abaababa abaababaabaab abaababa abaababaabaab

T

W abaababaabaab abaababaabaab abaababa abaababaabaab abaababa abaababaabaab

abaababaabaab abaababa abaababaabaab abaababaabaab abaababa abaababaabaababaababa abaab@ab
\_/ v

aba?ababaabaab WWabaab abaa\babaabaab abaababa abaababaabaab abaababa abaababaabaab
T g N2 WP A }

NS N\ NSNS NN N SN N
abaababa@ Wababa@ @a\ba/ab@ab abaababa a{a@a@%b abaababa @' baabaab

/b\/b\b b b/b\fb\b b b/b\?fb\b b/b\@/b\b bTKb\Qb b b/b\/b\b b b/b\rb\{)
abaababaabaab gbaababa abaababaabaa @@aaaa Waaaaa\/awaamaaaa

Y% N Y N~ O s
abaababaabaab abaababa abaababaabaab, abaababaabaab abaababa abaababaabaab abaababa abaababaabaab
Fig. 10. The structure of runs in the Fibonacci word Fg. The arrows show endpoints of prefixes of Fo9 which are Fibonacci words.

The displacement sequence for the occurrences of gi consists in @_1 or ®x_;. Hence the overlap of two g;’s can

generate two types of runs, the short @;_1-runs, and long ®;_»-runs, see Fig. 9. Consequently we have the following
fact.

Lemma 5 (Mignosi and Pirillo [13]). Every run of Foo with period larger than two is of one of two types a short 3-run
b = F;?,lgk—z, or a long a-run oy = F,ffzgk_3,f0r an integer k.

We define the repetition order, denoted by rep(x), of the string (finite or infinite) x as
rep(x) = sup {|w|/period(w) : w € finite-subwords(x)}.

The maximal repetitions correspond to long a-runs in F,. We have:

ot | _3'(Dk—2+(15k—3—2_2+‘1’k—1—2
period (o) D> Dp—n
‘We have
. D=2
lim —— =

k—oo  Dp_p

This implies the following fact (already shown in [13]).

Fact 12 (Mignosi and Pirillo [13]). rep(Foo) = 2 + ¢, where ¢ = (1 + \/g)/Z is the golden ratio.

All runs correspond to occurrences of g;’s. However, Z; is the set of all occurrences of g;. The Displacement Lemma
(Lemma 4) plays the crucial role in understanding the structure of runs in F,,. We know that the displacement sequence
is isomorphic to Fibonacci sequence, hence we can compute number of different types of runs by computing numbers
of a’s and b’s in prefix segments of F,. Using Lemma 4 we can describe the structure of runs in F,.
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Fact 13. The Fibonacci word F,, has: F,,_3 ®o-runs; F,_4 — 1 ®@1-runs, and F,_j_> Or-runs for 2<k<n — 2.
This gives alternative (compared with [11]) proof for the number of all runs.
Fact 14 (Kolpakov and Kucherov [11]). F, has 2 - F,—_> — 3 runs.

Example. The structure of runs in Fy is shown in Fig. 10. The string Fy has 65 runs. The 21 1-runs of aa are not shown
in the figure. There are @5 — 1 2-runs, @5 3-runs, P4 S5-runs, @3 §-runs, ¢, 13-runs, 1 21-runs and Py 34-run.

It follows from the structure of runs oy, f; that they do not contain a power x* of a nonempty word x. This implies
the following well known fact, see [2,10], in a novel way:

Fact 15. There are no subwords in Fao of type x*, where x is nonempty.

Using the displacement sequence Dy, due to its recursive Fibonacci-like structure, we can easily show the following:

Fact 16. For n > k, the number of occurrences of Fy in Fy, is F,_y — odd(n — k), where odd(x) = 1 if x is an odd
integer, and odd(x) = 0 otherwise.

5. The structure of suffix trees of Fibonacci words

The suffix tree 7,, of F, is the tree of all paths of cdawg(F;,). The structure of this tree and the way how T}, evolves
into 7,41 follows from the structure and evolution of compacted dawg’s, see Figs. 11-13. A terminal edge is an edge
leading to a leaf. The suffix trees of Fibonacci words grow at their leaves, by changing the terminal edges in a very
simple regular way.

Fact 17. For n > 2 the suffix tree T,, of F,, has ®,,_1 leaves and ®,,_> internal nodes. Let x be the last two symbols of
Foi1. T, evolves into T, 11 in the following way:
Long edges: Each terminal edge (u, v) with label x F,,_, is transformed into the subtree isomorphic to S,, two end
symbols are cut off from the label of (u, v), and two edges originated at v are created, with labels xR F,_1 and x.
Short edges: Each terminal edge with label x changes its labels to x - F,_1.

subtree Sy R
- X Fn ) X Fn—l
T — l\
]
X gn-2 [ J

./X,. — xFy .

ab °
Ts

\
ba F, ®
a
ba F,
e

Fig. 11. The suffix tree 75 and the general rules to generate 7, from 7},. The word x € {ab, ba}.
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ab F, ab g,

Fig. 13. The evolution of the suffix tree Tg = T (Fg). Compare with Fig. 12, observe that g is the empty string and that the labels ab g; (for even i)
and ba g; (for odd j) are reverses Ry of Fibonacci words. We can obtain in the limit an infinite suffix tree of Foo.

We know precisely how the suffix trees grow. The sum of lengths of edges of the suffix tree is the number of different
subwords. We have @,,_3 short edges, each of them grows by ®,,_1, and @, _; long edges, each grows by @,_; + 2.
This gives easily a simple recurrence and a new suffix-tree oriented proof for the known formula of the number Sub(n)
of different subwords of F,.
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Corollary 1. Forn > 2 we have:
Sub(n + 1) = Sub(n) + @p—3 - Pp—1 + Pp—2 - (Pn—1 +2),
Sub(n) = @, 1Py +2- D1 — 1.

We say that two labelled trees are structurally isomorphic iff they are isomorphic as unordered trees in graph-theoretic
sense, disregarding the labels. The following fact also follows from the structure of cdawg’s.

Fact 18 (Fibonacci-like structure of suffix trees of Fibonacci words). For n > 4 the two subtrees rooted at the sons of
the root of the suffix tree T (F,) are structurally isomorphic to the suffix trees T (F,,—1) and T (F,,_>), respectively.
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The subword graphs for general Sturmian words have been already considered in [14], where the emphasis was on
Sturmian graphs and their counting properties. There is a huge literature on Sturmian words (each Fibonacci word is a
Sturmian word).

Some applications of the structure of subword graphs of Fibonacci words to the lexicographic properties of the
Fibonacci number system were presented in [1].
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