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Abstract

Motivated by a question of Krzysztof Oleszkiewicz we study a no-
tion of weak tail domination of random vectors. We show that if the
dominating random variable is sufficiently regular then weak tail dom-
ination implies strong tail domination. In particular positive answer to
Oleszkiewicz question would follow from the so-called Bernoulli con-
jecture. We also prove that any unconditional logarithmically concave
distribution is strongly dominated by a product symmetric exponential
measure.

1. Introduction. This note is inspired by the following problem about
Rademacher series, posed by Krzysztof Oleszkiewicz (private comunication):

Problem. Suppose that (¢;) is a Rademacher sequence (i.e. a sequence
of independent symmetric £1 r.v.’s) and x;,y; are vectors in some Banach
space F' such that the series ), x;e; and ) yie; are a.s. convergent and

Vs e P Viso P(‘x* ( Z xiz-:i) z* ( Z yiezi) ’ > t).

Does it imply that

1) <

EH Zﬂfﬁi < LEH Zyﬁi ;
(2 7
for some universal constant L < oco?

Motivated by the above question we introduce a notion of weak tail
domination of random vectors. We prove that if the dominating vector has a
regular distribution (including the Gaussian case) then weak tail domination
yields strong tail domination (Theorem 1). In particular, Oleszkiewicz’s
question has positive answer provided that the so-called Bernoulli conjecture
holds. We also show that in general weak tail domination does not yield
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comparison of means or medians of norms even if the distribution of the
dominated vector is Gaussian.

In the last part we use Theorem 1 to extend the result of Bobkov and
Nazarov [3] and show that unconditional logaritmically concave distributions
are strongly dominated by a product symmetric exponential measure.

2. Weak and strong tail domination. Let us begin with the following
definition.

Definition 1. Let X and Y be random vectors with values in some Banach
space F. We say that tails of Y are weakly dominated by tails of X and
write Y <, X if

P(lz*(Y)| > t) < P(|z"(X)[ > t) forall z* € F*,t > 0.

The following regularity property of random vectors will give us a tool
to go from weak to strong comparison. Its roots are in the paper [8], where
a modification of the majorizing measure idea was introduced for processes
controlled by a family of distances.

Definition 2. We say that a random vector X with values in F' is K -reqular
for some K < oo if there exists a sequence (x})) C F™* such that

2% (X) hog(nr2) = (Bla(X)[les+2))1/106(1+2) < KR X|[ for n = 1,2,....

and
Bp- ={z* € F*: ||z*|| < 1} C clx(conv{+tz) : n > 1}),

where for A C F*, ch(A) denotes the closure of A with respect to the L2
distance dx (z*,y*) == (E|lz*(X) — y*(X)>)/2.

Proposition 1. If X is K-reqular and Y <, X, then
E||Y| < 20KE|X].

Proof. Let z} be as in Definition 2. We have for any ¢ > 0,

P(su T, >t> P(|z;, >t) < ¢~ log(n+2) g% log(n+2)
sup e (V)| 2 1) <D Pan(V)[ 2 1) <) 25 (Y)

n>1 n>1

< Z + 10g(n+2)E|x:; (X) |log(n+2)

n>1

-y (KEtHXH)log(nH)'

n>1



Notice that dy (z*,y*) < dx(z*,y*), hence B}, is contained also in the clo-
sure of absolute convex hull of £z} with respect to dy metric and thus

[e.e]
E[[Y| < Bsup [o7,(v)| < KE|X[ (¢ + [~ Plsuplai()] = ¢KE| X))
n>1 e2 n>1
0 0
< KE|X| (62 + Z/ t—1°g<"+2>dt) < 20KE| X]||.
n=1 e?

O

Theorem 1. Let X, Xo,... be independent copies of a symmetric random
vector X . Suppose that there exist constants K < co and o, B > 0 such that
foralln=1,2,...
(i) the random vector (X1, ..., Xy) with values in I’ (F) is K-regular,
(i) P(maxi<n [| Xi| = aEmaxi<, || Xil) = 3.
Then for any random vector Y such that' Y <, X we have for allt >0
2 at
P(IY] =1 < ZP(IX]| > <),
(¥l =0 < 2P(IX1 > g
The main idea of how to derive comparison of tails from comparison

of means is not new - it goes back at least to the paper of Asmar and
Montgomery-Smith [1].

Proof. We may obviously assume that Y is symmetric; we will denote by
Y1,Ys, ... independent copies of Y. Let n > 2 be such that

2 1
—2>2P(Y[=t) =~
n n

Then P(max;<, ||Yi|| > t) > 1— (1 —1/n)" > 1/2, hence Emax;<, ||Yi| >
t/2. Let n be r.v. independent of (Y;) such that P(n =1) =P(n=0) =1/2.
Then by Theorem 3.2.1 of [5], n(Y1,...,Ys) <o (Xi,...,Xy), where both
sides are considered as random vectors in [’ (F'). By Proposition 1,

t
b < B ¥l = BV, o) iy ) < 20KB)(X, . X))
= 20K E max || X;]|.
1<n

Property (ii) yields

t t
8 < P(max il > goz ) <nP(IX1 2 g5 ).
so P(||X|[| = at/(80K)) > /n = BP(|Y] > t)/2. O



Remark 1. The comparison of first and second moments of maxima,

Emax | X2 < C(Bmax X M)

implies by the Paley-Zygmund inequality (cf. [5, Lemma 0.2.1]) property (ii)
of the previous theorem with o = 1/2 and 5 =1/(4C).

Remark 2. Proofs of both Proposition 1 and Theorem 1 show that both
statements hold if we replace the condition Y <, X by the condition

[ (Y)llp < llz*(X)lp for all 2™ € F*,p > 1. (2)

Moreover, if ||2*(X)||2p < Clla*(X)]|, for all p > 1 and z* € F* it is enough
to check (2) for p being even integer (constants 20K and 80K would change
into 20C K and 80CK).

Let us give a few examples of random vectors satisfying the assumptions
of Theorem 1.

Example 1. Any centered Gaussian vector on a separable Banach space
is L-regular with universal L. This is a consequence of majorizing measure
theorem (cf. [7] and [9, Theorem 2.1.8]). Since a product of Gaussian
measures is again Gaussian, property (i) holds with K = L. Moments of
Gaussian vectors are comparible so by Remark 1 also property (ii) holds
with v = 1/2 and universal 3.

Example 2. Let (n;) be a sequence of independent symmetric real
r.v.’s with logarithmically concave tails satisfying the As condition and let
v; € F be such that X = ) . vn; is a.s. convergent. Then X is K-regular
with a constant K depending only on the Ay constant ([6, Theorem 3]).
The random variable (X1, ..., X,,) has an analogous series representation in
I (F), so property (i) holds. It can also be checked that (1) is satisfied with
a universal C.

Remark 3. Positive answer to the Bernoulli conjecture ([9, Chapter 4])
would imply the L-regularity of Rademacher series. Since (1) holds for X
being a Rademacher sum with vector coefficients, Theorem 1 would give
positive answer to Oleszkiewicz’s question.

We conclude this section with an example showing that weak tail domi-
nation does not yield any comparison of strong parameters even if the dom-
inated vector has Gaussian distribution.



Example 3. Let F =12,Y =>"" | gie; and X = 9(|g1| + 1) D1 mies,
where g; are i.i.d. N(0,1) and 7; are i.i.d. r.v.’s with uniform distribution
n [—1,1], independent of g;.
To show that tails of Y are weakly dominated by tails of X it is enough
to check that

P(|(u,Y)| > t) <P([(u,X)| > t) forue s t>0. (3)
Let us fix u € S L. For ¢ > 0 we have
P([{u,Y)| > 1) =P(lg1| > 1)

By the Paley-Zygmund inequality,

P(’Zn:umz > é) :P<‘iumz‘ ’ > ;E’zn:umz

S 12 (B Y20 uimil®)?
>(1-73) —
37 B Y L, winil

thus

P(I(w, X)| 2 1) > PGl +1) 2 1) > 2P (lon] > 7).

Using the easy estimate 2t exp(—(2t)?/2)/v21 < P(|g| > t) < exp(—t?/2),

we immediately get (3) for t > 3. For 0 < ¢ < 3 we have

V2t _ P(g] <3)
9 - 3

t

(1, X)) 1) < P (o] 3w
=1

gt)g

<P(lgal <t) = P(|{u, V)| < 1),

where to get the second inequality we used Ball’s upper bound on cube
sections [2]. Hence (3) holds also for ¢ € [0, 3].

Thus Y <, X. However E||Y|| = Emax;<y, |¢gi;| > /log(n+1)/L and
E|LX]| < 9E(g1] + 1) < 18,

3. Unconditional logarithmically concave distributions. A Borel
probability measure p on R”™ is called logaritmically concave if for any
nonempty compact sets A, B and A € [0, 1], u(AA+(1-N\)B) > u(A) u(B)' .
If the support of x has full dimension, p is logconcave if and only if p has
the density of the form e™9, where g: R" — (—o0, 00| is convex [4]. A ran-
dom vector X = (Xy,...,X,) is unconditional if for any sequence of signs
si = +1, (s1X1,...,8,Xy) has the same distribution as X.



Theorem 2. Suppose that Y = (Y1,...,Y,) is an unconditional vector
with logarithmically concave distribution such that EY;2 =1, and X =
(X1,...,Xy), where the X; are independent, symmetric, exponential ran-
dom variables with variance 1 (i.e. the density 272 exp(—v/2|x|)). Then
for any norm on R",

P(|Y[| = ¢) < LP(| X|| = t/L) fort>Q0,
where L 1s a universal constant.

Proof. By Example 2 the vector X satisfies the assumption of Theorem 1.

Moreover || ), a;iXill2p < C|| >, aiXi||p for p > 1 and a universal C'. Thus

by Remark 2 it is enough to show that for any ai,...,a, and any positive

even integer k,

N\ 1/k
) (4)

n k\ 1/k n
(E‘ZaY ) §L1<E‘ZaiXi
i=1 i=1

The result of Bobkov and Nazarov [3, Proposition 3.3] gives that for ¢1, ..., ¢, >
0,

P(|Yi| = Lity, ..., |Ya| > Lit,) < P(|Xq| > t1,...,| Xn| > tn),

thus after integration by parts we get
2(l14-..+ln
B[P V) < L3O B )

and (4) immediately follows. O
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