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Abstract

Motivated by a question of Krzysztof Oleszkiewicz we study a no-
tion of weak tail domination of random vectors. We show that if the
dominating random variable is sufficiently regular then weak tail dom-
ination implies strong tail domination. In particular positive answer to
Oleszkiewicz question would follow from the so-called Bernoulli con-
jecture. We also prove that any unconditional logarithmically concave
distribution is strongly dominated by a product symmetric exponential
measure.

1. Introduction. This note is inspired by the following problem about
Rademacher series, posed by Krzysztof Oleszkiewicz (private comunication):

Problem. Suppose that (εi) is a Rademacher sequence (i.e. a sequence
of independent symmetric ±1 r.v.’s) and xi, yi are vectors in some Banach
space F such that the series

∑
i xiεi and

∑
i yiεi are a.s. convergent and

∀x∗∈F ∗∀t>0 P
(∣∣∣x∗(∑

i

xiεi

)∣∣∣ ≥ t) ≤ P
(∣∣∣x∗(∑

i

yiεi

)∣∣∣ ≥ t).
Does it imply that

E
∥∥∥∑

i

xiεi

∥∥∥ ≤ LE
∥∥∥∑

i

yiεi

∥∥∥,
for some universal constant L <∞?

Motivated by the above question we introduce a notion of weak tail
domination of random vectors. We prove that if the dominating vector has a
regular distribution (including the Gaussian case) then weak tail domination
yields strong tail domination (Theorem 1). In particular, Oleszkiewicz’s
question has positive answer provided that the so-called Bernoulli conjecture
holds. We also show that in general weak tail domination does not yield
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comparison of means or medians of norms even if the distribution of the
dominated vector is Gaussian.

In the last part we use Theorem 1 to extend the result of Bobkov and
Nazarov [3] and show that unconditional logaritmically concave distributions
are strongly dominated by a product symmetric exponential measure.

2. Weak and strong tail domination. Let us begin with the following
definition.

Definition 1. Let X and Y be random vectors with values in some Banach
space F . We say that tails of Y are weakly dominated by tails of X and
write Y ≺ω X if

P(|x∗(Y )| ≥ t) ≤ P(|x∗(X)| ≥ t) for all x∗ ∈ F ∗, t > 0.

The following regularity property of random vectors will give us a tool
to go from weak to strong comparison. Its roots are in the paper [8], where
a modification of the majorizing measure idea was introduced for processes
controlled by a family of distances.

Definition 2. We say that a random vector X with values in F is K-regular
for some K <∞ if there exists a sequence (x∗n) ⊂ F ∗ such that

‖x∗n(X)‖log(n+2) = (E|x∗n(X)|log(n+2))1/ log(n+2) ≤ KE‖X‖ for n = 1, 2, . . . .

and
BF ∗ = {x∗ ∈ F ∗ : ‖x∗‖ ≤ 1} ⊂ clX(conv{±x∗n : n ≥ 1}),

where for A ⊂ F ∗, clX(A) denotes the closure of A with respect to the L2

distance dX(x∗, y∗) := (E|x∗(X)− y∗(X)|2)1/2.

Proposition 1. If X is K-regular and Y ≺ω X, then

E‖Y ‖ ≤ 20KE‖X‖.

Proof. Let x∗n be as in Definition 2. We have for any t > 0,

P
(

sup
n≥1
|x∗n(Y )| ≥ t

)
≤
∑
n≥1

P(|x∗n(Y )| ≥ t) ≤
∑
n≥1

t− log(n+2)E|x∗n(Y )|log(n+2)

≤
∑
n≥1

t− log(n+2)E|x∗n(X)|log(n+2)

≤
∑
n≥1

(KE‖X‖
t

)log(n+2)
.
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Notice that dY (x∗, y∗) ≤ dX(x∗, y∗), hence B∗F is contained also in the clo-
sure of absolute convex hull of ±x∗n with respect to dY metric and thus

E‖Y ‖ ≤ E sup
n≥1
|x∗n(Y )| ≤ KE‖X‖

(
e2 +

∫ ∞
e2

P(sup
n≥1
|x∗n(Y )| ≥ tKE‖X‖)dt

)
≤ KE‖X‖

(
e2 +

∞∑
n=1

∫ ∞
e2

t− log(n+2)dt
)
≤ 20KE‖X‖.

Theorem 1. Let X1, X2, . . . be independent copies of a symmetric random
vector X. Suppose that there exist constants K <∞ and α, β > 0 such that
for all n = 1, 2, . . .
(i) the random vector (X1, . . . , Xn) with values in ln∞(F ) is K-regular,
(ii) P(maxi≤n ‖Xi‖ ≥ αE maxi≤n ‖Xi‖) ≥ β.
Then for any random vector Y such that Y ≺ω X we have for all t > 0

P(‖Y ‖ ≥ t) ≤ 2
β

P
(
‖X‖ ≥ αt

80K

)
.

The main idea of how to derive comparison of tails from comparison
of means is not new - it goes back at least to the paper of Asmar and
Montgomery-Smith [1].

Proof. We may obviously assume that Y is symmetric; we will denote by
Y1, Y2, . . . independent copies of Y . Let n ≥ 2 be such that

2
n
≥ P(‖Y ‖ ≥ t) ≥ 1

n
.

Then P(maxi≤n ‖Yi‖ ≥ t) ≥ 1 − (1 − 1/n)n ≥ 1/2, hence E maxi≤n ‖Yi‖ ≥
t/2. Let η be r.v. independent of (Yi) such that P(η = 1) = P(η = 0) = 1/2.
Then by Theorem 3.2.1 of [5], η(Y1, . . . , Yn) ≺ω (X1, . . . , Xn), where both
sides are considered as random vectors in ln∞(F ). By Proposition 1,

t

4
≤ E max

i≤n
‖ηYi‖ = E‖η(Y1, . . . , Yn)‖ln∞(F ) ≤ 20KE‖(X1, . . . , Xn)‖ln∞(F )

= 20KE max
i≤n
‖Xi‖.

Property (ii) yields

β ≤ P
(

max
i≤n
‖Xi‖ ≥

αt

80K

)
≤ nP

(
‖X‖ ≥ αt

80K

)
,

so P(‖X‖ ≥ αt/(80K)) ≥ β/n ≥ βP(‖Y ‖ ≥ t)/2.
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Remark 1. The comparison of first and second moments of maxima,

E max
i≤n
‖Xi‖2 ≤ C(E max

i≤n
‖Xi‖)2 (1)

implies by the Paley-Zygmund inequality (cf. [5, Lemma 0.2.1]) property (ii)
of the previous theorem with α = 1/2 and β = 1/(4C).

Remark 2. Proofs of both Proposition 1 and Theorem 1 show that both
statements hold if we replace the condition Y ≺ω X by the condition

‖x∗(Y )‖p ≤ ‖x∗(X)‖p for all x∗ ∈ F ∗, p ≥ 1. (2)

Moreover, if ‖x∗(X)‖2p ≤ C‖x∗(X)‖p for all p ≥ 1 and x∗ ∈ F ∗ it is enough
to check (2) for p being even integer (constants 20K and 80K would change
into 20CK and 80CK).

Let us give a few examples of random vectors satisfying the assumptions
of Theorem 1.

Example 1. Any centered Gaussian vector on a separable Banach space
is L-regular with universal L. This is a consequence of majorizing measure
theorem (cf. [7] and [9, Theorem 2.1.8]). Since a product of Gaussian
measures is again Gaussian, property (i) holds with K = L. Moments of
Gaussian vectors are comparible so by Remark 1 also property (ii) holds
with α = 1/2 and universal β.

Example 2. Let (ηi) be a sequence of independent symmetric real
r.v.’s with logarithmically concave tails satisfying the ∆2 condition and let
vi ∈ F be such that X =

∑
i viηi is a.s. convergent. Then X is K-regular

with a constant K depending only on the ∆2 constant ([6, Theorem 3]).
The random variable (X1, . . . , Xn) has an analogous series representation in
ln∞(F ), so property (i) holds. It can also be checked that (1) is satisfied with
a universal C.

Remark 3. Positive answer to the Bernoulli conjecture ([9, Chapter 4])
would imply the L-regularity of Rademacher series. Since (1) holds for X
being a Rademacher sum with vector coefficients, Theorem 1 would give
positive answer to Oleszkiewicz’s question.

We conclude this section with an example showing that weak tail domi-
nation does not yield any comparison of strong parameters even if the dom-
inated vector has Gaussian distribution.
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Example 3. Let F = ln∞, Y =
∑n

i=1 giei and X = 9(|g1|+ 1)
∑n

i=1 ηiei,
where gi are i.i.d. N (0, 1) and ηi are i.i.d. r.v.’s with uniform distribution
on [−1, 1], independent of g1.

To show that tails of Y are weakly dominated by tails of X it is enough
to check that

P(|〈u, Y 〉| ≥ t) ≤ P(|〈u,X〉| ≥ t) for u ∈ Sn−1, t ≥ 0. (3)

Let us fix u ∈ Sn−1. For t > 0 we have

P(|〈u, Y 〉| ≥ t) = P(|g1| ≥ t).

By the Paley-Zygmund inequality,

P
(∣∣∣ n∑

i=1

uiηi

∣∣∣ ≥ 1
3

)
= P

(∣∣∣ n∑
i=1

uiηi

∣∣∣2 ≥ 1
3
E
∣∣∣ n∑
i=1

uiηi

∣∣∣2)
≥
(
1− 1

3
)2 (E|

∑n
i=1 uiηi|2)2

E|
∑n

i=1 uiηi|4
≥ 4

27
,

thus
P(|〈u,X〉| ≥ t) ≥ 4

27
P(3(|g1|+ 1) ≥ t) ≥ 4

27
P
(
|g1| ≥

t

3

)
.

Using the easy estimate 2t exp(−(2t)2/2)/
√

2π ≤ P(|g| ≥ t) ≤ exp(−t2/2),
we immediately get (3) for t ≥ 3. For 0 ≤ t ≤ 3 we have

P(|〈u,X〉| ≤ t) ≤ P
(

9
∣∣∣ n∑
i=1

uiηi

∣∣∣ ≤ t) ≤ √2t
9
≤ tP(|g1| ≤ 3)

3

≤ P(|g1| ≤ t) = P(|〈u, Y 〉| ≤ t),

where to get the second inequality we used Ball’s upper bound on cube
sections [2]. Hence (3) holds also for t ∈ [0, 3].

Thus Y ≺ω X. However E‖Y ‖ = E maxi≤n |gi| ≥
√

log(n+ 1)/L and
E‖X‖ ≤ 9E(|g1|+ 1) ≤ 18.

3. Unconditional logarithmically concave distributions. A Borel
probability measure µ on Rn is called logaritmically concave if for any
nonempty compact setsA,B and λ ∈ [0, 1], µ(λA+(1−λ)B) ≥ µ(A)λµ(B)1−λ.
If the support of µ has full dimension, µ is logconcave if and only if µ has
the density of the form e−g, where g : Rn → (−∞,∞] is convex [4]. A ran-
dom vector X = (X1, . . . , Xn) is unconditional if for any sequence of signs
si = ±1, (s1X1, . . . , snXn) has the same distribution as X.
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Theorem 2. Suppose that Y = (Y1, . . . , Yn) is an unconditional vector
with logarithmically concave distribution such that EY 2

i = 1, and X =
(X1, . . . , Xn), where the Xi are independent, symmetric, exponential ran-
dom variables with variance 1 (i.e. the density 2−1/2 exp(−

√
2|x|)). Then

for any norm on Rn,

P(‖Y ‖ ≥ t) ≤ LP(‖X‖ ≥ t/L) for t > 0,

where L is a universal constant.

Proof. By Example 2 the vector X satisfies the assumption of Theorem 1.
Moreover ‖

∑
i aiXi‖2p ≤ C‖

∑
i aiXi‖p for p ≥ 1 and a universal C. Thus

by Remark 2 it is enough to show that for any a1, . . . , an and any positive
even integer k, (

E
∣∣∣ n∑
i=1

aiYi

∣∣∣k)1/k
≤ L1

(
E
∣∣∣ n∑
i=1

aiXi

∣∣∣k)1/k
. (4)

The result of Bobkov and Nazarov [3, Proposition 3.3] gives that for t1, . . . , tn ≥
0,

P(|Y1| ≥ L1t1, . . . , |Yn| ≥ L1tn) ≤ P(|X1| ≥ t1, . . . , |Xn| ≥ tn),

thus after integration by parts we get

E(|Y1|2l1 · · · |Yn|2ln) ≤ L2(l1+...+ln)
1 E(|X1|2l1 · · · |Xn|2ln)

and (4) immediately follows.

Acknowledgments. The author would like to thank Prof. S. Kwapień
for suggesting the method used in the proof of Theorem 1.
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