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Abstract

We investigate generalizations of Levy and Levy-Octaviani maxi-
mal inequalities. A general conjecture is stated and proved in several
particular cases.

Introduction. The famous inequality due to Levy states that for any a.s.
convergent series

∑∞
i=1Xi of independent symmetric r.v. with values in some

separable Banach space and t > 0 we have

P (max
n
‖

n∑
i=1

Xi‖ ≥ t) ≤ 2P (‖
∞∑
i=1

Xi‖ ≥ t). (1)

The generalization of Levy inequality to a nonsymmetric case is frequently
called Levy-Octaviani inequality. It states that for any a.s. convergent series∑∞
i=1Xi of independent Banach-space valued r.v. and t > 0

P (max
n
‖

n∑
i=1

Xi‖ ≥ 3t) ≤ 3 max
n

P (‖
n∑
i=1

Xi‖ ≥ t). (2)

Both Levy and Levy-Octaviani inequalities have numerous applications (e.g.
see [KW]). Roughly speaking they enable often to reduce an almost sure
statement to a statement in probability (like for example in Itô-Nisio theo-
rem).
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However sometimes one has to consider more complicated sets of indices
and ways of converging of sums of random variables. Therefore it would be
very useful to have suitable versions of maximal inequalities (1) and (2) in
more general setting. The purpose of this article is to propose some version
of the maximal inequality and to collect known facts and conjectures about
it.

Some part of this paper consists of well known facts, which are already
part of the folklore. Theorem 1 and parts of Proposition 1 were communi-
cated to the author by S. Kwapień. However we were unable to find suitable
references in the existing literature (Theorem 1 is stated in [Kr], but only
with an idea of the proof). Therefore, for the completeness, we decided to
include these statements in our paper together with the proofs.

Notation. We will denote by (εi) the Bernoulli sequence, i.e. a sequence
of i.i.d. symmetric r.v. taking on values ±1. A sequence of independent
standard N (0, 1) Gaussian random variables will be denoted by (gi).

If (T, d) is a compact metric space and ε > 0 then N(T, d, ε) will denote
the minimal number of closed balls of radius ε that covers T .

Proposition 1 Let C be a class of subsets of I and (F, ‖.‖) be a fixed sepa-
rable Banach space. Then the following conditions are equivalent

a) Exists K1 <∞ such that for any sequence (Xi) of independent symmetric
r.v. with values in F satisfying #{i : Xi 6= 0} <∞ a.s.

∀t>0 P (max
C∈C
‖

∑
i∈C

Xi‖ ≥ K1t) ≤ K1P (‖
∑
i∈I

Xi‖ ≥ t).

b) Exists K2 <∞ such that for any sequence (Xi) of independent symmetric
r.v. with values in F satisfying #{i : Xi 6= 0} <∞ a.s.

Emax
C∈C
‖

∑
i∈C

Xi‖ ≤ K2E‖
∑
i∈I

Xi‖.

c) Exists K3 <∞ such that for any sequence (vi) of vectors in F satisfying
#{i : vi 6= 0} <∞

∀t>0 P (max
C∈C
‖

∑
i∈C

viεi‖ ≥ K3t) ≤ K3P (‖
∑
i∈I

viεi‖ ≥ t).
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d) Exists K4 <∞ such that for any sequence (vi) of vectors in F satisfying
#{i : vi 6= 0} <∞

Emax
C∈C
‖

∑
i∈C

viεi‖ ≤ K4E‖
∑
i∈I

viεi‖.

e) Exists K5 <∞ such that for any sequence (Xi) of independent r.v. with
values in F satisfying #{i : Xi 6= 0} <∞ a.s.

∀t>0 P (max
C∈C
‖

∑
i∈C

Xi‖ ≥ K5t) ≤ K5 max
C∈C∪{I}

P (‖
∑
i∈C

Xi‖ ≥ t).

f) Exists K6 < ∞ such that for any sequence (Xi) of independent r.v. with
values in F satisfying #{i : Xi 6= 0} <∞ a.s.

Emax
C∈C
‖

∑
i∈C

Xi‖ ≤ K6 max
C∈C∪{I}

E‖
∑
i∈C

Xi‖.

Proof. Implications a)⇒c), b)⇒d) and c)⇒d) are obvious. By Fubini
Theorem easily follows that c)⇒a) and d)⇒b). Moreover for symmetric
r.v. and C ⊂ I we have P (‖∑

i∈C Xi‖ ≥ t) ≤ 2P (‖∑
i∈I Xi‖ ≥ t) and

E‖∑
i∈C Xi‖ ≤ E‖∑

i∈I Xi‖, so e)⇒a) and f)⇒b). Thus to prove Proposi-
tion 1 it is enough to show that d)⇒c), a)⇒e) and b)⇒f).

d)⇒c). By the results of [DM] it follows that there exists absolute con-
stant K <∞ such that for any sequence of vectors wi in some Banach space
E we have

P (‖
∑

εiwi‖ ≥ K(E‖
∑

εiwi‖+ t))

≤ K max{P (w∗(
∑

εiwi) ≥ t) : w∗ ∈ Ext(BE∗)}, (3)

where Ext(BE∗) denotes the set of extremal points in the unit ball of the
dual space E∗.

Let us notice that maxC∈C ‖
∑
i∈C εivi‖ = ‖∑

i∈I εiwi‖E for a suitable
choice of wi ∈ E := l∞(C;F ). Hence (3) implies that

P (max
C∈C
‖

∑
i∈C

εivi‖ ≥ K(Emax
C∈C
‖

∑
i∈C

εivi‖+ t)) ≤ KP (‖
∑
i∈I

εivi‖ ≥ t). (4)
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We will show that c) holds forK3 = max(8, (2K4+1)K). If t ≥ 1
2
E‖∑

i∈I εivi‖
then by d) EmaxC∈C ‖

∑
i∈C εivi‖+ t ≤ (2K4 + 1)t and c) follows by (4). For

t ≤ 1
2
E‖∑

i∈I εivi‖, by Paley-Zygmund inequality (see [Ka], p.8) we get

P (‖
∑
i∈I

εivi‖ ≥ t) ≥ 1

4

(E‖∑
i∈I εivi‖)2

E‖∑
i∈I εivi‖2

≥ 1

8

and the inequality in c) is obvious.
a)⇒e) and b)⇒f). Let X

′
i be an independent copy of Xi, then the

variables Xi − X
′
i are symmetric, E‖∑

i∈I(Xi − X
′
i)‖ ≤ 2E‖∑

i∈I Xi‖ and
P (‖∑

i∈I(Xi−X
′
i)‖ ≥ 2t) ≤ 2P (‖∑

i∈I Xi‖ ≥ t). Thus both implications are
simple consequences of the following lemma

Lemma 1 If maxC∈C P (‖∑
i∈C Xi‖ ≥ t/2) ≤ 1/2 then

P (max
C∈C
‖

∑
i∈C

Xi‖ ≥ t) ≤ 2P (max
C∈C
‖

∑
i∈C

(Xi −X
′

i)‖ ≥
t

2
).

Proof of Lemma 1. Suppose that C = {C1, C2, . . .} and for simplifying
the notation let Yk =

∑
i∈Ck

Xi, Y
′
k =

∑
i∈Ck

X
′
i for k = 1, 2, . . .. We have

P (‖Yk‖ ≥ t, ‖Yi‖ < t for i < k,max
k
‖Yk − Y

′

k‖ ≤
t

2
)

≤ P (‖Yk‖ ≥ t, ‖Yi‖ < t for i < k, ‖Y ′k‖ ≥
t

2
)

≤ P (‖Yk‖ ≥ t, ‖Yi‖ < t for i < k) max
k
P (‖Yk‖ ≥

t

2
).

Hence summing the above inequalities over k we get

P (max
k
‖Yk‖ ≥ t) ≤ P (max

k
‖Yk−Y

′

k‖ ≥
t

2
)+P (max

k
‖Yk‖ ≥ t) max

k
P (‖Yk‖ ≥

t

2
)

and Lemma 1 follows.

Definition 1 In the sequel we will say that the class C of subsets of I satisfies
the maximal inequality in F if any of conditions a)-f) of Proposition 1 holds
true. If this is true for any separable Banach space F we will say that C
satisfies the maximal inequality or that it is the MI-class.
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It is therefore of interest to solve the following

Main Problem. Determine all classes C that satisfy the maximal inequality.

It has turned out that the following definition plays the crucial role for
this problem

Definition 2. We say that a class C of subsets of I shatters the set A ⊂ I if

{A ∩ C : C ∈ C} = 2A.

A class C is called a Vapnik-Chervonenkis class (or in short a VC class) of
order n if it does not shatter any set of cardinality n+1 and it shatters some
set of cardinality n. A class will be called a VC class if it is a VC class of
some finite order.

For some properties and examples of VC classes see e.g. [D1, D2, SY].

Proposition 2 If C satifies the maximal inequality in some Banach space F
then C is a VC class.

Proof. Obviously it is enough to prove Proposition for F = IR. Suppose
that C shatters the set A ⊂ I of cardinality n. Let

vi =

{
1 for i ∈ A
0 for i ∈ I \ A .

Then
E|

∑
εivi| ≤ (E|

∑
εivi|2)1/2 =

√
n

and
Emax

C∈C
|
∑
i∈C

εivi| = Emax
B⊂A
|
∑
i∈B

εi|

= Emax(#{i ∈ A : εi = 1},#{i ∈ A : εi = −1}) ≥ n

2
.

Therefore if condition d) of Proposition 1 is satisfied then C does not shatter
any set of cardinality > 4K2

4 .

Theorem 1 The class C of subsets of I satisfies the maximal inequality in
IR if and only if C is a VC class.
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In the proof of this theorem we will use the following two results of Dudley
(see [LT], Theorems 11.1 and 14.12)

Theorem A Let ψ2(x) = ex
2 − 1 and (Xt) be a random process on (T, d)

such that
Eψ2(|Xt −Xs|/d(t, s)) ≤ 1 for any t, s ∈ T .

Then
E sup

s,t∈T
|Xt −Xs| ≤ 12

∫ ∞
0

ln1/2N(T, d, ε)dε.

Theorem B Let Q be a probability measure on I and dQ(A,B) = (Q(A ÷
B))1/2 for A,B ⊂ I. Then for any VC class C of order ≤ n and ε ∈ (0, 1)

lnN(C, dQ, ε) ≤ KBn(1− ln ε),

where KB is an absolute constant.

Proof of Theorem 1. One implication follows by Proposition 2. To
prove the second, assume that C is a VC class of order ≤ n and we will prove
the condition d) of Proposition 1. We may also assume that ∅ ∈ C. Let vi
be fixed real numbers with

∑
v2
i = 1 and XA =

∑
i∈A εivi for A ⊂ I. Let us

also define the probability measure Q on I by the formula Q(A) =
∑
i∈A v

2
i

and a distance d on C by d(A,B) = (Q(A ÷ B))1/2. Then N(C, d, ε) =
1 for ε > 1. By the properties of Rademacher sums (see [LT], sect.4.1)
there exists universal constant K such that ‖XA‖ψ2 ≤ K(

∑
i∈A v

2
i )

1/2, so
Eψ2((XA −XB)/Kd(A,B)) ≤ 1. Therefore by Theorem A and B

E sup
C∈C
|
∑
i∈C

εivi| ≤ E sup
C,C′∈C

|XC −XC′ | ≤ 12
∫ ∞
0

ln1/2N(C, d, ε/K)dε

≤ 12
√
KB

√
n

∫ K

0
(1− ln ε+ lnK)1/2 = K̃

√
n.

The Theorem 1 follows if we notice that E|∑i∈I εivi| ≥ (
∑
v2
i )

1/2/
√

2 by
Khinchine inequality.

Theorem 1 and Proposition 2 suggest that the following conjecture is
reasonable
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Conjecture. A class C satisfies the maximal inequality if and only if C is a
VC class.

Using Theorem 1 and Talagrands majorizing measure theorem, L. Krawczyk
proved in [Kr] that if C is a VC class then conditions (a) and (b) holds if we
additionaly assume that Xi are Gaussian vectors. This was slightly general-
ized in [L] to the following Theorem.

Theorem 2 Let (Xi)i∈I be a sequence of symmetric real random variables
with logarithmically concave tails i.e. such that the functions Ni(t) = − lnP (|Xi| >
t) are convex on [0,∞) and such that

∀t>0 Ni(2t) ≤ ANi(t)

for some constant A <∞. Then for any VC class C of subsets of I of order
≤ n there exists a constant K, which depends only on A and n such that for
any sequence of vectors vi in some Banach space for which the sum

∑
viXi

is a.e. convergent, the following inequality holds

E sup
C∈C
‖

∑
i∈C

viXi‖ ≤ KE‖
∑
i∈I

viXi‖.

Remark. Using concentration properties of logconcave measures one may
prove in the similar way as in the proof of implication d)⇒c) of Proposition
1 that under the assumptions of Theorem 2

P (sup
C∈C
‖

∑
i∈C

viXi‖ ≥ K̃t) ≤ K̃P (‖
∑
i∈I

viXi‖ ≥ t)

for any t > 0, where K̃ is a constant depending only on A and n.

Corollary 1 Let F be a separable Banach space with finite cotype. Then
every VC class C satisfies the maximal inequality in F .

Proof. Let vi ∈ F be as in condition (d). Then since F has finite cotype

E‖
∑
i∈I

vigi‖ ≤ AE‖
∑
i∈I

viεi‖,
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where A is a constant depending only on F . By the contraction principle

Emax
C∈C
‖

∑
i∈C

viεi‖ ≤
√
π

2
Emax

C∈C
‖

∑
i∈C

vigi‖

and condition (d) immediately follows by the result of Krawczyk.

Remark. Proofs of the result of Krawczyk and Theorem 2 are based on
general theorems about geometric conditions equivalent to the boundedness
of processes (

∑
tiXi)t∈T . For Rademacher processes an important conjec-

ture (for some partial results see [T2]) states that if for some T ⊂ l2,
E supt∈T

∑
εiti < ∞ then T ⊂ U + KB1 for some K < ∞, where B1 de-

notes a ball in l1 and U is such that E supt∈U
∑
tigi < ∞. It is not hard to

check that the above conjecture immediately implies our conjecture about
VC classes.

Definition 3 Let C1 and C2 be two families of subset of I. Then we may
define the following families

Cc1 = {I \ C1 : C1 ∈ C1}

C1 ∧ C2 = {C1 ∩ C2 : C1 ∈ C1, C2 ∈ C2}

and

C1 ∨ C2 = {C1 ∪ C2 : C1 ∈ C1, C2 ∈ C2}.

Proposition 3 Suppose that C1 and C2 are MI-classes. Then also the fami-
lies Cc1, C1 ∧ C2 and C1 ∨ C2 satisfy the maximal inequality.

Proof. Since ‖∑
i∈I\C Xi‖ ≤ ‖

∑
i∈I Xi‖ + ‖∑

i∈C Xi‖ by the triangle
inequality, we immediately get that Cc1 is a MI-class. Moreover C1 ∨ C2 =
(Cc1∧Cc2)c, so it is enough to prove that C1∧C2 satisfies the maximal inequality.
We will check the condition (b). Let (F, ‖.‖) be a given Banach space and
F̃ = l∞(C, F ). Suppose that C1 and C2 satisfy (b) in F and F̃ respectively
with constants K and K̃. Let X̃i be independent r.v. with values in F̃
defined by the formula

X̃i(C) =

{
Xi for i ∈ C
0 for i /∈ C.
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Then for A ⊂ I, we have

‖
∑
i∈A

X̃i‖F̃ = sup
C1∈C1

‖
∑

i∈A∩C1

Xi‖.

Thus
E max

C∈C1∧C2
‖

∑
i∈C

Xi‖ = E max
C2∈C2

‖
∑
i∈C2

X̃i‖F̃ ≤ K̃E‖
∑
i∈I

X̃i‖F̃

= K̃E max
C1∈C1

‖
∑
i∈C1

Xi‖ ≤ KK̃E‖
∑
i∈I

Xi‖.

Proposition 4 Every VC class of order 1 satisfies the maximal inequality.

Proof. Following the notation of [S] we will call the family F of subsets
of I a chain if it is linearly ordered by the inclusion, i.e. for each A,B ∈ F
either A ⊂ B or B ⊂ A. Families of the form F1 ∧ F2, where F1 and F2 are
chains, will be called 2-chains. Smoktunowicz in [S] proved that if C is a VC
class of order 1 then C ⊂ G1 ∨ Gc2 for some 2-chains G1 and G2. Since every
chain is a MI-class by Levy inequality, Proposition 4 follows by Proposition
3.

By Propositions 3 and 4 we immediately get the following

Corollary 2 Suppose that C ′ is a family of subsets of I that is obtained from
some VC classes of order 1 by finitely many operations c, ∨ and ∧. Then
any subfamily C ⊂ C ′ satisfies the maximal inequality.

Unfortunately even very simple VC classes are not of the form described
in the above Corollary. A. Smoktunowicz in [S] showed that the family of all
lines in Z2 does not have such form. As follows from the below Corollary 4
the lattest family is an MI-class, so Corollary 2 does not describe all families
that satisfy the maximal inequality.

Definition 4 In the last part of the paper we will consider the classes C of
subsets of I, which satisfy the additional condition

∀A,B∈C A 6= B ⇒ #(A ∩B) ≤ 1. (5)

Such classes will be called 1-disjoint.
We will also denote for a fixed sequence of vectors vi and A ⊂ I by XA

the variable
∑
i∈A viεi.
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Lemma 2 If M ≥ 2 maxi ‖vi‖, class C is 1-disjoint and A1, . . . , An ∈ C are
such that for some t > 0

P (‖XAk
‖ ≥M) ≥ t for k = 1, . . . , n,

then there exist disjoint subsets B1, . . . , Bm ⊂ I such that m ≥ 3
√
n and

P (‖XBk
‖ ≥M/2) ≥ t/2 for k = 1, . . . ,m.

Proof. In this proof we will say that the set Ak is good if

∀C⊂Ak
#C ≤ 3

√
n⇒ P (‖XC‖ ≥M/2) ≤ t/2. (6)

Let us notice that the last condition also implies by the triangle inequality
that P (‖XAk\C‖ ≥M/2) ≥ t/2. We will consider 3 cases

Case 1. Among A1, . . . , An there are m ≥ 3
√
n good sets, say A1, . . . , Am.

Without loss of generality we may assume that m < 3
√
n + 1. If we put

B1 = A1 and Bi = Ai\(
⋃
j<iAj) for 1 < i ≤ m we get by (5) that #(Ai\Bi) ≤

i − 1 ≤ 3
√
n. Hence we get the thesis in this case by the definition of good

sets.
Case 2. There exists i ∈ I such that #{k : i ∈ Ak} ≥ 3

√
n. Without

loss of generality we may assume that i ∈ A1 ∩ . . . ∩ Am with m ≥ 3
√
n. We

put in this case Bk = Ak \ {i} and notice that ‖XBk
‖ ≥ ‖XAk

‖ − ‖vi‖ ≥
‖XAk

‖ −M/2. Sets Bk are disjoint by the property (5).
Case 3. There are less then 3

√
n good sets Ak and #{k : i ∈ Ak} < 3

√
n

for all i ∈ I. We have more then n− 3
√
n not good sets, let Ai1 be one of them.

We may then find B1 ⊂ Ai1 with #B1 ≤ 3
√
n and P (‖XB1‖ ≥ M/2) ≥ t/2.

At most 3
√
n#B1 sets Ai have nonempty intersection with B1. So we have

more then n− 3
√
n− 3
√
n2 not good sets disjoint with B1, let Ai2 be one of them.

Then we may find B2 ⊂ Ai2 with #B2 ≤ 3
√
n and P (‖XB2‖ ≥ M/2) ≥ t/2.

Continuing in this way completes the proof.

Corollary 3 Suppose that M ≥ 8E‖XI‖ and class C is 1-disjoint, then∑
A∈C

(P (‖XA‖ ≥M))4 ≤ 214P (‖XI‖ ≥M/2).

Proof. Suppose that there exist A1, . . . , An ∈ C such that P (‖XAk
‖ ≥

M) ≥ t for all k. Then by Lemma 1 we may find disjoint subsetsB1, . . . , Bm ⊂
I with m ≥ 3

√
n and P (‖XBk

‖ ≥M/2) ≥ t/2. But by Levy inequality

P (max ‖XBk
‖ ≥M/2) ≤ 2P (‖XI‖ ≥M/2) ≤ 1/2,
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so
t 3
√
n/2 ≤

∑
P (‖XBk

‖ ≥M/2) ≤ 4P (‖XI‖ ≥M/2)

and 3
√
n ≤ 8P (‖XI‖ ≥M/2)/t. Therefore we obtain

∑
A∈C

(P (‖XA‖ ≥M))4 ≤ 16
∞∑
n=1

2−4n#{A ∈ C : P (‖XA‖ ≥M) ≥ 2−n}

≤ 213P (‖XI‖ ≥M/2)
∞∑
n=1

2−4n23n ≤ 214P (‖XI‖ ≥M/2).

Corollary 4 There exists a universal constant C such that for any 1-disjoint
class C ∑

A∈C
E‖XA‖I{‖XA‖≥CE‖XI‖} ≤ CE‖XI‖.

In particular
Emax

A∈C
‖XA‖ ≤ 2CE‖XI‖,

so the maximal inequality holds for any VC class satisfying (5).

Proof. By the properties of Rademacher sums (cf [Ka]) we have

P (‖XA‖ ≥ 4M) ≤ C1(P (‖XA‖ ≥M))4

for some constant C1 < ∞. Therefore by the previous Corollary we obtain
for M ≥ 8E‖XI‖∑

A∈C
P (‖XA‖ ≥ 4M) ≤ 214C1P (‖XI‖ ≥M/2).

Corollary follows by integration the above inequality with respect to M .

Remark. All the above results remain true (with a change of constants) if
we substitute (5) by the more general condition

∀A,B∈C A 6= B ⇒ #(A ∩B) ≤ m,

where m is a fixed positive integer.
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