A note on the maximal inequalities for VC
classes

Rafat Latala

Abstract

We investigate generalizations of Levy and Levy-Octaviani maxi-
mal inequalities. A general conjecture is stated and proved in several
particular cases.

Introduction. The famous inequality due to Levy states that for any a.s.
convergent series » ;°; X; of independent symmetric r.v. with values in some
separable Banach space and £ > 0 we have

P(max|| > Xl > 1) <2P(| > Xil| > #). (1)
i=1 i=1
The generalization of Levy inequality to a nonsymmetric case is frequently
called Levy-Octaviani inequality. It states that for any a.s. convergent series
=, X, of independent Banach-space valued r.v. and ¢ > 0

P(max | X)) > 31) < 3max P(| 3 X, > 1), 2)

i=1 i=1

Both Levy and Levy-Octaviani inequalities have numerous applications (e.g.
see [KW]). Roughly speaking they enable often to reduce an almost sure
statement to a statement in probability (like for example in It6-Nisio theo-
rem).
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However sometimes one has to consider more complicated sets of indices
and ways of converging of sums of random variables. Therefore it would be
very useful to have suitable versions of maximal inequalities (1) and (2) in
more general setting. The purpose of this article is to propose some version
of the maximal inequality and to collect known facts and conjectures about
it.

Some part of this paper consists of well known facts, which are already
part of the folklore. Theorem 1 and parts of Proposition 1 were communi-
cated to the author by S. Kwapienn. However we were unable to find suitable
references in the existing literature (Theorem 1 is stated in [Kr|, but only
with an idea of the proof). Therefore, for the completeness, we decided to
include these statements in our paper together with the proofs.

Notation. We will denote by (g;) the Bernoulli sequence, i.e. a sequence
of i.i.d. symmetric r.v. taking on values £1. A sequence of independent
standard AV(0,1) Gaussian random variables will be denoted by (g;).

If (T,d) is a compact metric space and ¢ > 0 then N (T, d,¢) will denote
the minimal number of closed balls of radius € that covers T

Proposition 1 Let C be a class of subsets of I and (F,||.||) be a fized sepa-
rable Banach space. Then the following conditions are equivalent

a) FEzists K1 < oo such that for any sequence (X;) of independent symmetric
r.v. with values in F' satisfying #{i : X; # 0} < 00 a.s.

Viso P %1ax||ZX||>K1t<K1 (- X5 > 0).

el

b) Exists Ky < 0o such that for any sequence (X;) of independent symmetric
r.v. with values in F satisfying #{i : X; # 0} < 00 a.s.

Bapgx | 3 Xl < Kol Xl
CceC el

c) Ezists K3 < oo such that for any sequence (v;) of vectors in F satisfying

#{i:v; #0} < 0

Viso P rgax” ZU@H > Kst) < K3P(]| Zv@” > t).

el
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d) Erists K4 < oo such that for any sequence (v;) of vectors in F satisfying

#{i:v; #0} < o0

Emax I Z vigil| < K4E| viei.

el

e) Exists K5 < oo such that for any sequence (X;) of independent r.v. with
values in F satisfying #{i : X; # 0} < 00 a.s.

Viso P %1aXHZX||>K5)<K5 ma?I}P||ZX||>t)
ieC

f) Ezists K¢ < 0o such that for any sequence (X;) of independent r.v. with
values in F satisfying #{i : X; # 0} < 00 a.s.

<
EmaX I ZX | < Ks Crréaicl}EH ;

Proof. Implications a)=-c), b)=-d) and ¢)=-d) are obvious. By Fubini
Theorem easily follows that c¢)=-a) and d)=b). Moreover for symmetric
r.v. and C C I we have P(|| Y cc Xi|| > t) < 2P(|| Xier Xil| > t) and
E|Yicc Xill < B Xier Xill; so e)=a) and f)=b). Thus to prove Proposi-
tion 1 it is enough to show that d)=-c), a)=-¢) and b)=f).

d)=-c). By the results of [DM] it follows that there exists absolute con-
stant K < oo such that for any sequence of vectors w; in some Banach space
E we have

P Y- iwill > K(B|| Y ewill +1))
< Kmax{P(w*(>_ew;) > t) : w* € Ext(Bg-)}, (3)

where Ext(Bpg«) denotes the set of extremal points in the unit ball of the
dual space E*.

Let us notice that maxcec | Xico €ivil| = || Zicr €iwil|p for a suitable
choice of w; € E :=[*(C; F'). Hence (3) implies that

maXHnglH > K(EmaXH Zele +1)) < KP(||Y ewi| >¢). (4)

cec el
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We will show that c) holds for K3 = max(8, (2K4+1)K). If t > LE|| ¥ evi|
then by d) Emaxcec || Xicc civil| +t < (2K, + 1)t and ¢) follows by (4). For
t < 1E| Yicrevill, by Paley-Zygmund inequality (see [Kal, p.8) we get

1 (E|| Xier eivil))?
4 Bl Xiereil?

1
P(| > ewill = t) > <

il

>

and the inequality in c) is obvious.

a)=-e) and b)=f). Let X, be an independent copy of X;, then the
variables X; — X, are symmetric, E| Y,c;(X; — X;)|| < 2E| ;e; Xil| and
P(| S (X = X)) > 2t) < 2P(|| Zies Xi|| > t). Thus both implications are
simple consequences of the following lemma

Lemma 1 If maxcee P(|| Xicc Xil| > t/2) < 1/2 then

P(max || Y X;|| > t) < 2P(max || Y (X; — X;)|| >
e, ¢ e

).

N | =+

Proof of Lemma 1. Suppose that C = {C, (s, ...} and for simplifying
the notation let Yy = Yiee, Xi, Yy = Yiee, X; for k=1,2,.... We have

ot
P(Yall 2 t, [Vl <t for ¢ <k, max|[|Yy, — ¥, | < 5)

t

< P(IVill 2 ¢, |Yall <t for i <k, Y]l 2 3)

t
< P(II¥all 2 ¢, Y]l <t for i < k)max P(|[Yi]| = 5)-

Hence summing the above inequalities over k we get

/ t t
Plmax |V 2 £) < Plmax [Vi¥; | 2 2)+Pmax [Vi]] 2 ¢) max P(|Vi]) = )

and Lemma 1 follows.

Definition 1 In the sequel we will say that the class C of subsets of I satisfies
the maximal inequality in F' if any of conditions a)-f) of Proposition 1 holds
true. If this is true for any separable Banach space F' we will say that C
satisfies the mazximal inequality or that it is the MI-class.
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It is therefore of interest to solve the following

Main Problem. Determine all classes C that satisfy the maximal inequality.

It has turned out that the following definition plays the crucial role for
this problem

Definition 2. We say that a class C of subsets of I shatters the set A C I if
{AnC:Cec} =24

A class C is called a Vapnik-Chervonenkis class (or in short a VC class) of
order n if it does not shatter any set of cardinality n+ 1 and it shatters some
set of cardinality n. A class will be called a VC class if it is a VC class of
some finite order.

For some properties and examples of VC classes see e.g. [D1, D2, SY].

Proposition 2 IfC satifies the maximal inequality in some Banach space F
then C is a VC class.

Proof. Obviously it is enough to prove Proposition for F' = IR. Suppose
that C shatters the set A C [ of cardinality n. Let

] 1 for 1€ A
YTl 0 for iel\A "

Then
E| Z&ﬂ)ﬂ S (E| ZEiUi|2>1/2 = \/ﬁ
and

Egaxl 2zl = Eyga | 2 ed

=FEmax(#{ic A: e, =1}, #{ic A g, =—1}) > g

Therefore if condition d) of Proposition 1 is satisfied then C does not shatter
any set of cardinality > 4K72.

Theorem 1 The class C of subsets of I satisfies the mazximal inequality in
IR if and only if C is a VC class.
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In the proof of this theorem we will use the following two results of Dudley
(see [LT], Theorems 11.1 and 14.12)

Theorem A Let 1y(z) = ¢* — 1 and (X,) be a random process on (T, d)
such that
Evo(1 Xy — Xl /d(t,s)) <1 foranyt,s €T.

Then ~
Esup |X; — X,| < 12/ In'/2 N(T, d, £)de.
0

s, teT

Theorem B Let ) be a probability measure on I and dg(A, B) = (Q(A +
B))Y2 for A, B C I. Then for any VC class C of order < n and ¢ € (0,1)

InN(C,dg,e) < Kgn(l —Ineg),
where Kg is an absolute constant.

Proof of Theorem 1. One implication follows by Proposition 2. To
prove the second, assume that C is a VC class of order < n and we will prove
the condition d) of Proposition 1. We may also assume that ) € C. Let v;
be fixed real numbers with > v? = 1 and X4 = 3 ,c4&v; for A C I. Let us
also define the probability measure @ on I by the formula Q(A) = >,c4 v?
and a distance d on C by d(A,B) = (Q(A =+ B))/2. Then N(C,d,c) =
1 for ¢ > 1. By the properties of Rademacher sums (see [LT], sect.4.1)
there exists universal constant K such that || Xally, < K(Xeav?)'/2, so
Evo((Xa — Xp)/Kd(A, B)) < 1. Therefore by Theorem A and B

Esup|Y e < E sup |Xo— Xp| < 12/ 2 N(C, d, e/ K)de
ceC jec c,c'ec 0

K ~
< 12\/1(3\/5/0 (1—Ine+WmK)/? = Ky/n.

The Theorem 1 follows if we notice that E|Y ;v > (Zv2)Y?2/v/2 by
Khinchine inequality.

Theorem 1 and Proposition 2 suggest that the following conjecture is
reasonable
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Conjecture. A class C satisfies the maximal inequality if and only if C is a
VC class.

Using Theorem 1 and Talagrands majorizing measure theorem, L. Krawczyk
proved in [Kr] that if C is a VC class then conditions (a) and (b) holds if we
additionaly assume that X; are Gaussian vectors. This was slightly general-
ized in [L] to the following Theorem.

Theorem 2 Let (X;)ier be a sequence of symmetric real random variables
with logarithmically concave tails i.e. such that the functions N;(t) = —In P(|.X;| >
t) are convex on [0,00) and such that

Viso Ni(2t) < ANi(t)

for some constant A < oo. Then for any VC class C of subsets of I of order
< n there exists a constant K, which depends only on A and n such that for
any sequence of vectors v; in some Banach space for which the sum Y v; X;
1s a.e. convergent, the following inequality holds

Esup || Y viXi| < KE|| Y vXll.

icC el

Remark. Using concentration properties of logconcave measures one may
prove in the similar way as in the proof of implication d)=-c) of Proposition
1 that under the assumptions of Theorem 2

Plsup|| Y viXill > Kt) < KP(| Y vXi] > 1)

€€ eC il

for any t > 0, where K is a constant depending only on A and n.

Corollary 1 Let F' be a separable Banach space with finite cotype. Then
every VC class C satisfies the mazimal inequality in F.

Proof. Let v; € F be as in condition (d). Then since F' has finite cotype

E|| > vigill < AE[ > vieil),

el i€l
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where A is a constant depending only on F'. By the contraction principle
T
Emax|| ;EC: vieil| < /5 £ max|] ;GC: vigil

and condition (d) immediately follows by the result of Krawczyk.

Remark. Proofs of the result of Krawczyk and Theorem 2 are based on
general theorems about geometric conditions equivalent to the boundedness
of processes (3 t;X;)ier. For Rademacher processes an important conjec-
ture (for some partial results see [T2]) states that if for some T C [?
Esup,cr > eit; < oo then T' C U + KB, for some K < oo, where B; de-
notes a ball in {* and U is such that F sup,crr 2. tigi < 0o. It is not hard to
check that the above conjecture immediately implies our conjecture about
VC classes.

Definition 3 Let C; and C; be two families of subset of I. Then we may
define the following families

652{1\01201661}

Cl/\CQZ{ClmCQ:Cl€C1,CQECQ}

and
CiVCy= {ClUCQ o ECl,C'g GCQ}.

Proposition 3 Suppose that C; and Cy are MI-classes. Then also the fami-
lies C{, C;y A Cy and Cy V Cq satisfy the maximal inequality.

Proof. Since || Xiepe Xill < || Xier Xill + || Ziee Xil| by the triangle
inequality, we immediately get that C{ is a Ml-class. Moreover C; V Cy =
(C{ACS)®, so it is enough to prove that Cy ACy satisfies the maximal inequality.
We will check the condition (b). Let (F),||.|]) be a given Banach space and
F = [°(C, F). Suppose that C; and C, satisfy (b) in F and F respectively
with constants K and K. Let X, be independent r.v. with values in F
defined by the formula

S Xz fori e C
Xi(C) = { 0 fori¢C.
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Then for A C I, we have

IS Xillp=sup || Y Xil.
icA Cieli  jeAncy
Thus

E max ||ZX|| = E max | 62(; Xills < KEH;XHF

— KEmax | ¥ Xl < KEKE| Y Xi|.
1€y 1€C el

Proposition 4 Every VC class of order 1 satisfies the maximal inequality.

Proof. Following the notation of [S] we will call the family F of subsets
of I a chain if it is linearly ordered by the inclusion, i.e. for each A, B € F
either A C B or B C A. Families of the form F; A F», where F; and F, are
chains, will be called 2-chains. Smoktunowicz in [S] proved that if C is a VC
class of order 1 then C C G; V G§ for some 2-chains G; and G,. Since every
chain is a Ml-class by Levy inequality, Proposition 4 follows by Proposition
3.

By Propositions 3 and 4 we immediately get the following

Corollary 2 Suppose that C' is a family of subsets of I that is obtained from
some VC classes of order 1 by finitely many operations ¢, V and N. Then
any subfamily C C C' satisfies the maximal inequality.

Unfortunately even very simple VC classes are not of the form described
in the above Corollary. A. Smoktunowicz in [S] showed that the family of all
lines in Z?2 does not have such form. As follows from the below Corollary 4
the lattest family is an MI-class, so Corollary 2 does not describe all families
that satisfy the maximal inequality.

Definition 4 In the last part of the paper we will consider the classes C of
subsets of I, which satisfy the additional condition

VA,BEC A 7& B = #(Aﬂ B) <1. (5)

Such classes will be called 1-disjoint.
We will also denote for a fixed sequence of vectors v; and A C I by X4
the variable > ,;c 4 vie;.
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Lemma 2 [f M > 2max; ||v;||, class C is 1-disjoint and Ay, ..., A, € C are
such that for some t > 0

P(|Xa,l|>M)>t fork=1,...,n,
then there exist disjoint subsets By, ..., By, C I such that m > /n and
P(||Xp,|| > M/2) > t/2 fork=1,...,m.
Proof. In this proof we will say that the set Ay is good if
Veca, #C < V= P(||Xcll = M/2) < t/2. (6)

Let us notice that the last condition also implies by the triangle inequality
that P(|| Xancl| = M/2) > t/2. We will consider 3 cases

Case 1. Among Ay, ..., A, there are m > /n good sets, say Ay, ..., An,.
Without loss of generality we may assume that m < /n + 1. If we put
By = Ay and B; = A;\(U;<; 4;) for 1 <@ < m we get by (5) that #(A;\ B;) <
i — 1 < /n. Hence we get the thesis in this case by the definition of good
sets.

Case 2. There exists i € I such that #{k : i € Ay} > /n. Without
loss of generality we may assume that i € Ay N...N A, with m > /n. We
put in this case By = Aj \ {i} and notice that | Xp,| > || Xa, |l — [Jvil| >
| X4, || — M/2. Sets By are disjoint by the property (5).

Case 3. There are less then /n good sets Ay and #{k : i € Ay} < I/n
for all i € I. We have more then n— /n not good sets, let A;, be one of them.
We may then find By C A;, with #B; < ¢/n and P(||Xp,|| > M/2) > t/2.
At most /n#Bj sets A; have nonempty intersection with B;. So we have
more then n—¢/n—+/n? not good sets disjoint with By, let A;, be one of them.
Then we may find By C A;, with #By < ¢/n and P(||Xp,| > M/2) > t/2.
Continuing in this way completes the proof.

Corollary 3 Suppose that M > 8E|| X;|| and class C is 1-disjoint, then

S (PRl 2 M) < 2P 2 2472),

Proof. Suppose that there exist Ay,..., A, € C such that P(||X4,[ >
M) > tforall k. Then by Lemma 1 we may find disjoint subsets By, ..., B, C
I with m > /n and P(||Xp,|| > M/2) > t/2. But by Levy inequality

Plmax [ X, | > M/2) < 2P(|X,]| > M/2) < 1/2,
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t/n/2 <> P(|Xp, || > M/2) < 4P(]|X/|| > M/2)

and /n < 8P(||X;|| > M/2)/t. Therefore we obtain

> (P Xall > M))* <16 i 2 U{A e C: P(| X4l > M) >27"}
AeC n=1

< 0PI = M/2) Yo 22 < 2UP(IXG | 2 M/2)
n=1

Corollary 4 There exists a universal constant C' such that for any 1-disjoint
class C

> ElXalIyxazcrixp < CE|X |-
AeC

In particular
ErggchXAH <2CE||Xq|l,

so the mazimal inequality holds for any VC class satisfying (5).

Proof. By the properties of Rademacher sums (cf [Ka]) we have
P X4l 2 4M) < Cy(P(|Xa]l = M)

for some constant '} < oo. Therefore by the previous Corollary we obtain
for M > 8E|| X/

> P(|Xall > 4M) < 29O P([| X4 > M/2).
AeC

Corollary follows by integration the above inequality with respect to M.

Remark. All the above results remain true (with a change of constants) if
we substitute (5) by the more general condition

Va.Bec A+ B= #(AQB) <m,

where m is a fixed positive integer.
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