L_{1}-norm of combinations of products of independent random variables

Rafał Latała*

Abstract

We show that L_{1}-norm of linear combinations (with scalar or vector coefficients) of products of i.i.d. nonnegative mean one random variables is comparable to l_{1}-norm of the coefficients.

1 Introduction and Main Results

Let X, X_{1}, X_{2}, \ldots be i.i.d. nonnegative r.v.'s such that $\mathbb{E} X=1$ and $\mathbb{P}(X=$ $1)<1$. Define

$$
\begin{equation*}
R_{0}:=1 \quad \text { and } \quad R_{i}:=\prod_{j=1}^{i} X_{j} \text { for } i=1,2, \ldots \tag{1}
\end{equation*}
$$

Obviously $\mathbb{E} R_{i}=1$ and therefore for any $a_{0}, a_{1}, \ldots, a_{n}$,

$$
\begin{equation*}
\mathbb{E}\left|\sum_{i=0}^{n} a_{i} R_{i}\right| \leq \sum_{i=0}^{n}\left|a_{i}\right| \tag{2}
\end{equation*}
$$

If $a_{i}=r^{i}$ for some $r \in \mathbb{R}$, then $\sum_{i=0}^{n} a_{i} R_{i}$ has the same distribution as the Markov chain M_{n} defined by the random difference equation $M_{0}=1$, $M_{n}=r X_{n} M_{n-1}+1, n=1,2, \ldots$ Markov chains of such type are particular examples of perpetuities. Perpetuities play an important role in applied probability and since the seminal paper of Kesten [2] attracted the attention of many researchers.

Michał Wojciechowski (personal communication) asked whether inequality (2) may be reversed in the case when $X=1+\cos (Y)$, where Y has the uniform distribution on $[0,2 \pi]$. In [4] he showed that for such variables

[^0]there exist sequences $\left(a_{i}\right)$ such that $\left|a_{i}\right| \leq 1,\left|\sum_{i=0}^{k} a_{i}\right| \leq C$ for all $k \leq n$ and $\mathbb{E}\left|\sum_{i=0}^{n} a_{i} R_{i}\right| \geq c n$. Recently he posed a more general problem.
Problem. Is it true that for any i.i.d. sequence as above estimate (2) may be reversed, i.e. there exists a constant $c>0$ that depends only on the distribution of X such that
$$
\mathbb{E}\left|\sum_{i=0}^{n} a_{i} R_{i}\right| \geq c \sum_{i=0}^{n}\left|a_{i}\right| \quad \text { for any } a_{0}, \ldots, a_{n} ?
$$

The aim of this note is to give an affirmative answer to the Wojciechowski question even in the more general situation of coefficients in a normed space ($F,\| \|$).

First we study a simpler case when X takes with positive probability values close to zero. We prove a more general result that does not require the identical distribution assumption. Namely we consider sequences $\left(X_{i}\right)$ satisfying the following assumptions:

$$
\begin{align*}
& X_{1}, X_{2}, \ldots \text { are independent, nonnegative r.v's with mean one, } \tag{3}\\
& \qquad \mathbb{E} \sqrt{X_{i}} \leq \lambda<1 \quad \text { and } \quad \mathbb{E}\left|X_{i}-1\right| \geq \mu>0 \quad \text { for all } i \text {. } \tag{4}
\end{align*}
$$

Notice that if X is a nondegenerate nonnegative random variable, then $\mathbb{E} \sqrt{X}<\sqrt{\mathbb{E} X}$ and $\mathbb{E}|X-1|>0$, hence (4) holds for i.i.d. mean one nonnegative sequences.

Theorem 1. Let R_{i} be as in (1), where X_{1}, X_{2}, \ldots satisfy assumptions (3) and (4). Then for any coefficients $v_{0}, v_{1}, \ldots, v_{n}$ in a normed space ($F,\| \|$) we have

$$
\mathbb{E}\left\|\sum_{i=0}^{n} v_{i} R_{i}\right\| \geq c \sum_{i=0}^{n}\left\|v_{i}\right\|
$$

where

$$
c=\frac{1}{64} \min \{\mu, 1\} \min _{1 \leq i \leq n} \mathbb{P}\left(X_{i} \leq \frac{(1-\lambda)^{2}}{256} \min \{\mu, 1\}\right)
$$

Theorem 1 immediately yields the following.
Corollary 2. Let X, X_{1}, X_{2}, \ldots be an i.i.d. sequence of nonnegative r.v's such that $\mathbb{E} X=1$ and $\mathbb{P}(X \leq \varepsilon)>0$ for any $\varepsilon>0$. Then there exists a constant c that depends only on the distribution of X such that for any $v_{0}, v_{1}, \ldots, v_{n}$ in a normed space $(F,\| \|)$,

$$
\mathbb{E}\left\|\sum_{i=0}^{n} v_{i} R_{i}\right\| \geq c \sum_{i=0}^{n}\left\|v_{i}\right\|
$$

Example In the case related to Riesz products, when X_{1}, X_{2}, \ldots are independent with the same distribution as $1+\cos (Y)$ with Y uniformly distributed on $[0,2 \pi]$ we have

$$
\lambda=\mathbb{E} \sqrt{1+\cos (Y)}=\sqrt{2} \mathbb{E}\left|\cos \left(\frac{Y}{2}\right)\right|=\frac{2 \sqrt{2}}{\pi}, \quad \mu=\mathbb{E}|\cos (Y)|=\frac{2}{\pi}
$$

and (since $\cos x \geq 1-x^{2} / 2$) for $0<\varepsilon<1 / 2$,

$$
\mathbb{P}\left(X_{i} \leq \varepsilon\right)=\mathbb{P}(\cos (Y) \geq 1-\varepsilon) \geq \frac{\sqrt{2 \varepsilon}}{\pi}
$$

Thus the constant given by Theorem 1 in this case is $c \geq \frac{1}{256} \pi^{-5 / 2}\left(1-\frac{2 \sqrt{2}}{\pi}\right) \geq$ $2 \cdot 10^{-5}$.

To treat the general case we need one more assumption that basically states that the most of the mass of X_{i} 's lies in the interval $[0, A]$. Namely we will assume that there exists a nonnegative constant A such that

$$
\begin{equation*}
\mathbb{E}\left|X_{i}-1\right| \mathbb{1}_{\left\{X_{i} \geq A\right\}} \leq \frac{1}{4} \mu \quad \text { for all } i \tag{5}
\end{equation*}
$$

Theorem 3. Let X_{1}, X_{2}, \ldots satisfy assumptions (3), (4) and (5). Then for any vectors $v_{0}, v_{1}, \ldots, v_{n}$ in a normed space $(F,\| \|)$, we have

$$
\mathbb{E}\left\|\sum_{i=0}^{n} v_{i} R_{i}\right\| \geq \frac{1}{512 k} \mu^{3} \sum_{i=0}^{n}\left\|v_{i}\right\|
$$

where R_{i} are as in (1) and k is a positive integer such that

$$
\begin{equation*}
\frac{2^{17}}{(1-\lambda)^{2}} k \lambda^{2 k-2} A \leq \mu^{3} \tag{6}
\end{equation*}
$$

Since in the i.i.d. case all assumptions are clearly satisfied we get the positive answer to Wojciechowski's question.

Theorem 4. Let X, X_{1}, X_{2}, \ldots be an i.i.d. sequence of nonnegative nondegenerate r.v's such that $\mathbb{E} X=1$. Then there exists a constant c that depends only on the distribution of X such that for any $v_{0}, v_{1}, \ldots, v_{n}$ in a normed space $(F,\| \|)$,

$$
\mathbb{E}\left\|\sum_{i=0}^{n} v_{i} R_{i}\right\| \geq c \sum_{i=0}^{n}\left\|v_{i}\right\|
$$

In the symmetric case the similar estimate follows by conditioning.

Corollary 5. Let X, X_{1}, X_{2}, \ldots be an i.i.d. sequence of symmetric r.v's such that $\mathbb{E}|X|=1$ and $\mathbb{P}(|X|=1)<1$. Then there exists a constant c that depends only on the distribution of X such that for any $v_{0}, v_{1}, \ldots, v_{n}$ in a normed space $(F,\| \|)$,

$$
\mathbb{E}\left\|\sum_{i=0}^{n} v_{i} R_{i}\right\| \geq c \sum_{i=0}^{n}\left\|v_{i}\right\| .
$$

Proof. Let $\left(\varepsilon_{i}\right)$ be a sequence of independent symmetric $\pm 1 \mathrm{r}$.v's independent of $\left(X_{i}\right)$. Then by Theorem 4

$$
\begin{aligned}
\mathbb{E}\left\|\sum_{i=0}^{n} v_{i} R_{i}\right\| & =\mathbb{E}_{\varepsilon} \mathbb{E}_{X}\left\|v_{0}+\sum_{i=1}^{n} v_{i} \prod_{k=1}^{i} \varepsilon_{k} \prod_{k=1}^{i}\left|X_{k}\right|\right\| \\
& \geq \mathbb{E}_{\varepsilon} c\left(\left\|v_{0}\right\|+\sum_{i=1}^{n}\left\|v_{i} \prod_{k=1}^{i} \varepsilon_{k}\right\|\right)=c \sum_{i=0}^{n}\left\|v_{i}\right\| .
\end{aligned}
$$

Example. Assumption $\mathbb{P}(|X|=1)<1$ is crucial since

$$
\mathbb{E}\left|\sum_{i=1}^{n} \prod_{k=1}^{i} \varepsilon_{k}\right|=\mathbb{E}\left|\sum_{i=1}^{n} \varepsilon_{i}\right| \leq\left(\mathbb{E}\left|\sum_{i=1}^{n} \varepsilon_{i}\right|^{2}\right)^{1 / 2}=n^{1 / 2}
$$

Let $\left(n_{k}\right)_{k \geq 1}$ be an increasing sequence of positive integers such that $n_{k+1} / n_{k} \geq 3$. Riesz products are defined by

$$
\begin{equation*}
\bar{R}_{i}(t)=\prod_{j=1}^{i}\left(1+\cos \left(n_{j} t\right)\right), \quad i=1,2, \ldots \tag{7}
\end{equation*}
$$

It is well known that if n_{k} grow sufficiently fast then $\left\|\sum_{i=0}^{n} a_{i} \bar{R}_{i}\right\|_{L_{1}} \sim$ $\mathbb{E}\left|\sum_{i=0}^{n} a_{i} R_{i}\right|$, where R_{i} are products of independent random variables distributed as \bar{R}_{1}. Here is the more quantitative result.

Corollary 6. Suppose that $\left(n_{k}\right)_{k \geq 1}$ is an increasing sequence of positive integers such that $n_{k+1} / n_{k} \geq 3$ and $\sum_{k=1}^{\infty} \frac{n_{k}}{n_{k+1}}<\infty$. Then for any coefficients $a_{0}, a_{1}, \ldots, a_{n}$,

$$
\begin{equation*}
c \sum_{i=0}^{n}\left|a_{i}\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{i=0}^{n} a_{i} \bar{R}_{i}(t)\right| d t \leq \sum_{i=0}^{n}\left|a_{i}\right|, \tag{8}
\end{equation*}
$$

where $c>0$ is a positive constant that depends only on the sequence $\left(n_{k}\right)$.

Proof. We have $\bar{R}_{i} \geq 0$, so $\left\|\bar{R}_{i}\right\|_{L_{1}}=1$ and the upper estimate is obvious. To show the opposite bound let X_{1}, X_{2}, \ldots be independent random variables distributed as $1+\cos (Y)$, where Y is uniformly distributed on $[0,2 \pi]$ and R_{i} be as in (1). By the result of Y. Meyer [3], \| $\sum_{i=0}^{n} a_{i} \bar{R}_{i} \|_{L_{1}} \geq c^{\prime} \mathbb{E}\left|\sum_{i=0}^{n} a_{i} R_{i}\right|$ and the lower estimate follows by Corollary 2 .

The condition $\sum_{k=1}^{\infty} \frac{n_{k}}{n_{k+1}}<\infty$ may be weakened to $\sum_{k=1}^{\infty} \frac{n_{k}^{2}}{n_{k+1}^{2}}<\infty$ [1], we do not however know whether lower estimate holds under more general assumptions.
Problem. Does the estimate (8) hold for all sequences of integers such that $n_{k+1} / n_{k} \geq 3$?

2 Proof of Theorem 1

In this section $(F,\| \|)$ denotes a normed space. To avoid the measurability questions we assume that F is finite dimensional, in particular it is separable. First we show few simple estimates.

Lemma 7. Suppose that X is a nonnegative r.v. and $\mathbb{E} X=1$. Then for any $u, v \in F$ we have

$$
\mathbb{E}\|u X+v\| \geq \frac{1}{2} \mathbb{E}|X-1| \max \{\|u\|,\|v\|\} .
$$

Proof. We have $\mathbb{E}\|u X+v\| \geq\|u \mathbb{E} X+v\|=\|u+v\|$. Moreover,

$$
\begin{aligned}
\mathbb{E}\|u X+v\| & =\mathbb{E}\|u(X-1)+(u+v)\| \geq\|u\| \mathbb{E}|X-1|-\|u+v\| \\
& \geq\|u\| \mathbb{E}|X-1|-\mathbb{E}\|u X+v\|
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbb{E}\|u X+v\| & =\mathbb{E}\|v(1-X)+(u+v) X\| \geq\|v\| \mathbb{E}|X-1|-\|u+v\| \mathbb{E}|X| \\
& \geq\|v\| \mathbb{E}|X-1|-\mathbb{E}\|u X+v\| .
\end{aligned}
$$

Lemma 8. Let $v \in F$ and Y be a random vector with values in F such that $\mathbb{P}\left(\|Y\|>\frac{\|v\|}{4}\right) \leq 1 / 4$. Then $\mathbb{E}\|Y+v\| \geq \mathbb{E}\|Y\|+\frac{\|v\|}{8}$.

Proof. We have by the triangle inequality

$$
\begin{aligned}
\mathbb{E}\|Y+v\| & \geq \mathbb{E}(\|Y\|-\|v\|) \mathbb{1}_{\{\|Y\|>\|v\| / 4\}}+\mathbb{E}\left(\|Y\|+\frac{\|v\|}{2}\right) \mathbb{1}_{\{\|Y\| \leq\|v\| / 4\}} \\
& =\mathbb{E}\|Y\|+\|v\|\left(\frac{1}{2} \mathbb{P}\left(\|Y\| \leq \frac{\|v\|}{4}\right)-\mathbb{P}\left(\|Y\|>\frac{\|v\|}{4}\right)\right) \\
& \geq \mathbb{E}\|Y\|+\frac{\|v\|}{8}
\end{aligned}
$$

Lemma 9. Suppose that X_{i} are independent nonnegative r.v's such that $\mathbb{E} \sqrt{X_{i}} \leq \lambda<1$ for all i. Then for any $v_{0}, \ldots, v_{n} \in F$,

$$
\begin{equation*}
\mathbb{E}\left\|\sum_{k=0}^{n} v_{k} R_{k}\right\|^{1 / 2} \leq \sum_{k=0}^{n} \lambda^{k}\left\|v_{k}\right\|^{1 / 2} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{P}\left(\left\|\sum_{k=0}^{n} v_{k} R_{k}\right\| \geq \frac{t}{1-\lambda} \sum_{k=0}^{n} \lambda^{k}\left\|v_{k}\right\|\right) \leq \frac{1}{\sqrt{t}} \quad \text { for } t \geq 1 \tag{10}
\end{equation*}
$$

Proof. We have

$$
\mathbb{E}\left\|\sum_{k=0}^{n} v_{k} R_{k}\right\|^{1 / 2} \leq \sum_{k=0}^{n} \mathbb{E}\left\|v_{k} R_{k}\right\|^{1 / 2} \leq \sum_{k=0}^{n} \lambda^{k}\left\|v_{k}\right\|^{1 / 2}
$$

By the Cauchy-Schwarz inequality

$$
\left(\sum_{k=0}^{n} \lambda^{k}\left\|v_{k}\right\|^{1 / 2}\right)^{2} \leq \sum_{k=0}^{n} \lambda^{k} \sum_{k=0}^{n} \lambda^{k}\left\|v_{k}\right\| \leq \frac{1}{1-\lambda} \sum_{k=0}^{n} \lambda^{k}\left\|v_{k}\right\|
$$

and the estimate (10) follows by (9) and Chebyshev's inequality.
We are now ready to formulate a main technical result that will easily imply Theorem 1.

Proposition 10. Let X_{1}, X_{2}, \ldots satisfy assumptions (3) and (4) and $0<$ $\varepsilon<\frac{1}{8}$ be such that $\mathbb{P}\left(X_{i} \leq \varepsilon\right) \geq p>0$ for all i. Then for any vectors $v_{0}, v_{1}, \ldots, v_{n} \in F$ we have

$$
\mathbb{E}\left\|\sum_{i=0}^{n} v_{i} R_{i}\right\| \geq \alpha\left\|v_{0}\right\|+\sum_{k=1}^{n}\left(\beta-c_{k}\right)\left\|v_{k}\right\|
$$

where

$$
\alpha:=\frac{1}{16} p, \quad \beta:=\min \left\{\frac{\alpha}{2}, \frac{1}{32} \mu p\right\} \quad \text { and } \quad c_{k}:=\frac{4 p \varepsilon}{1-\lambda} \sum_{i=0}^{k-1} \lambda^{i} .
$$

Proof. We will proceed by induction on n. For $n=0$ the assertion is obvious, since $\alpha \leq 1$.

Now suppose that the induction assertion holds for n, we will show it for $n+1$. To this end we consider two cases. To shorten the notation we put

$$
\tilde{R}_{1}:=1 \quad \text { and } \quad \tilde{R}_{k}:=\prod_{i=2}^{k} X_{i} \text { for } k=2,3, \ldots
$$

Case 1. $\left\|v_{0}\right\| \leq \frac{64 \varepsilon}{1-\lambda} \sum_{k=1}^{n+1} \lambda^{k-1}\left\|v_{k}\right\|$.
By the induction assumption (applied conditionally on X_{1}) we have

$$
\begin{aligned}
\mathbb{E}\left\|\sum_{i=0}^{n+1} v_{i} R_{i}\right\| & \geq \alpha \mathbb{E}\left\|v_{0}+v_{1} X_{1}\right\|+\sum_{k=2}^{n+1}\left(\beta-c_{k-1}\right) \mathbb{E}\left\|X_{1} v_{k}\right\| \\
& \geq \beta\left\|v_{1}\right\|+\sum_{k=2}^{n+1}\left(\beta-c_{k-1}\right)\left\|v_{k}\right\| \\
& \geq \alpha\left\|v_{0}\right\|-\frac{4 p \varepsilon}{1-\lambda} \sum_{k=1}^{n+1} \lambda^{k-1}\left\|v_{k}\right\|+\beta\left\|v_{1}\right\|+\sum_{k=2}^{n+1}\left(\beta-c_{k-1}\right)\left\|v_{k}\right\| \\
& =\alpha\left\|v_{0}\right\|+\sum_{k=1}^{n+1}\left(\beta-c_{k}\right)\left\|v_{k}\right\|
\end{aligned}
$$

where the second inequality follows by Lemma 7 .
Case 2. $\left\|v_{0}\right\| \geq \frac{64 \varepsilon}{1-\lambda} \sum_{k=1}^{n+1} \lambda^{k-1}\left\|v_{k}\right\|$.
The induction assumption, applied conditionally on X_{1}, yields

$$
\begin{align*}
& \mathbb{E}\left\|\sum_{i=0}^{n+1} v_{i} R_{i}\right\| \mathbb{1}_{\left\{X_{1}>\varepsilon\right\}} \\
& \quad \geq \alpha \mathbb{E}\left\|v_{0}+v_{1} X_{1}\right\| \mathbb{1}_{\left\{X_{1}>\varepsilon\right\}}+\sum_{k=2}^{n+1}\left(\beta-c_{k-1}\right) \mathbb{E}\left\|X_{1} v_{k}\right\| \mathbb{1}_{\left\{X_{1}>\varepsilon\right\}} \tag{11}
\end{align*}
$$

Let Y have the same distribution as $\sum_{i=1}^{n+1} v_{i} R_{i}=X_{1} \sum_{i=1}^{n+1} v_{i} \tilde{R}_{i}$ conditioned on the set $\left\{X_{1} \leq \varepsilon\right\}$. Then

$$
\begin{aligned}
\mathbb{P}\left(\|Y\|>\frac{1}{4}\left\|v_{0}\right\|\right) & \leq \mathbb{P}\left(\varepsilon\left\|\sum_{i=1}^{n+1} v_{i} \tilde{R}_{i}\right\|>\frac{1}{4}\left\|v_{0}\right\|\right) \\
& \leq \mathbb{P}\left(\left\|\sum_{i=1}^{n+1} v_{i} \tilde{R}_{i}\right\|>\frac{16}{1-\lambda} \sum_{k=1}^{n+1} \lambda^{k-1}\left\|v_{k}\right\|\right) \leq \frac{1}{4}
\end{aligned}
$$

by Lemma 9. Thus we may apply Lemma 8 and get

$$
\begin{aligned}
\mathbb{E}\left\|\sum_{i=0}^{n+1} v_{i} R_{i}\right\| \mathbb{1}_{\left\{X_{1} \leq \varepsilon\right\}} & =\mathbb{P}\left(X_{1} \leq \varepsilon\right) \mathbb{E}\left\|v_{0}+Y\right\| \geq \mathbb{P}\left(X_{1} \leq \varepsilon\right)\left(\mathbb{E}\|Y\|+\frac{\left\|v_{0}\right\|}{8}\right) \\
& =\mathbb{E}\left\|\sum_{i=1}^{n+1} v_{i} R_{i}\right\| \mathbb{1}_{\left\{X_{1} \leq \varepsilon\right\}}+\frac{\left\|v_{0}\right\|}{8} \mathbb{P}\left(X_{1} \leq \varepsilon\right)
\end{aligned}
$$

By the induction assumptions we get

$$
\begin{array}{r}
\mathbb{E}\left\|\sum_{i=1}^{n+1} v_{i} R_{i}\right\| \mathbb{1}_{\left\{X_{1} \leq \varepsilon\right\}} \geq \alpha \mathbb{E}\left\|v_{1} X_{1}\right\| \mathbb{1}_{\left\{X_{1} \leq \varepsilon\right\}}+\sum_{k=2}^{n+1}\left(\beta-c_{k-1}\right) \mathbb{E}\left\|v_{k} X_{1}\right\| \mathbb{1}_{\left\{X_{1} \leq \varepsilon\right\}} \\
\quad \geq \alpha \mathbb{E}\left\|v_{0}+v_{1} X_{1}\right\| \mathbb{1}_{\left\{X_{1} \leq \varepsilon\right\}}-\alpha\left\|v_{0}\right\|+\sum_{k=2}^{n+1}\left(\beta-c_{k-1}\right) \mathbb{E}\left\|v_{k} X_{1}\right\| \mathbb{1}_{\left\{X_{1} \leq \varepsilon\right\}}
\end{array}
$$

The above inequalities and our choice of α imply

$$
\begin{aligned}
& \mathbb{E}\left\|\sum_{i=0}^{n+1} v_{i} R_{i}\right\|_{\mathbb{1}_{\left\{X_{1} \leq \varepsilon\right\}}} \\
& \quad \geq \alpha \mathbb{E}\left\|v_{0}+v_{1} X_{1}\right\| \mathbb{1}_{\left\{X_{1} \leq \varepsilon\right\}}+\sum_{k=2}^{n+1}\left(\beta-c_{k-1}\right) \mathbb{E}\left\|v_{k} X_{1}\right\| \mathbb{1}_{\left\{X_{1} \leq \varepsilon\right\}}+\alpha\left\|v_{0}\right\| .
\end{aligned}
$$

Together with (11) this gives

$$
\begin{aligned}
\mathbb{E}\left\|\sum_{i=0}^{n+1} v_{i} R_{i}\right\| & \geq \alpha\left\|v_{0}\right\|+\alpha \mathbb{E}\left\|v_{0}+v_{1} X_{1}\right\|+\sum_{k=2}^{n+1}\left(\beta-c_{k-1}\right)\left\|v_{k}\right\| \\
& \geq \alpha\left\|v_{0}\right\|+\beta\left\|v_{1}\right\|+\sum_{k=2}^{n+1}\left(\beta-c_{k-1}\right)\left\|v_{k}\right\| \\
& \geq \alpha\left\|v_{0}\right\|+\sum_{k=1}^{n+1}\left(\beta-c_{k}\right)\left\|v_{k}\right\|
\end{aligned}
$$

where the second inequality follows by Lemma 7.

Proof of Theorem 1. We apply Proposition 10 with $\varepsilon:=\frac{(1-\lambda)^{2}}{256} \min \{\mu, 1\}$ and $p:=\min _{i} \mathbb{P}\left(X_{i} \leq \varepsilon\right)$. Notice that then $\beta=\frac{1}{32} \min \{\mu, 1\} p \leq \alpha$ and we get

$$
\begin{aligned}
\mathbb{E}\left\|\sum_{i=0}^{n} v_{i} R_{i}\right\| & \geq \alpha\left\|v_{0}\right\|+\sum_{i=0}^{n}\left(\beta-c_{i}\right)\left\|v_{i}\right\| \geq\left(\beta-\frac{4 p \varepsilon}{(1-\lambda)^{2}}\right) \sum_{i=0}^{n}\left\|v_{i}\right\| \\
& \geq \frac{\beta}{2} \sum_{i=0}^{n}\left\|v_{i}\right\| .
\end{aligned}
$$

3 Proof of Theorem 3

We start with a few refinements of lemmas from the previous section.
Lemma 11. Suppose that X is nonnegative, $\mathbb{E} X=1, \mathbb{E}|X-1| \geq \mu$ and $\mathbb{E}|X-1| \mathbb{1}_{\{X>A\}} \leq \frac{1}{4} \mu$. Then

$$
\mathbb{E}\|u X+v\| \mathbb{1}_{\{X \leq A\}} \geq \frac{1}{8} \mu\|v\| \quad \text { for any } u, v \in F .
$$

Proof. Let Y have the same distribution as X conditioned on the set $\{X \leq$ $A\}$. Then $p:=\mathbb{E} Y \leq \mathbb{E} X=1$ and

$$
\mathbb{E}\|u X+v\|_{\{X \leq A\}}=\mathbb{P}(X \leq A) \mathbb{E}\|u Y+v\| \geq \mathbb{P}(X \leq A)\|u p+v\| .
$$

We have $\mathbb{E}(X-1)_{+}=\mathbb{E}(X-1)_{-} \geq \frac{1}{2} \mu$, so

$$
\mathbb{P}(X \leq A) \mathbb{E}|Y-p|=\mathbb{E}|X-p| \mathbb{1}_{\{X \leq A\}} \geq \mathbb{E}(X-1)_{+} \mathbb{1}_{\{X \leq A\}} \geq \frac{1}{4} \mu
$$

and

$$
\begin{aligned}
\mathbb{E}\|u Y+v\| & =\frac{1}{p} \mathbb{E}\|v(p-Y)+(p u+v) Y\| \geq\|v\| \frac{1}{p} \mathbb{E}|Y-p|-\|p u+v\| \frac{1}{p} \mathbb{E} Y \\
& \geq \frac{1}{4 \mathbb{P}(X \leq A)} \mu\|v\|-\mathbb{E}\|u Y+v\| .
\end{aligned}
$$

Lemma 12. Let Y and Z be random vectors in F such that

$$
\mathbb{E}\|Z\| \mathbb{1}_{\left\{\|Y\|>\frac{1}{8} \mathbb{E}\|Z\|\right\}} \leq \frac{1}{8} \mathbb{E}\|Z\| .
$$

Then $\mathbb{E}\|Y+Z\| \geq \mathbb{E}\|Y\|+\frac{1}{2} \mathbb{E}\|Z\|$.

Proof. We have

$$
\begin{aligned}
\mathbb{E}\|Y+Z\| \geq & \mathbb{E}(\|Y\|+\|Z\|-2\|Z\|) \mathbb{1}_{\left\{\|Y\|>\frac{1}{8} \mathbb{E}\|Z\|\right\}} \\
& +\mathbb{E}(\|Y\|+\|Z\|-2\|Y\|) \mathbb{1}_{\left\{\|Y\| \leq \frac{1}{8} \mathbb{E}\|Z\|\right\}} \\
= & \mathbb{E}\|Y\|+\mathbb{E}\|Z\|-2 \mathbb{E}\|Z\| \mathbb{1}_{\left\{\|Y\|>\frac{1}{8} \mathbb{E}\|Z\|\right\}}-2 \mathbb{E}\|Y\| \mathbb{1}_{\left\{\|Y\| \leq \frac{1}{8} \mathbb{E}\|Z\|\right\}} \\
\geq & \mathbb{E}\|Y\|+\mathbb{E}\|Z\|-\frac{2}{8} \mathbb{E}\|Z\|-\frac{2}{8} \mathbb{E}\|Z\|=\mathbb{E}\|Y\|+\frac{1}{2} \mathbb{E}\|Z\| .
\end{aligned}
$$

Lemma 13. Suppose that X_{1}, \ldots, X_{n} are independent, nonnegative and $\mathbb{E}\left|X_{i}-1\right| \geq \mu$ for all i. Then for any vectors $v_{0}, \ldots, v_{n} \in F$,

$$
\mathbb{E}\left\|\sum_{i=0}^{n} v_{i} R_{i}\right\| \geq \frac{1}{4} \mu^{2} \max \left\{\left\|v_{0}\right\|, \ldots,\left\|v_{n}\right\|\right\}
$$

In particular

$$
\mathbb{E}\left\|\sum_{i=0}^{k} v_{i} R_{i}\right\| \geq \frac{1}{4 k} \mu^{2} \sum_{i=1}^{k}\left\|v_{i}\right\|
$$

Proof. We have for any $0 \leq j \leq n, \sum_{i=0}^{n} v_{i} R_{i}=Y+X_{j}\left(v_{j} R_{j-1}+X_{j+1} Z\right)$, where variables Y and Z are independent of X_{j} and X_{j+1}. So Lemma 7 applied conditionally yields

$$
\begin{aligned}
\mathbb{E}\left\|\sum_{i=0}^{n} v_{i} R_{i}\right\| & \geq \frac{1}{2} \mathbb{E}\left|X_{j}-1\right| \mathbb{E}\left\|v_{j} R_{j-1}+X_{j+1} Z\right\| \\
& \geq \frac{1}{2} \mathbb{E}\left|X_{j}-1\right| \frac{1}{2} \mathbb{E}\left|X_{j+1}-1\right| \mathbb{E}\left\|v_{j} R_{j-1}\right\| \geq \frac{1}{4} \mu^{2}\left\|v_{j}\right\|
\end{aligned}
$$

Next statement is a variant of Proposition 10.
Proposition 14. Let X_{1}, X_{2}, \ldots satisfy assumption (3)-(5) and $k \geq 1$. Then for any vectors $v_{0}, v_{1}, \ldots, v_{n} \in F$ we have

$$
\mathbb{E}\left\|\sum_{i=0}^{n} v_{i} R_{i}\right\| \geq \alpha\left\|v_{0}\right\|+\sum_{i=1}^{n}\left(\beta-c_{i}\right)\left\|v_{i}\right\|
$$

where

$$
\alpha:=\frac{1}{64} \mu, \quad \beta:=\frac{1}{4 k} \mu^{2} \alpha, \quad c_{i}:=0 \text { for } 1 \leq i \leq k-1
$$

and

$$
c_{i}:=\frac{2^{8} A}{1-\lambda} \sum_{j=k}^{i} \lambda^{j+k-2}, \quad \text { for } i=k, k+1, \ldots .
$$

Proof. Observe that $\mu \leq 2$, hence $\alpha \leq \frac{1}{32}$ and $\beta \leq \min \left\{\frac{1}{8 k} \mu^{2}, \frac{\alpha}{2} \mu\right\}$. As before we will proceed by induction on n. Notice that by Lemmas 7 and 13 we have for $n \leq k$,

$$
\mathbb{E}\left\|\sum_{i=0}^{n} v_{i} R_{i}\right\| \geq \frac{1}{4} \mu\left\|v_{0}\right\|+\frac{1}{8 k} \mu^{2} \sum_{i=1}^{n}\left\|v_{i}\right\| \geq \alpha\left\|v_{0}\right\|+\sum_{i=1}^{n} \beta\left\|v_{i}\right\| .
$$

Now suppose that the induction assertion holds for $n \geq k$, we will show it for $n+1$. To this end we consider two cases. To shorten the notation we put

$$
R_{k+1, k}:=1 \quad \text { and } \quad R_{k+1, l}:=\prod_{i=k+1}^{l} X_{i} \text { for } l \geq k+1 .
$$

Case 1. $\mu\left\|v_{0}\right\| \leq \frac{2^{14}}{1-\lambda} A \sum_{i=k}^{n+1} \lambda^{i+k-2}\left\|v_{i}\right\|$.
By the induction assumption (applied conditionally on X_{1}) we have

$$
\begin{aligned}
\mathbb{E}\left\|\sum_{i=0}^{n+1} v_{i} R_{i}\right\| & \geq \alpha \mathbb{E}\left\|v_{0}+v_{1} X_{1}\right\|+\sum_{i=2}^{n+1}\left(\beta-c_{i-1}\right) \mathbb{E}\left\|X_{1} v_{i}\right\| \\
& \geq \beta\left\|v_{1}\right\|+\sum_{i=2}^{n+1}\left(\beta-c_{i-1}\right)\left\|v_{i}\right\| \\
& \geq \alpha\left\|v_{0}\right\|-\frac{2^{8} A}{1-\lambda} \sum_{i=k}^{n+1} \lambda^{i+k-2}\left\|v_{i}\right\|+\beta\left\|v_{1}\right\|+\sum_{i=2}^{n+1}\left(\beta-c_{i-1}\right)\left\|v_{i}\right\| \\
& =\alpha\left\|v_{0}\right\|+\sum_{i=1}^{n+1}\left(\beta-c_{i}\right)\left\|v_{i}\right\|,
\end{aligned}
$$

where the second inequality follows by Lemma 7 .
Case 2. $\mu\left\|v_{0}\right\| \geq \frac{2^{14}}{1-\lambda} A \sum_{i=k}^{n+1} \lambda^{i+k-2}\left\|v_{i}\right\|$.
Define the event $A_{k} \in \sigma\left(X_{1}, \ldots, X_{k}\right)$ by

$$
A_{k}:=\left\{X_{1} \leq A, R_{2, k} \leq 4 \lambda^{2 k-2}\right\}
$$

By the induction assumption (applied conditionally) we have

$$
\begin{equation*}
\mathbb{E}\left\|\sum_{i=0}^{n+1} v_{i} R_{i}\right\| \mathbb{1}_{\Omega \backslash A_{k}} \geq \alpha \mathbb{E}\left\|\sum_{i=0}^{k} v_{i} R_{i}\right\| \mathbb{1}_{\Omega \backslash A_{k}}+\sum_{i=k+1}^{n+1}\left(\beta-c_{i-k}\right) \mathbb{E}\left\|v_{i} R_{k}\right\| \mathbb{1}_{\Omega \backslash A_{k}} \tag{12}
\end{equation*}
$$

We have

$$
\mathbb{E}\left\|\sum_{i=0}^{n+1} v_{i} R_{i}\right\|_{\mathbb{1}_{A_{k}}}=\mathbb{P}\left(A_{k}\right) \mathbb{E}\|Y+Z\|
$$

where Y has the same distribution as the random variable $\sum_{i=k}^{n+1} v_{i} R_{i}$ conditioned on the event A_{k} and Z has the same distribution as the random variable $\sum_{i=0}^{k-1} v_{i} R_{i}$ conditioned on the event A_{k}. Lemma 11 applied conditionally implies

$$
\mathbb{E}\|Z\| \geq \frac{1}{\mathbb{P}\left(X_{1} \leq A\right)} \frac{1}{8} \mu\left\|v_{0}\right\| \geq \frac{1}{8} \mu\left\|v_{0}\right\|
$$

Notice also that

$$
\|Y\|=\left\|R_{k} Y^{\prime}\right\| \leq 4 A \lambda^{2 k-2}\left\|Y^{\prime}\right\|,
$$

where Y^{\prime} is independent of Z with the same distribution as $\sum_{i=k}^{n+1} v_{i} R_{k+1, i}$. Therefore

$$
\begin{aligned}
\mathbb{E}\|Z\| \mathbb{1}_{\left\{\|Y\| \geq \frac{1}{8} \mathbb{E}\|Z\|\right\}} & \leq \mathbb{E}\|Z\| \mathbb{1}_{\left\{64\|Y Y\| \geq \mu\left\|v_{0}\right\|\right\}} \leq \mathbb{E}\|Z\| \mathbb{1}_{\left\{256 A \lambda^{2 k-2}\left\|Y^{\prime}\right\| \geq \mu\left\|v_{0}\right\|\right\}} \\
& =\mathbb{E}\|Z\| \mathbb{P}\left(256 A \lambda^{2 k-2}\left\|Y^{\prime}\right\| \geq \mu\left\|v_{0}\right\|\right) .
\end{aligned}
$$

We have (by our assumptions on v_{0})

$$
\begin{aligned}
& \mathbb{P}\left(256 A \lambda^{2 k-2}\left\|Y^{\prime}\right\| \geq \mu\left\|v_{0}\right\|\right) \leq \mathbb{P}\left(\left\|Y^{\prime}\right\| \geq \frac{2^{6}}{1-\lambda} \sum_{i=k}^{n+1} \lambda^{i-k}\left\|v_{i}\right\|\right) \\
&=\mathbb{P}\left(\left\|\sum_{i=k}^{n+1} v_{i} R_{k+1, i}\right\| \geq \frac{2^{6}}{1-\lambda} \sum_{i=k}^{n+1} \lambda^{i-k}\left\|v_{i}\right\|\right) \leq \frac{1}{8}
\end{aligned}
$$

where the last inequality follows by Lemma 9 . Thus $\mathbb{E}\|Z\| \mathbb{1}_{\left\{|Y| \geq \geq \frac{1}{\mathbb{E}} \mathbb{E}\| \|\right\}} \leq$ $\frac{1}{8} \mathbb{E}\|Z\|$ and by Lemma $12, \mathbb{E}\|Z+Y\| \geq \mathbb{E}\|Y\|+\frac{1}{2} \mathbb{E}\|Z\|$, that is

$$
\begin{equation*}
\mathbb{E}\left\|\sum_{i=0}^{n+1} v_{i} R_{i}\right\| \mathbb{1}_{A_{k}} \geq \frac{1}{2} \mathbb{E}\left\|\sum_{i=0}^{k-1} v_{i} R_{i}\right\| \mathbb{1}_{A_{k}}+\mathbb{E}\left\|\sum_{i=k}^{n+1} v_{i} R_{i}\right\| \mathbb{1}_{A_{k}} \tag{13}
\end{equation*}
$$

By Lemma 11

$$
\mathbb{E}\left\|\sum_{i=0}^{k-1} v_{i} R_{i}\right\| \mathbb{1}_{A_{k}} \geq \frac{1}{8} \mu\left\|v_{0}\right\| \mathbb{P}\left(R_{2, k} \leq 4 \lambda^{2 k-2}\right) \geq \frac{1}{16} \mu\left\|v_{0}\right\|=4 \alpha\left\|v_{0}\right\|,
$$

where the second inequality follows by the bound $\mathbb{E} \sqrt{R_{2, k}}=\prod_{i=2}^{k} \mathbb{E} \sqrt{X_{i}} \leq$ λ^{k-1} and Chebyshev's inequality. Since $\alpha \leq \frac{1}{4}$ we get

$$
\begin{equation*}
\frac{1}{2} \mathbb{E}\left\|\sum_{i=0}^{k-1} v_{i} R_{i}\right\| \mathbb{1}_{A_{k}} \geq \alpha\left\|v_{0}\right\|+\alpha \mathbb{E}\left\|\sum_{i=0}^{k-1} v_{i} R_{i}\right\| \mathbb{1}_{A_{k}} \tag{14}
\end{equation*}
$$

By the induction assumption

$$
\begin{equation*}
\mathbb{E}\left\|\sum_{i=k}^{n+1} v_{i} R_{i}\right\| \mathbb{1}_{A_{k}} \geq \alpha \mathbb{E}\left\|v_{k} R_{k}\right\| \mathbb{1}_{A_{k}}+\sum_{i=k+1}^{n+1}\left(\beta-c_{i-k}\right) \mathbb{E}\left\|v_{i} R_{k}\right\| \mathbb{1}_{A_{k}} \tag{15}
\end{equation*}
$$

By (13)-(15) we get

$$
\mathbb{E}\left\|\sum_{i=0}^{n+1} v_{i} R_{i}\right\| \mathbb{1}_{A_{k}} \geq \alpha\left\|v_{0}\right\|+\alpha \mathbb{E}\left\|\sum_{i=0}^{k} v_{i} R_{i}\right\| \mathbb{1}_{A_{k}}+\sum_{i=k+1}^{n+1}\left(\beta-c_{i-k}\right) \mathbb{E}\left\|v_{i} R_{k}\right\| \mathbb{1}_{A_{k}}
$$

Together with (12) this yields

$$
\begin{aligned}
& \mathbb{E}\left\|\sum_{i=0}^{n+1} v_{i} R_{i}\right\| \geq \alpha\left\|v_{0}\right\|+\alpha \mathbb{E}\left\|\sum_{i=0}^{k} v_{i} R_{i}\right\|+\sum_{i=k+1}^{n+1}\left(\beta-c_{i-k}\right) \mathbb{E}\left\|v_{i} R_{k}\right\| \\
& \quad \geq \alpha\left\|a_{0}\right\|+\beta \sum_{i=1}^{k}\left\|v_{i}\right\|+\sum_{i=k+1}^{n+1}\left(\beta-c_{i-k}\right)\left\|v_{i}\right\| \geq \alpha\left\|v_{0}\right\|+\sum_{i=1}^{n+1}\left(\beta-c_{i}\right)\left\|v_{i}\right\|
\end{aligned}
$$

where the second inequality follows by Lemma 13 and the definition of β.
Proof of Theorem 3. Let α, β and c_{i} be as in Proposition 14. Observe that (6) yields

$$
c_{i} \leq \frac{2^{8}}{(1-\lambda)^{2}} \lambda^{2 k-2} A \leq 2^{-9} \frac{\mu^{3}}{k}=\frac{\beta}{2}
$$

therefore $\alpha, \beta-c_{i} \geq \frac{1}{2} \beta=\frac{1}{512 k} \mu^{3}$ for all i and the assertion follows by Proposition 14.

References

[1] M. Déchmaps, Sous-espaces invariants de $L^{p}(G), G$ groupe abélien compact, Harmonic analysis, Exp. No. 3, 15 pp., Publ. Math. Orsay 81, 8, Univ. Paris XI, Orsay, 1981.
[2] H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta Math. 131 (1973) 207-248.
[3] Y. Meyer, Endomorphismes des idéaux fermés de $L^{1}(G)$, classes de Hardy et séries de Fourier lacunaires, Ann. Sci. École Norm. Sup. (4) 1 (1968) 499-580.
[4] M. Wojciechowski, On the strong type multiplier norms of rational functions in several variables, Illinois J. Math. 42 (1998), 582-600.

Institute of Mathematics
University of Warsaw
Banacha 2
02-097 Warszawa
Poland
rlatala@mimuw.edu.pl

[^0]: *Research supported by the NCN grant DEC-2012/05/B/ST1/00412

