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Abstract

We establish upper bounds for tails of order statistics of isotropic
log-concave vectors and apply them to derive a concentration of lr
norms of such vectors.

1 Introduction and notation

An n dimensional random vector is called log-concave if it has a log-concave
distribution, i.e. for any compact nonempty sets A,B ⊂ Rn and λ ∈ (0, 1),

P(X ∈ λA+ (1− λ)B) ≥ P(X ∈ A)λP(X ∈ B)1−λ,

where λA+(1−λ)B = {λx+(1−λ)y : x ∈ A, y ∈ B}. By the result of Borell
[3] a vector X with full dimensional support is log-concave if and only if it
has a density of the form e−f , where f : Rn → (−∞,∞] is a convex function.
Log-concave vectors are frequently studied in convex geometry, since by the
Brunn-Minkowski inequality uniform distributions on convex sets as well as
their lower dimensional marginals are log-concave.

A random vectorX = (X1, . . . , Xn) is isotropic if EXi = 0 and Cov(Xi, Xj) =
δi,j for all i, j ≤ n. Equivalently, an n-dimensional random vector with mean
zero is isotropic if E〈t,X〉2 = |t|2 for any t ∈ Rn. For any nondegenerate
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Warszawa, Poland, e-mail: rlatala@mimuw.edu.pl.

1



log-concave vector X there exists an affine transformation T such that TX
is isotropic.

In recent years there were derived numerous important properties of log-
concave vectors. One of such results is the Paouris concentration of mass
[10] that states that for any isotropic log-concave vector X in Rn,

P(|X| ≥ Ct
√
n) ≤ exp(−t

√
n) for t ≥ 1. (1)

One of purposes of this paper is the extension of the Paouris result
to lr norms, that is deriving upper bounds for P(‖X‖r ≥ t), where ‖x‖r =
(
∑n

i=1 |xi|r)1/r. For r ∈ [1, 2) this is an easy consequence of (1) and Hölder’s
inequality, however the case r > 2 requires in our opinion new ideas. We
show that

P
(
‖X‖r ≥ C(r)tn1/r

)
≤ exp

(
− tn1/r

)
for t ≥ 1, r > 2,

where C(r) is a constant depending only on r – see Theorem 8. Our method
is based on suitable tail estimates for order statistics of X.

For an n–dimensional random vector X by X∗1 ≥ X∗2 ≥ . . . ≥ X∗n
we denote the nonincreasing rearrangement of |X1|, . . . , |Xn| (in particu-
lar X∗1 = max{|X1|, . . . , |Xn|} and X∗n = min{|X1|, . . . , |Xn|}). Random
variables X∗k , 1 ≤ k ≤ n, are called order statistics of X.

By (1) we immediately get for isotropic log-concave vectors X,

P(X∗k ≥ t) ≤ exp
(
− 1
C

√
kt
)

for t ≥ C
√
n/k. The main result of the paper is Theorem 3 which states

that the above inequality holds for t ≥ C log(en/k) – as shows the example
of exponential distribution this range of t is for k ≤ n/2 optimal up to a
universal constant.

Tail estimates for order statistics can be also applied to provide optimal
estimates for sup#I=m |PIX|, where the supremum is taken over all subsets
of {1, . . . , n} of cardinality m ∈ [1, n] and PI denotes the coordinatewise
projection. The details will be presented in the forthcoming paper [1].

The organization of the article is as follows. In Section 2 we discuss upper
bounds for tails of order statistics and their connections with exponential
concentration and Paouris’ result. Section 3 is devoted to the derivation of
tail estimates of lr norms for log-concave vectors. Finally Section 4 contains
a proof of Theorem 4, which is a crucial tool used to derive our main result.

Throughout the article by C,C1, . . . we denote universal constants. Val-
ues of a constant C may differ at each occurence. For x ∈ Rn we put
|x| = ‖x‖2 = (

∑n
i=1 x

2
i )

1/2.
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2 Tail estimates for order statistics

If the coordinates of X are independent symmetric exponential random
variables with variance one then it is not hard to see that Med(X∗k) ≥
1
C log(en/k) for any 1 ≤ k ≤ n/2. So we may obtain a reasonable bound
for P(X∗k ≥ t), k ≤ n/2 in the case of isotropic log-concave vectors only
for t ≥ 1

C log(en/k). Using the idea that exponential random vectors are
extremal in the class of unconditional log-concave vectors (i.e. such vectors
that (η1X1, . . . , ηnXn) has the same distribution as X for any choice of signs
ηi ∈ {−1, 1}) one may easily derive the following fact.

Proposition 1. If X is a log-concave and unconditional n-dimensional
isotropic random vector then

P(X∗k ≥ t) ≤ exp
(
− 1
C
kt
)

for t ≥ C log
(en
k

)
.

Proof. The result of Bobkov and Nazarov [2] implies that for any i1 < i2 <
. . . < ik and t > 0,

P(|Xi1 | ≥ t, . . . , |Xik | ≥ t) = 2kP(Xi1 ≥ t, . . . ,Xik ≥ t) ≤ 2k exp
(
− 1
C
kt
)
.

Hence

P(X∗k ≥ t) ≤
∑

1≤i1<...<ik≤n
P(|Xi1 | ≥ t, . . . , |Xik | ≥ t) ≤

(
n

k

)
2k exp

(
− 1
C
kt
)

≤
(2en
k

)k
exp

(
− 1
C
kt
)
≤ exp

(
− 1

2C
kt
)

if t ≥ C ′ log(en/k).

However for a general isotropic log-concave vector without uncondition-
ality assumption we may bound P(Xi1 ≥ t, . . . ,Xik ≥ t) only by exp(−

√
kt/C)

for t ≥ C. This suggests that we should rather expect bound exp(−
√
kt/C)

than exp(−kt/C). If we try to apply the union bound as in the proof of
Proposition 1 it will work only for t ≥ C

√
k log(en/k).

Another approach may be based on the exponential concentration. We
say that a vector X satisfies exponential concentration inequality with a
constant α if for any Borel set A,

P(X ∈ A+ αtBn
2 ) ≥ 1− exp(−t) if P(X ∈ A) ≥ 1

2
and t > 0.
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Proposition 2. If the coordinates of an n-dimensional vector X have mean
zero and variance one and X satisfies exponential concentration inequality
with a constant α ≥ 1 then

P(X∗k ≥ t) ≤ exp
(
− 1

3α

√
kt
)

for t ≥ 8α log
(en
k

)
.

Proof. Since Var(Xi) = 1 we have P(|Xi| ≤ 2) ≥ 1/2 so P(|Xi| ≥ 2 + t) ≤
exp(−t/α) for t > 0. Let µ be the distribution of X. Then the set

A(t) =
{
x ∈ Rn : #{i : |xi| ≥ t} <

k

2

}
has measure µ at least 1/2 for t ≥ 4α log(en/k) – indeed we have for such t

1− µ(A(t)) = P
( n∑
i=1

1{|Xi|≥t} ≥
k

2

)
≤ 2
k

E
( n∑
i=1

1{|Xi|≥t}

)
≤ 2n

k
exp

(
− t

2α

)
≤ 2n

k

(en
k

)−2
≤ 1

2
.

Let A = A(4α log(en/k)). If z = x+ y ∈ A+
√
ksBn

2 then less than k/2
of |xi|’s are bigger than 4α log(en/k) and less than k/2 of |yi|’s are bigger
than

√
2s, so

P
(
X∗k ≥ 4α log

(en
k

)
+
√

2s
)
≤ 1− µ(A+

√
ksBn

2 ) ≤ exp
(
− 1
α

√
ks
)
.

For log-concave vectors it is known that exponential inequality is equiv-
alent to several other functional inequalities such as Cheeger’s and spectral
gap – see [9] for a detailed discussion and recent results. The strong conjec-
ture due to Kannan, Lovász and Simonovits [6] states that every isotropic
log-concave vector satisfies Cheeger’s (and therefore also exponential) in-
equality with a uniform constant. The conjecture however is wide open – a
recent result of Klartag [7] shows that in the unconditional case KLS con-
jecture holds up to log n constant (see also [5] for examples of nonproduct
distributions that satisfy spectral gap inequality with uniform constants).
Best known upper bound for Cheeger’s constant for general isotropic log-
concave measure is nα for some α ∈ (1/4, 1/2) (see [9] and [4]).

The main result of this paper states that despite the approach via the
union bound or exponential concetration fails the natural estimate for order
statistics is valid. Namely we have
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Theorem 3. Let X be an n-dimensional log-concave isotropic vector. Then

P(X∗k ≥ t) ≤ exp
(
− 1
C

√
kt
)

for t ≥ C log
(en
k

)
.

Our approach is based on the suitable estimate of moments of the process
NX(t), where

NX(t) :=
n∑
i=1

1{Xi≥t}, t ≥ 0.

Theorem 4. For any isotropic log-concave vector X and p ≥ 1 we have

E(t2NX(t))p ≤ (Cp)2p for t ≥ C log
(nt2
p2

)
.

We postpone a long and bit technical proof till the last section of the
paper. Let us only mention at this point that it is based on two ideas. One is
the Paouris large deviation inequality (1) and another is an observation that
if we restrict a log-concave distribution to a convex set it is still log-concave.

Proof of Theorem 3. Observe that X∗k ≥ t implies that NX(t) ≥ k/2 or
N−X(t) ≥ k/2 and vector −X is also isotropic and log-concave. So by
Theorem 4 and Chebyshev’s inequality we get

P(X∗k ≥ t) ≤
(2
k

)p(
ENX(t)p + EN−X(t)p

)
≤ 2
( Cp
t
√
k

)2p

provided that t ≥ C log(nt2/p2). So it is enough to take p = 1
eC t
√
k

and notice that the restriction on t follows by the assumption that t ≥
C log(en/k).

As we already noticed one of the main tools in the proof of Theorem 4 is
the Paouris concentration of mass. One may however also do the opposite
and derive large deviations for the Euclidean norm of X from our estimate of
moments of NX(t) and the observation that the distribution of UX is again
log-concave and isotropic for any rotation U . More precisely the following
statement holds.

Proposition 5. Suppose that X is a random vector in Rn such that for
some constants A1, A2 <∞ and any U ∈ O(n),

E
(
t2NUX(t)

)l ≤ (A1l)2l for t ≥ A2, l ≥
√
n.

Then

P(|X| ≥ t
√
n) ≤ exp

(
− 1
CA1

t
√
n
)

for t ≥ max{CA1, A2}.
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Proof. Let us fix t ≥ A2. Hölder’s inequality gives that for any U1, . . . , Un ∈
O(n),

E
l∏

i=1

NUiX(t) ≤
( l∏
i=1

ENUiX(t)l
)1/l
≤
(A1l

t

)2l
for l ≥

√
n.

Now let U1, . . . , Ul be independent random rotations in O(n) (distributed
according to the Haar measure) then for l ≥

√
n,

(A1l

t

)2l
≥ EXEU

l∏
i=1

NUiX(t) = EX(EU1NU1X(t))l = EX(nPY (〈X,Y 〉 ≥ t))l

= nlEX(PY (|X|Y1 ≥ t))l,

where Y is a random vector uniformly distributed on Sn−1. Since Y1 is
symmetric, EY 2

1 = 1/n and EY 4
1 ≤ C/n2 we get by the Paley-Zygmund

inequality that P(Y 2
1 ≥ 1

4n) ≥ 1/C1 which gives

P(|X| ≥ 2t
√
n) ≤ EX

(
C1PY (|X|Y1 ≥ t)

)l ≤ (C1A
2
1l

2

t2n

)l
.

To conclude the proof it is enough to take l =
⌈

1√
eC1A1

√
nt
⌉
.

3 Concentration of lr norms

The aim of this section is to derive Paouris–type estimates for concentration
of ‖X‖r = (

∑n
i=1 |Xi|r)1/r. We start with presenting two simple examples.

Example 1. Let the coordinates of X be independent symmetric exponen-
tial r.v’s with variance one. Then

(E‖X‖rr)1/r = (nE|X1|r)1/r ≥
1
C
rn1/r for r ∈ [1,∞),

E‖X‖∞ ≥
1
C

log n

and
(E‖X‖pr)1/p ≥ (E|X1|p)1/p ≥

p

C
for p ≥ 2, r ≥ 1.
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It is also known that in the independent exponential case weak and strong
moments are comparable [8], hence for r ≥ 2,

(E‖X‖rr)1/r =
(
E sup
‖a‖r′≤1

∣∣∣∑
i

aiXi

∣∣∣r)1/r

≤ (E‖X‖2r)1/2 + C sup
‖a‖r′≤1

(
E
∣∣∣∑

i

aiXi

∣∣∣r)1/r

≤ (E‖X‖2r)1/2 + Cr sup
‖a‖r′≤1

(
E
∣∣∣∑

i

aiXi

∣∣∣2)1/2
≤ (E‖X‖2r)1/r + Cr.

Therefore we get

(E‖X‖pr)1/p ≥ (E‖X‖2r)1/2 ≥
1
C
rn1/r for p ≥ 2 and n ≥ Cr.

Example 2. For 1 ≤ r ≤ 2 let X be an isotropic random vector such that
Y = (X1 + . . .+Xn)/

√
n has the exponential distribution with variance one.

Then by Hölder’s inequality ‖X‖r ≥ n1/r−1/2Y and

(E‖X‖pr)1/p ≥ n1/r−1/2‖Y ‖p ≥
1
C
n1/r−1/2p for p ≥ 2, 1 ≤ r ≤ 2.

The examples above show that the best we can hope is

(E‖X‖pr)1/p ≤ C(n1/r + n1/r−1/2p) for p ≥ 2, 1 ≤ r ≤ 2, (2)

(E‖X‖pr)1/p ≤ C(rn1/r + p) for p ≥ 2, r ∈ [2,∞) (3)

and
(E‖X‖p∞)1/p ≤ C(log n+ p) for p ≥ 2. (4)

Or in terms of tails,

P(‖X‖r ≥ t) ≤ exp
(
− 1
C
tn1/2−1/r

)
for t ≥ Cn1/r, r ∈ [1, 2], (5)

P(‖X‖r ≥ t) ≤ exp
(
− 1
C
t
)

for t ≥ Crn1/r, r ∈ [2,∞) (6)

and
P(‖X‖∞ ≥ t) ≤ exp

(
− 1
C
t
)

for t ≥ C log n. (7)

Case r ∈ [1, 2] is a simple consequence of the Paouris theorem.
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Proposition 6. Estimates (2) and (5) hold for all isotropic log-concave
vectors X.

Proof. We have ‖X‖r ≤ n1/r−1/2‖X‖2 by Hölder’s inequality, hence (2) (and
therefore also (5)) immediately follows by the Paouris result.

Case r =∞ is also very simple

Proposition 7. Estimates (4) and (7) hold for all isotropic log-concave
vectors X.

Proof. We have

P(‖X‖∞ ≥ t) ≤
n∑
i=1

P(|Xi| ≥ t) ≤ n exp(−t/C).

What is left is the case 2 < r <∞ – we would like to obtain (6) and (3).
We almost get it – except that constants explode when r approaches 2.

Theorem 8. For any δ > 0 there exist constants C1(δ), C2(δ) ≤ C(1+δ−1/2)
such that for any r ≥ 2 + δ,

P(‖X‖r ≥ t) ≤ exp
(
− 1
C1(δ)

t
)

for t ≥ C1(δ)rn1/r

and
(E‖X‖pr)1/p ≤ C2(δ)

(
rn1/r + p

)
for p ≥ 2.

The proof of Theorem 8 is based on the following slightly more precise
estimate.

Proposition 9. For r > 2 we have

P(‖X‖r ≥ t) ≤ exp
(
− 1
C

(r − 2
r

)1/r
t
)

for t ≥ C
(
rn1/r+

( r

r − 2

)1/r
log n

)
or in terms of moments

(E‖X‖pr)1/p ≤ C
(
rn1/r +

( r

r − 2

)1/r
(log n+ p)

)
for p ≥ 2.
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Proof. Let s = blog2 nc. We have

‖X‖rr =
n∑
i=1

|X∗i |r ≤
s∑

k=0

2k|X∗2k |r.

Theorem 3 yields

P
(
|X∗k |r ≥ Cr3 logr

(en
k

)
+ tr

)
≤ exp

(
− 1
C

√
kt
)

for t > 0. (8)

Observe that
s∑

k=0

2k logr(en2−k) ≤ Cn
∞∑
j=1

jr2−j ≤ (Cr)rn.

Thus for t1, . . . , tk ≥ 0 we get

P
(
‖X‖r ≥ C

(
rn1/r +

( s∑
k=0

tk

)1/r))
≤ P

( s∑
k=0

Yk ≥
s∑

k=0

tk

)
,

where
Yk := 2k

(
|X∗2k |r − Cr3 logr(en2−k)

)
.

Hence by (8)

P
(
‖X‖r ≥ C

(
rn1/r +

( s∑
k=0

tk

)1/r))
≤

s∑
k=0

P
(
Yk ≥ tk

)
≤

s∑
k=0

exp
(
− 1
C

2
k
2
− k

r t
1/r
k

)
.

Fix t > 0 and choose tk such that t = 2k/2−k/rt1/rk . Then

s∑
k=0

tk = tr
s∑

k=0

2
k(2−r)

2 ≤ tr
(
1− 2

2−r
2
)−1 ≤ Ctr r

r − 2
,

so we get

P
(
‖X‖r ≥ C

(
rn1/r + t

( r

r − 2

)1/r))
≤ (log2 n+ 1) exp

(
− 1
C
t
)
.

Proof of Theorem 8. Observe that ( r
r−2)1/r ≤ C(1+δ−1/2) for r ≥ 2+δ and

log n ≤ rn1/r and apply Proposition 9.
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4 Proof of Theorem 4

Our crucial tool will be the following result.

Proposition 10. Let X be an isotropic log-concave n-dimensional random
vector, A = {X ∈ K}, where K is a convex set in Rn such that 0 < P(A) ≤
1/e. Then

n∑
i=1

P(A∩{Xi ≥ t}) ≤ C1P(A)
(
t−2 log2(P(A))+ne−t/C1

)
for t ≥ C1. (9)

Moreover for 1 ≤ u ≤ t
C2

,

#{i ≤ n : P(A ∩ {Xi ≥ t}) ≥ e−uP(A)} ≤ C2u
2

t2
log2(P(A)). (10)

Proof. Let Y be a random vector distributed as the vector X conditioned
on the set A that is

P(Y ∈ B) =
P(A ∩ {X ∈ B})

P(A)
=

P(X ∈ B ∩K)
P(X ∈ K)

.

Notice that in particular for any set B, P(X ∈ B) ≥ P(A)P(Y ∈ B).
The vector Y is log-concave, but no longer isotropic. Since this is only

a matter of permutation of coordinates we may assume that EY 2
1 ≥ EY 2

2 ≥
. . . ≥ EY 2

n .
For α > 0 let

m = m(α) = #{i : EY 2
i ≥ α}.

We have EY 2
1 ≥ . . . ≥ EY 2

m ≥ α. Hence by the Paley-Zygmund inequality,

P
( m∑
i=1

Y 2
i ≥

1
2
αm
)
≥ P

( m∑
i=1

Y 2
i ≥

1
2

E
m∑
i=1

Y 2
i

)
≥ 1

4
(E
∑m

i=1 Y
2
i )2

E(
∑m

i=1 Y
2
i )2
≥ 1
C
.

This implies that

P
( m∑
i=1

X2
i ≥

1
2
αm
)
≥ 1
C

P(A).

However by the result of Paouris,

P
( m∑
i=1

X2
i ≥

1
2
αm
)
≤ exp

(
− 1
C3

√
mα
)

for α ≥ C3.
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So for α ≥ C3, exp(− 1
C3

√
mα) ≥ P(A)/C and we get that

m(α) = #{i : EY 2
i ≥ α} ≤

C4

α
log2(P(A)) for α ≥ C3. (11)

We have

P(A ∩ {Xi ≥ t})
P(A)

= P(Yi ≥ t) ≤ exp
(

1− t

C(EY 2
i )1/2

)
and (10) follows by (11).

Take t ≥
√
C3 and let k0 be a nonnegative integer such that 2−k0t ≥√

C3 ≥ 2−k0−1t. Define

I0 = {i : EY 2
i ≥ t2}, Ik0+1 = {i : EY 2

i < 4−k0t2}

and
Ij = {i : 4−jt2 ≤ EY 2

i < 41−jt2} j = 1, 2, . . . , k0.

By (11) we get

#Ij ≤ C44jt−2 log2 P(A) for j = 0, 1, . . . , k0

and obviously #Ik0+1 ≤ n. Moreover for i ∈ Ij , j 6= 0,

P(Yi ≥ t) ≤ P
( Yi

(EY 2
i )1/2

≥ 2j−1
)
≤ exp

(
1− 1

C
2j
)
.

Thus

n∑
i=1

P(Yi ≥ t) =
k0+1∑
j=0

∑
i∈Ij

P(Yi ≥ t) ≤ #I0 + e

k0+1∑
j=1

#Ij exp
(
− 1
C

2j
)

≤ C4

(
t−2 log2 P(A)

(
1 + e

k0∑
j=1

22j exp
(
− 1
C

2j
))

+ ene−t/C
)

≤ C1

(
t−2 log2 P(A) + ne−t/C1

)
.

To finish the proof of (9) it is enough to observe that

n∑
i=1

P(A ∩ {Xi ≥ t}) = P(A)
n∑
i=1

P(Yi ≥ t).
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The following two examples show that estimate (9) is close to be optimal.

Example 1. Take X1, X2, . . . , Xn to be independent symmetric exponential
random variables with variance 1 and A = {X1 ≥

√
2} Then P(A) = 1

2e and

n∑
i=2

P(A ∩ {Xi ≥ t}) = P(A)
n∑
i=2

P(Xi ≥ t) = (n− 1)P(A) exp(−t/
√

2),

therefore the factor ne−t/C in (9) is necessary.

Example 2. Take A = {X1 ≥ t, . . . ,Xk ≥ t} then

n∑
i=1

P(A ∩ {Xi ≥ t}) ≥ kP(A).

So improvement of the factor t−2P(A) log2 P(A) in (9) would imply in par-
ticular a better estimate of P(X1 ≥ t, . . . ,Xk ≥ t) than exp(− 1

C

√
kt) and

we do not know if such bound is possible to obtain.

Proof of Theorem 4. We have NX ≤ n, so the statement is obvious if t
√
n ≤

Cp, in the sequel we will assume that t
√
n ≥ 10p.

Let C1 and C2 be as in Proposition 10 – increasing Ci if necessary we
may assume that P(X1 ≥ t) ≤ e−t/Ci for t ≥ Ci and i = 1, 2. Let us fix
p ≥ 1 and t ≥ C log(nt

2

p2
), then t ≥ max{C1, 4C2} and t2ne−t/C1 ≤ p2 if C is

large enough. Let l be a positive integer such that

p ≤ l ≤ 2p and l = 2k for some integer k.

Since (E(NX(t))p)1/p ≤ (E(NX(t))l)1/l it is enough to show that

E(t2NX(t))l ≤ (Cl)2l.

Recall that by our assumption on p, we have t
√
n ≥ 5l.

To shorten the notation let

Bi1,...,is = {Xi1 ≥ t, . . . ,Xis ≥ t} and B∅ = Ω.

Define

m(l) := ENX(t)l = E
( n∑
i=1

1{Xi≥t}

)l
=

n∑
i1,...,il=1

P(Bi1,...,il),

we need to show that
m(l) ≤

(Cl
t

)2l
. (12)
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We devide the sum in m(l) into several parts. Let j1 ≥ 2 be such integer
that

2j1−2 < log
(nt2
l2

)
≤ 2j1−1.

We set
I0 =

{
(i1, . . . , il) ∈ {1, . . . , n}l : P(Bi1,...,il) > e−l

}
,

Ij =
{

(i1, . . . , il) ∈ {1, . . . , n}l : P(Bi1,...,il) ∈ (e−2j l, e−2j−1l]
}

0 < j < j1

and
Ij1 =

{
(i1, . . . , il) ∈ {1, . . . , n}l : P(Bi1,...,il) ≤ e

−2j1−1l
}
.

Since {1, . . . , n}l =
⋃j1
j=0 Ij we get m(l) =

∑j1
j=0mj(l), where

mj(l) :=
∑

(i1,...,il)∈Ij

P(Bi1,...,il) for 0 ≤ j ≤ j1.

It is easy to bound mj1(l) – namely since #Ij1 ≤ nl we have∑
(i1,...,il)∈Ij1

P(Bi1,...,il) ≤ n
le−2j1−1l ≤

( l
t

)2l
.

To estimate m0(l) we define first for I ⊂ {1, . . . , n}l and 1 ≤ s ≤ l,

PsI = {(i1, . . . , is) : (i1, . . . , il) ∈ I for some is+1, . . . , il}.

By Proposition 10 we get for s = 1, . . . , l − 1∑
(i1,...,is+1)∈Ps+1I0

P(Bi1,...,is+1) ≤
∑

(i1,...,is)∈PsI0

n∑
is+1=1

P(Bi1,...,is ∩ {Xis+1 ≥ t})

≤ C1

∑
(i1,...,is)∈PsI0

P(Bi1,...,is)(t−2 log2 P(Bi1,...,is) + ne−t/C1).

Observe that we have P(Bi1,...,is) > e−l for (i1, . . . , is) ∈ PsI0 and recall that
t2ne−t/C1 ≤ p2 ≤ 4l2, hence∑

(i1,...,is+1)∈Ps+1I0

P(Bi1,...,is+1) ≤ 5C1t
−2l2

∑
(i1,...,is)∈PsI0

P(Bi1,...,is).

So, by easy induction we obtain

m0(l) =
∑

(i1,...,il)∈I0

P(Bi1,...,il) ≤ (5C1t
−2l2)l−1

∑
i1∈P1I0

P(Bi1)

≤ (5C1t
−2l2)l−1ne−t/C1 ≤

(Cl
t

)2l
.
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Now comes the most involved part of the proof – estimating mj(l) for
0 < j < j1. It is based on suitable bounds for #Ij . We will need the
following simple combinatorial lemma.

Lemma 11. Let l0 ≥ l1 ≥ . . . ≥ ls be a fixed sequence of positive integers
and

F =
{
f : {1, 2, . . . , l0} → {0, 1, 2, . . . , s} : ∀1≤i≤s #{r : f(r) ≥ i} ≤ li

}
.

Then

#F ≤
s∏
i=1

(eli−1

li

)li
.

Proof of Lemma 11. Notice that any function f : {1, 2, . . . , l0} → {0, 1, 2, . . . , s}
is determined by the sets Ai = {r : f(r) ≥ i} for i = 0, 1, . . . , s. Take f ∈ F ,
obviously A0 = {1, . . . , l0}. If the set Ai−1 of cardinality ai−1 ≤ li−1 is al-
ready chosen then the set Ai ⊂ Ai−1 of cardinality at most li may be chosen
in(
ai−1

0

)
+
(
ai−1

1

)
+. . .+

(
ai−1

li

)
≤
(
li−1

0

)
+
(
li−1

1

)
+. . .+

(
li−1

li

)
≤
(eli−1

li

)li
ways.

We come back to the proof of Theorem 4. Fix 0 < j < j1, let r1 be a
positive integer such that

2r1 <
t

C2
≤ 2r1+1.

For (i1, . . . , il) ∈ Ij we define a function fi1,...,il : {1, . . . , l} → {j, j+1, . . . , r1}
by the formula

fi1,...,il(s) =


j if P(Bi1,...,is) ≥ exp(−2j+1)P(Bi1,...,is−1),
r if exp(−2r+1) ≤ P(Bi1,...,is )

P(Bi1,...,is−1
) < exp(−2r), j < r < r1,

r1 if P(Bi1,...,is) < exp(−2r1)P(Bi1,...,is−1).

Notice that for all i1, P(Xi1 ≥ t) ≤ e−t/C2 < exp(−2r1)P(B∅), so fi1,...,il(1) =
r1 for all i1, . . . , il.

Put
Fj :=

{
fi1,...,il : (i1, . . . , il) ∈ Ij

}
.

For f = fi1,...,il ∈ Fj and r > j, we have

exp(−2jl) < P(Bi1,...,il) < exp(−2r#{s : f(s) ≥ r}),

14



so
#{s : f(s) ≥ r} ≤ 2j−rl =: lr. (13)

Observe that the above inequality holds also for r = j. We have lr−1/lr = 2
and

∑r1
r=j+1 lr ≤ l so by Lemma 11 we get

#Fj ≤
r1∏

r=j+1

(elr−1

lr

)lr
≤ e2l.

Now fix f ∈ Fj we will estimate the cardinality of the set

Ij(f) := {(i1, . . . , il) ∈ Ij : fi1,...,il = f}.

Put
nr := #{s ∈ {1, . . . , l} : f(s) = r} r = j, j + 1, . . . , r1.

We have
nj + nj+1 + . . .+ nr1 = l,

moreover if i1, . . . , is−1 are fixed and f(s) = r < r1 then s ≥ 2 and by the
second part of Proposition 10 (with u = 2r+1 ≤ t/C2) is may take at most

4C222r

t2
log2 P(Bi1,...,is−1) ≤ 4C222(r+j)l2

t2
≤ 4C2l

2

t2
exp(2(r + j)) =: mr

values. Thus

#Ij(f) ≤ nnr1

r1−1∏
r=j

mnr
r = nnr1

(4C2l
2

t2

)l−nr1 exp
( r1−1∑
r=j

2(r + j)nr
)
.

Observe that by previously derived estimate (13) we get

nr ≤ lr = 2j−rl,

hence
r1−1∑
r=j

2(r + j)nr ≤ 2j+2l

∞∑
r=j

r2−r ≤ (C + 2j−2)l.

We also have

nr1 ≤ 2j−r1 l ≤ 2C2

t
2jl ≤ 1

log(nt2/(4l2))
2j−3l,
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where the last inequality holds since t ≥ C log(nt2/(4l2)) and C may be
taken arbitrarily large. So we get that for any f ∈ Fj ,

#Ij(f) ≤
(Cl2
t2

)l(nt2
4l2
)nr1 exp

(
2j−2l

)
≤
(Cl2
t2

)l
exp

(3
8

2jl
)
.

This shows that

#Ij ≤ #Fj ·
(Cl2
t2

)l
exp

(3
8

2jl
)
≤
(Cl2
t2

)l
exp

((
2 +

3
8

2j
)
l
)
.

Hence

mj(l) =
∑

(i1,...,il)∈Ij

P(Bi1,...,il) ≤ #Ij exp(−2j−1l) ≤
(Cl2
t2

)l
exp

(
− 2j−3l

)
.

Therefore

m(l) = m0(l) +mj1(l) +
j1−1∑
j=1

mj(l) ≤
( l
t

)2l(
C l + 1 +

∞∑
j=1

C l exp
(
− 2j−3l

))
≤
(Cl
t

)2l

and (12) holds.
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