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Abstract. We find the cluster set in the Law of the Iterated Logarithm for
U-statistics of order 2 in some interesting special cases. The lim sup is an
unusual function of the quantities that determine the Bounded LIL.

1. Introduction and Notation.

In [GKLZ] necessary and sufficient conditions were obtained for the law of the
iterated logarithm for canonical U-statistics of order 2 to hold. Here we continue
the investigation of the LIL for U-statistics of order 2 by describing the cluster (or
limit) set for the examples in [GZ], which helped motivate [GKLZ]. Namely, let
X1, X2, . . . denote a sequence of iid r.v.’s with values in some measurable space
(S,S). In the general case for a measurable kernel h on S2 we define symmetrized
U -statistics by the formula

Un =
∑

1≤i<j≤n

εiεjh(Xi, Xj),

where (εi) is a Rademacher sequence (i.e. a sequence of independent symmetric
±1 valued r.v’s) independent of (Xi). In our case we will assume that each Xi has
a uniform distribution on [0, 1] and

h(x, y) =
∞∑

k=1

akhk(x)hk(y), (1)

where
hk(x) = IAk

(x) and Ak = (2−k, 2−k+1], k = 1, 2, . . . .

We also assume that 0 ≤ ak ≤ k−1/22k (this assumption seems not to be necessary
but makes the calculations easier).
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The (nas) conditions for the (bounded) LIL for {Un} that were obtained in
[GKLZ] imply that the conditions for the LIL in our case be in terms of

A = sup{Eh(X1, X2)f(X1)f(X2) : Ef2(Xi) ≤ 1} = sup
k
|ak2−k| (2)

and

B = lim sup
u→∞

E(h2(X1, X2) ∧ u)
L2u

. (3)

However, what is not so clear is the form of the function of A and B that
determines the lim sup. It turns out that the lim sup is

C = φ(A,B) =
{

A + B2

4A if B ≤ 2A
B if B ≥ 2A.

In the sequel letters like K, K1, etc., will denote universal constants that may
change from line to line, but do not depend on any parameters. To simplify the
notation we define Lx = log(x ∨ e) and L2x = LLx. We also write log2 for the
logarithm to the base 2.

Now, a few comments about the organization of the paper. After presenting
in Section 2 some known results, we present in Section 3 a few results for general
U-statistics. Finally, in Section 4 we concentrate on the types of kernels of the
form (1) that are the main focus of this paper.

2. Preliminary results.

In this section we gather a few inequalities proven elsewhere that we will use in
the sequel.

Lemma 1. ([KW], Theorem 6.2.1) There exists a universal constant K such that
for any t > 0 and any sequence of real numbers (aij)1≤i<j≤n we have

P( max
1≤k≤n

|
∑

1≤i<j≤k

aijεiεj | > t) ≤ KP(|
∑

1≤i<j≤n

aijεiεj | > t).

Lemma 2 (Bernstein inequality).
([de la P,G] Lemma 4.1.9 and Remark 4.1.10, [D] Th. 1.3.2) If Zi are independent
r.v’s with EZi = 0, ‖Zi‖∞ ≤ a and b2 =

∑
EZ2

i , then for all t ≥ 0

P(|
∑

i

Zi| ≥ t) ≤ 2 exp(− t2

2b2 + 2
3at

).

Lemma 3 (Kolmogorov’s converse exponential inequality).
([S] Th. 5.2.2) For any γ > 0 there exist numbers K̃(γ) < ∞ and ε̃(γ) > 0 such
that if Zi are independent r.v’s with EZi = 0, ‖Zi‖∞ ≤ a, b2 =

∑
EZ2

i satisfying
t ≥ K̃(γ)b and ta ≤ ε̃(γ)b2 for some t > 0, then

P(
∑

i

Zi ≥ t) ≥ exp(− (1 + γ)t2

2b2
).
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We will, however, prefer to use the following simple corollary of Kolmogorov’s
converse exponential inequality (one may take below ε(γ) = (1 + γ)ε̃(γ)2/2 and
K(γ) = exp((1 + γ)K̃(γ)2/2).)

Corollary 1. For any γ > 0 there exist numbers K(γ) < ∞ and ε(γ) > 0 such that
if Zi are independent r.v’s with EZi = 0, ‖Zi‖∞ ≤ a, b2 =

∑
EZ2

i , then for all
t > 0

P(
∑

i

Zi ≥ t) ≥ 1
K(γ)

exp(− (1 + γ)t2

2b2
)− exp(−ε(γ)

b2

a2
).

Lemma 4. ([GLZ], Corollary 3.4) There exists a universal constant K < ∞ such
that for all t > 0

P(|Un| ≥ t) ≤ K exp
[
− 1

K
min

( t2

n2Eh2
,

t

n‖h‖L2→L2

,
t2/3

[n(‖EY h2‖∞ + ‖EXh2‖∞)]1/3
,

t1/2

‖h‖1/2
∞

)]
.

3. Technical Lemmas. General Kernels.

In this section we present few technical lemmas that do not require additional
assumptions on the form of the kernel h.

Lemma 5. We have

E exp
(
λ(

n∑
i=1

εi)2
)
≤ 1√

1− 2λn
for all 0 ≤ λ <

1
2n

. (4)

Moreover, for each γ > 0, there exist positive numbers K(γ) and δ(γ) such that
for any n

P(
n∑

i=1

εi ≥ t
√

n) ≥ 1
K(γ)

exp(− (1 + γ)t2

2
)− exp(−δ(γ)n). (5)

Proof. Notice that for any t

E exp(t
n∑

i=1

εi) = (
1
2
et +

1
2
e−t)n ≤ e

nt2
2 .

So if g is N (0, 1) r.v. independent of εi, then

E exp
(
λ(

n∑
i=1

εi)2
)

= EεEge
√

2λ(
Pn

i=1 εi)g

= EgEεe
√

2λg
Pn

i=1 εi ≤ Eenλg2
=

1√
1− 2λn

.

Inequality (5) is an immediate consequence of Kolmogorov’s converse exponential
inequality (Corollary 1).
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Lemma 6. Suppose that a
(n)
ij is a tripley indexed sequence of numbers such that

lim sup
n→∞

|
n∑

i,j=1

a
(n)
ij εiεj | ≤ C a.s.

Then,

lim sup
n→∞

|
n∑

i=1

a
(n)
ii | ≤ C.

Proof. Let t > C, then I(
∑n

i,j=1 a
(n)
ij εiεj ≥ t) → 0 a.s. so in particular

P(
n∑

i,j=1

a
(n)
ij εiεj ≥ t) → 0.

However

P(
n∑

i,j=1

a
(n)
ij εiεj ≥

n∑
i=1

a
(n)
ii ) = P(

∑
1≤i 6=j≤n

a
(n)
ij εiεj ≥ 0) ≥ 1

K

for some universal K ([de la P,G] Proposition 3.3.7 combined with Theorem 3.2.2).
This implies

∑n
i=1 a

(n)
ii ≤ t for large enough n, so lim supn→∞

∑n
i=1 a

(n)
ii ≤ C. In

a similar way we prove that lim supn→∞(−
∑n

i=1 a
(n)
ii ) ≤ C.

Lemma 7. a)If C < ∞ is a number such that

∀ε>0∃K,N∀n≥N P(|Un| ≥ C(1 + ε)nL2n) ≤ K

log n(L2n)1+ε
, (6)

then

lim sup
n→∞

|Un|
nL2n

≤ C a.s.

b)If C < ∞ is a number such that

∀ε>0,n0∃K,N>n0∀N≤n≤N2 P(|Un| ≥ C(1 + ε)nL2n) ≥ 1
K log n

, (7)

then

lim sup
n→∞

|Un|
nL2n

≥ C a.s.

Proof. We start with the proof of part a). Let α > 1, in this part of the proof we
will denote Ua = Ubac for all a ≥ 0. Let ε > 0 and K, N be given by formula (6).
Let us choose k0 such that αk0 ≥ N . Then, we have for all t > 0

P( max
n≥αk0

|Un|
nL2n

≥ t) ≤
∞∑

k=k0

P( max
αk≤n≤αk+1

|Un|
nL2n

≥ t)

≤
∞∑

k=k0

P( max
1≤n≤αk+1

|Un| ≥ tαkL2(αk)) ≤
∞∑

k=k0

KP(|Uαk+1 | ≥ tαkL2(αk)),
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where in the last line we used the maximal inequality (Lemma 1). Since for large
enough k we have L2(αk) ≥ α−1L2(αk+1) we get that for sufficiently large k0

P( max
n≥αk0

|Un|
nL2n

≥ Cα2(1 + ε)) ≤
∞∑

k=k0

KP(|Uαk+1 | ≥ C(1 + ε)αk+1L2(αk+1))

≤
∞∑

k=k0

K

logbαk+1c(L2bαk+1c)1+ε
.

This implies that

lim
k→∞

P
(

max
n≥αk

|Un|
nL2n

≥ Cα2(1 + ε)
)

= 0,

so lim supn→∞
|Un|
nL2n ≤ Cα2(1 + ε) a.s. and part a) follows, when α → 1+ and

ε → 0+.
To prove part b) suppose that

lim sup
n→∞

|Un|
nL2n

≤ C1 < C a.s.

(By the 0-1 Law we know that the lim sup is constant a.s.). Let m > 1 be an
integer (to be chosen later) and ε̃i be another Rademacher sequence independent
of εi and Xi. Since for any choice of signs ηi = ±1 the sequence ηiεi has the same
distribution as εi we get that

lim sup
n→∞

|
∑n

k,l=1 ε̃kε̃l

∑
mk−1≤i<mk,ml−1≤j<ml,i<j εiεjh(Xi, Xj)|

mnL2(mn)
≤ C1 a.s..

So

Pε,X

(
lim sup

n→∞

|
∑n

k,l=1 ε̃kε̃l

∑
mk−1≤i<mk,ml−1≤j<ml,i<j

εiεjh(Xi, Xj)|

mnL2(mn)
≤ C1 ε̃-a.s.

)
= 1.

However by Lemma 6 it implies

P
(

lim sup
n→∞

|
∑n

k=1

∑
mk−1≤i<j<mk εiεjh(Xi, Xj)|

mnL2(mn)
≤ C1

)
= 1.

Let 1/2 > δ > 0 to be chosen later and C1 < C2 < C, then

P
(

max
n≥n0

|
∑n

k=1

∑
mk−1≤i<j<mk εiεjh(Xi, Xj)|

mnL2(mn)
> C2

)
< δ

for sufficiently large n0. Notice that if |sn| ≤ C2m
nL2(mn) for n ≥ n0, then

|sn − sn−1| ≤ C2(mn + mn−1)L2(mn) for n > n0. Therefore

P
(

max
n>n0

|
∑

mn−1≤i<j<mn εiεjh(Xi, Xj)|
mnL2(mn)

> C2(1 +
1
m

)
)

< δ.
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Thus by the independence (since P(
⋃

Ai) ≥ 1/2
∑

P(Ai) if Ai are independent
and P(

⋃
Ai) ≤ 1/2)∑

n>n0

P
(
|

∑
1≤i<j≤mn−mn−1

εiεjh(Xi, Xj)| ≥ C2m
n(1 +

1
m

)L2(mn)
)

=
∑

n>n0

P
(
|

∑
mn−1≤i<j<mn

εiεjh(Xi, Xj)| ≥ C2m
n(1 +

1
m

)L2(mn)
)

< 2δ.

Now choose m and increase n0, if necessary, in such a way that

C2m
n(1 +

1
m

)L2(mn) ≤ C(1 + ε)(mn −mn−1)L2(mn −mn−1)

for n > n0. By our assumption (7) we can find N > mn0 such that

P
(
|Umn−mn−1 | ≥ C(1 + ε)(mn −mn−1)L2(mn −mn−1)

)
≥ 1

K log(mn −mn−1)
≥ 1

Kn log m

for all n such that N ≤ mn −mn−1 ≤ N2. However∑
n:N≤mn−mn−1≤N2

1
Kn log m

&
log 2

K log m
> 2δ

if we choose δ small enough.

The next Lemma shows why the LIL-limit depends on two quantities in a
very non-obvious way.

Lemma 8. Suppose that S1, S2 are independent r.v’s, A,B > 0 and

C =
{

A + B2

4A if B ≤ 2A
B if B ≥ 2A

a) If for some K ≥ 1 and ε > 0

P(S1 ≥ sAn) ≥ 1
K

e−s(1+ε) − 1
(log n)1+ε

for all s ≥ 0

and
P(S2 ≥ sBn

√
L2n) ≥ 1

K
e−s2(1+ε)2 − 1

(log n)1+ε
for all s ≥ 0,

then for sufficiently large n

P(S1 + S2 ≥ (1 + ε)−1CnL2n) ≥ 1
K2

1
log n

− 2
(log n)1+ε

.

b) On the other hand if for some K, ε > 0

P(S1 ≥ sAn) ≤ Ke−
s

1+ε +
1

(log n)1+ε
for all s ≥ 0

and
P(S2 ≥ sBn

√
L2n) ≤ Ke

− s2

(1+ε)2 +
1

(log n)1+ε
for all s ≥ 0,
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then

P(S1 + S2 ≥ (1 + ε)3CnL2n) ≤ (
1
ε

+ 1)
(K + 2)2

(log n)1+ε
.

Proof. For the first part of the statement it is enough to notice that in the case
when B ≥ 2A we get for sufficiently large n

P(S1 + S2 ≥ (1 + ε)−1CnL2n) ≥ P(S1 ≥ 0)P(S2 ≥ (1 + ε)−1BnL2n)

≥ (
1
K
− 1

(log n)1+ε
)(

1
K

e−L2n − 1
(log n)1+ε

) ≥ 1
K2 log n

− 2
(log n)1+ε

.

In the case when B ≤ 2A we have for large enough n

P(S1 + S2 ≥ (1 + ε)−1CnL2n)

≥ P(S1 ≥ (1 + ε)−1(A− B2

4A )nL2n)P(S2 ≥ (1 + ε)−1 B2

2AnL2n)

≥ ( 1
K exp(−(1− B2

4A2 )L2n)− 1
(log n)1+ε )( 1

K exp(− B2

4A2 L2n)− 1
(log n)1+ε )

≥ 1
K2 log n −

2
(log n)1+ε .

To prove part b) first notice that for all x ∈ [0, C]

x

A
+

(C − x)2

B2
≥ 1.

Hence, for such x

P(S1 ≥ (1 + ε)2xnL2n, S2 ≥ (1 + ε)2(C − x)nL2n)

≤
(
K exp

(
− (1 + ε)

x

A
L2n

)
+

1
(log n)1+ε

)
·(

K exp
(
− (1 + ε)

(C − x)2

B2
L2n

)
+

1
(log n)1+ε

)
≤ (K + 1)2

(log n)1+ε
.

Moreover,

P(S1 ≤ 0, S1 + S2 ≥ (1 + ε)2CnL2n) ≤ P(S2 ≥ (1 + ε)2CnL2n)

≤ K exp
(
− (1 + ε)

C2

B2
L2n

)
+

1
(log n)1+ε

≤ K + 1
(log n)1+ε

and

P(S1 ≥ (1 + ε)2CnL2n) ≤ K + 1
(log n)1+ε

.
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Let k0 = bε−1c. Then,

P(S1 + S2 ≥ (1 + ε)3CnL2n)

≤ P(S1 ≤ 0,
S1 + S2

(1 + ε)2nL2n
≥ C) + P(

S1

(1 + ε)2nL2n
≥ C)

+
k0∑

k=0

P(
S1

(1 + ε)2nL2n
∈ [kεC, (k + 1)εC),

S2

(1 + ε)2nL2n
≥ C − kεC)

≤ 2K + 2
(log n)1+ε

+ (k0 + 1)
(K + 1)2

(log n)1+ε
≤ (

1
ε

+ 1)
(K + 2)2

(log n)1+ε
.

4. Special Kernels

From this point on we will assume that our kernel is of the form (1). We consider
the following (undecoupled) U -statistics Let

Ũn =
∞∑

k=1

ak

∑
1≤i<j≤Nk

εk
i εk

j =
∞∑

k=1

ak

2
(
(

Nk∑
i=1

εk
i )2 −Nk

)
,

where
Nk = #{1 ≤ i ≤ n : Xi ∈ (2−k, 2−k+1]}, k = 1, 2 . . . .

Notice that
L

(
Un|σ(X1, X2, . . .)

)
= L

(
Ũn|σ(X1, X2, . . .)

)
,

so Un and Ũn have the same distribution.

Lemma 9. We have for all δ > 0

P
(
∃k≤m|Nk − n2−k| ≥ δn2−k

)
≤ 2m+1

δ2n
.

Proof. Notice that

P(∃k≤m|Nk − n2−k| ≥ δn2−k) ≤
m∑

k=1

P(|Nk −ENk| ≥ δn2−k)

≤
m∑

k=1

22k

δ2n2
Var(Nk) ≤ 1

δ2n

m∑
k=1

2k ≤ 2m+1

δ2n
.

Lemma 10. Suppose that s > 0 and |nk − n2−k| ≤ εn2−k−1 for k = 1, . . . ,m. Let
α = max{2−k|ak| : 1 ≤ k ≤ m}, then

P
(∣∣ m∑

k=1

ak

2
(
(

nk∑
i=1

εk
i )2 − nk

)∣∣ ≥ αsn
)
≤ (

2e(1 + ε)
ε

)m/2e−
s

1+ε (8)
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On the other hand, if α1 = max{2−kak : 1 ≤ k ≤ m} > 0, then

P
( m∑

k=1

ak

2
(
(

nk∑
i=1

εk
i )2 − nk

)
≥ α1sn

)
≥ 1

K(ε)
e−(1+ε)s − exp(−δ(ε)2−mn), (9)

and if α2 = max{−2−kak : 1 ≤ k ≤ m}, then

P
(
−

m∑
k=1

ak

2
(
(

nk∑
i=1

εk
i )2 − nk

)
≥ α2sn

)
≥ 1

K(ε)
e−(1+ε)s − exp(−δ(ε)2−mn), (10)

where K(ε) and δ(ε) depend only on ε.

Proof. Let S =
∑m

i=1
|ak|
2 (

∑nk

i=1 εk
i )2, then by (4) we have

EeλS ≤
m∏

i=1

1√
1− λ|ak|nk

.

But by our assumptions |ak|nk ≤ (1 + ε
2 )αn, so

E exp(
1

αn(1 + ε)
S) ≤ (1−

1 + ε
2

1 + ε
)−m/2 = (

2(1 + ε)
ε

)m/2.

Notice that∣∣ m∑
k=1

ak

2
(
(

nk∑
i=1

εk
i )2 − nk

)∣∣ ≤ S +
1
2

m∑
k=1

|ak|nk ≤ S +
1
2

(1 + ε)αnm,

so (8) immediately follows, since

P
(∣∣ m∑

k=1

ak

2
(
(

nk∑
i=1

εk
i )2 − nk

)∣∣ ≥ αsn
)
≤ P(S ≥ αn(s− 1

2
(1 + ε)m)).

To get (9) let k0 be such that ak0 = α12k0 , then

P
( m∑

k=1

ak

2
(
(

nk∑
i=1

εk
i )2 − nk

)
≥ α1sn

)

≥ P(
ak0

2
(
nk0∑
i=1

εi)2 ≥ α1sn)P(
∑
k 6=k0

ak

∑
1≤i<j≤nk

εk
i εk

j ≥ 0)

≥ 1
K

P((
nk0∑
i=1

εi)2 ≥ 2−k0+1sn),

where in the last inequality we used the same properties of Rademacher chaoses
as in the proof of Lemma 6 (see [de la P,G], Proposition 3.3.7). Thus (9) follows
by (5). The proof of (10) is similar.
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Lemma 11. Suppose that 0 < δ < 1, k1 ≥ 1, |nk − n2−k| ≤ δn2−k for k1 ≤ k ≤ k2

and

a = sup{|ak|2−k : k1 ≤ k ≤ k2}, b2 =
k2∑

k=k1

a2
k2−2k.

Then, for any s > 0 and t > 0, we have

P
(1

2

k2∑
k=k1

ak

(
(

nk∑
i=1

εk
i )2 − nk) ≥ t + 4k2nae−s/8

)
≤ exp(− t2

(1 + δ)2n2b2(1 + 50e−s/8) + 2tsan
) + 2k2e

−s/4 (11)

and

P
(1

2

k2∑
k=k1

ak

(
(

nk∑
i=1

εk
i )2 − nk) ≥ t− 4k2nae−s/8

)
≥ 1

K(δ)
exp(− (1 + δ)t2

(1− δ)2n2b2(1− 50e−s/8)− 2k2+1nb2
)

− exp(−ε(δ)b2[(1− δ)2(1− 50e−s/8)− n−12k2+1]
s2a2

)− 2k2e
−s/4, (12)

where positive constants K(δ) and ε(δ) depend only on δ.

Proof. Let

Sk = (
nk∑
i=1

εk
i )2I(

Pnk
i=1 εk

i )2≤snk
,

then
‖ak(Sk − ESk)‖∞ ≤ saknk ≤ 2san.

Notice that by (4) we have

P(|
nk∑
i=1

εk
i | ≥

√
snk) ≤ 2e−s/4,

so

|nk −ESk| = E(
nk∑
i=1

εk
i )2I(

Pnk
i=1 εk

i )2>snk

≤

√√√√E(
nk∑
i=1

εk
i )4

√√√√P(|
nk∑
i=1

εk
i | ≥

√
snk) ≤ 4nke−s/8.

Therefore

k2∑
k=k1

|ak(ESk − nk)| ≤ 8n

k2∑
k=k1

|ak|2−ke−s/8 ≤ 8k2nae−s/8 (13)
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and

P
( k2∑

k=k1

ak(
nk∑
i=1

εk
i )2 6=

k2∑
k=k1

akSk

)
≤

k2∑
k=k1

P
(
Sk 6= (

nk∑
i=1

εk
i )2

)
≤ 2k2e

−s/4. (14)

We have

|E(
nk∑
i=1

εk
i )4 −ES2

k| = E(
nk∑
i=1

εk
i )4I(

Pnk
i=1 εk

i )2>snk

≤

√√√√E(
nk∑
i=1

εk
i )8

√√√√P(|
nk∑
i=1

εk
i | ≥

√
snk) ≤ 80n2

ke−s/8

by the Khinchine inequality. Moreover,

|(ESk)2 − (E(
nk∑
i=1

εk
i )2)2| = |(ESk)2 − n2

k| = |ESk + nk| · |ESk − nk|

≤ 2nk · 4nke−s/8 = 8n2
ke−s/8,

so

|Var(Sk)−Var((
nk∑
i=1

εk
i )2)| ≤ 100n2

ke−s/8.

Therefore

Var(
1
2

k2∑
k=k1

akSk) ≤
k2∑

k=k1

a2
k(

1
2
nk(nk − 1) + 25n2

ke−s/8)

≤ 1
2

(1 + δ)2n2b2(1 + 50e−s/8)

and by the Bernstein inequality (Lemma 2) we have

P
(1

2

k2∑
k=k1

ak(Sk−ESk)) ≥ t
)
≤ exp

(
− t2

(1 + δ)2n2b2(1 + 50e−s/8) + 2stan

)
. (15)

Inequality (11) follows by (13), (14) and (15). To get the other estimate notice
that

2Var(
1
2

k2∑
k=k1

akSk) ≥
k2∑

k=k1

a2
k(nk(nk − 1)− 50n2

ke−s/8)

≥ (1− δ)2n2b2(1− 50e−s/8)−
k2∑

k=k1

a2
knk ≥ (1− δ)2n2b2(1− 50e−s/8)− 2k2+1nb2.
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So by Kolmogorov’s converse exponential inequality (Corollary 1) we get

P
(1

2

k2∑
k=k1

ak(Sk − ESk)) ≥ t
)

≥ 1
K(δ)

exp(− (1 + δ)t2

(1− δ)2n2b2(1− 50e−s/8)− 2k2+1nb2

− exp(−ε(δ)b2[(1− δ)2(1− 50e−s/8)− n−12k2+1]
s2a2

). (16)

Inequality (12) follows by (13), (14) and (16).

Lemma 12. Suppose that |nk − n2−k| ≤ δn2−k, |ak| ≤ k−1/22k for k ≤ k2 and

k0 =
√

L2n, k1 = (L2n)10, k2 = log2 n− 10L2n.

Let, moreover,

An = sup{|ak|2−k : k ≤ k0}, B2
n =

1
L2n

k2∑
k=k1

a2
k2−2k

and

Cn =

{
An + B2

n

4An
if Bn ≤ 2An

Bn if Bn ≥ 2An

.

Then, for any ε > 0, there exists K(ε) such that for sufficiently large n and
sufficiently small δ we have

P
(∣∣( ∑

k≤k0

+
k2∑

k=k1

)
ak

2
((

nk∑
i=1

εk
i )2 − nk)

∣∣ ≥ (1 + ε)CnnL2n
)
≤ 1

(log n)1+ε

and

P
(∣∣( ∑

k≤k0

+
k2∑

k=k1

)
ak

2
((

nk∑
i=1

εk
i )2 − nk)

∣∣ ≥ (1− ε)CnnL2n
)
≥ 1

K(ε) log n
.

Proof. Let

S1 =
∑
k≤k0

ak

2
((

nk∑
i=1

εk
i )2 − nk) and S2 =

k2∑
k=k1

ak

2
((

nk∑
i=1

εk
i )2 − nk).

We will show that for sufficiently small δ and sufficiently large n

P
(
|S2| ≥ un(Bn

√
L2n + 1)

)
≤ 2 exp(− u2

(1 + ε/10)2
) +

1
(log n)2

. (17)

Obviously we may assume 0 < ε < 1. It is enough to show that

P
(
± S2 ≥ un(Bn

√
L2n + 1)

)
≤ exp(− u2

(1 + ε/10)2
) +

1
4(log n)2

(18)
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for u ∈ [1/2, 4
√

L2n]. Indeed, for u < 1/2 the right hand side of (17) is greater than
1 and for u = 4

√
L2n the right hand side of (18) is less than (2 log n)−2. Now apply

Lemma 11 with s = 20L2n, t = un(Bn

√
L2n + 1/2) and b2 = max(B2

nL2n, 1/4)
(notice that then t2/(n2b2) ≥ u2 and that part (11) of Lemma 11 holds also under
the assumption b2 ≥

∑k2
k=k1

a2
k2−2k - the estimates are monotone in b2). Since

a = sup{|ak|2−k : k1 ≤ k ≤ k2} ≤ k
−1/2
1 ≤ (L2n)−5

we have

2tsan ≤ 2 · 4
√

L2n · n(Bn

√
L2n + 1) · 20L2n · (L2n)−5 · n

≤ 160(L2n)−3n2(Bn

√
L2n + 1) ≤ δn2b2

for sufficiently large n. Also

2k2e
−s/4 ≤ 2(log2 n)(log n)−5 < (4 log n)−1,

4k2nae−s/8 ≤ 4(log2 n)ne−s/8 ≤ n/4 ≤ un/2

and 50e−s/8 < δ for sufficiently large n. Now it is enough to choose sufficiently
small δ (which will depend on ε). Lemma easily follows by Lemmas 8 and 10.

Lemma 13. If ε > 0, |ak| ≤ k−1/22k for all k and

k0 =
√

L2n, k1 = (L2n)10, k2 = log2 n− 10L2n,

then for sufficiently large n

P
(∣∣( k1∑

k=k0

+
∞∑

k=k2

)
ak

2
((

Nk∑
i=1

εk
i )2 −Nk)

∣∣ ≥ εnL2n
)
≤ 5

log n(L2n)3/2

Proof. In this proof K denotes a universal constant that may change from line to
line. Let us additionally define

k3 = log2 n, k4 = log2 n +
1
4

log2 log n and k5 = log2 n +
1
2

log2 log n +
3
4

log2(L2n)

Notice that

P
( ∞∑

k=k5

ak

2
((

Nk∑
i=1

εk
i )2 −Nk) 6= 0

)
≤ P(∃k≥k5Nk > 1)

≤ P(∃i,j≤n|Xi|, |Xj | ≤ 2−k5+1) ≤ n22−2k5+1 ≤ 2
log n(L2n)3/2 . (19)

For k ≤ k5 we have |ak| ≤ k
−1/2
5 2k5 ≤ Kn(L2n)3/4, therefore

|
k5−1∑
k=k4

ak

2
((

Nk∑
i=1

εk
i )2 −Nk)| ≤ Kn(L2n)3/4(

k5−1∑
i=k4

Nk)2

≤ Kn(L2n)3/4(#{i ≤ n : |Xi| ≤ 2−k4+1})2.
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Thus for fixed ε and sufficiently large n

P
(∣∣∣ k5−1∑

k=k4

ak

2

(
(

Nk∑
i=1

εk
i )2 −Nk

)∣∣∣ ≥ ε

2
nL2n

)
≤ P(#{i ≤ n : |Xi| ≥ 2−k4+1} ≥ (L2n)1/8)

≤
(

en2−k4+1

(L2n)1/8

)(L2n)1/8

≤ 1
log n(L2n)3/2

. (20)

Here we used the fact that

P(X ≥ k) ≤
(

n

k

)
pk ≤ (

enp

k
)k if X ∼ Bin(n, p).

Similarly, for k ≤ k4, |ak| ≤ k
−1/2
4 2k4 ≤ Kn(log n)−1/4, so∣∣∣∣ k4−1∑

k=k3

ak

2
((

Nk∑
i=1

εk
i )2 −Nk)

∣∣∣∣ ≤ Kn(log n)−1/4

( k4−1∑
i=k3

Nk

)2

≤ Kn(log n)−1/4(#{i ≤ n : |Xi| ≤ 2−k3+1})2.
Therefore, for sufficiently large n

P
(∣∣∣ k4−1∑

k=k3

ak

2

(
(

Nk∑
i=1

εk
i )2 −Nk

)∣∣∣ ≥ ε

2
nL2n

)
≤ P(#{i ≤ n : |Xi| ≥ 2−k3+1} ≥ (log n)1/8) (21)

≤
(

en2−k3+1

(log n)1/8

)(log n)1/8

≤ 1
log n(L2n)3/2

. (22)

Finally

L
( k1∑

k=k0

+
k3−1∑
k=k2

)ak

2

(
(

Nk∑
i=1

εk
i )2 −Nk)

)
= L

( n∑
i,j=1

εiεj h̃(Xi, Xj)
)
,

where

h̃(x, y) =
( k1∑

k=k0

+
k3−1∑
k=k2

)
akhk(x)hk(y).

Let A = [k0, k1] ∪ [k2, k3 − 1], notice that

‖h̃‖L2→L2 = max
k∈A

|ak2k| ≤ 1√
k0

≤ 1
(L2n)1/4

,

Eh̃2 =
∑
k∈A

a2
k22k ≤

∑
k∈A

1
k
≤ CL3n,

‖EX h̃2‖∞ = ‖EY h2‖∞ = max
k∈A

a2
k2−k ≤ max

k∈A

2k

k
≤ 2k3

k3
≤ n

log2 n
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and

‖h̃‖∞ = max
k∈A

|ak| ≤
2k3

√
k3

≤ n√
log2 n

.

So by Lemma 4 it easily follows that

P
(∣∣∣( k1∑

k=k0

+
k3∑

k=k2

)ak

2

(
(

Nk∑
i=1

εk
i )2 −Nk

)∣∣∣ ≥ ε

2
nL2n

)
≤ 1

log n(L2n)3/2
. (23)

The lemma follows by (19)–(23).

Theorem 1. If |ak| ≤ 2k
√

k
and A and B are given by (2) and (3), then

lim sup
n→∞

|Un|
nL2n

=
{

A + B2

4A if B ≤ 2A
B if B ≥ 2A

a.s.

Proof. Let An, Bn be as in Lemma 12 notice that limn→∞An = A and

(L2n)B2
n ≤ E(h2 ∧ n) ≤ (L2n)B2

n +
( ∑

k≤k1

+
log2 n∑
k=k2

)
a2

k2−2k + n
∑

k≥log2 n

2−2k

≤ (L2n)B2
n + CL3n.

Since L2n/L2(n2) → 1 as n →∞ we get that lim supn→∞Bn ≤ B and

∀ε>0∀n0∃n≥n0∀N≤n≤N2Bn ≥ B − ε.

So the theorem follows by Lemmas 7, 9, 12 and 13.
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