On the limit set in the law of the iterated logarithm for U-statistics of order two

Stanislaw Kwapień ${ }^{1}$, Rafał Latała ${ }^{1}$, Krzysztof Oleszkiewicz ${ }^{1}$ and Joel Zinn ${ }^{2}$

Abstract

We find the cluster set in the Law of the Iterated Logarithm for U-statistics of order 2 in some interesting special cases. The limsup is an unusual function of the quantities that determine the Bounded LIL.

1. Introduction and Notation.

In [GKLZ] necessary and sufficient conditions were obtained for the law of the iterated logarithm for canonical U-statistics of order 2 to hold. Here we continue the investigation of the LIL for U-statistics of order 2 by describing the cluster (or limit) set for the examples in [GZ], which helped motivate [GKLZ]. Namely, let X_{1}, X_{2}, \ldots denote a sequence of iid r.v.'s with values in some measurable space (S, \mathcal{S}). In the general case for a measurable kernel h on S^{2} we define symmetrized U-statistics by the formula

$$
U_{n}=\sum_{1 \leq i<j \leq n} \varepsilon_{i} \varepsilon_{j} h\left(X_{i}, X_{j}\right),
$$

where $\left(\varepsilon_{i}\right)$ is a Rademacher sequence (i.e. a sequence of independent symmetric ± 1 valued r.v's) independent of (X_{i}). In our case we will assume that each X_{i} has a uniform distribution on $[0,1]$ and

$$
\begin{equation*}
h(x, y)=\sum_{k=1}^{\infty} a_{k} h_{k}(x) h_{k}(y), \tag{1}
\end{equation*}
$$

where

$$
h_{k}(x)=I_{A_{k}}(x) \text { and } A_{k}=\left(2^{-k}, 2^{-k+1}\right], k=1,2, \ldots
$$

We also assume that $0 \leq a_{k} \leq k^{-1 / 2} 2^{k}$ (this assumption seems not to be necessary but makes the calculations easier).

[^0]The (nas) conditions for the (bounded) LIL for $\left\{U_{n}\right\}$ that were obtained in [GKLZ] imply that the conditions for the LIL in our case be in terms of

$$
\begin{equation*}
A=\sup \left\{\mathbf{E} h\left(X_{1}, X_{2}\right) f\left(X_{1}\right) f\left(X_{2}\right): \mathbf{E} f^{2}\left(X_{i}\right) \leq 1\right\}=\sup _{k}\left|a_{k} 2^{-k}\right| \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\limsup _{u \rightarrow \infty} \frac{\mathbf{E}\left(h^{2}\left(X_{1}, X_{2}\right) \wedge u\right)}{L_{2} u} \tag{3}
\end{equation*}
$$

However, what is not so clear is the form of the function of A and B that determines the limsup. It turns out that the limsup is

$$
C=\phi(A, B)= \begin{cases}A+\frac{B^{2}}{4 A} & \text { if } B \leq 2 A \\ B & \text { if } B \geq 2 A\end{cases}
$$

In the sequel letters like K, K_{1}, etc., will denote universal constants that may change from line to line, but do not depend on any parameters. To simplify the notation we define $L x=\log (x \vee e)$ and $L_{2} x=L L x$. We also write $\log _{2}$ for the logarithm to the base 2 .

Now, a few comments about the organization of the paper. After presenting in Section 2 some known results, we present in Section 3 a few results for general U-statistics. Finally, in Section 4 we concentrate on the types of kernels of the form (1) that are the main focus of this paper.

2. Preliminary results.

In this section we gather a few inequalities proven elsewhere that we will use in the sequel.

Lemma 1. ([KW], Theorem 6.2.1) There exists a universal constant K such that for any $t>0$ and any sequence of real numbers $\left(a_{i j}\right)_{1 \leq i<j \leq n}$ we have

$$
\mathbf{P}\left(\max _{1 \leq k \leq n}\left|\sum_{1 \leq i<j \leq k} a_{i j} \varepsilon_{i} \varepsilon_{j}\right|>t\right) \leq K \mathbf{P}\left(\left|\sum_{1 \leq i<j \leq n} a_{i j} \varepsilon_{i} \varepsilon_{j}\right|>t\right) .
$$

Lemma 2 (Bernstein inequality).
([de la P,G] Lemma 4.1.9 and Remark 4.1.10, [D] Th. 1.3.2) If Z_{i} are independent r.v's with $\mathbf{E} Z_{i}=0,\left\|Z_{i}\right\|_{\infty} \leq a$ and $b^{2}=\sum \mathbf{E} Z_{i}^{2}$, then for all $t \geq 0$

$$
\mathbf{P}\left(\left|\sum_{i} Z_{i}\right| \geq t\right) \leq 2 \exp \left(-\frac{t^{2}}{2 b^{2}+\frac{2}{3} a t}\right)
$$

Lemma 3 (Kolmogorov's converse exponential inequality).
([S] Th. 5.2.2) For any $\gamma>0$ there exist numbers $\tilde{K}(\gamma)<\infty$ and $\tilde{\varepsilon}(\gamma)>0$ such that if Z_{i} are independent r.v's with $\mathbf{E} Z_{i}=0,\left\|Z_{i}\right\|_{\infty} \leq a, b^{2}=\sum \mathbf{E} Z_{i}^{2}$ satisfying $t \geq \tilde{K}(\gamma) b$ and $t a \leq \tilde{\varepsilon}(\gamma) b^{2}$ for some $t>0$, then

$$
\mathbf{P}\left(\sum_{i} Z_{i} \geq t\right) \geq \exp \left(-\frac{(1+\gamma) t^{2}}{2 b^{2}}\right)
$$

We will, however, prefer to use the following simple corollary of Kolmogorov's converse exponential inequality (one may take below $\varepsilon(\gamma)=(1+\gamma) \tilde{\varepsilon}(\gamma)^{2} / 2$ and $\left.K(\gamma)=\exp \left((1+\gamma) \tilde{K}(\gamma)^{2} / 2\right).\right)$
Corollary 1. For any $\gamma>0$ there exist numbers $K(\gamma)<\infty$ and $\varepsilon(\gamma)>0$ such that if Z_{i} are independent r.v's with $\mathbf{E} Z_{i}=0,\left\|Z_{i}\right\|_{\infty} \leq a, b^{2}=\sum \mathbf{E} Z_{i}^{2}$, then for all $t>0$

$$
\mathbf{P}\left(\sum_{i} Z_{i} \geq t\right) \geq \frac{1}{K(\gamma)} \exp \left(-\frac{(1+\gamma) t^{2}}{2 b^{2}}\right)-\exp \left(-\varepsilon(\gamma) \frac{b^{2}}{a^{2}}\right)
$$

Lemma 4. ([GLZ], Corollary 3.4) There exists a universal constant $K<\infty$ such that for all $t>0$

$$
\begin{gathered}
\mathbf{P}\left(\left|U_{n}\right| \geq t\right) \leq K \exp \left[-\frac{1}{K} \min \left(\frac{t^{2}}{n^{2} E h^{2}},\right.\right. \\
\left.\left.\frac{t}{n\|h\|_{L_{2} \rightarrow L_{2}}}, \frac{t^{2 / 3}}{\left[n\left(\left\|E_{Y} h^{2}\right\|_{\infty}+\left\|E_{X} h^{2}\right\|_{\infty}\right)\right]^{1 / 3}}, \frac{t^{1 / 2}}{\|h\|_{\infty}^{1 / 2}}\right)\right] .
\end{gathered}
$$

3. Technical Lemmas. General Kernels.

In this section we present few technical lemmas that do not require additional assumptions on the form of the kernel h.

Lemma 5. We have

$$
\begin{equation*}
\mathbf{E} \exp \left(\lambda\left(\sum_{i=1}^{n} \varepsilon_{i}\right)^{2}\right) \leq \frac{1}{\sqrt{1-2 \lambda n}} \text { for all } 0 \leq \lambda<\frac{1}{2 n} \tag{4}
\end{equation*}
$$

Moreover, for each $\gamma>0$, there exist positive numbers $K(\gamma)$ and $\delta(\gamma)$ such that for any n

$$
\begin{equation*}
\mathbf{P}\left(\sum_{i=1}^{n} \varepsilon_{i} \geq t \sqrt{n}\right) \geq \frac{1}{K(\gamma)} \exp \left(-\frac{(1+\gamma) t^{2}}{2}\right)-\exp (-\delta(\gamma) n) \tag{5}
\end{equation*}
$$

Proof. Notice that for any t

$$
\mathbf{E} \exp \left(t \sum_{i=1}^{n} \varepsilon_{i}\right)=\left(\frac{1}{2} e^{t}+\frac{1}{2} e^{-t}\right)^{n} \leq e^{\frac{n t^{2}}{2}}
$$

So if g is $\mathcal{N}(0,1)$ r.v. independent of ε_{i}, then

$$
\begin{aligned}
& \mathbf{E} \exp \left(\lambda\left(\sum_{i=1}^{n} \varepsilon_{i}\right)^{2}\right)=\mathbf{E}_{\varepsilon} \mathbf{E}_{g} e^{\sqrt{2 \lambda}\left(\sum_{i=1}^{n} \varepsilon_{i}\right) g} \\
= & \mathbf{E}_{g} E_{\varepsilon} e^{\sqrt{2 \lambda} g \sum_{i=1}^{n} \varepsilon_{i}} \leq \mathbf{E} e^{n \lambda g^{2}}=\frac{1}{\sqrt{1-2 \lambda n}}
\end{aligned}
$$

Inequality (5) is an immediate consequence of Kolmogorov's converse exponential inequality (Corollary 1).

Lemma 6. Suppose that $a_{i j}^{(n)}$ is a tripley indexed sequence of numbers such that

$$
\limsup _{n \rightarrow \infty}\left|\sum_{i, j=1}^{n} a_{i j}^{(n)} \varepsilon_{i} \varepsilon_{j}\right| \leq C \text { a.s. }
$$

Then,

$$
\limsup _{n \rightarrow \infty}\left|\sum_{i=1}^{n} a_{i i}^{(n)}\right| \leq C
$$

Proof. Let $t>C$, then $I\left(\sum_{i, j=1}^{n} a_{i j}^{(n)} \varepsilon_{i} \varepsilon_{j} \geq t\right) \rightarrow 0$ a.s. so in particular

$$
\mathbf{P}\left(\sum_{i, j=1}^{n} a_{i j}^{(n)} \varepsilon_{i} \varepsilon_{j} \geq t\right) \rightarrow 0
$$

However

$$
\mathbf{P}\left(\sum_{i, j=1}^{n} a_{i j}^{(n)} \varepsilon_{i} \varepsilon_{j} \geq \sum_{i=1}^{n} a_{i i}^{(n)}\right)=\mathbf{P}\left(\sum_{1 \leq i \neq j \leq n} a_{i j}^{(n)} \varepsilon_{i} \varepsilon_{j} \geq 0\right) \geq \frac{1}{K}
$$

for some universal K ([de la P,G] Proposition 3.3.7 combined with Theorem 3.2.2). This implies $\sum_{i=1}^{n} a_{i i}^{(n)} \leq t$ for large enough n, so $\lim \sup _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i i}^{(n)} \leq C$. In a similar way we prove that $\lim \sup _{n \rightarrow \infty}\left(-\sum_{i=1}^{n} a_{i i}^{(n)}\right) \leq C$.

Lemma 7. a)If $C<\infty$ is a number such that

$$
\begin{equation*}
\forall_{\varepsilon>0} \exists_{K, N} \forall_{n \geq N} \mathbf{P}\left(\left|U_{n}\right| \geq C(1+\varepsilon) n L_{2} n\right) \leq \frac{K}{\log n\left(L_{2} n\right)^{1+\varepsilon}} \tag{6}
\end{equation*}
$$

then

$$
\limsup _{n \rightarrow \infty} \frac{\left|U_{n}\right|}{n L_{2} n} \leq C \text { a.s. }
$$

b)If $C<\infty$ is a number such that

$$
\begin{equation*}
\forall_{\varepsilon>0, n_{0}} \exists_{K, N>n_{0}} \forall_{N \leq n \leq N^{2}} \mathbf{P}\left(\left|U_{n}\right| \geq C(1+\varepsilon) n L_{2} n\right) \geq \frac{1}{K \log n} \tag{7}
\end{equation*}
$$

then

$$
\limsup _{n \rightarrow \infty} \frac{\left|U_{n}\right|}{n L_{2} n} \geq C \text { a.s. }
$$

Proof. We start with the proof of part a). Let $\alpha>1$, in this part of the proof we will denote $U_{a}=U_{\lfloor a\rfloor}$ for all $a \geq 0$. Let $\varepsilon>0$ and K, N be given by formula (6). Let us choose k_{0} such that $\alpha^{k_{0}} \geq N$. Then, we have for all $t>0$

$$
\begin{gathered}
\mathbf{P}\left(\max _{n \geq \alpha^{k} 0} \frac{\left|U_{n}\right|}{n L_{2} n} \geq t\right) \leq \sum_{k=k_{0}}^{\infty} \mathbf{P}\left(\max _{\alpha^{k} \leq n \leq \alpha^{k+1}} \frac{\left|U_{n}\right|}{n L_{2} n} \geq t\right) \\
\leq \sum_{k=k_{0}}^{\infty} \mathbf{P}\left(\max _{1 \leq n \leq \alpha^{k+1}}\left|U_{n}\right| \geq t \alpha^{k} L_{2}\left(\alpha^{k}\right)\right) \leq \sum_{k=k_{0}}^{\infty} K \mathbf{P}\left(\left|U_{\alpha^{k+1}}\right| \geq t \alpha^{k} L_{2}\left(\alpha^{k}\right)\right)
\end{gathered}
$$

where in the last line we used the maximal inequality (Lemma 1). Since for large enough k we have $L_{2}\left(\alpha^{k}\right) \geq \alpha^{-1} L_{2}\left(\alpha^{k+1}\right)$ we get that for sufficiently large k_{0}

$$
\begin{gathered}
\mathbf{P}\left(\max _{n \geq \alpha^{k} 0} \frac{\left|U_{n}\right|}{n L_{2} n} \geq C \alpha^{2}(1+\varepsilon)\right) \leq \sum_{k=k_{0}}^{\infty} K \mathbf{P}\left(\left|U_{\alpha^{k+1}}\right| \geq C(1+\varepsilon) \alpha^{k+1} L_{2}\left(\alpha^{k+1}\right)\right) \\
\leq \sum_{k=k_{0}}^{\infty} \frac{K}{\log \left\lfloor\alpha^{k+1}\right\rfloor\left(L_{2}\left\lfloor\alpha^{k+1}\right\rfloor\right)^{1+\varepsilon}}
\end{gathered}
$$

This implies that

$$
\lim _{k \rightarrow \infty} \mathbf{P}\left(\max _{n \geq \alpha^{k}} \frac{\left|U_{n}\right|}{n L_{2} n} \geq C \alpha^{2}(1+\varepsilon)\right)=0
$$

so $\lim \sup _{n \rightarrow \infty} \frac{\left|U_{n}\right|}{n L_{2} n} \leq C \alpha^{2}(1+\varepsilon)$ a.s. and part a) follows, when $\alpha \rightarrow 1^{+}$and $\varepsilon \rightarrow 0^{+}$.

To prove part b) suppose that

$$
\limsup _{n \rightarrow \infty} \frac{\left|U_{n}\right|}{n L_{2} n} \leq C_{1}<C \text { a.s. }
$$

(By the 0-1 Law we know that the limsup is constant a.s.). Let $m>1$ be an integer (to be chosen later) and $\tilde{\varepsilon}_{i}$ be another Rademacher sequence independent of ε_{i} and X_{i}. Since for any choice of signs $\eta_{i}= \pm 1$ the sequence $\eta_{i} \varepsilon_{i}$ has the same distribution as ε_{i} we get that

$$
\limsup _{n \rightarrow \infty} \frac{\left|\sum_{k, l=1}^{n} \tilde{\varepsilon}_{k} \tilde{\varepsilon}_{l} \sum_{m^{k-1} \leq i<m^{k}, m^{l-1} \leq j<m^{l}, i<j} \varepsilon_{i} \varepsilon_{j} h\left(X_{i}, X_{j}\right)\right|}{m^{n} L_{2}\left(m^{n}\right)} \leq C_{1} \text { a.s.. }
$$

So

$$
\mathbf{P}_{\varepsilon, X}\left(\limsup _{n \rightarrow \infty} \frac{\left|\sum_{k, l=1}^{n} \tilde{\varepsilon}_{k} \tilde{\varepsilon}_{l} \sum_{m^{k-1} \leq i<m^{k}, m^{l-1} \leq j<m^{l}, i<j} \varepsilon_{j} h\left(X_{i}, X_{j}\right)\right|}{m^{n} L_{2}\left(m^{n}\right)} \leq C_{1} \tilde{\varepsilon} \text {-a.s. }\right)=1
$$

However by Lemma 6 it implies

$$
\mathbf{P}\left(\limsup _{n \rightarrow \infty} \frac{\left|\sum_{k=1}^{n} \sum_{m^{k-1} \leq i<j<m^{k}} \varepsilon_{i} \varepsilon_{j} h\left(X_{i}, X_{j}\right)\right|}{m^{n} L_{2}\left(m^{n}\right)} \leq C_{1}\right)=1
$$

Let $1 / 2>\delta>0$ to be chosen later and $C_{1}<C_{2}<C$, then

$$
\mathbf{P}\left(\max _{n \geq n_{0}} \frac{\left|\sum_{k=1}^{n} \sum_{m^{k-1} \leq i<j<m^{k}} \varepsilon_{i} \varepsilon_{j} h\left(X_{i}, X_{j}\right)\right|}{m^{n} L_{2}\left(m^{n}\right)}>C_{2}\right)<\delta
$$

for sufficiently large n_{0}. Notice that if $\left|s_{n}\right| \leq C_{2} m^{n} L_{2}\left(m^{n}\right)$ for $n \geq n_{0}$, then $\left|s_{n}-s_{n-1}\right| \leq C_{2}\left(m^{n}+m^{n-1}\right) L_{2}\left(m^{n}\right)$ for $n>n_{0}$. Therefore

$$
\mathbf{P}\left(\max _{n>n_{0}} \frac{\left|\sum_{m^{n-1} \leq i<j<m^{n}} \varepsilon_{i} \varepsilon_{j} h\left(X_{i}, X_{j}\right)\right|}{m^{n} L_{2}\left(m^{n}\right)}>C_{2}\left(1+\frac{1}{m}\right)\right)<\delta .
$$

Thus by the independence (since $\mathbf{P}\left(\bigcup A_{i}\right) \geq 1 / 2 \sum \mathbf{P}\left(A_{i}\right)$ if A_{i} are independent and $\left.\mathbf{P}\left(\bigcup A_{i}\right) \leq 1 / 2\right)$

$$
\begin{aligned}
& \sum_{n>n_{0}} \mathbf{P}\left(\left|\sum_{1 \leq i<j \leq m^{n}-m^{n-1}} \varepsilon_{i} \varepsilon_{j} h\left(X_{i}, X_{j}\right)\right| \geq C_{2} m^{n}\left(1+\frac{1}{m}\right) L_{2}\left(m^{n}\right)\right) \\
= & \sum_{n>n_{0}} \mathbf{P}\left(\left|\sum_{m^{n-1} \leq i<j<m^{n}} \varepsilon_{i} \varepsilon_{j} h\left(X_{i}, X_{j}\right)\right| \geq C_{2} m^{n}\left(1+\frac{1}{m}\right) L_{2}\left(m^{n}\right)\right)<2 \delta .
\end{aligned}
$$

Now choose m and increase n_{0}, if necessary, in such a way that

$$
C_{2} m^{n}\left(1+\frac{1}{m}\right) L_{2}\left(m^{n}\right) \leq C(1+\varepsilon)\left(m^{n}-m^{n-1}\right) L_{2}\left(m^{n}-m^{n-1}\right)
$$

for $n>n_{0}$. By our assumption (7) we can find $N>m^{n_{0}}$ such that

$$
\begin{gathered}
\mathbf{P}\left(\left|U_{m^{n}-m^{n-1}}\right| \geq C(1+\varepsilon)\left(m^{n}-m^{n-1}\right) L_{2}\left(m^{n}-m^{n-1}\right)\right) \\
\geq \frac{1}{K \log \left(m^{n}-m^{n-1}\right)} \geq \frac{1}{K n \log m}
\end{gathered}
$$

for all n such that $N \leq m^{n}-m^{n-1} \leq N^{2}$. However

$$
\sum_{n: N \leq m^{n}-m^{n-1} \leq N^{2}} \frac{1}{K n \log m} \gtrsim \frac{\log 2}{K \log m}>2 \delta
$$

if we choose δ small enough.
The next Lemma shows why the LIL-limit depends on two quantities in a very non-obvious way.

Lemma 8. Suppose that S_{1}, S_{2} are independent r.v's, $A, B>0$ and

$$
C= \begin{cases}A+\frac{B^{2}}{4 A} & \text { if } B \leq 2 A \\ B & \text { if } B \geq 2 A\end{cases}
$$

a) If for some $K \geq 1$ and $\varepsilon>0$

$$
\mathbf{P}\left(S_{1} \geq s A n\right) \geq \frac{1}{K} e^{-s(1+\varepsilon)}-\frac{1}{(\log n)^{1+\varepsilon}} \text { for all } s \geq 0
$$

and

$$
\mathbf{P}\left(S_{2} \geq s B n \sqrt{L_{2} n}\right) \geq \frac{1}{K} e^{-s^{2}(1+\varepsilon)^{2}}-\frac{1}{(\log n)^{1+\varepsilon}} \text { for all } s \geq 0
$$

then for sufficiently large n

$$
\mathbf{P}\left(S_{1}+S_{2} \geq(1+\varepsilon)^{-1} C n L_{2} n\right) \geq \frac{1}{K^{2}} \frac{1}{\log n}-\frac{2}{(\log n)^{1+\varepsilon}} .
$$

b) On the other hand if for some $K, \varepsilon>0$

$$
\mathbf{P}\left(S_{1} \geq s A n\right) \leq K e^{-\frac{s}{1+\varepsilon}}+\frac{1}{(\log n)^{1+\varepsilon}} \text { for all } s \geq 0
$$

and

$$
\mathbf{P}\left(S_{2} \geq s B n \sqrt{L_{2} n}\right) \leq K e^{-\frac{s^{2}}{(1+\varepsilon)^{2}}}+\frac{1}{(\log n)^{1+\varepsilon}} \text { for all } s \geq 0
$$

then

$$
\mathbf{P}\left(S_{1}+S_{2} \geq(1+\varepsilon)^{3} C n L_{2} n\right) \leq\left(\frac{1}{\varepsilon}+1\right) \frac{(K+2)^{2}}{(\log n)^{1+\varepsilon}}
$$

Proof. For the first part of the statement it is enough to notice that in the case when $B \geq 2 A$ we get for sufficiently large n

$$
\begin{aligned}
& \mathbf{P}\left(S_{1}+S_{2} \geq(1+\varepsilon)^{-1} C n L_{2} n\right) \geq \mathbf{P}\left(S_{1} \geq 0\right) \mathbf{P}\left(S_{2} \geq(1+\varepsilon)^{-1} B n L_{2} n\right) \\
& \geq\left(\frac{1}{K}-\frac{1}{(\log n)^{1+\varepsilon}}\right)\left(\frac{1}{K} e^{-L_{2} n}-\frac{1}{(\log n)^{1+\varepsilon}}\right) \geq \frac{1}{K^{2} \log n}-\frac{2}{(\log n)^{1+\varepsilon}} .
\end{aligned}
$$

In the case when $B \leq 2 A$ we have for large enough n

$$
\begin{gathered}
\mathbf{P}\left(S_{1}+S_{2} \geq(1+\varepsilon)^{-1} C n L_{2} n\right) \\
\geq \mathbf{P}\left(S_{1} \geq(1+\varepsilon)^{-1}\left(A-\frac{B^{2}}{4 A}\right) n L_{2} n\right) \mathbf{P}\left(S_{2} \geq(1+\varepsilon)^{-1} \frac{B^{2}}{2 A} n L_{2} n\right) \\
\geq\left(\frac{1}{K} \exp \left(-\left(1-\frac{B^{2}}{4 A^{2}}\right) L_{2} n\right)-\frac{1}{(\log n)^{1+\varepsilon}}\right)\left(\frac{1}{K} \exp \left(-\frac{B^{2}}{4 A^{2}} L_{2} n\right)-\frac{1}{(\log n)^{1+\varepsilon}}\right) \\
\geq \frac{1}{K^{2} \log n}-\frac{2}{(\log n)^{1+\varepsilon}} .
\end{gathered}
$$

To prove part b) first notice that for all $x \in[0, C]$

$$
\frac{x}{A}+\frac{(C-x)^{2}}{B^{2}} \geq 1
$$

Hence, for such x

$$
\begin{aligned}
& \mathbf{P}\left(S_{1}\right.\left.\geq(1+\varepsilon)^{2} x n L_{2} n, S_{2} \geq(1+\varepsilon)^{2}(C-x) n L_{2} n\right) \\
& \leq\left(K \exp \left(-(1+\varepsilon) \frac{x}{A} L_{2} n\right)+\frac{1}{(\log n)^{1+\varepsilon}}\right) . \\
&\left(K \exp \left(-(1+\varepsilon) \frac{(C-x)^{2}}{B^{2}} L_{2} n\right)+\frac{1}{(\log n)^{1+\varepsilon}}\right) \leq \frac{(K+1)^{2}}{(\log n)^{1+\varepsilon}}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\mathbf{P}\left(S_{1}\right. & \left.\leq 0, S_{1}+S_{2} \geq(1+\varepsilon)^{2} C n L_{2} n\right) \leq \mathbf{P}\left(S_{2} \geq(1+\varepsilon)^{2} C n L_{2} n\right) \\
& \leq K \exp \left(-(1+\varepsilon) \frac{C^{2}}{B^{2}} L_{2} n\right)+\frac{1}{(\log n)^{1+\varepsilon}} \leq \frac{K+1}{(\log n)^{1+\varepsilon}}
\end{aligned}
$$

and

$$
\mathbf{P}\left(S_{1} \geq(1+\varepsilon)^{2} C n L_{2} n\right) \leq \frac{K+1}{(\log n)^{1+\varepsilon}}
$$

Let $k_{0}=\left\lfloor\varepsilon^{-1}\right\rfloor$. Then,

$$
\begin{aligned}
& \mathbf{P}\left(S_{1}+S_{2}\right.\left.\geq(1+\varepsilon)^{3} C n L_{2} n\right) \\
& \leq \mathbf{P}\left(S_{1} \leq 0, \frac{S_{1}+S_{2}}{(1+\varepsilon)^{2} n L_{2} n} \geq C\right)+\mathbf{P}\left(\frac{S_{1}}{(1+\varepsilon)^{2} n L_{2} n} \geq C\right) \\
&+\sum_{k=0}^{k_{0}} \mathbf{P}\left(\frac{S_{1}}{(1+\varepsilon)^{2} n L_{2} n} \in[k \varepsilon C,(k+1) \varepsilon C), \frac{S_{2}}{(1+\varepsilon)^{2} n L_{2} n} \geq C-k \varepsilon C\right) \\
& \leq \frac{2 K+2}{(\log n)^{1+\varepsilon}}+\left(k_{0}+1\right) \frac{(K+1)^{2}}{(\log n)^{1+\varepsilon}} \leq\left(\frac{1}{\varepsilon}+1\right) \frac{(K+2)^{2}}{(\log n)^{1+\varepsilon}}
\end{aligned}
$$

4. Special Kernels

From this point on we will assume that our kernel is of the form (1). We consider the following (undecoupled) U-statistics Let

$$
\tilde{U}_{n}=\sum_{k=1}^{\infty} a_{k} \sum_{1 \leq i<j \leq N_{k}} \varepsilon_{i}^{k} \varepsilon_{j}^{k}=\sum_{k=1}^{\infty} \frac{a_{k}}{2}\left(\left(\sum_{i=1}^{N_{k}} \varepsilon_{i}^{k}\right)^{2}-N_{k}\right),
$$

where

$$
N_{k}=\#\left\{1 \leq i \leq n: X_{i} \in\left(2^{-k}, 2^{-k+1}\right]\right\}, k=1,2 \ldots
$$

Notice that

$$
\mathcal{L}\left(U_{n} \mid \sigma\left(X_{1}, X_{2}, \ldots\right)\right)=\mathcal{L}\left(\tilde{U}_{n} \mid \sigma\left(X_{1}, X_{2}, \ldots\right)\right),
$$

so U_{n} and \tilde{U}_{n} have the same distribution.
Lemma 9. We have for all $\delta>0$

$$
\mathbf{P}\left(\exists_{k \leq m}\left|N_{k}-n 2^{-k}\right| \geq \delta n 2^{-k}\right) \leq \frac{2^{m+1}}{\delta^{2} n}
$$

Proof. Notice that

$$
\begin{aligned}
\mathbf{P}\left(\exists_{k \leq m}\left|N_{k}-n 2^{-k}\right| \geq \delta n 2^{-k}\right) & \leq \sum_{k=1}^{m} \mathbf{P}\left(\left|N_{k}-\mathbf{E} N_{k}\right| \geq \delta n 2^{-k}\right) \\
& \leq \sum_{k=1}^{m} \frac{2^{2 k}}{\delta^{2} n^{2}} \operatorname{Var}\left(N_{k}\right) \leq \frac{1}{\delta^{2} n} \sum_{k=1}^{m} 2^{k} \leq \frac{2^{m+1}}{\delta^{2} n}
\end{aligned}
$$

Lemma 10. Suppose that $s>0$ and $\left|n_{k}-n 2^{-k}\right| \leq \varepsilon n 2^{-k-1}$ for $k=1, \ldots, m$. Let $\alpha=\max \left\{2^{-k}\left|a_{k}\right|: 1 \leq k \leq m\right\}$, then

$$
\begin{equation*}
\mathbf{P}\left(\left|\sum_{k=1}^{m} \frac{a_{k}}{2}\left(\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2}-n_{k}\right)\right| \geq \alpha s n\right) \leq\left(\frac{2 e(1+\varepsilon)}{\varepsilon}\right)^{m / 2} e^{-\frac{s}{1+\varepsilon}} \tag{8}
\end{equation*}
$$

On the other hand, if $\alpha_{1}=\max \left\{2^{-k} a_{k}: 1 \leq k \leq m\right\}>0$, then

$$
\begin{equation*}
\mathbf{P}\left(\sum_{k=1}^{m} \frac{a_{k}}{2}\left(\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2}-n_{k}\right) \geq \alpha_{1} s n\right) \geq \frac{1}{K(\varepsilon)} e^{-(1+\varepsilon) s}-\exp \left(-\delta(\varepsilon) 2^{-m} n\right) \tag{9}
\end{equation*}
$$

and if $\alpha_{2}=\max \left\{-2^{-k} a_{k}: 1 \leq k \leq m\right\}$, then

$$
\begin{equation*}
\mathbf{P}\left(-\sum_{k=1}^{m} \frac{a_{k}}{2}\left(\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2}-n_{k}\right) \geq \alpha_{2} s n\right) \geq \frac{1}{K(\varepsilon)} e^{-(1+\varepsilon) s}-\exp \left(-\delta(\varepsilon) 2^{-m} n\right) \tag{10}
\end{equation*}
$$

where $K(\varepsilon)$ and $\delta(\varepsilon)$ depend only on ε.
Proof. Let $S=\sum_{i=1}^{m} \frac{\left|a_{k}\right|}{2}\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2}$, then by (4) we have

$$
\mathbf{E} e^{\lambda S} \leq \prod_{i=1}^{m} \frac{1}{\sqrt{1-\lambda\left|a_{k}\right| n_{k}}}
$$

But by our assumptions $\left|a_{k}\right| n_{k} \leq\left(1+\frac{\varepsilon}{2}\right) \alpha n$, so

$$
\mathbf{E} \exp \left(\frac{1}{\alpha n(1+\varepsilon)} S\right) \leq\left(1-\frac{1+\frac{\varepsilon}{2}}{1+\varepsilon}\right)^{-m / 2}=\left(\frac{2(1+\varepsilon)}{\varepsilon}\right)^{m / 2}
$$

Notice that

$$
\left|\sum_{k=1}^{m} \frac{a_{k}}{2}\left(\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2}-n_{k}\right)\right| \leq S+\frac{1}{2} \sum_{k=1}^{m}\left|a_{k}\right| n_{k} \leq S+\frac{1}{2}(1+\varepsilon) \alpha n m
$$

so (8) immediately follows, since

$$
\mathbf{P}\left(\left|\sum_{k=1}^{m} \frac{a_{k}}{2}\left(\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2}-n_{k}\right)\right| \geq \alpha s n\right) \leq \mathbf{P}\left(S \geq \alpha n\left(s-\frac{1}{2}(1+\varepsilon) m\right)\right)
$$

To get (9) let k_{0} be such that $a_{k_{0}}=\alpha_{1} 2^{k_{0}}$, then

$$
\begin{gathered}
\mathbf{P}\left(\sum_{k=1}^{m} \frac{a_{k}}{2}\left(\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2}-n_{k}\right) \geq \alpha_{1} s n\right) \\
\geq \mathbf{P}\left(\frac{a_{k_{0}}}{2}\left(\sum_{i=1}^{n_{k_{0}}} \varepsilon_{i}\right)^{2} \geq \alpha_{1} s n\right) \mathbf{P}\left(\sum_{k \neq k_{0}} a_{k} \sum_{1 \leq i<j \leq n_{k}} \varepsilon_{i}^{k} \varepsilon_{j}^{k} \geq 0\right) \\
\geq \frac{1}{K} \mathbf{P}\left(\left(\sum_{i=1}^{n_{k_{0}}} \varepsilon_{i}\right)^{2} \geq 2^{-k_{0}+1} s n\right)
\end{gathered}
$$

where in the last inequality we used the same properties of Rademacher chaoses as in the proof of Lemma 6 (see [de la P,G], Proposition 3.3.7). Thus (9) follows by (5). The proof of (10) is similar.

Lemma 11. Suppose that $0<\delta<1, k_{1} \geq 1,\left|n_{k}-n 2^{-k}\right| \leq \delta n 2^{-k}$ for $k_{1} \leq k \leq k_{2}$ and

$$
a=\sup \left\{\left|a_{k}\right| 2^{-k}: k_{1} \leq k \leq k_{2}\right\}, b^{2}=\sum_{k=k_{1}}^{k_{2}} a_{k}^{2} 2^{-2 k}
$$

Then, for any $s>0$ and $t>0$, we have

$$
\begin{align*}
& \mathbf{P}\left(\frac{1}{2} \sum_{k=k_{1}}^{k_{2}} a_{k}\left(\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2}-n_{k}\right) \geq t+4 k_{2} n a e^{-s / 8}\right) \\
& \quad \leq \exp \left(-\frac{t^{2}}{(1+\delta)^{2} n^{2} b^{2}\left(1+50 e^{-s / 8}\right)+2 t s a n}\right)+2 k_{2} e^{-s / 4} \tag{11}
\end{align*}
$$

and

$$
\begin{align*}
& \mathbf{P}\left(\frac{1}{2} \sum_{k=k_{1}}^{k_{2}} a_{k}\left(\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2}-n_{k}\right) \geq t-4 k_{2} n a e^{-s / 8}\right) \\
& \quad \geq \frac{1}{K(\delta)} \exp \left(-\frac{(1+\delta) t^{2}}{(1-\delta)^{2} n^{2} b^{2}\left(1-50 e^{-s / 8}\right)-2^{k_{2}+1} n b^{2}}\right) \\
& \quad-\exp \left(-\frac{\varepsilon(\delta) b^{2}\left[(1-\delta)^{2}\left(1-50 e^{-s / 8}\right)-n^{-1} 2^{k_{2}+1}\right]}{s^{2} a^{2}}\right)-2 k_{2} e^{-s / 4} \tag{12}
\end{align*}
$$

where positive constants $K(\delta)$ and $\varepsilon(\delta)$ depend only on δ.
Proof. Let

$$
S_{k}=\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2} I_{\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2} \leq s n_{k}},
$$

then

$$
\left\|a_{k}\left(S_{k}-E S_{k}\right)\right\|_{\infty} \leq s a_{k} n_{k} \leq 2 \operatorname{san}
$$

Notice that by (4) we have

$$
\mathbf{P}\left(\left|\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right| \geq \sqrt{s n_{k}}\right) \leq 2 e^{-s / 4}
$$

so

$$
\begin{aligned}
\left|n_{k}-\mathbf{E} S_{k}\right| & =\mathbf{E}\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2} I_{\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2}>s n_{k}} \\
& \leq \sqrt{\mathbf{E}\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{4}} \sqrt{\mathbf{P}\left(\left|\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right| \geq \sqrt{s n_{k}}\right)} \leq 4 n_{k} e^{-s / 8} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\sum_{k=k_{1}}^{k_{2}}\left|a_{k}\left(\mathbf{E} S_{k}-n_{k}\right)\right| \leq 8 n \sum_{k=k_{1}}^{k_{2}}\left|a_{k}\right| 2^{-k} e^{-s / 8} \leq 8 k_{2} n a e^{-s / 8} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{P}\left(\sum_{k=k_{1}}^{k_{2}} a_{k}\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2} \neq \sum_{k=k_{1}}^{k_{2}} a_{k} S_{k}\right) \leq \sum_{k=k_{1}}^{k_{2}} \mathbf{P}\left(S_{k} \neq\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2}\right) \leq 2 k_{2} e^{-s / 4} . \tag{14}
\end{equation*}
$$

We have

$$
\begin{aligned}
&\left|\mathbf{E}\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{4}-\mathbf{E} S_{k}^{2}\right|=\mathbf{E}\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{4} I_{\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2}>s n_{k}} \\
& \leq \sqrt{\mathbf{E}\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{8}} \sqrt{\mathbf{P}\left(\left|\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right| \geq \sqrt{s n_{k}}\right)} \leq 80 n_{k}^{2} e^{-s / 8}
\end{aligned}
$$

by the Khinchine inequality. Moreover,

$$
\begin{array}{r}
\left|\left(\mathbf{E} S_{k}\right)^{2}-\left(\mathbf{E}\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2}\right)^{2}\right|=\left|\left(\mathbf{E} S_{k}\right)^{2}-n_{k}^{2}\right|=\left|\mathbf{E} S_{k}+n_{k}\right| \cdot\left|\mathbf{E} S_{k}-n_{k}\right| \\
\leq 2 n_{k} \cdot 4 n_{k} e^{-s / 8}=8 n_{k}^{2} e^{-s / 8}
\end{array}
$$

so

$$
\left|\operatorname{Var}\left(S_{k}\right)-\operatorname{Var}\left(\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2}\right)\right| \leq 100 n_{k}^{2} e^{-s / 8}
$$

Therefore

$$
\begin{aligned}
\operatorname{Var}\left(\frac{1}{2} \sum_{k=k_{1}}^{k_{2}} a_{k} S_{k}\right) & \leq \sum_{k=k_{1}}^{k_{2}} a_{k}^{2}\left(\frac{1}{2} n_{k}\left(n_{k}-1\right)+25 n_{k}^{2} e^{-s / 8}\right) \\
& \leq \frac{1}{2}(1+\delta)^{2} n^{2} b^{2}\left(1+50 e^{-s / 8}\right)
\end{aligned}
$$

and by the Bernstein inequality (Lemma 2) we have

$$
\begin{equation*}
\left.\mathbf{P}\left(\frac{1}{2} \sum_{k=k_{1}}^{k_{2}} a_{k}\left(S_{k}-E S_{k}\right)\right) \geq t\right) \leq \exp \left(-\frac{t^{2}}{(1+\delta)^{2} n^{2} b^{2}\left(1+50 e^{-s / 8}\right)+2 \operatorname{stan}}\right) \tag{15}
\end{equation*}
$$

Inequality (11) follows by (13), (14) and (15). To get the other estimate notice that

$$
\begin{gathered}
2 \operatorname{Var}\left(\frac{1}{2} \sum_{k=k_{1}}^{k_{2}} a_{k} S_{k}\right) \geq \sum_{k=k_{1}}^{k_{2}} a_{k}^{2}\left(n_{k}\left(n_{k}-1\right)-50 n_{k}^{2} e^{-s / 8}\right) \\
\geq(1-\delta)^{2} n^{2} b^{2}\left(1-50 e^{-s / 8}\right)-\sum_{k=k_{1}}^{k_{2}} a_{k}^{2} n_{k} \geq(1-\delta)^{2} n^{2} b^{2}\left(1-50 e^{-s / 8}\right)-2^{k_{2}+1} n b^{2} .
\end{gathered}
$$

So by Kolmogorov's converse exponential inequality (Corollary 1) we get

$$
\begin{align*}
& \left.\mathbf{P}\left(\frac{1}{2} \sum_{k=k_{1}}^{k_{2}} a_{k}\left(S_{k}-E S_{k}\right)\right) \geq t\right) \\
& \geq \frac{1}{K(\delta)} \exp \left(-\frac{(1+\delta) t^{2}}{(1-\delta)^{2} n^{2} b^{2}\left(1-50 e^{-s / 8}\right)-2^{k_{2}+1} n b^{2}}\right. \\
& \tag{16}\\
& \quad-\exp \left(-\frac{\varepsilon(\delta) b^{2}\left[(1-\delta)^{2}\left(1-50 e^{-s / 8}\right)-n^{-1} 2^{k_{2}+1}\right]}{s^{2} a^{2}}\right)
\end{align*}
$$

Inequality (12) follows by (13), (14) and (16).
Lemma 12. Suppose that $\left|n_{k}-n 2^{-k}\right| \leq \delta n 2^{-k}$, $\left|a_{k}\right| \leq k^{-1 / 2} 2^{k}$ for $k \leq k_{2}$ and

$$
k_{0}=\sqrt{L_{2} n}, k_{1}=\left(L_{2} n\right)^{10}, k_{2}=\log _{2} n-10 L_{2} n
$$

Let, moreover,

$$
A_{n}=\sup \left\{\left|a_{k}\right| 2^{-k}: k \leq k_{0}\right\}, B_{n}^{2}=\frac{1}{L_{2} n} \sum_{k=k_{1}}^{k_{2}} a_{k}^{2} 2^{-2 k}
$$

and

$$
C_{n}= \begin{cases}A_{n}+\frac{B_{n}^{2}}{4 A_{n}} & \text { if } B_{n} \leq 2 A_{n} \\ B_{n} & \text { if } B_{n} \geq 2 A_{n}\end{cases}
$$

Then, for any $\varepsilon>0$, there exists $K(\varepsilon)$ such that for sufficiently large n and sufficiently small δ we have

$$
\mathbf{P}\left(\left|\left(\sum_{k \leq k_{0}}+\sum_{k=k_{1}}^{k_{2}}\right) \frac{a_{k}}{2}\left(\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2}-n_{k}\right)\right| \geq(1+\varepsilon) C_{n} n L_{2} n\right) \leq \frac{1}{(\log n)^{1+\varepsilon}}
$$

and

$$
\mathbf{P}\left(\left|\left(\sum_{k \leq k_{0}}+\sum_{k=k_{1}}^{k_{2}}\right) \frac{a_{k}}{2}\left(\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2}-n_{k}\right)\right| \geq(1-\varepsilon) C_{n} n L_{2} n\right) \geq \frac{1}{K(\varepsilon) \log n}
$$

Proof. Let

$$
S_{1}=\sum_{k \leq k_{0}} \frac{a_{k}}{2}\left(\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2}-n_{k}\right) \text { and } S_{2}=\sum_{k=k_{1}}^{k_{2}} \frac{a_{k}}{2}\left(\left(\sum_{i=1}^{n_{k}} \varepsilon_{i}^{k}\right)^{2}-n_{k}\right)
$$

We will show that for sufficiently small δ and sufficiently large n

$$
\begin{equation*}
\mathbf{P}\left(\left|S_{2}\right| \geq u n\left(B_{n} \sqrt{L_{2} n}+1\right)\right) \leq 2 \exp \left(-\frac{u^{2}}{(1+\varepsilon / 10)^{2}}\right)+\frac{1}{(\log n)^{2}} \tag{17}
\end{equation*}
$$

Obviously we may assume $0<\varepsilon<1$. It is enough to show that

$$
\begin{equation*}
\mathbf{P}\left(\pm S_{2} \geq u n\left(B_{n} \sqrt{L_{2} n}+1\right)\right) \leq \exp \left(-\frac{u^{2}}{(1+\varepsilon / 10)^{2}}\right)+\frac{1}{4(\log n)^{2}} \tag{18}
\end{equation*}
$$

for $u \in\left[1 / 2,4 \sqrt{L_{2} n}\right]$. Indeed, for $u<1 / 2$ the right hand side of (17) is greater than 1 and for $u=4 \sqrt{L_{2} n}$ the right hand side of (18) is less than $(2 \log n)^{-2}$. Now apply Lemma 11 with $s=20 L_{2} n, t=u n\left(B_{n} \sqrt{L_{2} n}+1 / 2\right)$ and $b^{2}=\max \left(B_{n}^{2} L_{2} n, 1 / 4\right)$ (notice that then $t^{2} /\left(n^{2} b^{2}\right) \geq u^{2}$ and that part (11) of Lemma 11 holds also under the assumption $b^{2} \geq \sum_{k=k_{1}}^{k_{2}} a_{k}^{2} 2^{-2 k}$ - the estimates are monotone in b^{2}). Since

$$
a=\sup \left\{\left|a_{k}\right| 2^{-k}: k_{1} \leq k \leq k_{2}\right\} \leq k_{1}^{-1 / 2} \leq\left(L_{2} n\right)^{-5}
$$

we have

$$
\begin{aligned}
2 \text { tsan } \leq 2 \cdot & 4 \sqrt{L_{2} n} \cdot n\left(B_{n} \sqrt{L_{2} n}+1\right) \cdot 20 L_{2} n \cdot\left(L_{2} n\right)^{-5} \cdot n \\
\leq & 160\left(L_{2} n\right)^{-3} n^{2}\left(B_{n} \sqrt{L_{2} n}+1\right) \leq \delta n^{2} b^{2}
\end{aligned}
$$

for sufficiently large n. Also

$$
\begin{aligned}
& 2 k_{2} e^{-s / 4} \leq 2\left(\log _{2} n\right)(\log n)^{-5}<(4 \log n)^{-1} \\
& 4 k_{2} n a e^{-s / 8} \leq 4\left(\log _{2} n\right) n e^{-s / 8} \leq n / 4 \leq u n / 2
\end{aligned}
$$

and $50 e^{-s / 8}<\delta$ for sufficiently large n. Now it is enough to choose sufficiently small δ (which will depend on ε). Lemma easily follows by Lemmas 8 and 10 .

Lemma 13. If $\varepsilon>0,\left|a_{k}\right| \leq k^{-1 / 2} 2^{k}$ for all k and

$$
k_{0}=\sqrt{L_{2} n}, k_{1}=\left(L_{2} n\right)^{10}, k_{2}=\log _{2} n-10 L_{2} n
$$

then for sufficiently large n

$$
\mathbf{P}\left(\left|\left(\sum_{k=k_{0}}^{k_{1}}+\sum_{k=k_{2}}^{\infty}\right) \frac{a_{k}}{2}\left(\left(\sum_{i=1}^{N_{k}} \varepsilon_{i}^{k}\right)^{2}-N_{k}\right)\right| \geq \varepsilon n L_{2} n\right) \leq \frac{5}{\log n\left(L_{2} n\right)^{3 / 2}}
$$

Proof. In this proof K denotes a universal constant that may change from line to line. Let us additionally define
$k_{3}=\log _{2} n, k_{4}=\log _{2} n+\frac{1}{4} \log _{2} \log n$ and $k_{5}=\log _{2} n+\frac{1}{2} \log _{2} \log n+\frac{3}{4} \log _{2}\left(L_{2} n\right)$
Notice that

$$
\begin{align*}
& \mathbf{P}\left(\sum_{k=k_{5}}^{\infty} \frac{a_{k}}{2}\left(\left(\sum_{i=1}^{N_{k}} \varepsilon_{i}^{k}\right)^{2}-N_{k}\right) \neq 0\right) \leq \mathbf{P}\left(\exists_{k \geq k_{5}} N_{k}>1\right) \\
& \quad \leq \mathbf{P}\left(\exists_{i, j \leq n}\left|X_{i}\right|,\left|X_{j}\right| \leq 2^{-k_{5}+1}\right) \leq n^{2} 2^{-2 k_{5}+1} \leq \frac{2}{\log n\left(L_{2} n\right)^{3 / 2}} \tag{19}
\end{align*}
$$

For $k \leq k_{5}$ we have $\left|a_{k}\right| \leq k_{5}^{-1 / 2} 2^{k_{5}} \leq K n\left(L_{2} n\right)^{3 / 4}$, therefore

$$
\begin{gathered}
\left|\sum_{k=k_{4}}^{k_{5}-1} \frac{a_{k}}{2}\left(\left(\sum_{i=1}^{N_{k}} \varepsilon_{i}^{k}\right)^{2}-N_{k}\right)\right| \leq K n\left(L_{2} n\right)^{3 / 4}\left(\sum_{i=k_{4}}^{k_{5}-1} N_{k}\right)^{2} \\
\leq K n\left(L_{2} n\right)^{3 / 4}\left(\#\left\{i \leq n:\left|X_{i}\right| \leq 2^{-k_{4}+1}\right\}\right)^{2} .
\end{gathered}
$$

Thus for fixed ε and sufficiently large n

$$
\begin{align*}
\mathbf{P}\left(\left\lvert\, \sum_{k=k_{4}}^{k_{5}-1} \frac{a_{k}}{2}\right.\right. & \left.\left(\left(\sum_{i=1}^{N_{k}} \varepsilon_{i}^{k}\right)^{2}-N_{k}\right) \left\lvert\, \geq \frac{\varepsilon}{2} n L_{2} n\right.\right) \\
& \leq \mathbf{P}\left(\#\left\{i \leq n:\left|X_{i}\right| \geq 2^{-k_{4}+1}\right\} \geq\left(L_{2} n\right)^{1 / 8}\right) \\
& \leq\left(\frac{e n 2^{-k_{4}+1}}{\left(L_{2} n\right)^{1 / 8}}\right)^{\left(L_{2} n\right)^{1 / 8}} \leq \frac{1}{\log n\left(L_{2} n\right)^{3 / 2}} \tag{20}
\end{align*}
$$

Here we used the fact that

$$
\mathbf{P}(X \geq k) \leq\binom{ n}{k} p^{k} \leq\left(\frac{e n p}{k}\right)^{k} \text { if } X \sim \operatorname{Bin}(n, p)
$$

Similarly, for $k \leq k_{4},\left|a_{k}\right| \leq k_{4}^{-1 / 2} 2^{k_{4}} \leq K n(\log n)^{-1 / 4}$, so

$$
\begin{gathered}
\left|\sum_{k=k_{3}}^{k_{4}-1} \frac{a_{k}}{2}\left(\left(\sum_{i=1}^{N_{k}} \varepsilon_{i}^{k}\right)^{2}-N_{k}\right)\right| \leq K n(\log n)^{-1 / 4}\left(\sum_{i=k_{3}}^{k_{4}-1} N_{k}\right)^{2} \\
\leq K n(\log n)^{-1 / 4}\left(\#\left\{i \leq n:\left|X_{i}\right| \leq 2^{-k_{3}+1}\right\}\right)^{2}
\end{gathered}
$$

Therefore, for sufficiently large n

$$
\begin{align*}
\mathbf{P}\left(\left\lvert\, \sum_{k=k_{3}}^{k_{4}-1} \frac{a_{k}}{2}\right.\right. & \left.\left(\left(\sum_{i=1}^{N_{k}} \varepsilon_{i}^{k}\right)^{2}-N_{k}\right) \left\lvert\, \geq \frac{\varepsilon}{2} n L_{2} n\right.\right) \\
& \leq \mathbf{P}\left(\#\left\{i \leq n:\left|X_{i}\right| \geq 2^{-k_{3}+1}\right\} \geq(\log n)^{1 / 8}\right) \tag{21}\\
& \leq\left(\frac{e n 2^{-k_{3}+1}}{(\log n)^{1 / 8}}\right)^{(\log n)^{1 / 8}} \quad \leq \frac{1}{\log n\left(L_{2} n\right)^{3 / 2}} \tag{22}
\end{align*}
$$

Finally

$$
\left.\mathcal{L}\left(\sum_{k=k_{0}}^{k_{1}}+\sum_{k=k_{2}}^{k_{3}-1}\right) \frac{a_{k}}{2}\left(\left(\sum_{i=1}^{N_{k}} \varepsilon_{i}^{k}\right)^{2}-N_{k}\right)\right)=\mathcal{L}\left(\sum_{i, j=1}^{n} \varepsilon_{i} \varepsilon_{j} \tilde{h}\left(X_{i}, X_{j}\right)\right),
$$

where

$$
\tilde{h}(x, y)=\left(\sum_{k=k_{0}}^{k_{1}}+\sum_{k=k_{2}}^{k_{3}-1}\right) a_{k} h_{k}(x) h_{k}(y)
$$

Let $A=\left[k_{0}, k_{1}\right] \cup\left[k_{2}, k_{3}-1\right]$, notice that

$$
\begin{gathered}
\|\tilde{h}\|_{L^{2} \rightarrow L^{2}}=\max _{k \in A}\left|a_{k} 2^{k}\right| \leq \frac{1}{\sqrt{k_{0}}} \leq \frac{1}{\left(L_{2} n\right)^{1 / 4}}, \\
E \tilde{h}^{2}=\sum_{k \in A} a_{k}^{2} 2^{2 k} \leq \sum_{k \in A} \frac{1}{k} \leq C L_{3} n \\
\left\|E_{X} \tilde{h}^{2}\right\|_{\infty}=\left\|E_{Y} h^{2}\right\|_{\infty}=\max _{k \in A} a_{k}^{2} 2^{-k} \leq \max _{k \in A} \frac{2^{k}}{k} \leq \frac{2^{k_{3}}}{k_{3}} \leq \frac{n}{\log _{2} n}
\end{gathered}
$$

and

$$
\|\tilde{h}\|_{\infty}=\max _{k \in A}\left|a_{k}\right| \leq \frac{2^{k_{3}}}{\sqrt{k_{3}}} \leq \frac{n}{\sqrt{\log _{2} n}}
$$

So by Lemma 4 it easily follows that

$$
\begin{equation*}
\mathbf{P}\left(\left|\left(\sum_{k=k_{0}}^{k_{1}}+\sum_{k=k_{2}}^{k_{3}}\right) \frac{a_{k}}{2}\left(\left(\sum_{i=1}^{N_{k}} \varepsilon_{i}^{k}\right)^{2}-N_{k}\right)\right| \geq \frac{\varepsilon}{2} n L_{2} n\right) \leq \frac{1}{\log n\left(L_{2} n\right)^{3 / 2}} \tag{23}
\end{equation*}
$$

The lemma follows by (19)-(23).
Theorem 1. If $\left|a_{k}\right| \leq \frac{2^{k}}{\sqrt{k}}$ and A and B are given by (2) and (3), then

$$
\limsup _{n \rightarrow \infty} \frac{\left|U_{n}\right|}{n L_{2} n}=\left\{\begin{array}{ll}
A+\frac{B^{2}}{4 A} & \text { if } B \leq 2 A \\
B & \text { if } B \geq 2 A
\end{array}\right. \text { a.s. }
$$

Proof. Let A_{n}, B_{n} be as in Lemma 12 notice that $\lim _{n \rightarrow \infty} A_{n}=A$ and

$$
\begin{gathered}
\left(L_{2} n\right) B_{n}^{2} \leq \mathbf{E}\left(h^{2} \wedge n\right) \leq\left(L_{2} n\right) B_{n}^{2}+\left(\sum_{k \leq k_{1}}+\sum_{k=k_{2}}^{\log _{2} n}\right) a_{k}^{2} 2^{-2 k}+n \sum_{k \geq \log _{2} n} 2^{-2 k} \\
\leq\left(L_{2} n\right) B_{n}^{2}+C L_{3} n
\end{gathered}
$$

Since $L_{2} n / L_{2}\left(n^{2}\right) \rightarrow 1$ as $n \rightarrow \infty$ we get that $\lim \sup _{n \rightarrow \infty} B_{n} \leq B$ and

$$
\forall_{\varepsilon>0} \forall_{n_{0}} \exists_{n \geq n_{0}} \forall_{N \leq n \leq N^{2}} B_{n} \geq B-\varepsilon .
$$

So the theorem follows by Lemmas 7, 9, 12 and 13.

References

[de la P,G] V. de la Peña and E. Giné, Decoupling. From dependence to independence. Randomly stopped processes. U-statistics and processes. Martingales and beyond, Probability and its Applications. Springer-Verlag, New York, 1999.
[D] R. M. Dudley, Uniform central limit theorems. Cambridge Studies in Advanced Mathematics, 63. Cambridge University Press, Cambridge, 1999.
[GKLZ] E. Giné, S. Kwapień, R. Latała, J. Zinn The LIL for canonical U-statistics of order 2 Ann. Probab. 29 (2001), 502-557.
[GLZ] E. Giné, R. Latała, J. Zinn Exponential and moment inequalities for U-statistics, High Dimensional Probability II, 13-38, Progress in Probability 47, Birkhauser, Boston 2000.
[GZ] E. Giné, C.-H. Zhang On the integrability in the LIL for degenerate U-statistics J. Theoret. Probab. 9 (1996), 385-412.
[KW] S. Kwapień, W. Woyczyński Random series and stochastic integrals: single and multiple, Probability and Its Applications, Birkhauser, Boston 1992.
[S] W. F. Stout, Almost sure convergence, Probability and Mathematical Statistics, Vol. 24. Academic Press, New York-London, 1974.

Institute of Mathematics, Warsaw University,
Banacha 2, 02-097 Warszawa, Poland
E-mail address: kwapstan@mimuw.edu.pl, rlatala@mimuw.edu.pl, koles@mimuw.edu.pl

Department of Mathematics, Texas A\&M University, College Station, Texas 77843
E-mail address: jzinn@math.tamu.edu

[^0]: 1991 Mathematics Subject Classification. Primary 60F15.
 Key words and phrases. cluster set, limit set, LIL.
 ${ }^{1}$ Research partially supported by KBN grant \#2 PO3A 027 22,
 ${ }^{2}$ Research partially supported by NSA Grant No. MDA904-01-1-0027.

