On the Equivalence Between Geometric and Arithmetic Means for Log-Concave Measures

RAFAE LATAEA

Abstract

Let X be a random vector with log-concave distribution in some Banach space. We prove that $\|X\|_{p} \leq C_{p}\|X\|_{0}$ for any $p>0$, where $\|X\|_{p}=\left(E\|X\|^{p}\right)^{1 / p},\|X\|_{0}=\exp E \ln \|X\|$ and C_{p} are constants depending only on p. We also derive some estimates of log-concave measures of small balls.

Introduction. Let X be a random vector with log-concave distribution (for precise definitions see below). It is known that for any measurable seminorm and $p, q>0$ the inequality

$$
\|X\|_{p} \leq C_{p, q}\|X\|_{q}
$$

holds with constants $C_{p, q}$ depending only on p and q (see [4], Appendix III). In this paper we show that the above constants can be made independent of q, which is equivalent to the inequality

$$
\begin{equation*}
\|X\|_{p} \leq C_{p}\|X\|_{0} \tag{1}
\end{equation*}
$$

where $\|X\|_{0}$ is the geometric mean of $\|X\|$. In the particular case in which X is uniformly distributed on some convex compact set in R^{n} and the seminorm is given by some functional, inequality (1) was established by V. D. Milman and A. Pajor [3]. As a consequence of (1) we prove the result of Ullrich [6] concerning the equivalence of means for sums of independent Steinhaus random variables with vector coefficients, even though these random-variables are not log-concave (Corollary 2).

To prove (1) we derive some estimates of log-concave measures of small balls (Corollary 1), which are of independent interest. In the case of Gaussian random variables they were formulated and established in a weaker version in [5] and completelely proved in [2].

Definitions and Notation. Let E be a complete, separable, metric vector space endowed with its Borel σ-algebra \mathcal{B}_{E}. By μ we denote a log-concave probability measure on $\left(E, \mathcal{B}_{E}\right)$ (for some characterizations, properties and examples, see [1]) i.e. a probability measure with the property that for any Borel subsets A, B and all $0<\lambda<1$ we have

$$
\mu(\lambda A+(1-\lambda) B) \geq \mu(A)^{\lambda} \mu(B)^{1-\lambda}
$$

We say that a random vector X with values in E is log-concave if the distribution of X is log-concave.For a random vector X and a measurable seminorm $\|\cdot\|$ on E (i.e. Borel measurable, nonnegative, subadditive and positively homogeneous function on E) we define

$$
\|X\|_{p}=\left(E\|X\|^{p}\right)^{1 / p} \text { for } p>0
$$

and

$$
\|X\|_{0}=\lim _{p \rightarrow 0^{+}}\|X\|_{p}=\exp (E \ln \|X\|)
$$

Let us begin with the following Lemma from [1].
Lemma 1. For any convex, symmetric Borel set B and $k \geq 1$ we have

$$
\mu\left((k B)^{c}\right) \leq \mu(B)\left(\frac{1-\mu(B)}{\mu(B)}\right)^{(k+1) / 2}
$$

Proof. The statement follows immediately from the log-concavity of μ and the inclusion

$$
\frac{k-1}{k+1} B+\frac{2}{k+1}(k B)^{c} \subset B^{c} .
$$

Lemma 2. If B is a convex, symmetric Borel set, with $\mu(K B) \geq(1+\delta) \mu(B)$ for some $K>1$ and $\delta>0$ then

$$
\mu(t B) \leq C t \mu(B) \text { for any } t \in(0,1)
$$

where $C=C(K / \delta)$ is a constant depending only on K / δ.
Proof. Obviously it's enough to prove the result for $t=1 / 2 n, n=1,2, \ldots$ So let us fix n and define, for $u \geq 0$,

$$
P_{u}=\left\{x:\|x\|_{B} \in(u-1 / 2 n, u+1 / 2 n)\right\},
$$

where

$$
\|x\|_{B}=\inf \{t>0: x \in t B\} .
$$

By simple calculation $\lambda P_{u}+(1-\lambda)(2 n)^{-1} B \subset P_{\lambda u}$, so

$$
\begin{equation*}
\mu\left(P_{\lambda u}\right) \geq \mu\left(P_{u}\right)^{\lambda} \mu\left((2 n)^{-1} B\right)^{1-\lambda} \text { for } \lambda \in(0,1) \tag{2}
\end{equation*}
$$

From the assumptions it easily follows that there exists $u \geq 1$ such that $\mu\left(P_{u}\right) \geq$ $\delta \mu(B) / K n$. Let $\mu\left((2 n)^{-1} B\right)=\kappa \mu(B) / n$. If $\kappa \leq 2 \delta / K$ we are done, so we will
assume that $\kappa \geq 2 \delta / K$. Then by (2) it follows that $\mu\left(P_{1}\right) \geq \delta \mu(B) / K n$. The sets $P_{(n-1) / n}, P_{(n-2) / n}, \ldots, P_{1 / n},(2 n)^{-1} B$ are disjoint subsets of B, and hence

$$
\mu(B) \geq \mu\left(P_{(n-1) / n}\right)+\cdots+\mu\left(P_{1 / n}\right)+\mu\left((2 n)^{-1} B\right) .
$$

Using our estimations of $\mu\left(P_{1}\right)$ and $\mu\left((2 n)^{-1} B\right)$ we obtain by (2)

$$
\begin{gathered}
\mu(B) \geq n^{-1} \mu(B)\left((\delta / K)^{(n-1) / n} \kappa^{1 / n}+\cdots+(\delta / K)^{1 / n} \kappa^{(n-1) / n}+\kappa\right)= \\
=\frac{\kappa}{n} \mu(B) \frac{1-\delta / K \kappa}{1-(\delta / K \kappa)^{1 / n}} \geq \frac{\kappa}{2 n} \mu(B) \frac{1}{1-(\delta / K \kappa)^{1 / n}} .
\end{gathered}
$$

Therefore

$$
\kappa \leq 2 n\left(1-(\delta / K \kappa)^{1 / n}\right) \leq 2 \ln K \kappa / \delta
$$

so that $\kappa \leq C(K / \delta)$ and the lemma follows.
Corollary 1. For each $b<1$ there exists a constant C_{b} such that for every log-concave probability measure μ and every measurable convex, symmetric set B with $\mu(B) \leq b$ we have

$$
\mu(t B) \leq C_{b} t \mu(B) \text { for } t \in[0,1]
$$

Proof. If $\mu(B)=2 / 3$ then by Lemma $1 \mu(3 B) \geq 5 / 6=(1+1 / 4) \mu(B)$, so by Lemma 2 for some constant $\tilde{C}_{1}, \mu(t B) \leq \tilde{C}_{1} t \mu(B)$.

If $\mu(B) \in[1 / 3,2 / 3]$ then obviously $\mu(t B) \leq 2 \tilde{C}_{1} t \mu(B)$.
If $\mu(B)<1 / 3$, let K be such that $\mu(K B)=2 / 3$. By the above case $\mu(B) \leq$ $\tilde{C}_{1} K^{-1} \mu(K B)$, and hence

$$
K \leq 2 \tilde{C}_{1}\left(\frac{\mu(K B)}{\mu(B)}-1\right)
$$

So Lemma 2 gives in this case that $\mu(t B) \leq \tilde{C}_{2} t \mu(B)$ for some constant \tilde{C}_{2}.
Finally if $\mu(B)>2 / 3$, but $\mu(B) \leq b<1$ then by Lemma 1 for some $K_{b}<\infty$, $\mu\left(K_{b}^{-1} B\right) \leq 2 / 3$ and we can use the previous calculations.

Theorem 1. For any $p>0$ there exists a universal constant C_{p}, depending only on p such that for any sequence X_{1}, \ldots, X_{n} of independent log-concave random vectors and any measurable seminorm $\|$.$\| on E$ we have

$$
\left\|\sum_{i=1}^{n} X_{i}\right\|_{p} \leq C_{p}\left\|\sum_{i=1}^{n} X_{i}\right\|_{0} .
$$

Proof. Since a convolution of log-concave measures is also log-concave (see [1]) we may and do assume that $n=1$. Let

$$
M=\inf \left\{t: P\left(\left\|X_{1}\right\| \geq t\right) \leq 2 / 3\right\}
$$

Then by Lemma 1 (used for $B=\{x \in E:\|x\| \leq M\}$) it follows easily that $\left\|X_{1}\right\|_{p} \leq a_{p} M$ for $p>0$ and some constants a_{p} depending only on p. By similar reasoning Corollary 1 yields $\left\|X_{1}\right\|_{0} \geq a_{0} M$.

Corollary 2. Let E be a complex Banach space and X_{1}, \ldots, X_{n} be a sequence of independent random variables uniformly distributed on the unit circle $\{z \in \mathbb{C}$: $|z|=1\}$. Then for any sequence of vectors $v_{1}, \ldots, v_{n} \in E$ and any $p>0$ the following inequality holds:

$$
\left\|\sum v_{k} X_{k}\right\|_{p} \leq K_{p}\left\|\sum v_{k} X_{k}\right\|_{0},
$$

where K_{p} is a constant depending only on p.
Proof. It is enough to prove Corollary for $p \geq 1$. Let Y_{1}, \ldots, Y_{n} be a sequence of independent random variables uniformly distributed on the unit disc $\{z$: $|z| \leq 1\}$. By Theorem 1 we have

$$
\begin{equation*}
\left\|\sum v_{k} Y_{k}\right\|_{p} \leq C_{p}\left\|\sum v_{k} Y_{k}\right\|_{0} \tag{3}
\end{equation*}
$$

But we may represent Y_{k} in the form $Y_{k}=R_{k} X_{k}$, where R_{k} are independent, identically distributed random variables on $[0,1]$ (with an appropriate distribution), which are independent of X_{k}. Hence, by taking conditional expectation we obtain

$$
\begin{equation*}
\left\|\sum v_{k} Y_{k}\right\|_{p} \geq\left(E R_{1}\right)\left\|\sum v_{k} X_{k}\right\|_{p} \tag{4}
\end{equation*}
$$

Finally let us observe that for any $u, v \in E$ the function $f(z)=\ln \|u+z v\|$ is subharmonic on \mathbb{C}, so $g(r)=E \ln \left\|u+r v X_{1}\right\|$ is nondecreasing on $[0, \infty)$ and therefore

$$
\begin{equation*}
\left\|\sum v_{k} X_{k}\right\|_{0} \geq\left\|\sum v_{k} Y_{k}\right\|_{0} \tag{5}
\end{equation*}
$$

The corollary follows from (3), (4) and (5).

Acknowledgements

This paper was prepared during the author's stay at MSRI during the spring of 1996. The idea of the proof of Corollary 2 was suggested by Prof. S. Kwapień.

References

[1] C. Borell, "Convex measures on locally convex spaces", Ark. Math. 12 (1974), 239-252.
[2] P. Hitczenko, S. Kwapień, W. V. Li, G. Schechtman, T. Schlumprecht, and J. Zinn, "Hypercontractivity and comparison of moments of iterated maxima and minima of independent random variables", Electron. J. Probab. 3 (1998), 26pp. (electronic).'
[3] V. D. Milman and A. Pajor, "Isotropic positions and inertia ellipsoids and zonoids of the unit balls of a normed n-dimensional space", pp. 64-104 in Geometric aspects of functional analysis: Israel Seminar (GAFA), 1987-88, edited by J. Lindenstrauss and V. D. Milman, Lecture Notes in Math. 1376, Springer, Berlin 1989.
[4] V. D. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed spaces, Lecture Notes in Math. 1200, Springer, Berlin, 1986.
[5] S. Szarek, "Conditional numbers of random matrices", J. Complexity 7 (1991), 131-149.
[6] D. Ullrich, "An extension of Kahane-Khinchine inequality in a Banach space", Israel J. Math. 62 (1988), 56-62.

Rafa£ LataŁA
Institute of Mathematics
Warsaw University
Banacha 2
02-097 Warsaw
Poland
rlatala@mimuw.edu.pl

