TWO-SIDED ESTIMATES FOR ORDER STATISTICS
OF LOG-CONCAVE RANDOM VECTORS

RAFAL LATALA AND MARTA STRZELECKA

ABSTRACT. We establish two-sided bounds for expectations of order statistics (k-th max-
ima) of moduli of coordinates of centered log-concave random vectors with uncorrelated
coordinates. Our bounds are exact up to multiplicative universal constants in the uncon-
ditional case for all k and in the isotropic case for k < n—cn®/%. We also derive two-sided
estimates for expectations of sums of k largest moduli of coordinates for some classes of
random vectors.

1. INTRODUCTION AND MAIN RESULTS

For a vector x € R™ let k-maxz; (or k- minx;) denote its k-th mazimum (respectively
its k-th minimum), i.e. its k-th maximal (respectively k-th minimal) coordinate. For a
random vector X = (Xq,...,X,), k-min X, is also called the k-th order statistic of X.

Let X = (Xi,...,X,) be a random vector with finite first moment. In this note we try
to estimate Ek- max; | X;| and

k
Efﬂa)é g | Xi| =E g l- max | X;|.
= 7
el =1

Order statistics play an important role in various statistical applications and there is an
extensive literature on this subject (cf. [2, 5] and references therein).

We put special emphasis on the case of log-concave vectors, i.e. random vectors X
satisfying the property P(X € AK + (1 —\)L) > P(X € K)*P(X € L)' for any X € [0, 1]
and any nonempty compact sets K and L. By the result of Borell [3] a vector X with
full dimensional support is log-concave if and only if it has a log-concave density, i.e. the
density of a form e~"(®) where h is convex with values in (—oo, o0]. A typical example of
a log-concave vector is a vector uniformly distributed over a convex body. In recent years
the study of log-concave vectors attracted attention of many researchers, cf. monographs
[1, 4].
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To bound the sum of k largest coordinates of X we define

. BN
(1) t(k,X) := inf {t>0: t§E|Xi‘1{X¢>t} Sk}

and start with an easy upper bound.
Proposition 1. For any random vector X with finite first moment we have

(2) Eﬁméz | X;| < 2kt(k, X).
el

Proof. For any t > 0 we have

n

max Xl < th+ Y 1Kl 0. -
T del i=1

It turns out that this bound may be reversed for vectors with independent coordinates
or, more generally, vectors satisfying the following condition
(3)  P(Xi| > s,|X;| > t) < aP(|Xs| > s)P(|X;| >¢t)  foralli#jandall s t>0.
If @ = 1 this means that moduli of coordinates of X are negatively correlated.

Theorem 2. Suppose that a random vector X satisfies condition (3) with some o > 1.
Then there exists a constant c(a)) > 0 which depends only on a such that for any 1 < k < n,

cla)kt(k, X) < IEII]Ia‘aiZ | Xi| < 2kt(k, X).
el

We may take c(a) = (288(5 + 4a)(1 + 2a)) L.

In the case of i.i.d. coordinates two-sided bounds for Emax s ;e [a: X;| in terms of
an Orlicz norm (related to the distribution of X;) of a vector (a;)i<, where known before,
see [7].

Log-concave vectors with diagonal covariance matrices behave in many aspects like vec-
tors with independent coordinates. This is true also in our case.

Theorem 3. Let X be a log-concave random wvector with uncorrelated coordinates (i.e.
Cov(X;, X;) =0 fori# j). Then for any 1 <k <mn,

ckt(k, X) < Emax Y | X;| < 2kt(k, X).
=T
In the above statement and in the sequel ¢ and C denote positive universal constants.

The next two examples show that the lower bound cannot hold if n > k and only
marginal distributions of X; are log-concave or the coordinates of X are highly correlated.

Example 1. Let X = (e19,£29,...,en9), Where €1,...,e,,¢g are independent, P(g; =
+1) = 1/2 and g has the normal N (0, 1) distribution. Then CovX = Id and it is not hard
to check that Emaxj—y, > ;s [Xi| = ky/2/m and t(k, X) ~ In'?(n/k) if k < n/2.
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Example 2. Let X = (g,...,9), where g ~ N(0,1). Then, as in the previous example,
Emax|f— Y ier | Xi| = k\/2/7 and t(k, X) ~ In'/?(n/k).
Question 1. Let X' = (X{,X3,..., X)) be a decoupled version of X, i.e. X/ are inde-

pendent and X/ has the same distribution as X;. Due to Theorem 2 (applied to X'), the
assertion of Theorem 3 may be stated equivalently as

E max E | X;| ~ Emax E | X]].
|I|=k 4 |I|=k 4
i€l iel

Is the more general fact true that for any symmetric norm and any log-concave vector X
with uncorrelated coordinates
E[X| ~E[X"]?

Maybe such an estimate holds at least in the case of unconditional log-concave vectors?

We turn our attention to bounding k-maxima of | X;|. This was investigated in [8] (under
some strong assumptions on the function ¢ — P(|X;| > t)) and in the weighted i.i.d. setting
in 7,9, 15]. We will give different bounds valid for log-concave vectors, in which we do not
have to assume independence, nor any special conditions on the growth of the distribution
function of the coordinates of X. To this end we need to define another quantity:

n

t*(p, X) := inf{t > 0: ZP(LX}\ >1t) < p} for 0 <p <n.
i=1

Theorem 4. Let X be a mean zero log-concave n-dimensional random vector with uncor-

related coordinates and 1 < k <n. Then

1 1
Ek-max | X;| > fMed(k—max |XZ|> > ct” (k: - ,X).
i<n 2 i<n 2
Moreover, if X is additionally unconditional then
1
Ek-max | X;| < Ct* (k - ,X).
i<n 2
The next theorem provides an upper bound in the general log-concave case.

Theorem 5. Let X be a mean zero log-concave n-dimensional random vector with uncor-
related coordinates and 1 < k <n. Then

1
(4) IP’<I<:—m<ax|Xi|ZCt*<k‘—2,X>> <l-c
and
1
() Ek-max|X;| < Ct* (k . 2k5/6,X>.

In the isotropic case (i.e. EX; = 0,CovX = Id) one may show that t*(k/2,X) ~
t*(k, X) ~ t(k,X) for k <n/2 and t*(p, X) ~ *-L for p > n/4 (see Lemma 24 below). In
particular t*(n —k +1— (n — k+1)>%/2, X) ~ k/n +n~1/6 for k < n/2. This together
with the two previous theorems implies the following corollary.
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Corollary 6. Let X be an isotropic log-concave n-dimensional random vector and 1 < k <
n/2. Then
Ek—r&ax\X,-] ~t(k, X) ~t(k,X)
i<n

and
k k
¢c— < Ek-min |X;| =E(n —k+1)-max|X;| < C ( + n1/6> .
n i<n i<n n

If X s additionally unconditional then

k

Ek-min | X;| = E(n — k + 1)-max | X;| ~ —.

i<n i<n n
Question 2. Does the second part of Theorem 4 hold without the unconditionality as-
sumptions? In particular, is it true that in the isotropic log-concave case Ek- min;<,, | X;| ~

k/n for 1 <k <n/27?

Notation. Throughout this paper by letters C, ¢ we denote universal positive constants
and by C(«), c(«) constants depending only on the parameter . The values of constants
C,c,C(a), c(a) may differ at each occurrence. If we need to fix a value of constant, we use
letters Cy, Ch, ... or cg,c1,.... We write f ~ g if ¢f < g < Cg. For a random variable Z
we denote ||Z||, = (E|Z|P)'/P. Recall that a random vector X is called isotropic, if EX = 0
and CovX = Id.

This note is organised as follows. In Section 2 we provide a lower bound for the sum
of k largest coordinates, which involves the Poincaré constant of a vector. In Section 3
we use this result to obtain Theorem 3. In Section 4 we prove Theorem 2 and provide its
application to comparison of weak and strong moments. In Section 5 we prove the first
part of Theorem 4 and in Section 6 we prove the second part of Theorem 4, Theorem 5,
and Lemma 24.

2. EXPONENTIAL CONCENTRATION

A probability measure p on R"™ satisfies ezponential concentration with constant o > 0
if for any Borel set A with p(A) > 1/2,

1—u(A+uBy) <e % forall u>0.

We say that a random n-dimensional vector satisfies exponential concentration if its dis-
tribution has such a property.
It is well known that exponential concentration is implied by the Poincaré inequality

Var, f < ﬁ/ |V f|2dp  for all bounded smooth functions f: R™ — R

and o < 34/ (cf. [12, Corollary 3.2]).

Obviously, the constant in the exponential concentration is not linearly invariant. Typ-
ically one assumes that the vector is isotropic. For our purposes a more natural normal-
ization will be that all coordinates have Li-norm equal to 1.

The next proposition states that bound (2) may be reversed under the assumption that
X satisfies the exponential concentration.
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Proposition 7. Assume thatY = (Y1,...,Y,) satisfies the exponential concentration with
constant a > 0 and E|Y;| > 1 for all i. Then for any sequence a = (a;)}_, of real numbers
and X; := a;Y; we have

1
Elrﬂa:}iz 1X,] > <8 + 64ﬁ) kt(k, X),

where t(k, X) is given by (1).

We begin the proof with a few simple observations.

Lemma 8. For any real numbers z1,...,z, and 1 < k < n we have
0o n
maxz | 2] :/ min{k,21{|2i|25}}ds.
=k et 0 i=1
Proof. Without loss of generality we may assume that z; > 29 > ... > 2z, > 0. Then
k—1
/ mln{k‘ Z 1y, >S}}ds = Z lds —|—/ kds = Zl(zl —z141) + kzg
2141
:zl—i—...—i—zkfmaXZ\zz\ O

Fix a sequence (X;);<, and define for s > 0,

(6) N(s) =Y L{xij=s)-
=1

Corollary 9. Forany k=1,...,n,

o k
Eamax 31X = [ Y POV 2 s,
el 0 =1

and for any t > 0,

EZ‘X’]'{‘XP”’ =tEN(t / s) > l)ds.
=1
In particular
o )
EZ X 1qx,50) < Emaxz X+ > <t]P’(N(t) > 1) +/ P(N(s) > l)ds> :
i=1 I=k+1 t
Proof. We have
/ ) > 1)ds = / Emin{k, N(s)}ds = E/ min{k, N(s)}ds
0 0
= Emax Xil,
|1|=/<riezl| |
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where the last equality follows by Lemma 8.
Moreover,

tEN (t / ) > 1)ds = tEN(t) + /too EN (s)ds

= EZ (tl{lX >t} +/ 1{|Xi|zs}d5>

=1
= EZ [XilLg1x: 28
i=1
The last part of the assertion easily follows, since

tEN (¢ _tZ]P’ ) > 1) / >lds+ZtIP’ (t) > 1). O
0

=1 I=k+1

Proof of Proposition 7. To shorten the notation put ¢ := t(k, X). Without loss of gener-
ality we may assume that a1 > a3 > ... > a, > 0 and af /47 = 1. Observe first that

[k/4]
Elrﬂw,gz X > > wElY;| > k/4,
el i=1

so we may assume that t; > 16a/Vk.
Let u be the law of Y and

n - k
A= {y ER™ D Layipzing < 2}-
=1

We have

E\ k&
Eﬁa}éZ|X\> tkP<Zl{|aly|> tk}_2> 11— n(4),

el

so we may assume that p(A) > 1/2.
Observe that if y € A and ) ", 1fj4,2>sy = | > k for some s > t then

n n 152
E )2 > E a2 > (] — _ 252
£ (Zz yz) = o (azzz aflyl) = (l 3k/4)(5 tk/2) > 16

Thus we have

5

S\/)_s

IP’(N(s)>l)<1—,u( + —Bj) 1o forl >k, s>t

Therefore

0 o b i
/ P(N(s) > [)ds < / “lds = 22T for 1>k,
tk 12 \ﬁ
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3 - . 4 VI
> (tkP(N(tk) zl)+/ P(N(s) Zz)d8> <y (tﬁoz)e_tgm
g I=k+1 Vi
<(nr o) [T s (e s )e B [T A
e 4o u e P e o u
B ‘ \/m k - k \/m .

<t L _da >64a2 ~E (t L1 )k Ly

=\l + —F——= e @ S \Tg+ Stk )7 S SRk,
Vkt1) £ 44 =2

where to get the next-to-last inequality we used the fact that ¢, > 16a/ VEk.
Hence Corollary 9 and the definition of ¢ yields

Kt SEY1XilLy x50

i=1
o 00
<Emax» [Xi|+ > (tk]P’(N(tk) > 1) + / P(N(s) 2l)ds>
=k et I=k+1 b
1
< Emax Xi| + =kty,
I|:k§‘ il 2
so Emaxzj—p, > icr [Xil > Tkt O

We finish this section with a simple fact that will be used in the sequel.

Lemma 10. Suppose that a measure p satisfies exponential concentration with constant
a. Then for any c € (0,1) and any Borel set A with 1(A) > ¢ we have

l—u(A—f—uBg)Sexp<—(z+lnc)+) foru>0.

Proof. Let D :=R"\ (A+rBg). Observe that D 4+ rBj has an empty intersection with A
so if u(D) > 1/2 then

¢ < p(A) <1 p(D+rBY) < e/,
and r < aln(1/c). Hence u(A+ aln(1/c)BY) > 1/2, therefore for s > 0,

1= (A + (s +aln(1/c))BY) = 1 — u((A+ aln(1/c)B}) + sB}) < e/,
and the assertion easily follows. O
3. SUMS OF LARGEST COORDINATES OF LOG-CONCAVE VECTORS

We will use the regular growth of moments of norms of log-concave vectors multiple
times. By [4, Theorem 2.4.6], if f : R"™ — R is a seminorm, and X is log-concave, then

(7) (Ef(X)P)P < clf;(Ef(X)‘Z)l/q forp>q>1,

where (' is a universal constant.
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We will also apply a few times the functional version of the Griinbaum inequality (see
[14, Lemma 5.4]) which states that

(8) P(Z>0) >

Q| =

for any mean-zero log-concave random variable Z.

Let us start with a few technical lemmas. The first one will be used to reduce proofs of
Theorem 3 and lower bound in Theorem 4 to the symmetric case.

Lemma 11. Let X be a log-concave n-dimensional vector and X' be an independent copy
of X. Then for any 1 < k <mn,

E max X; — X!| < 2Emax Xil,
g 2~ X 2 2 3

2
9) t(k, X) < et(k, X = X') + ¢ gllagZE\XiL
T
and
(10) t*(2k, X — X') < 2t*(k, X).

Proof. The first estimate follows by the easy bound

Emax » " |X; — X{| < Emax » | X[+ Emax > [X/| = 2Emax ) _|X;|.
=k et 1=k SeT M=k M=k eT

To get the second bound we may and will assume that E|X;| > E|Xs| > ... > E|X,,|.
Let us define Y := X —EX, Y’ := X' —EX and M := %ZleE]Xﬂ > max;>j E|X;|.
Obviously

k
(11) ZE|X¢|1{‘X”2,5} < kM fort>D0.
i=1
We have EY; = 0, thus P(Y; < 0) > 1/e by (8). Hence
EYil{y,>ry < eEYiliyisryr<op < eBlY; — Y1y, yrogy = eE[X; — Xi|1x, xi5)
for t > 0. In the same way we show that
EYi|liy,«vy < eBlYillpy,cryrs0p < €BIX; — X{1ix/_ x>0

Therefore

ElY;[ 1y, < €BIX — Xi|1gx,—x/>1-
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We have
n n
D EIXillx et x—xn4my < Y BIXi| Ly sertnx—x7))
i=k+1 i=k+1
n n
< D EYillgysumx-x + Y [EXP(Y] > et(k, X — X))

i=k+1 i=k+1

n n
<ed EIX; = X{gx—xistnx—xny + MY P(Yi] > et(k, X — X))
=1 =1

< ekt(ka X - X/) + MZ (et(k7X - X,))_1E|n‘1{\Yi|>et(k,X—X’)}

=1

< ekt(k, X — X') + Mt(k, X — X")~* ZE!Xz‘ — X1 q1x, x>tk X - X7)}
=1

< ekt(k,X — X') + kM.

Together with (11) we get

ZE|Xi|1{|Xi|>et(k7X_X,)+M} < k(et(k,X — X") +2M)
=1

and (9) easily follows.
In order to prove (10), note that for u > 0,

P(X; — X > 2u) < Blmax{ | Xi[, | X/|} = u) < 2P(|1X] > u).
thus the last part of the assertion follows by the definition of parameters t*. O
Lemma 12. Suppose that V' is a real symmetric log-concave random variable. Then for
any t >0 and \ € (0,1],
EVILgvisg < 3PIV] 2 0BV Ly,
Moreover, if P(|V| > t) < 1/4, then E|V|1qjy|>y < 4tP(|[V] > 1),

Proof. Without loss of generality we may assume that P(|V| > ¢) < 1/4 (otherwise the
first estimate is trivial).

Observe that P(|V| > s) = exp(—N(s)) where N: [0,00) — [0, 00] is convex and N(0) =
0. In particular

P(V]=~t) <P(V|>1)" fory>1
and
P(|V| >~t) > P(|V| >t)Y for v € [0,1].
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We have

ElV[1gvisy < O 2 HP(V] > 2 < 20 2kp([v| > )%

k=0 k=0
> k
S2AP([V] = )Y 2M4 <aP([V| > t).
k=0

This implies the second part of the lemma.
To conclude the proof of the first bound it is enough to observe that

E|V[Liyzag = MP([V] 2 Xt) > MP([V] > 1) O

Proof of Theorem 3. By Proposition 1 it is enough to show the lower bound. By Lemma 11
we may assume that X is symmetric. We may also obviously assume that || X;||3 = EX? > 0
for all 7.

Let Z = (Z1,...,Zy), where Z; = X, /|| X;||2. Then Z is log-concave, isotropic and, by
(7), E|Z;| > 1/(2C) for all i. Set Y :=2C1Z. Then X; = q;Y; and E|Y;| > 1. Moreover,
since any m-dimensional projection of Z is a log-concave, isotropic m-dimensional vector,
we know by the result of Lee and Vempala [13], that it satisfies the exponential concentra-
tion with a constants C'r!/4. (In fact an easy modification of the proof below shows that
for our purposes it would be enough to have exponential concentration with a constant
Cm” for some v < 1/2, so one may also use Eldan’s result [6] which gives such estimates
for any v > 1/3). So any m-dimensional projection of Y satisfies exponential concentration
with constant Cgm1/4.

Let us fix k and set t := t(k, X), then (since X; has no atoms)

(12) ZE|X@'|1{|Xi|Zt} = kt.
=1

For [ =1,2,... define
I:={ien]: 7L >P(X;| >t) > 6},
where 3 = 278, By (12) there exists [ such that
D BIXil x> k27
S

Let us consider three cases.
(i) L =1 and |I1] < k. Then

1
Emax} X 2 ) EIXilgx 2y > 5kt
H=r et ich

(ii) I =1 and |I;| > k. Choose J C I; of cardinality k. Then
Emax Y [X;| > Y E[X;| > Y tP(|X,] > t) > Bkt
el

Il=
1 ki ieJ ieJ
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(iii) I > 1. By Lemma 12 (applied with A = 1/8) we have

1 - 17— _
(13) > EIXil1x, /8y > 357 TEDENTBIX (1 x50 > 357 DSy,
i€} 1€l]

Moreover for i € I;, P(|X;] > t) < 3= < 1/4, so the second part of Lemma 12 yields
4087 = EIX| 1 x5 > k27
i€}
and |I;| > ﬂl_ZQ_l_Qk: =97-10k > [
Set k' := 3~/827k = 261k Tf K’ > |Ij| then, using (13), we estimate

k 1 _
Emax > | X;| > o > EIX| > 87520 TRIXi|1x, e8> 557/81@15 =212k,
el

=k i€l i€l
Otherwise set X' = (X;)ier, and Y/ = (Y;);ez,- By (12) we have

kt > EIXi|1x,=0 > [Tt
iel,

so |Ij| < kB! and Y’ satisfies exponential concentration with constant o/ = Cokt/43~

Estimate (13) yields

D_EIXilL iy 2 D EIXG[Lgxzes = 27K,
1€1] 1€1]

so t(k’, X") > 2712¢. Moreover, by Proposition 7 we have (since k¥’ < |[}|)
1
E max X > —— Kk, X)),
zcn,m—k/;| 2 S eaav

To conclude observe that

~

(%

v

= CQQilk:*l/‘l < @
— 4

and since k' > k,
k 1
. s Fe X > —— 212
B2 X 2 B e 3N 2 g

4. VECTORS SATISFYING CONDITION (3)

Proof of Theorem 2. By Proposition 1 we need to show only the lower bound. Assume first

that variables X; have no atoms and k£ > 4(1 + «).

Let ty = t(k, X). Then EY 7| [X;|1x,/>t,} = ktx- Note, that (3) implies that for all

i # j we have

(14) BIXi X511 x>t 12100 < OBIXG 1 x, 500 BIXG 1 x50

We may assume that Emax;—; > e/ [Xi| < kty, because otherwise the lower bound

holds trivially.

11

/4



12 RAFAL LATALA AND MARTA STRZELECKA

Let us define

Y =) | Xillgsixisyy  and A= (BY?)YV2
i=1

Since

1 1 kt
E‘r}l‘gz 1X;] > E[2ktk1{y>ktk/z}] = ShtiP (Y > 2’“)
Vel

it suffices to bound below the probability that Y > kt;/2 by a constant depending only on
.
We have

n
A2 =EY? <Y EXP 1 x050) + D BIXi XL, 200X, 20
i=1 i

(14
< RGEY + 0 3 EIXG L0 BIXG 1 1200
i)

n 2
1
< ktp A+ Q(Z E|Xi’1{X¢2tk}> < Q(thi + AZ) + Oék2ti.
=1

Therefore A% < (1 4 2a)k?t? and for any | > k/2 we have
1
EY 1(ysp, oy < WpP(Y > kty,/2) + —EY?
= Ut
(15) <UP(Y > kty/2) + (1 4+ 20) K1 My,

By Corollary 9 we have (recall definition (6))

> EIXi|L{x, 2k < El‘fﬂw]gz Xl + > <ktkP(N(ktk) >1) +/ P(N(s) = l)d3>
i=1 el I=k+1 ity

[e.9]

1 o0
< Zkt kt EN (kty )22 /
< ghte + > < FEN (ktg)“1* + A

EN(5)21_2d5>
I=k+1 Tk

1 1 *
(16) < ety 4 - (ktkEN(ktk)z + / EN(s)2ds> .
6 k kit

Assumption (3) implies that

n
EN(s)? = S B(Xi| = 5) + 3 P(Xi] = 5,]X,] > 5)
i=1 i#]

n n 2
<3 B(X| > s)+a (ZMXA > s>> .

i=1 i=1
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Moreover for s > kt;, we have

kit
ZP|X\>S ZE|X\1{|X|>S}<—<1

=1
SO
EN(s)? < (14+0a) Y P(X;|>s) for s> kiy.
=1
Thus
kBN (kty)® < ktp(1+ ) > P(IX| > kt) < (1+ ) Y EIXi|L{ x5k}
i=1 =1

and

/]EN()ds< (1+a) Z/ (1X;| > s)ds < (1 + « ZE|X‘1{\X\>ktk}

kty, i=1

This together with (16) and the assumption that & > 4(1 + «) implies

- 1
ZE‘Xi‘l{\Xi\Zktk} < gktk
=1

and
n n 2
EY = EIXil1{x, 200 — D EIXilLgx k) > Skt
i=1 i=1
Therefore
1 1
EY 1ty >pe, 2y =2 EY — §ktk > éktk.

This applied to (15) with [ = (12 + 24a)k gives us P(Y > kt;,/2) > (144 + 288)~! and
in consequence

|
E Xi| > ———kit(k, X).
|r?|a)z§2| il 2 ogs 20y M)

Since k +— kt(k, X) is non-decreasing, in the case k < [4(1 + «)] =: ko we have

k k 1
Emax|X;| > —F X,| > :
masc | Xl = B max [ X 2 50 5881 5 90)

1
>
= 288(5 + 4a) (1 + 2a)

kot (ko, X)

kt(k, X).

The last step is to loose the assumption that X; has no atoms. Note that both as-
sumption (3) and the lower bound depend only on (|X;|) ;, so we may assume that X;
are nonnegative almost surely. Consider X¢ := (X; + €Y;)" ,, where Y3,...,Y,, are iid.
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nonnegative r.v’s with EY; < co and a density g, independent of X. Then for every s,¢ > 0
we have (observe that (3) holds also for s < 0 or t < 0).

o0 oo
P(X5 > 5,X5 >t) = / / P(X; +eyi > s, Xj+ey; > 1)g(vi)g(y;)dyidy;
0 0

(3) 0o oo
< a/o /0 P(X; > s —ey)P(X; >t —ey;)9(yi)9(y;)dyidy,

— aP(X§ > s)P(XE > 1),

Thus X¢ satisfies assumption (3) and has the density function for every € > 0. Therefore
for all natural k we have

n

Eﬁ&)}i X7 > cla)kt(k, X) > c(a)kt(k, X).
=1

Clearly, Emax|jj— i X; — Emax|;— > ;" X; as € — 0, so the lower bound holds in
the case of arbitrary X satisfying (3). O

We may use Theorem 2 to obtain a comparison of weak and strong moments for the
supremum norm:

Corollary 13. Let X be an n-dimensional centered random wvector satisfying condition
(3). Assume that

(17) | Xill2p < Bl Xillp for everyp>2andi=1,...,n.

Then the following comparison of weak and strong moments for the supremum norm holds:
for alla € R™ and all p > 1,

(Emax | Xi[?) /7 < C(a, B) B maxa: Xi| + max (Ela: X)) 7]
isn i<n i<n
where C(a, B) is a constant depending only on o and 3.

Proof. Let X' = (X[)i<n be a decoupled version of X. For any p > 0 a random vector
(|ai X;|P)i<n satisfies condition (3), so by Theorem 2

(E max |ain-]p)1/p ~ (Emax \aiXﬂp)l/p
i<n i<n
for all p > 0, up to a constant depending only on o. The coordinates of X’ are independent
and satisfy condition (17), so due to [11, Theorem 1.1] the comparison of weak and strong
moments of X’ holds, i.e. for p > 1,

(E max |a; X;|P) Yr < C(B) [E max |a; X;| + max (E|a; X]|?) 1/p]’
i<n i<n i<n

where C'(3) depends only on 3. These two observations yield the assertion. ]
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5. LOWER ESTIMATES FOR ORDER STATISTICS

The next lemma shows the relation between t(k, X) and t*(k, X) for log-concave vectors
X.

Lemma 14. Let X be a symmetric log-concave random vector in R™. For any 1 <k <n
we have

1 1
3 (t*(k,X) + kll}llaXZE|Xi‘> <t(k,X)<4 (t*(kz X)+ = Im‘axZE]X |)
el -

Proof. Let t, :=t(k, X) and t} := t*(k, X). We may assume that any X; is not identically
equal to 0. Then Y1 | P(|X;] > t) = k and 31" B|Xi[1qx,/>4,} = ki
Obviously t; < t;. Also for any |I| = k we have
S CEIX <> (te+ EIXi|1gx,me) <t + Kty = 2kt
iel iel
To prove the upper bound set
= i€ o] B(Xi| > ) > 1/},
We have
k>z (1X] > 1) > \Il|
€|
so |I1| < 4k. Hence
S EIXillx, 50y < O EIX| < 4maxZ]E|X I
i€l el ] el
Moreover by the second part of Lemma 12 we get
E|Xi‘1{\Xi\2tZ} < 4tzp(|Xi’ > tZ) for i ¢ I,
S0)
> EIXillgx,ze < 4thIP’ (1X;] > t}) < 4kt}.
¢ i=1
Hence if s = 4t} + # 5 max|r—p >y E|X;| then

ZE’X |1{|X |>s} < ZE’X |1{|X >t} < 4|InaXZE|X ‘ +4ktk = ks,
=1 i=1

that is ¢ < s. O

To derive bounds for order statistics we will also need a few facts about log-concave
vectors.

Lemma 15. Assume that Z is an isotropic one- or two-dimensional log-concave random
vector with a density g. Then g(t) < C for allt. If Z is one-dimensional, then also g(t) > ¢
for all |t| < to, where to > 0 is an absolute constant.
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Proof. We will use a classical result (see [4, Theorem 2.2.2, Proposition 3.3.1, Proposition
3.3.2, and Proposition 2.5.9]): [|g|lsup ~ g(0) ~ 1 (note that here we use the assumption
that Z is isotropic, in particular that EZ = 0, and that the dimension of Z is 1 or 2). This
implies the upper bound on g.

In order to get the lower bound in the one-dimensional case, it suffices to prove that
g(u) > cfor |u| = €E|Z| > (2C1) e, where 1/4 > ¢ > 0 is fixed and its value will be chosen
later (then by the log-concavity we get g(u)*g(0)!=* < g(su) for all s € (0,1)). Since —Z
is again isotropic we may assume that v > 0.

If g(u) > ¢g(0)/e, then we are done. Otherwise by log-concavity of g we get

oo

P(Z >u) = / g(s)ds < / g(u)*/"g(0)~*/"Hds < g(O)/ e~*/"ds < Cou < Coe.

u
On the other hand, Z has mean zero, so E|Z| = 2EZ, and by the Paley—Zygmund inequal-
ity and (7) we have
EZ )2 _ 1 (B|2])?
EZ? — 16 EZ%2 —

For € < ¢¢/Cy we get a contradiction. O

P(Z > u) = P(Z, > 2:EZ,) > (1 — 2¢)2. .

Lemma 16. Let Y be a mean zero log-concave random variable and let P(|Y| > t) < p for
some p > 0. Then

P (Yr > ;) > jefpwn >1).

Proof. By the Griinbaum inequality (8) we have P(Y > 0) > 1/e, hence

t 1 1
P{Y>=|>VPY >)PY >0)> —/P(Y >t) > —P(Y >1t).
(v25)> VRV RT3 0) > VBV 50> B0y 20
Since —Y satisfies the same assumptions as Y we also have
1
P<—Y2t>2IP’(—Y2t). O
2 \/€p

Lemma 17. Let Y be a mean zero log-concave random variable and let P(|Y| > t) > p for
some p > 0. Then there exists a universal constant C such that

P(Y]| < At) < ?/;P(yyy <t) for XAe]|0,1].

Proof. Without loss of generality we may assume that EY? = 1. Then by Chebyshev’s
inequality ¢t < p~'/2. Let g be the density of Y. By Lemma 15 we know that ||g||ec < C'
and g(t) > ¢ on [—to, to], where ¢, C and to € (0,1) are universal constants. Thus

P(Y| < t) > P([Y] < toy/pt) > 2ctor/pt,

and

A
P(Y] < M) < 2||gllao M < 2CAE < tC P(|Y] < b). O
C
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Now we are ready to give a proof of the lower bound in Theorem 4. The next proposition
is a key part of it.

Proposition 18. Let X be a mean zero log-concave n-dimensional random vector with
uncorrelated coordinates and let o > 1/4. Suppose that

1
P(|Xs| > t*(a, X)) < = for alli.

Cs
Then
]P’(Lélaj ma | X;| > ! t*(a, X)) 5
x —
Cy 4
Proof. Let t* = t*(a, X), k := |4a] and L = J We will choose C3 in such a way that

L is large, in particular we may assume that L 2 2. Observe also that o = > | P(|X;| >
t*(a, X)) < nCS_l, thus Lk < C§/2e*1/2a < 6*1/203_1/211 <nifC3>1> % Hence

(18) k-max [X;| > - Z - max | X;| = WD ><I| LkZ|X|—|maXZ\X |>

)5 k+1
Lemma 16 and the definition of t*(a, X) yield

ZIP’<|X|> t) \? > Lk.

This yields t(Lk, X) > t*(Lk, X) > % and by Theorem 3 we have

E X;| > Lk—
HEOPLEES

Since for any norm P(|| X || < tE| X]||) < Ct for t > 0 (see [10, Corollary 1]) we have

19 P Xi| > eoLkt* | > £
(19) <|}?3ng\ | > e )_

el
Let X' be an independent copy of X. By the Paley-Zygmund inequality and (7), P(|X;| >

1E|X;|) > Eé“)g > Cfg if C3 > 16C7, so 3E|X;| < t*. Moreover it is easy to verify that
k = |4a] > a for a > 1/4, thus t*(k, X) < t*(a, X) = t*. Hence Proposition 1, Lemma

14, and inequality (10) yield

E max X;| = Emax X; —EX!| < Emax X; — X!| <E max X — X!
e S = B g 3 X~ B < By 3716, X < g 315, X

< 4kt(2k, X — X') < 16k(t*(2k, X — X') + maxE|X; — X]|)
< 16k(2t* (k, X) + 2max E|X;|) < 96kt*.



18 RAFAL LATALA AND MARTA STRZELECKA

Therefore

1
(20) P (lrﬂa)éz 1 X;| > 800kt*) <z
Vel

Estimates (18)-(20) yield

P k- X;| >
<k‘ mlax| z|_L—1

3
(coL — 800)t*> > "
so it is enough to choose C3 in such a way that L > 1600/cs. ([l

Proof of the first part of Theorem /. Let t* = t*(k — 1/2, X) and C3 be as in Proposition
18. It is enough to consider the case when t* > 0, then P(|X;| = t*) = 0 for all ¢ and
S P(|X;] > t*) = k — 1/2. Define

L = {zgn: P(|X¢]2t)§03}, a::iez;PﬂXﬂZt),
1

Iy = {z <n: P(X;| >t*) > 03} 8= ZIP(|X1»| > t%).
1€y
If 3=0then a« =k —1/2, || = {1,...,n}, and the assertion immediately follows by

Proposition 18 since 4o > k.
Otherwise define

N =D Lxisy-

i€la

We have by Lemma 17 applied with p = 1/C3

EN(A) =Y P(IX;] < M) < CsA Y P(IXi] < t7) = C5A(| 2| — B).

i€l i€l
Thus
. 1 -
P - Xi| <M ) =P(NX) > | L] +1— < ———  _ENO\) < CsA.
(191 mx Xl <00 ) = BOVOW) 2 |l +1 = TA]) < g — e BN () < G
Therefore
P(181-max X > =) > 0
- X il = — = —.
i€l 4C5 4
If < 1/2 then [3] = k and the assertion easily follows. Otherwise Proposition 18 yields

1 3
- J> ) > —,
P(Vl‘” max | Xl 2 7t ) =14

Observe that for « > 1/2 we have |4a| + [f] >4da—1+0>a+1/24+ 5=k, so
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t*t* 1 1
P ( k-max|X;| > min { —, - L) > P ( |4a]-max |X;| > —t*, [8]- 1> —¢
(e max] ) 2 min { 20 ) 2 P (Lo mae 361> o0 191 max ) > 1)

Y
NI

g

Remark 19. A modification of the proof above shows that under the assumptions of The-
orem / for any p < 1 there exists ¢(p) > 0 such that

P (b X ) (6~ 1/2.5)) 2

6. UPPER ESTIMATES FOR ORDER STATISTICS
We will need a few more facts concerning log-concave vectors.

Lemma 20. Suppose that X is a mean zero log-concave random vector with uncorrelated
coordinates. Then for any i # j and s > 0,

P(IXG| < s, [X;] < 5) < CeP(|1Xi| < 5)P(|X;| < 5).

Proof. Let C7,c3 and to be the constants from Lemma 15. If s > ¢||X;||2 then, by Lemma
15, P(|X;| < s) > 2cstg and the assertion is obvious (with any Cg > (2c3tg)~!). Thus we
will assume that s < to min{||X;||2, [| X2}

Let X; = X;/|| Xi2 and let gij be the density of ()N(Z,f(]) By Lemma 15 we know that

19ijlloc < C7, s0
2
~ - s
P(Xi| < 5,151 < 8) = PUK < /1%l 1551 < /1) < Crro o
[ Xill2ll Xl
On the other hand the second part of Lemma 15 yields
4c2s?
P(|Xi| < s)P(1X;] < 8) > por O
' ’ 1 Xill2[] X112

Lemma 21. Let Y be a log-concave random variable. Then
P(Y| > ut) <P(|Y| > )@ D2 foru>1t>0.

Proof. We may assume that Y is non-degenerate (otherwise the statement is obvious), in
particular Y has no atoms. Log-concavity of Y yields

P(Y > 1) > P(Y > —t) e P(Y > ut)or.

Hence
<(A-P(Y| <) T PY >—t)=P(Y| > )T P(Y > —t).
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Since —Y satisfies the same assumptions as Y, we also have
u+1
P(Y < —ut) <P([Y]| > )7 P(Y <t).
Adding both estimates we get
P(IY| > ut) <P(Y|> )5 (1L+P(Y]| <t) =P(Y| > 1) 1-P(Y|<H?). O

<t
Lemma 22. Suppose that Y is a log-concave random variable and P(|Y| <t) < 15. Then

P(JY] < 21t) > 5P(|Y] < ¢).
Proof. Let P(|Y| < t) = p then by Lemma 21
PY| <21t) =1 -P(|Y| > 21t) > 1 -P(|[Y| > ) =1~ (1 — p)'° > 10p — 45p* > 5p. O

1
10°

Let us now prove (4) and see how it implies the second part of Theorem 4. Then we
give a proof of (5).

Proof of (4). Fix k and set t* := t*(k—1/2,X). Then " | P(|X;| > t*) = k—1/2. Define

(21) I = {z<n P(|X;| > t) < 9} a=Y P(X| >t
10 :
i€ly
9
(22) Iy = {7, <n: P(X;| >t*) > } 8= P(X| > t).
10 :
i€l
Observe that for v >3 and 1 <1 < \Ill we have by Lemma 21
(23) P(l-max | X;| > ut”) <E; 21{|X|>ut*} = ZIP’ 1 X;| > ut®)
ieh ’LEIl 1611
1 o 9 (u—3)/2
<N TP(x;| > ) D2 < 2 (2 .
<G TRz < g (g
rely

Consider two cases.
Case 1. > |Is| —1/2. Then |Ix| < 8+ 1/2 < k,so k — |I2] > 1 and

1
a=k-5-f<k-|nl|
Therefore by (23)
9
P (k- max | X;| > 5t*) <P [ (k — |I2])- max | X;| > 5t" | < —.
i€l 10

Case 2. § < |I3| — 1/2. Observe that for any disjoint sets Ji, Jy and integers [, m such
that I < |Ji], m < |J2] we have

(24) (I+m —1)- max |z;] < max {l max |x;|, m- max |;1:Z|} < I-max |z;| + m- max |x;].
1€J1UJ2 i€J1 i€Ja 1€1 1€J2

Since
Q]+ [l <a+B+2<k+2
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we have [a] + [B] < k+ 1 and, by (24),
k- max | X;| < [a]-max | X;| + [F]- max | X;]|.
i i€l 1€l

Estimate (23) yields
9\ (u=3)/2
P [a]-max |X;| > ut™ | < | — for u > 3.
i€ly 10
To estimate |G- max;er, | Xi| = (|I2| +1 — [B])- min;er, | X;| observe that by Lemma 22,
the definition of I» and assumptions on 3,
STP(X| < 218%) > 5 P(IX] < t*) = 5(|L| — B) > 2(|1z| + 1 - [B)).
i€l2 1€l2
Set I := (|I2] +1—[5]) and
N(t) =) 1yxiso-
i€y
Note that we know already that EN(21t*) > 2. Thus the Paley-Zygmund inequality

implies

P (101-maxl il < 21¢) = (1min 0] < 2107 ) > B(¥210) 2 1)
1€19 1€12

- 1< 1 (EN(21t))?
>Pp <N(21t*) > EN(Qlt*)> > LENQCI))”
2 4 EN(21t*)2
However Lemma 20 yields

EN (21t*)? < EN(21t*) + Cs(EN (21t%)))? < (Ce + 1)(EN(21t%))2.

Therefore

P <k— max | X5 > (21 + u)t*) <P <[a]-?§f{ | X;| > ut*) +P ([B]-r}g};{ | X;| > 21t*>

- <9>‘“3W+1_1 PO

—\ 10 4(Ce+1) — 5(Cs + 1)

for sufficiently large wu. 0

The unconditionality assumption plays a crucial role in the proof of the next lemma,
which allows to derive the second part of Theorem 4 from estimate (4).

Lemma 23. Let X be an unconditional log-concave n-dimensional random vector. Then
forany 1 <k <n,

u
P<k—maX|Xi| 2ut> §P<k—maX\Xi| Zt> foru>1,t>0.
i<n i<n
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Proof. Let v be the law of (| X1],...,|Xy|). Then v is log-concave on R;. Define for ¢ > 0,
Ay = {x eR}!: k-max|z;| > t} .
i<n
It is easy to check that %Aut +(1- %)err C Ay, hence
1/u
(12 ) =) iy = ()
1SN 1<n
Proof of the second part of Theorem 4. Estimate (4) together with Lemma 23 yields
P (k-m<aX\Xi] > Cut*(k — 1/2,X)) <(1—-¢)* foru>1,
i<n

and the assertion follows by integration by parts. O

Proof of (5). Define Iy, Is, a and 3 by (21) and (22), where this time t* = ¢t*(k—k%/¢/2, X).
Estimate (23) is still valid so integration by parts yields

El-max | Xi| < (3+2ol)

i€l
Set

1
= ~E5/0)
= [ |
Observe that .
[a] + kg <a+ﬁ+5k5/6+2:k+2.

Hence [a] + kg < k+ 1.
If k:g > ‘IQ|, then k£ — ‘IQ| > (Ot“ -l-kﬁ —1- |12’ > |VOé‘|, SO

Ek-max | X;| < E(k — |I2])- max | X;| < E[a]-max | X;| < 23t".
i i€l €l
Therefore it suffices to consider case kg < |I2| only.
Since [a] + kg —1 < k and kg < |I»|, we have by (24),
Ek- max | X;] < E[a]—max | X + Ekg- max |X;| < 23t* + Ekg- max | X
1€19 1€l2

Since f < k — 1k5/6 and v — z — fa:5/6 is increasing for = > 1/2 we have

5/6
g §B+%k5/6 —~ % <B+;k5/6> < kg— fk"’/ﬁ

Therefore, considering (X;);er, instead of X and kg instead of k it is enough to show
the following claim:
Let s > 0, n > k and let X be an n-dimensional log-concave vector with uncorrelated
coordinates. Suppose that

1
> P(Xi|>s) <k- 5/&"/6 and  minP(1X;| > 5) > 9/10

i<n
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then
Ek- max | X;| < Cgs.

i<n
We will show the claim by induction on k. For k = 1 the statement is obvious (since the
assumptions are contradictory). Suppose now that & > 2 and the assertion holds for k — 1.
Case 1. P(|X;)| >s) >1— %kz_l/6 for some 1 < iy < n. Then

1 s/6 1 :
> P(Xi| =) <k— K- (1- D16 <p—1- ~(k —1)%6,
— 2 12 2
1#£i0
where to get the last inequality we used that 2%/ is concave on R, so (1 —)%/6 <1 — %t
for t = 1/k. Therefore by the induction assumption applied to (X;)i-i,,

Ek-max | X;| < E(k — 1)- max | X;| < Cgs.
i iio

Case 2. P(|X;| <s) > %k*1/6 for all i. Applying Lemma 15 we get

5 _ | X | s s
—k 1/6§P< < )gc,
12 [Xall2 = (1 Xl 1 Xl

so max; || X2 < Ck'/6s. Moreover n < %Ok. Therefore by the result of Lee and Vempala
[13] X satisfies the exponential concentration with a < Cok®/12s.

Let | = [k — $(k%% —1)] then s > t,(1 - 1/2,X) and k — [ +1 >
Let

(k‘5/6 _ 1) > k5/6.

% :
A= {x e R": l—mlaxla:i] < Clos} .
By (4) (applied with ! instead of k) we have P(X € A) > ¢4. Observe that
k- max |z;| > Chos + u = dist(z, A) > VEk =1+ 1u> %k“r’/wu.
Therefore by Lemma 10 we get
P <k‘— max |Xi| > Cios + 3C’9us) <exp(—(u+Incy)).
Integration by parts yields
Ek- max | Xi| < (Cio+3Cy(1 —1Inecy)) s
and the induction step is shown in this case provided that Cs > Cig + 3Co(1 —Inecy). O
To obtain Corollary 6 we used the following lemma.

Lemma 24. Assume that X is a symmetric isotropic log-concave vector in R™. Then
n—

(25) t*(p, X) ~ forn >p>n/4

and

(26) t*(k/2, X) ~ t*(k, X) ~ t(k, X) for k < n/2.
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Proof. Observe that

n
> P(Xi| < t*(p, X)) =n—p.
i=1
Thus Lemma 15 implies that for p > csn (with ¢5 € (3,1)) we have t*(p, X) ~ L.
Moreover, by the Markov inequality

n
S P(X| > 4) <
P 16

so t*(n/4,X) < 4. Since p — t*(p, X) is non-increasing, we know that t*(p, X) ~ 1 for
n/4 <p < csn.
Now we will prove (26). We have

#(k, X) < t°(k/2,X) < t(k/2, X) < 2t(k, X),

so it suffices to show that ¢t*(k, X) > ct(k, X). To this end we fix kK < n/2. By (25) we
know that t := Cy1t*(k, X) > C11t*(n/2,X) > e, so the isotropicity of X and Markov’s
inequality yield P(|X;| > t) < e72 for all i. We may also assume that t > t*(k, X).
Integration by parts and Lemma 21 yield

E|Xi‘1{\X¢|2t} < 3tP(’XZ| > t) + t/ ]P’(’XZ| > (S + 3)t)d8
0

(o0}
< 3P(X| > 1)+ t/ P(X,| > t)e"ds < 4P(|1Xi| > ¢).
0
Therefore

S TEIX[Lx s <4ty P(X]| > 1) <4t P(IX;]| > t*(k, X)) < 4kt
i=1 =1 i=1

SO t(k‘,X) S 4011t*(k‘,X). O
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