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Abstract. We establish two-sided bounds for expectations of order statistics (k-th max-
ima) of moduli of coordinates of centered log-concave random vectors with uncorrelated
coordinates. Our bounds are exact up to multiplicative universal constants in the uncon-
ditional case for all k and in the isotropic case for k ≤ n−cn5/6. We also derive two-sided
estimates for expectations of sums of k largest moduli of coordinates for some classes of
random vectors.

1. Introduction and main results

For a vector x ∈ Rn let k- maxxi (or k- minxi) denote its k-th maximum (respectively
its k-th minimum), i.e. its k-th maximal (respectively k-th minimal) coordinate. For a
random vector X = (X1, . . . , Xn), k- minXi is also called the k-th order statistic of X.

Let X = (X1, . . . , Xn) be a random vector with finite first moment. In this note we try
to estimate Ek- maxi |Xi| and

E max
|I|=k

∑
i∈I
|Xi| = E

k∑
l=1

l- max
i
|Xi|.

Order statistics play an important role in various statistical applications and there is an
extensive literature on this subject (cf. [2, 5] and references therein).

We put special emphasis on the case of log-concave vectors, i.e. random vectors X
satisfying the property P(X ∈ λK+ (1−λ)L) ≥ P(X ∈ K)λP(X ∈ L)1−λ for any λ ∈ [0, 1]
and any nonempty compact sets K and L. By the result of Borell [3] a vector X with
full dimensional support is log-concave if and only if it has a log-concave density, i.e. the
density of a form e−h(x) where h is convex with values in (−∞,∞]. A typical example of
a log-concave vector is a vector uniformly distributed over a convex body. In recent years
the study of log-concave vectors attracted attention of many researchers, cf. monographs
[1, 4].
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To bound the sum of k largest coordinates of X we define

(1) t(k,X) := inf

{
t > 0:

1
t

n∑
i=1

E|Xi|1{|Xi|≥t} ≤ k

}
.

and start with an easy upper bound.

Proposition 1. For any random vector X with finite first moment we have

(2) E max
|I|=k

∑
i∈I
|Xi| ≤ 2kt(k,X).

Proof. For any t > 0 we have

max
|I|=k

∑
i∈I
|Xi| ≤ tk +

n∑
i=1

|Xi|1{|Xi|≥t}. �

It turns out that this bound may be reversed for vectors with independent coordinates
or, more generally, vectors satisfying the following condition

(3) P(|Xi| ≥ s, |Xj | ≥ t) ≤ αP(|Xi| ≥ s)P(|Xj | ≥ t) for all i 6= j and all s, t > 0.

If α = 1 this means that moduli of coordinates of X are negatively correlated.

Theorem 2. Suppose that a random vector X satisfies condition (3) with some α ≥ 1.
Then there exists a constant c(α) > 0 which depends only on α such that for any 1 ≤ k ≤ n,

c(α)kt(k,X) ≤ E max
|I|=k

∑
i∈I
|Xi| ≤ 2kt(k,X).

We may take c(α) = (288(5 + 4α)(1 + 2α))−1.

In the case of i.i.d. coordinates two-sided bounds for E max|I|=k
∑

i∈I |aiXi| in terms of
an Orlicz norm (related to the distribution of Xi) of a vector (ai)i≤n where known before,
see [7].

Log-concave vectors with diagonal covariance matrices behave in many aspects like vec-
tors with independent coordinates. This is true also in our case.

Theorem 3. Let X be a log-concave random vector with uncorrelated coordinates (i.e.
Cov(Xi, Xj) = 0 for i 6= j). Then for any 1 ≤ k ≤ n,

ckt(k,X) ≤ E max
|I|=k

∑
i∈I
|Xi| ≤ 2kt(k,X).

In the above statement and in the sequel c and C denote positive universal constants.
The next two examples show that the lower bound cannot hold if n � k and only

marginal distributions of Xi are log-concave or the coordinates of X are highly correlated.

Example 1. Let X = (ε1g, ε2g, . . . , εng), where ε1, . . . , εn, g are independent, P(εi =
±1) = 1/2 and g has the normal N (0, 1) distribution. Then CovX = Id and it is not hard
to check that E max|I|=k

∑
i∈I |Xi| = k

√
2/π and t(k,X) ∼ ln1/2(n/k) if k ≤ n/2.
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Example 2. Let X = (g, . . . , g), where g ∼ N (0, 1). Then, as in the previous example,
E max|I|=k

∑
i∈I |Xi| = k

√
2/π and t(k,X) ∼ ln1/2(n/k).

Question 1. Let X ′ = (X ′1, X
′
2, . . . , X

′
n) be a decoupled version of X, i.e. X ′i are inde-

pendent and X ′i has the same distribution as Xi. Due to Theorem 2 (applied to X ′), the
assertion of Theorem 3 may be stated equivalently as

E max
|I|=k

∑
i∈I
|Xi| ∼ E max

|I|=k

∑
i∈I
|X ′i|.

Is the more general fact true that for any symmetric norm and any log-concave vector X
with uncorrelated coordinates

E‖X‖ ∼ E‖X ′‖?
Maybe such an estimate holds at least in the case of unconditional log-concave vectors?

We turn our attention to bounding k-maxima of |Xi|. This was investigated in [8] (under
some strong assumptions on the function t 7→ P(|Xi| ≥ t)) and in the weighted i.i.d. setting
in [7, 9, 15]. We will give different bounds valid for log-concave vectors, in which we do not
have to assume independence, nor any special conditions on the growth of the distribution
function of the coordinates of X. To this end we need to define another quantity:

t∗(p,X) := inf
{
t > 0:

n∑
i=1

P(|Xi| ≥ t) ≤ p
}

for 0 < p < n.

Theorem 4. Let X be a mean zero log-concave n-dimensional random vector with uncor-
related coordinates and 1 ≤ k ≤ n. Then

Ek- max
i≤n
|Xi| ≥

1
2

Med
(
k- max

i≤n
|Xi|

)
≥ ct∗

(
k − 1

2
, X

)
.

Moreover, if X is additionally unconditional then

Ek- max
i≤n
|Xi| ≤ Ct∗

(
k − 1

2
, X

)
.

The next theorem provides an upper bound in the general log-concave case.

Theorem 5. Let X be a mean zero log-concave n-dimensional random vector with uncor-
related coordinates and 1 ≤ k ≤ n. Then

(4) P
(
k- max

i≤n
|Xi| ≥ Ct∗

(
k − 1

2
, X

))
≤ 1− c

and

(5) Ek- max
i≤n
|Xi| ≤ Ct∗

(
k − 1

2
k5/6, X

)
.

In the isotropic case (i.e. EXi = 0,CovX = Id) one may show that t∗(k/2, X) ∼
t∗(k,X) ∼ t(k,X) for k ≤ n/2 and t∗(p,X) ∼ n−p

n for p ≥ n/4 (see Lemma 24 below). In
particular t∗(n − k + 1 − (n − k + 1)5/6/2, X) ∼ k/n + n−1/6 for k ≤ n/2. This together
with the two previous theorems implies the following corollary.
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Corollary 6. Let X be an isotropic log-concave n-dimensional random vector and 1 ≤ k ≤
n/2. Then

Ek- max
i≤n
|Xi| ∼ t∗(k,X) ∼ t(k,X)

and

c
k

n
≤ Ek- min

i≤n
|Xi| = E(n− k + 1)- max

i≤n
|Xi| ≤ C

(
k

n
+ n−1/6

)
.

If X is additionally unconditional then

Ek- min
i≤n
|Xi| = E(n− k + 1)- max

i≤n
|Xi| ∼

k

n
.

Question 2. Does the second part of Theorem 4 hold without the unconditionality as-
sumptions? In particular, is it true that in the isotropic log-concave case Ek- mini≤n |Xi| ∼
k/n for 1 ≤ k ≤ n/2?

Notation. Throughout this paper by letters C, c we denote universal positive constants
and by C(α), c(α) constants depending only on the parameter α. The values of constants
C, c, C(α), c(α) may differ at each occurrence. If we need to fix a value of constant, we use
letters C0, C1, . . . or c0, c1, . . .. We write f ∼ g if cf ≤ g ≤ Cg. For a random variable Z
we denote ‖Z‖p = (E|Z|p)1/p. Recall that a random vector X is called isotropic, if EX = 0
and CovX = Id.

This note is organised as follows. In Section 2 we provide a lower bound for the sum
of k largest coordinates, which involves the Poincaré constant of a vector. In Section 3
we use this result to obtain Theorem 3. In Section 4 we prove Theorem 2 and provide its
application to comparison of weak and strong moments. In Section 5 we prove the first
part of Theorem 4 and in Section 6 we prove the second part of Theorem 4, Theorem 5,
and Lemma 24.

2. Exponential concentration

A probability measure µ on Rn satisfies exponential concentration with constant α > 0
if for any Borel set A with µ(A) ≥ 1/2,

1− µ(A+ uBn
2 ) ≤ e−u/α for all u > 0.

We say that a random n-dimensional vector satisfies exponential concentration if its dis-
tribution has such a property.

It is well known that exponential concentration is implied by the Poincaré inequality

Varµf ≤ β
∫
|∇f |2dµ for all bounded smooth functions f : Rn 7→ R

and α ≤ 3
√
β (cf. [12, Corollary 3.2]).

Obviously, the constant in the exponential concentration is not linearly invariant. Typ-
ically one assumes that the vector is isotropic. For our purposes a more natural normal-
ization will be that all coordinates have L1-norm equal to 1.

The next proposition states that bound (2) may be reversed under the assumption that
X satisfies the exponential concentration.
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Proposition 7. Assume that Y = (Y1, . . . , Yn) satisfies the exponential concentration with
constant α > 0 and E|Yi| ≥ 1 for all i. Then for any sequence a = (ai)ni=1 of real numbers
and Xi := aiYi we have

E max
|I|=k

∑
i∈I
|Xi| ≥

(
8 + 64

α√
k

)−1
kt(k,X),

where t(k,X) is given by (1).

We begin the proof with a few simple observations.

Lemma 8. For any real numbers z1, . . . , zn and 1 ≤ k ≤ n we have

max
|I|=k

∑
i∈I
|zi| =

∫ ∞
0

min
{
k,

n∑
i=1

1{|zi|≥s}

}
ds.

Proof. Without loss of generality we may assume that z1 ≥ z2 ≥ . . . ≥ zn ≥ 0. Then∫ ∞
0

min
{
k,

n∑
i=1

1{|zi|≥s}

}
ds =

k−1∑
l=1

∫ zl

zl+1

lds+
∫ zk

0
kds =

k−1∑
l=1

l(zl − zl+1) + kzk

= z1 + . . .+ zk = max
|I|=k

∑
i∈I
|zi|. �

Fix a sequence (Xi)i≤n and define for s ≥ 0,

(6) N(s) :=
n∑
i=1

1{|Xi|≥s}.

Corollary 9. For any k = 1, . . . , n,

E max
|I|=k

∑
i∈I
|Xi| =

∫ ∞
0

k∑
l=1

P(N(s) ≥ l)ds,

and for any t > 0,

E
n∑
i=1

|Xi|1{|Xi|≥t} = tEN(t) +
∫ ∞
t

∞∑
l=1

P(N(s) ≥ l)ds.

In particular

E
n∑
i=1

|Xi|1{|Xi|≥t} ≤ E max
|I|=k

∑
i∈I
|Xi|+

∞∑
l=k+1

(
tP(N(t) ≥ l) +

∫ ∞
t

P(N(s) ≥ l)ds
)
.

Proof. We have∫ ∞
0

k∑
l=1

P(N(s) ≥ l)ds =
∫ ∞

0
E min{k,N(s)}ds = E

∫ ∞
0

min{k,N(s)}ds

= E max
|I|=k

∑
i∈I
|Xi|,
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where the last equality follows by Lemma 8.
Moreover,

tEN(t) +
∫ ∞
t

∞∑
l=1

P(N(s) ≥ l)ds = tEN(t) +
∫ ∞
t

EN(s)ds

= E
n∑
i=1

(
t1{|Xi|≥t} +

∫ ∞
t

1{|Xi|≥s}ds
)

= E
n∑
i=1

|Xi|1{|Xi|≥t}.

The last part of the assertion easily follows, since

tEN(t) = t

n∑
l=1

P(N(t) ≥ l) ≤
∫ t

0

k∑
l=1

P(N(s) ≥ l)ds+
∞∑

l=k+1

tP(N(t) ≥ l). �

Proof of Proposition 7. To shorten the notation put tk := t(k,X). Without loss of gener-
ality we may assume that a1 ≥ a2 ≥ . . . ≥ an ≥ 0 and adk/4e = 1. Observe first that

E max
|I|=k

∑
i∈I
|Xi| ≥

dk/4e∑
i=1

aiE|Yi| ≥ k/4,

so we may assume that tk ≥ 16α/
√
k.

Let µ be the law of Y and

A :=

{
y ∈ Rn :

n∑
i=1

1{|aiyi|≥ 1
2
tk} <

k

2

}
.

We have

E max
|I|=k

∑
i∈I
|Xi| ≥

k

4
tkP

(
k∑
i=1

1{|aiYi|≥ 1
2
tk} ≥

k

2

)
=
k

4
tk(1− µ(A)),

so we may assume that µ(A) ≥ 1/2.
Observe that if y ∈ A and

∑n
i=1 1{|aizi|≥s} ≥ l > k for some s ≥ tk then

n∑
i=1

(zi − yi)2 ≥
n∑

i=dk/4e

(aizi − aiyi)2 ≥ (l − 3k/4)(s− tk/2)2 >
ls2

16
.

Thus we have

P(N(s) ≥ l) ≤ 1− µ
(
A+

s
√
l

4
Bn

2

)
≤ e−

s
√
l

4α for l > k, s ≥ tk.

Therefore ∫ ∞
tk

P(N(s) ≥ l)ds ≤
∫ ∞
tk

e−
s
√
l

4α ds =
4α√
l
e−

tk
√
l

4α for l > k,
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and
∞∑

l=k+1

(
tkP(N(tk) ≥ l) +

∫ ∞
tk

P(N(s) ≥ l)ds
)
≤

∞∑
l=k+1

(
tk +

4α√
l

)
e−

tk
√
l

4α

≤
(
tk +

4α√
k + 1

)∫ ∞
k

e−
tk
√
u

4α du ≤
(
tk +

4α√
k + 1

)
e
− tk

√
k

4
√

2α

∫ ∞
k

e
− tk

√
u−k

4
√

2α du

=
(
tk +

4α√
k + 1

)
64α2

t2k
e
− tk

√
k

4
√

2α ≤
(
tk +

1
4
tk

)k
4
≤ 1

2
ktk,

where to get the next-to-last inequality we used the fact that tk ≥ 16α/
√
k.

Hence Corollary 9 and the definition of tk yields

ktk ≤ E
n∑
i=1

|Xi|1{|Xi|≥tk}

≤ E max
|I|=k

∑
i∈I
|Xi|+

∞∑
l=k+1

(
tkP(N(tk) ≥ l) +

∫ ∞
tk

P(N(s) ≥ l)ds
)

≤ E max
|I|=k

∑
i∈I
|Xi|+

1
2
ktk,

so E max|I|=k
∑

i∈I |Xi| ≥ 1
2ktk. �

We finish this section with a simple fact that will be used in the sequel.

Lemma 10. Suppose that a measure µ satisfies exponential concentration with constant
α. Then for any c ∈ (0, 1) and any Borel set A with µ(A) > c we have

1− µ(A+ uBn
2 ) ≤ exp

(
−
(u
α

+ ln c
)

+

)
for u ≥ 0.

Proof. Let D := Rn \ (A+ rBn
2 ). Observe that D+ rBn

2 has an empty intersection with A
so if µ(D) ≥ 1/2 then

c < µ(A) ≤ 1− µ(D + rBn
2 ) ≤ e−r/α,

and r < α ln(1/c). Hence µ(A+ α ln(1/c)Bn
2 ) ≥ 1/2, therefore for s ≥ 0,

1− µ(A+ (s+ α ln(1/c))Bn
2 ) = 1− µ((A+ α ln(1/c)Bn

2 ) + sBn
2 ) ≤ e−s/α,

and the assertion easily follows. �

3. Sums of largest coordinates of log-concave vectors

We will use the regular growth of moments of norms of log-concave vectors multiple
times. By [4, Theorem 2.4.6], if f : Rn → R is a seminorm, and X is log-concave, then

(7) (Ef(X)p)1/p ≤ C1
p

q
(Ef(X)q)1/q for p ≥ q ≥ 1,

where C1 is a universal constant.
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We will also apply a few times the functional version of the Grünbaum inequality (see
[14, Lemma 5.4]) which states that

(8) P(Z ≥ 0) ≥ 1
e

for any mean-zero log-concave random variable Z.

Let us start with a few technical lemmas. The first one will be used to reduce proofs of
Theorem 3 and lower bound in Theorem 4 to the symmetric case.

Lemma 11. Let X be a log-concave n-dimensional vector and X ′ be an independent copy
of X. Then for any 1 ≤ k ≤ n,

E max
|I|=k

∑
i∈I
|Xi −X ′i| ≤ 2E max

|I|=k

∑
i∈I
|Xi|,

(9) t(k,X) ≤ et(k,X −X ′) +
2
k

max
|I|=k

∑
i∈I

E|Xi|,

and

(10) t∗(2k,X −X ′) ≤ 2t∗(k,X).

Proof. The first estimate follows by the easy bound

E max
|I|=k

∑
i∈I
|Xi −X ′i| ≤ E max

|I|=k

∑
i∈I
|Xi|+ E max

|I|=k

∑
i∈I
|X ′i| = 2E max

|I|=k

∑
i∈I
|Xi|.

To get the second bound we may and will assume that E|X1| ≥ E|X2| ≥ . . . ≥ E|Xn|.
Let us define Y := X − EX, Y ′ := X ′ − EX and M := 1

k

∑k
i=1 E|Xi| ≥ maxi≥k E|Xi|.

Obviously

(11)
k∑
i=1

E|Xi|1{|Xi|≥t} ≤ kM for t ≥ 0.

We have EYi = 0, thus P(Yi ≤ 0) ≥ 1/e by (8). Hence

EYi1{Yi>t} ≤ eEYi1{Yi>t,Y ′i≤0} ≤ eE|Yi − Y ′i |1{Yi−Y ′i>t} = eE|Xi −X ′i|1{Xi−X′i>t}

for t ≥ 0. In the same way we show that

E|Yi|1{Yi<−t} ≤ eE|Yi|1{Yi<−t,Y ′i≥0} ≤ eE|Xi −X ′i|1{X′i−Xi>t}

Therefore

E|Yi|1{|Yi|>t} ≤ eE|Xi −X ′i|1{|Xi−X′i|>t}.
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We have
n∑

i=k+1

E|Xi|1{|Xi|>et(k,X−X′)+M} ≤
n∑

i=k+1

E|Xi|1{|Yi|>et(k,X−X′)}

≤
n∑

i=k+1

E|Yi|1{|Yi|>t(k,X−X′)} +
n∑

i=k+1

|EXi|P(|Yi| > et(k,X −X ′))

≤ e
n∑
i=1

E|Xi −X ′i|1{|Xi−X′i|>t(k,X−X′)} +M

n∑
i=1

P(|Yi| > et(k,X −X ′))

≤ ekt(k,X −X ′) +M
n∑
i=1

(
et(k,X −X ′)

)−1E|Yi|1{|Yi|>et(k,X−X′)}

≤ ekt(k,X −X ′) +Mt(k,X −X ′)−1
n∑
i=1

E|Xi −X ′i|1{|Xi−X′i|>t(k,X−X′)}

≤ ekt(k,X −X ′) + kM.

Together with (11) we get

n∑
i=1

E|Xi|1{|Xi|>et(k,X−X′)+M} ≤ k(et(k,X −X ′) + 2M)

and (9) easily follows.
In order to prove (10), note that for u > 0,

P(|Xi −X ′i| ≥ 2u) ≤ P
(
max{|Xi|, |X ′i|} ≥ u

)
≤ 2P

(
|Xi| ≥ u

)
,

thus the last part of the assertion follows by the definition of parameters t∗. �

Lemma 12. Suppose that V is a real symmetric log-concave random variable. Then for
any t > 0 and λ ∈ (0, 1],

E|V |1{|V |≥t} ≤
4
λ

P(|V | ≥ t)1−λE|V |1{|V |≥λt}.

Moreover, if P(|V | ≥ t) ≤ 1/4, then E|V |1{|V |≥t} ≤ 4tP(|V | ≥ t).

Proof. Without loss of generality we may assume that P(|V | ≥ t) ≤ 1/4 (otherwise the
first estimate is trivial).

Observe that P(|V | ≥ s) = exp(−N(s)) where N : [0,∞)→ [0,∞] is convex and N(0) =
0. In particular

P(|V | ≥ γt) ≤ P(|V | ≥ t)γ for γ > 1

and

P(|V | ≥ γt) ≥ P(|V | ≥ t)γ for γ ∈ [0, 1].
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We have

E|V |1{|V |≥t} ≤
∞∑
k=0

2k+1tP(|V | ≥ 2kt) ≤ 2t
∞∑
k=0

2kP(|V | ≥ t)2k

≤ 2tP(|V | ≥ t)
∞∑
k=0

2k41−2k ≤ 4tP(|V | ≥ t).

This implies the second part of the lemma.
To conclude the proof of the first bound it is enough to observe that

E|V |1{|V |≥λt} ≥ λtP(|V | ≥ λt) ≥ λtP(|V | ≥ t)λ. �

Proof of Theorem 3. By Proposition 1 it is enough to show the lower bound. By Lemma 11
we may assume that X is symmetric. We may also obviously assume that ‖Xi‖22 = EX2

i > 0
for all i.

Let Z = (Z1, . . . , Zn), where Zi = Xi/‖Xi‖2. Then Z is log-concave, isotropic and, by
(7), E|Zi| ≥ 1/(2C1) for all i. Set Y := 2C1Z. Then Xi = aiYi and E|Yi| ≥ 1. Moreover,
since any m-dimensional projection of Z is a log-concave, isotropic m-dimensional vector,
we know by the result of Lee and Vempala [13], that it satisfies the exponential concentra-
tion with a constants Cm1/4. (In fact an easy modification of the proof below shows that
for our purposes it would be enough to have exponential concentration with a constant
Cmγ for some γ < 1/2, so one may also use Eldan’s result [6] which gives such estimates
for any γ > 1/3). So any m-dimensional projection of Y satisfies exponential concentration
with constant C2m

1/4.
Let us fix k and set t := t(k,X), then (since Xi has no atoms)

(12)
n∑
i=1

E|Xi|1{|Xi|≥t} = kt.

For l = 1, 2, . . . define

Il := {i ∈ [n] : βl−1 ≥ P(|Xi| ≥ t) ≥ βl},

where β = 2−8. By (12) there exists l such that∑
i∈Il

E|Xi|1{|Xi|≥t} ≥ kt2
−l.

Let us consider three cases.
(i) l = 1 and |I1| ≤ k. Then

E max
|I|=k

∑
i∈I
|Xi| ≥

∑
i∈I1

E|Xi|1{|Xi|≥t} ≥
1
2
kt.

(ii) l = 1 and |I1| > k. Choose J ⊂ I1 of cardinality k. Then

E max
|I|=k

∑
i∈I
|Xi| ≥

∑
i∈J

E|Xi| ≥
∑
i∈J

tP(|Xi| ≥ t) ≥ βkt.
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(iii) l > 1. By Lemma 12 (applied with λ = 1/8) we have

(13)
∑
i∈Il

E|Xi|1{|Xi|≥t/8} ≥
1
32
β−7(l−1)/8

∑
i∈Il

E|Xi|1{|Xi|≥t} ≥
1
32
β−7(l−1)/82−lkt.

Moreover for i ∈ Il, P(|Xi| ≥ t) ≤ βl−1 ≤ 1/4, so the second part of Lemma 12 yields

4t|Il|βl−1 ≥
∑
i∈Il

E|Xi|1{|Xi|≥t} ≥ kt2
−l

and |Il| ≥ β1−l2−l−2k = 27l−10k ≥ k.
Set k′ := β−7l/82−lk = 26lk. If k′ ≥ |Il| then, using (13), we estimate

E max
|I|=k

∑
i∈I
|Xi| ≥

k

|Il|
∑
i∈Il

E|Xi| ≥ β7l/82l
∑
i∈Il

E|Xi|1{|Xi|≥t/8} ≥
1
32
β7/8kt = 2−12kt.

Otherwise set X ′ = (Xi)i∈Il and Y ′ = (Yi)i∈Il . By (12) we have

kt ≥
∑
i∈Il

E|Xi|1{|Xi|≥t} ≥ |Il|tβ
l,

so |Il| ≤ kβ−l and Y ′ satisfies exponential concentration with constant α′ = C2k
1/4β−l/4.

Estimate (13) yields∑
i∈Il

E|Xi|1{|Xi|≥2−12t} ≥
∑
i∈Il

E|Xi|1{|Xi|≥t/8} ≥ 2−12k′t,

so t(k′, X ′) ≥ 2−12t. Moreover, by Proposition 7 we have (since k′ ≤ |Il|)

E max
I⊂Il,|I|=k′

∑
i∈I
|Xi| ≥

1
8 + 64α′/

√
k′
k′t(k′, X ′).

To conclude observe that
α′√
k′

= C22−lk−1/4 ≤ C2

4
and since k′ ≥ k,

E max
|I|=k

∑
i∈I
|Xi| ≥

k

k′
E max
I⊂Il,|I|=k′

∑
i∈I
|Xi| ≥

1
8 + 16C2

2−12tk. �

4. Vectors satisfying condition (3)

Proof of Theorem 2. By Proposition 1 we need to show only the lower bound. Assume first
that variables Xi have no atoms and k ≥ 4(1 + α).

Let tk = t(k,X). Then E
∑n

i=1 |Xi|1{|Xi|≥tk} = ktk. Note, that (3) implies that for all
i 6= j we have

(14) E|XiXj |1{|Xi|≥tk,|Xj |≥tk} ≤ αE|Xi|1{|Xi|≥tk}E|Xj |1{|Xj |≥tk}.

We may assume that E max|I|=k
∑

i∈I |Xi| ≤ 1
6ktk, because otherwise the lower bound

holds trivially.
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Let us define

Y :=
n∑
i=1

|Xi|1{ktk≥|Xi|≥tk} and A := (EY 2)1/2.

Since

E max
|I|=k

∑
i∈I
|Xi| ≥ E

[
1
2
ktk1{Y≥ktk/2}

]
=

1
2
ktkP

(
Y ≥ ktk

2

)
,

it suffices to bound below the probability that Y ≥ ktk/2 by a constant depending only on
α.

We have

A2 = EY 2 ≤
n∑
i=1

EX2
i 1{ktk≥|Xi|≥tk} +

∑
i 6=j

E|XiXj |1{|Xi|≥tk,|Xj |≥tk}

(14)

≤ ktkEY + α
∑
i 6=j

E|Xi|1{|Xi|≥tk}E|Xj |1{|Xj |≥tk}

≤ ktkA+ α

( n∑
i=1

E|Xi|1{|Xi|≥tk}
)2

≤ 1
2

(k2t2k +A2) + αk2t2k.

Therefore A2 ≤ (1 + 2α)k2t2k and for any l ≥ k/2 we have

EY 1{Y≥ktk/2} ≤ ltkP(Y ≥ ktk/2) +
1
ltk

EY 2

≤ ltkP(Y ≥ ktk/2) + (1 + 2α)k2l−1tk.(15)

By Corollary 9 we have (recall definition (6))
n∑
i=1

E|Xi|1{|Xi|≥ktk} ≤ E max
|I|=k

∑
i∈I
|Xi|+

∞∑
l=k+1

(
ktkP(N(ktk) ≥ l) +

∫ ∞
ktk

P(N(s) ≥ l)ds
)

≤ 1
6
ktk +

∞∑
l=k+1

(
ktkEN(ktk)2l−2 +

∫ ∞
ktk

EN(s)2l−2ds

)
≤ 1

6
ktk +

1
k

(
ktkEN(ktk)2 +

∫ ∞
ktk

EN(s)2ds

)
.(16)

Assumption (3) implies that

EN(s)2 =
n∑
i=1

P(|Xi| ≥ s) +
∑
i 6=j

P(|Xi| ≥ s, |Xj | ≥ s)

≤
n∑
i=1

P(|Xi| ≥ s) + α

(
n∑
i=1

P(|Xi| ≥ s)

)2

.
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Moreover for s ≥ ktk we have
n∑
i=1

P(|Xi| ≥ s) ≤
1
s

n∑
i=1

E|Xi|1{|Xi|≥s} ≤
ktk
s
≤ 1,

so

EN(s)2 ≤ (1 + α)
n∑
i=1

P(|Xi| ≥ s) for s ≥ ktk.

Thus

ktkEN(ktk)2 ≤ ktk(1 + α)
n∑
i=1

P(|Xi| ≥ ktk) ≤ (1 + α)
n∑
i=1

E|Xi|1{|Xi|≥ktk},

and ∫ ∞
ktk

EN(s)2ds ≤ (1 + α)
n∑
i=1

∫ ∞
ktk

P(|Xi| ≥ s)ds ≤ (1 + α)
n∑
i=1

E|Xi|1{|Xi|≥ktk}.

This together with (16) and the assumption that k ≥ 4(1 + α) implies
n∑
i=1

E|Xi|1{|Xi|≥ktk} ≤
1
3
ktk

and

EY =
n∑
i=1

E|Xi|1{|Xi|≥tk} −
n∑
i=1

E|Xi|1{|Xi|≥ktk} ≥
2
3
ktk.

Therefore

EY 1{Y≥ktk/2} ≥ EY − 1
2
ktk ≥

1
6
ktk.

This applied to (15) with l = (12 + 24α)k gives us P(Y ≥ ktk/2) ≥ (144 + 288α)−1 and
in consequence

E max
|I|=k

∑
i∈I
|Xi| ≥

1
288(1 + 2α)

kt(k,X).

Since k 7→ kt(k,X) is non-decreasing, in the case k ≤ d4(1 + α)e =: k0 we have

E max
|I|=k

|Xi| ≥
k

k0
E max
|I|=k0

|Xi| ≥
k

5 + 4α
· 1

288(1 + 2α)
k0t(k0, X)

≥ 1
288(5 + 4α)(1 + 2α)

kt(k,X).

The last step is to loose the assumption that Xi has no atoms. Note that both as-
sumption (3) and the lower bound depend only on (|Xi|)ni=1, so we may assume that Xi

are nonnegative almost surely. Consider Xε := (Xi + εYi)ni=1, where Y1, . . . , Yn are i.i.d.
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nonnegative r.v’s with EYi <∞ and a density g, independent of X. Then for every s, t > 0
we have (observe that (3) holds also for s < 0 or t < 0).

P(Xε
i ≥ s,Xε

j ≥ t) =
∫ ∞

0

∫ ∞
0

P(Xi + εyi ≥ s, Xj + εyj ≥ t)g(yi)g(yj)dyidyj

(3)

≤ α
∫ ∞

0

∫ ∞
0

P(Xi ≥ s− εyi)P(Xj ≥ t− εyj)g(yi)g(yj)dyidyj

= αP(Xε
i ≥ s)P(Xε

j ≥ t).

Thus Xε satisfies assumption (3) and has the density function for every ε > 0. Therefore
for all natural k we have

E max
|I|=k

n∑
i=1

Xε
i ≥ c(α)kt(k,Xε) ≥ c(α)kt(k,X).

Clearly, E max|I|=k
∑n

i=1X
ε
i → E max|I|=k

∑n
i=1Xi as ε → 0, so the lower bound holds in

the case of arbitrary X satisfying (3). �

We may use Theorem 2 to obtain a comparison of weak and strong moments for the
supremum norm:

Corollary 13. Let X be an n-dimensional centered random vector satisfying condition
(3). Assume that

(17) ‖Xi‖2p ≤ β‖Xi‖p for every p ≥ 2 and i = 1, . . . , n.

Then the following comparison of weak and strong moments for the supremum norm holds:
for all a ∈ Rn and all p ≥ 1,(

E max
i≤n
|aiXi|p

)1/p ≤ C(α, β)
[
E max

i≤n
|aiXi|+ max

i≤n

(
E|aiXi|p

)1/p]
,

where C(α, β) is a constant depending only on α and β.

Proof. Let X ′ = (X ′i)i≤n be a decoupled version of X. For any p > 0 a random vector
(|aiXi|p)i≤n satisfies condition (3), so by Theorem 2(

E max
i≤n
|aiXi|p

)1/p ∼ (E max
i≤n
|aiX ′i|p

)1/p
for all p > 0, up to a constant depending only on α. The coordinates of X ′ are independent
and satisfy condition (17), so due to [11, Theorem 1.1] the comparison of weak and strong
moments of X ′ holds, i.e. for p ≥ 1,(

E max
i≤n
|aiX ′i|p

)1/p ≤ C(β)
[
E max

i≤n
|aiX ′i|+ max

i≤n

(
E|aiX ′i|p

)1/p]
,

where C(β) depends only on β. These two observations yield the assertion. �



ORDER STATISTICS OF LOG-CONCAVE VECTORS 15

5. Lower estimates for order statistics

The next lemma shows the relation between t(k,X) and t∗(k,X) for log-concave vectors
X.

Lemma 14. Let X be a symmetric log-concave random vector in Rn. For any 1 ≤ k ≤ n
we have

1
3

(
t∗(k,X) +

1
k

max
|I|=k

∑
i∈I

E|Xi|

)
≤ t(k,X) ≤ 4

(
t∗(k,X) +

1
k

max
|I|=k

∑
i∈I

E|Xi|

)
.

Proof. Let tk := t(k,X) and t∗k := t∗(k,X). We may assume that any Xi is not identically
equal to 0. Then

∑n
i=1 P(|Xi| ≥ t∗k) = k and

∑n
i=1 E|Xi|1{|Xi|≥tk} = ktk.

Obviously t∗k ≤ tk. Also for any |I| = k we have∑
i∈I

E|Xi| ≤
∑
i∈I

(
tk + E|Xi|1{|Xi|≥tk}

)
≤|I|tk + ktk = 2ktk.

To prove the upper bound set

I1 := {i ∈ [n] : P(|Xi| ≥ t∗k) ≥ 1/4}.
We have

k ≥
∑
i∈|I1|

P(|Xi| ≥ t∗k) ≥
1
4
|I1|,

so |I1| ≤ 4k. Hence ∑
i∈I1

E|Xi|1{|Xi|≥t∗k} ≤
∑
i∈I1

E|Xi| ≤ 4 max
|I|=k

∑
i∈I

E|Xi|.

Moreover by the second part of Lemma 12 we get

E|Xi|1{|Xi|≥t∗k} ≤ 4t∗kP(|Xi| ≥ t∗k) for i /∈ I1,

so ∑
i/∈I1

E|Xi|1{|Xi|≥t∗k} ≤ 4t∗k
n∑
i=1

P(|Xi| ≥ t∗k) ≤ 4kt∗k.

Hence if s = 4t∗k + 4
k max|I|=k

∑
i∈I E|Xi| then

n∑
i=1

E|Xi|1{|Xi|≥s} ≤
n∑
i=1

E|Xi|1{|Xi|≥t∗k} ≤ 4 max
|I|=k

∑
i∈I

E|Xi|+ 4kt∗k = ks,

that is tk ≤ s. �

To derive bounds for order statistics we will also need a few facts about log-concave
vectors.

Lemma 15. Assume that Z is an isotropic one- or two-dimensional log-concave random
vector with a density g. Then g(t) ≤ C for all t. If Z is one-dimensional, then also g(t) ≥ c
for all |t| ≤ t0, where t0 > 0 is an absolute constant.
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Proof. We will use a classical result (see [4, Theorem 2.2.2, Proposition 3.3.1, Proposition
3.3.2, and Proposition 2.5.9]): ‖g‖sup ∼ g(0) ∼ 1 (note that here we use the assumption
that Z is isotropic, in particular that EZ = 0, and that the dimension of Z is 1 or 2). This
implies the upper bound on g.

In order to get the lower bound in the one-dimensional case, it suffices to prove that
g(u) ≥ c for |u| = εE|Z| ≥ (2C1)−1ε, where 1/4 > ε > 0 is fixed and its value will be chosen
later (then by the log-concavity we get g(u)sg(0)1−s ≤ g(su) for all s ∈ (0, 1)). Since −Z
is again isotropic we may assume that u ≥ 0.

If g(u) ≥ g(0)/e, then we are done. Otherwise by log-concavity of g we get

P(Z ≥ u) =
∫ ∞
u

g(s)ds ≤
∫ ∞
u

g(u)s/ug(0)−s/u+1ds ≤ g(0)
∫ ∞
u

e−s/uds ≤ C0u ≤ C0ε.

On the other hand, Z has mean zero, so E|Z| = 2EZ+ and by the Paley–Zygmund inequal-
ity and (7) we have

P(Z ≥ u) = P(Z+ ≥ 2εEZ+) ≥ (1− 2ε)2 (EZ+)2

EZ2
+

≥ 1
16

(E|Z|)2

EZ2
≥ c0.

For ε < c0/C0 we get a contradiction. �

Lemma 16. Let Y be a mean zero log-concave random variable and let P(|Y | ≥ t) ≤ p for
some p > 0. Then

P
(
|Y | ≥ t

2

)
≥ 1
√
ep

P(|Y | ≥ t).

Proof. By the Grünbaum inequality (8) we have P(Y ≥ 0) ≥ 1/e, hence

P
(
Y ≥ t

2

)
≥
√

P(Y ≥ t)P(Y ≥ 0) ≥ 1√
e

√
P(Y ≥ t) ≥ 1

√
ep

P(Y ≥ t).

Since −Y satisfies the same assumptions as Y we also have

P
(
−Y ≥ t

2

)
≥ 1
√
ep

P(−Y ≥ t). �

Lemma 17. Let Y be a mean zero log-concave random variable and let P(|Y | ≥ t) ≥ p for
some p > 0. Then there exists a universal constant C such that

P(|Y | ≤ λt) ≤ Cλ
√
p

P(|Y | ≤ t) for λ ∈ [0, 1].

Proof. Without loss of generality we may assume that EY 2 = 1. Then by Chebyshev’s
inequality t ≤ p−1/2. Let g be the density of Y . By Lemma 15 we know that ‖g‖∞ ≤ C
and g(t) ≥ c on [−t0, t0], where c, C and t0 ∈ (0, 1) are universal constants. Thus

P(|Y | ≤ t) ≥ P(|Y | ≤ t0
√
pt) ≥ 2ct0

√
pt,

and
P(|Y | ≤ λt) ≤ 2‖g‖∞λt ≤ 2Cλt ≤ Cλ

ct0
√
p

P(|Y | ≤ t). �
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Now we are ready to give a proof of the lower bound in Theorem 4. The next proposition
is a key part of it.

Proposition 18. Let X be a mean zero log-concave n-dimensional random vector with
uncorrelated coordinates and let α > 1/4. Suppose that

P
(
|Xi| ≥ t∗(α,X)

)
≤ 1
C3

for all i.

Then

P
(
b4αc- max

i
|Xi| ≥

1
C4
t∗(α,X)

)
≥ 3

4
.

Proof. Let t∗ = t∗(α,X), k := b4αc and L = b
√
C3

4
√
e
c. We will choose C3 in such a way that

L is large, in particular we may assume that L ≥ 2. Observe also that α =
∑n

i=1 P(|Xi| ≥
t∗(α,X)) ≤ nC−1

3 , thus Lk ≤ C1/2
3 e−1/2α ≤ e−1/2C

−1/2
3 n ≤ n if C3 ≥ 1 > 1

e . Hence

(18) k- max
i
|Xi| ≥

1
k(L− 1)

Lk∑
l=k+1

l- max
i
|Xi| =

1
k(L− 1)

(
max
|I|=Lk

∑
i∈I
|Xi|−max

|I|=k

∑
i∈I
|Xi|

)
.

Lemma 16 and the definition of t∗(α,X) yield
n∑
i=1

P
(
|Xi| ≥

1
2
t∗
)
≥
√
C3√
e
α ≥ Lk.

This yields t(Lk,X) ≥ t∗(Lk,X) ≥ t∗

2 and by Theorem 3 we have

E max
|I|=Lk

∑
i∈I
|Xi| ≥ c1Lk

t∗

2
.

Since for any norm P(‖X‖ ≤ tE‖X‖) ≤ Ct for t > 0 (see [10, Corollary 1]) we have

(19) P

(
max
|I|=Lk

∑
i∈I
|Xi| ≥ c2Lkt

∗

)
≥ 7

8
.

Let X ′ be an independent copy of X. By the Paley-Zygmund inequality and (7), P(|Xi| ≥
1
2E|Xi|) ≥ (E|Xi|)2

4E|Xi|2 > 1
C3

if C3 > 16C2
1 , so 1

2E|Xi| ≤ t∗. Moreover it is easy to verify that
k = b4αc > α for α > 1/4, thus t∗(k,X) ≤ t∗(α,X) = t∗. Hence Proposition 1, Lemma
14, and inequality (10) yield

E max
|I|=k

∑
i∈I
|Xi| = E max

|I|=k

∑
i∈I
|Xi − EX ′i| ≤ E max

|I|=k

∑
i∈I
|Xi −X ′i| ≤ E max

|I|=2k

∑
i∈I
|Xi −X ′i|

≤ 4kt(2k,X −X ′) ≤ 16k
(
t∗(2k,X −X ′) + max

i
E|Xi −X ′i|

)
≤ 16k

(
2t∗(k,X) + 2 max

i
E|Xi|

)
≤ 96kt∗.
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Therefore

(20) P

(
max
|I|=k

∑
i∈I
|Xi| ≥ 800kt∗

)
≤ 1

8
.

Estimates (18)-(20) yield

P
(
k- max

i
|Xi| ≥

1
L− 1

(c2L− 800)t∗
)
≥ 3

4
,

so it is enough to choose C3 in such a way that L ≥ 1600/c2. �

Proof of the first part of Theorem 4. Let t∗ = t∗(k − 1/2, X) and C3 be as in Proposition
18. It is enough to consider the case when t∗ > 0, then P(|Xi| = t∗) = 0 for all i and∑n

i=1 P(|Xi| ≥ t∗) = k − 1/2. Define

I1 :=
{
i ≤ n : P(|Xi| ≥ t∗) ≤

1
C3

}
, α :=

∑
i∈I1

P(|Xi| ≥ t∗),

I2 :=
{
i ≤ n : P(|Xi| ≥ t∗) >

1
C3

}
, β :=

∑
i∈I2

P(|Xi| ≥ t∗).

If β = 0 then α = k − 1/2, |I1| = {1, . . . , n}, and the assertion immediately follows by
Proposition 18 since 4α ≥ k.

Otherwise define
Ñ(t) :=

∑
i∈I2

1{|Xi|≤t}.

We have by Lemma 17 applied with p = 1/C3

EÑ(λt∗) =
∑
i∈I2

P(|Xi| ≤ λt∗) ≤ C5λ
∑
i∈I2

P(|Xi| ≤ t∗) = C5λ(|I2| − β).

Thus

P
(
dβe- max

i∈I2
|Xi| ≤ λt∗

)
= P(Ñ(λt∗) ≥ |I2|+ 1− dβe) ≤ 1

|I2|+ 1− dβe
EÑ(λt∗) ≤ C5λ.

Therefore

P
(
dβe- max

i∈I2
|Xi| ≥

1
4C5

t∗
)
≥ 3

4
.

If α < 1/2 then dβe = k and the assertion easily follows. Otherwise Proposition 18 yields

P
(
b4αc- max

i∈I1
|Xi| ≥

1
C4
t∗
)
≥ 3

4
.

Observe that for α ≥ 1/2 we have b4αc+ dβe ≥ 4α− 1 + β ≥ α+ 1/2 + β = k, so
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P
(
k- max

i
|Xi| ≥ min

{
t∗

C4
,
t∗

4C5

})
≥ P

(
b4αc- max

i∈I1
|Xi| ≥

1
C4
t∗, dβe- max

i∈I2
|Xi| ≥

1
4C5

t∗
)

≥ 1
2
. �

Remark 19. A modification of the proof above shows that under the assumptions of The-
orem 4 for any p < 1 there exists c(p) > 0 such that

P
(
k- max

i≤n
|Xi| ≥ c(p)t∗(k − 1/2, X)

)
≥ p.

6. Upper estimates for order statistics

We will need a few more facts concerning log-concave vectors.

Lemma 20. Suppose that X is a mean zero log-concave random vector with uncorrelated
coordinates. Then for any i 6= j and s > 0,

P(|Xi| ≤ s, |Xj | ≤ s) ≤ C6P(|Xi| ≤ s)P(|Xj | ≤ s).

Proof. Let C7, c3 and t0 be the constants from Lemma 15. If s > t0‖Xi‖2 then, by Lemma
15, P(|Xi| ≤ s) ≥ 2c3t0 and the assertion is obvious (with any C6 ≥ (2c3t0)−1). Thus we
will assume that s ≤ t0 min{‖Xi‖2, ‖Xj‖2}.

Let X̃i = Xi/‖Xi‖2 and let gij be the density of (X̃i, X̃j). By Lemma 15 we know that
‖gi,j‖∞ ≤ C7, so

P(|Xi| ≤ s, |Xj | ≤ s) = P(|X̃i| ≤ s/‖Xi‖2, |X̃j | ≤ s/‖Xj‖2) ≤ C7
s2

‖Xi‖2‖Xj‖2
.

On the other hand the second part of Lemma 15 yields

P(|Xi| ≤ s)P(|Xj | ≤ s) ≥
4c2

3s
2

‖Xi‖2‖Xj‖2
. �

Lemma 21. Let Y be a log-concave random variable. Then

P(|Y | ≥ ut) ≤ P(|Y | ≥ t)(u−1)/2 for u ≥ 1, t ≥ 0.

Proof. We may assume that Y is non-degenerate (otherwise the statement is obvious), in
particular Y has no atoms. Log-concavity of Y yields

P(Y ≥ t) ≥ P(Y ≥ −t)
u−1
u+1 P(Y ≥ ut)

2
u+1 .

Hence

P(Y ≥ ut) ≤
(

P(Y ≥ t)
P(Y ≥ −t)

)u+1
2

P(Y ≥ −t) =
(

1− P(|Y | ≤ t)
P(Y ≥ −t)

)u+1
2

P(Y ≥ −t)

≤ (1− P(|Y | ≤ t))
u+1

2 P(Y ≥ −t) = P(|Y | ≥ t)
u+1

2 P(Y ≥ −t).



20 RAFA L LATA LA AND MARTA STRZELECKA

Since −Y satisfies the same assumptions as Y , we also have

P(Y ≤ −ut) ≤ P(|Y | ≥ t)
u+1

2 P(Y ≤ t).
Adding both estimates we get

P(|Y | ≥ ut) ≤ P(|Y | ≥ t)
u+1

2 (1 + P(|Y | ≤ t)) = P(|Y | ≥ t)
u−1

2 (1− P(|Y | ≤ t)2). �

Lemma 22. Suppose that Y is a log-concave random variable and P(|Y | ≤ t) ≤ 1
10 . Then

P(|Y | ≤ 21t) ≥ 5P(|Y | ≤ t).

Proof. Let P(|Y | ≤ t) = p then by Lemma 21

P(|Y | ≤ 21t) = 1− P(|Y | > 21t) ≥ 1− P(|Y | > t)10 = 1− (1− p)10 ≥ 10p− 45p2 ≥ 5p. �

Let us now prove (4) and see how it implies the second part of Theorem 4. Then we
give a proof of (5).

Proof of (4). Fix k and set t∗ := t∗(k−1/2, X). Then
∑n

i=1 P(|Xi| ≥ t∗) = k−1/2. Define

I1 :=
{
i ≤ n : P(|Xi| ≥ t∗) ≤

9
10

}
, α :=

∑
i∈I1

P(|Xi| ≥ t∗),(21)

I2 :=
{
i ≤ n : P(|Xi| ≥ t∗) >

9
10

}
, β :=

∑
i∈I2

P(|Xi| ≥ t∗).(22)

Observe that for u > 3 and 1 ≤ l ≤ |I1| we have by Lemma 21

P(l- max
i∈I1
|Xi| ≥ ut∗) ≤ E

1
l

∑
i∈I1

1{|Xi|≥ut∗} =
1
l

∑
i∈I1

P(|Xi| ≥ ut∗)(23)

≤ 1
l

∑
i∈I1

P(|Xi| ≥ t∗)(u−1)/2 ≤ α

l

(
9
10

)(u−3)/2

.

Consider two cases.
Case 1. β > |I2| − 1/2. Then |I2| < β + 1/2 ≤ k, so k − |I2| ≥ 1 and

α = k − 1
2
− β ≤ k − |I2|.

Therefore by (23)

P (k- max |Xi| ≥ 5t∗) ≤ P
(

(k − |I2|)- max
i∈I1
|Xi| ≥ 5t∗

)
≤ 9

10
.

Case 2. β ≤ |I2| − 1/2. Observe that for any disjoint sets J1, J2 and integers l,m such
that l ≤ |J1|, m ≤ |J2| we have

(24) (l +m− 1)- max
i∈J1∪J2

|xi| ≤ max
{
l- max
i∈J1

|xi|,m- max
i∈J2

|xi|
}
≤ l- max

i∈J1

|xi|+m- max
i∈J2

|xi|.

Since
dαe+ dβe ≤ α+ β + 2 < k + 2
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we have dαe+ dβe ≤ k + 1 and, by (24),

k- max
i
|Xi| ≤ dαe- max

i∈I1
|Xi|+ dβe- max

i∈I2
|Xi|.

Estimate (23) yields

P
(
dαe- max

i∈I1
|Xi| ≥ ut∗

)
≤
(

9
10

)(u−3)/2

for u ≥ 3.

To estimate dβe- maxi∈I2 |Xi| = (|I2|+ 1−dβe)- mini∈I2 |Xi| observe that by Lemma 22,
the definition of I2 and assumptions on β,∑

i∈I2

P(|Xi| ≤ 21t∗) ≥ 5
∑
i∈I2

P(|Xi| ≤ t∗) = 5(|I2| − β) ≥ 2(|I2|+ 1− dβe).

Set l := (|I2|+ 1− dβe) and

Ñ(t) :=
∑
i∈I2

1{|Xi|≤t}.

Note that we know already that EÑ(21t∗) ≥ 2l. Thus the Paley-Zygmund inequality
implies

P
(
dβe- max

i∈I2
|Xi| ≤ 21t∗

)
= P

(
l- min
i∈I2
|Xi| ≤ 21t∗

)
≥ P(Ñ(21t∗) ≥ l)

≥ P
(
Ñ(21t∗) ≥ 1

2
EÑ(21t∗)

)
≥ 1

4
(EÑ(21t∗))2

EÑ(21t∗)2
.

However Lemma 20 yields

EÑ(21t∗)2 ≤ EÑ(21t∗) + C6(EÑ(21t∗)))2 ≤ (C6 + 1)(EÑ(21t∗))2.

Therefore

P
(
k- max

i
|Xi| > (21 + u)t∗

)
≤ P

(
dαe- max

i∈I1
|Xi| ≥ ut∗

)
+ P

(
dβe- max

i∈I2
|Xi| > 21t∗

)
≤
(

9
10

)(u−3)/2

+ 1− 1
4(C6 + 1)

≤ 1− 1
5(C6 + 1)

for sufficiently large u. �

The unconditionality assumption plays a crucial role in the proof of the next lemma,
which allows to derive the second part of Theorem 4 from estimate (4).

Lemma 23. Let X be an unconditional log-concave n-dimensional random vector. Then
for any 1 ≤ k ≤ n,

P
(
k- max

i≤n
|Xi| ≥ ut

)
≤ P

(
k- max

i≤n
|Xi| ≥ t

)u
for u > 1, t > 0.
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Proof. Let ν be the law of (|X1|, . . . , |Xn|). Then ν is log-concave on R+
n . Define for t > 0,

At :=
{
x ∈ R+

n : k- max
i≤n
|xi| ≥ t

}
.

It is easy to check that 1
uAut + (1− 1

u)Rn
+ ⊂ At, hence

P
(
k- max

i≤n
|Xi| ≥ t

)
= ν(At) ≥ ν(Aut)1/uν(Rn

+)1−1/u = P
(
k- max

i≤n
|Xi| ≥ ut

)1/u

. �

Proof of the second part of Theorem 4. Estimate (4) together with Lemma 23 yields

P
(
k- max

i≤n
|Xi| ≥ Cut∗(k − 1/2, X)

)
≤ (1− c)u for u ≥ 1,

and the assertion follows by integration by parts. �

Proof of (5). Define I1, I2, α and β by (21) and (22), where this time t∗ = t∗(k−k5/6/2, X).
Estimate (23) is still valid so integration by parts yields

El- max
i∈I1
|Xi| ≤

(
3 + 20

α

l

)
t∗.

Set

kβ :=
⌈
β +

1
2
k5/6

⌉
.

Observe that
dαe+ kβ < α+ β +

1
2
k5/6 + 2 = k + 2.

Hence dαe+ kβ ≤ k + 1.
If kβ > |I2|, then k − |I2| ≥ dαe+ kβ − 1− |I2| ≥ dαe, so

Ek- max
i
|Xi| ≤ E(k − |I2|)- max

i∈I1
|Xi| ≤ Edαe- max

i∈I1
|Xi| ≤ 23t∗.

Therefore it suffices to consider case kβ ≤ |I2| only.
Since dαe+ kβ − 1 ≤ k and kβ ≤ |I2|, we have by (24),

Ek- max
i
|Xi| ≤ Edαe- max

i∈I1
|Xi|+ Ekβ- max

i∈I2
|Xi| ≤ 23t∗ + Ekβ- max

i∈I2
|Xi|.

Since β ≤ k − 1
2k

5/6 and x→ x− 1
2x

5/6 is increasing for x ≥ 1/2 we have

β ≤ β +
1
2
k5/6 − 1

2

(
β +

1
2
k5/6

)5/6

≤ kβ −
1
2
k

5/6
β .

Therefore, considering (Xi)i∈I2 instead of X and kβ instead of k it is enough to show
the following claim:
Let s > 0, n ≥ k and let X be an n-dimensional log-concave vector with uncorrelated
coordinates. Suppose that∑

i≤n
P(|Xi| ≥ s) ≤ k −

1
2
k5/6 and min

i≤n
P(|Xi| ≥ s) ≥ 9/10
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then
Ek- max

i≤n
|Xi| ≤ C8s.

We will show the claim by induction on k. For k = 1 the statement is obvious (since the
assumptions are contradictory). Suppose now that k ≥ 2 and the assertion holds for k− 1.

Case 1. P(|Xi0 | ≥ s) ≥ 1− 5
12k
−1/6 for some 1 ≤ i0 ≤ n. Then∑

i 6=i0

P(|Xi| ≥ s) ≤ k −
1
2
k5/6 −

(
1− 5

12
k−1/6

)
≤ k − 1− 1

2
(k − 1)5/6,

where to get the last inequality we used that x5/6 is concave on R+, so (1− t)5/6 ≤ 1− 5
6 t

for t = 1/k. Therefore by the induction assumption applied to (Xi)i 6=i0 ,

Ek- max
i
|Xi| ≤ E(k − 1)- max

i 6=i0
|Xi| ≤ C8s.

Case 2. P(|Xi| ≤ s) ≥ 5
12k
−1/6 for all i. Applying Lemma 15 we get

5
12
k−1/6 ≤ P

(
|Xi|
‖Xi‖2

≤ s

‖Xi‖2

)
≤ C s

‖Xi‖2
,

so maxi ‖Xi‖2 ≤ Ck1/6s. Moreover n ≤ 10
9 k. Therefore by the result of Lee and Vempala

[13] X satisfies the exponential concentration with α ≤ C9k
5/12s.

Let l = dk − 1
2(k5/6 − 1)e then s ≥ t∗(l − 1/2, X) and k − l + 1 ≥ 1

2(k5/6 − 1) ≥ 1
9k

5/6.
Let

A :=
{
x ∈ Rn : l- max

i
|xi| ≤ C10s

}
.

By (4) (applied with l instead of k) we have P(X ∈ A) ≥ c4. Observe that

k- max
i
|xi| ≥ C10s+ u⇒ dist(x,A) ≥

√
k − l + 1u ≥ 1

3
k5/12u.

Therefore by Lemma 10 we get

P
(
k- max

i
|Xi| ≥ C10s+ 3C9us

)
≤ exp (−(u+ ln c4)+) .

Integration by parts yields

Ek- max
i
|Xi| ≤ (C10 + 3C9(1− ln c4)) s

and the induction step is shown in this case provided that C8 ≥ C10 + 3C9(1− ln c4). �

To obtain Corollary 6 we used the following lemma.

Lemma 24. Assume that X is a symmetric isotropic log-concave vector in Rn. Then

(25) t∗(p,X) ∼ n− p
n

for n > p ≥ n/4.

and

(26) t∗(k/2, X) ∼ t∗(k,X) ∼ t(k,X) for k ≤ n/2.
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Proof. Observe that
n∑
i=1

P(|Xi| ≤ t∗(p,X)) = n− p.

Thus Lemma 15 implies that for p ≥ c5n (with c5 ∈ (1
2 , 1)) we have t∗(p,X) ∼ n−p

n .
Moreover, by the Markov inequality

n∑
i=1

P(|Xi| ≥ 4) ≤ n

16
,

so t∗(n/4, X) ≤ 4. Since p 7→ t∗(p,X) is non-increasing, we know that t∗(p,X) ∼ 1 for
n/4 ≤ p ≤ c5n.

Now we will prove (26). We have

t∗(k,X) ≤ t∗(k/2, X) ≤ t(k/2, X) ≤ 2t(k,X),

so it suffices to show that t∗(k,X) ≥ ct(k,X). To this end we fix k ≤ n/2. By (25) we
know that t := C11t

∗(k,X) ≥ C11t
∗(n/2, X) ≥ e, so the isotropicity of X and Markov’s

inequality yield P(|Xi| ≥ t) ≤ e−2 for all i. We may also assume that t ≥ t∗(k,X).
Integration by parts and Lemma 21 yield

E|Xi|1{|Xi|≥t} ≤ 3tP(|Xi| ≥ t) + t

∫ ∞
0

P(|Xi| ≥ (s+ 3)t)ds

≤ 3tP(|Xi| ≥ t) + t

∫ ∞
0

P(|Xi| ≥ t)e−sds ≤ 4tP(|Xi| ≥ t).

Therefore
n∑
i=1

E|Xi|1{|Xi|≥t} ≤ 4t
n∑
i=1

P(|Xi| ≥ t) ≤ 4t
n∑
i=1

P(|Xi| ≥ t∗(k,X)) ≤ 4kt,

so t(k,X) ≤ 4C11t
∗(k,X). �
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