C OLLOQUIUM MATHEMATICUM

A NOTE ON SUMS OF INDEPENDENT UNIFORMLY DISTRIBUTED RANDOM VARIABLES

By
RAFAE LATAEA and KRZYSZTOF OLESZKIEWICZ (WARSZAWA)
Introduction. Let $\left(t_{i}\right)$ be a sequence of independent random variables uniformly distributed on $[-1,1]$. We are looking for the best constants A_{p} and B_{p} such that for every sequence $\left(a_{i}\right)$ of real numbers the following inequalities hold:

$$
A_{p}\left(E\left|\sum_{i=1}^{n} a_{i} t_{i}\right|^{2}\right)^{1 / 2} \leq\left(E\left|\sum_{i=1}^{n} a_{i} t_{i}\right|^{p}\right)^{1 / p} \leq B_{p}\left(E\left|\sum_{i=1}^{n} a_{i} t_{i}\right|^{2}\right)^{1 / 2}
$$

These inequalities with the best possible constants have some importance for geometric problems and elsewhere. Some estimates for A_{p} and B_{p} were found by K. Ball [1]. The values of $B_{2 m}$ for m positive integers are known (cf. [4], Chapter 12.G).

Let g be a standard normal variable and

$$
\gamma_{p}=\left(E|g|^{p}\right)^{1 / p}=\sqrt{2}\left(\frac{\Gamma\left(\frac{p+1}{2}\right)}{\sqrt{\pi}}\right)^{1 / p}
$$

We will prove that

$$
A_{p}=\left\{\begin{array}{ll}
\gamma_{p} & \text { for } p \in[1,2], \\
\frac{3^{1 / 2}}{(p+1)^{1 / p}} & \text { for } p \geq 2,
\end{array} \quad B_{p}= \begin{cases}\frac{3^{1 / 2}}{(p+1)^{1 / p}} & \text { for } p \in[1,2] \\
\gamma_{p} & \text { for } p \geq 2\end{cases}\right.
$$

The same inequalities for a Bernoulli sequence $\left(\varepsilon_{i}\right)$, i.e. the sequence of independent symmetric random variables taking on values ± 1, were studied by Haagerup [3]. We will not use Haagerup's results, but it should be pointed out that they immediately yield the values of some A_{p} and B_{p} (since $\sum_{i=1}^{\infty} 2^{-i} \varepsilon_{i}$ has the same distribution as each of t_{i}).
I. The inequalities in the real case. We start with some well known facts about symmetric unimodal variables (cf. [2]); we present the proofs for completeness.

Definition 1. A random real variable X is called symmetric unimodal (s.u.) if it has a density with respect to the Lebesgue measure and the density function is symmetric and nonincreasing on $[0, \infty)$.

Lemma 1. A real random variable X is s.u. if and only if there exists a probability measure μ on $[0, \infty)$ such that the density function $g(x)$ of X is

$$
g(x)=\int_{0}^{\infty} \frac{1}{2 t} \chi_{[-t, t]}(x) d \mu(t) \quad \text { for } x \in \mathbb{R} .
$$

Proof. Let $g(x)$ be the density of some s.u. random variable. Since g is nonincreasing on $[0, \infty)$ we can assume that $g(x)$ is left-continuous for $x>0$. We define the measure ν on $[0, \infty)$ by $\nu[x, \infty)=g(x)$ for $x>0$ and let $\mu(t)=2 t \nu(t)$. We have, for $x>0$,

$$
g(x)=\int_{0}^{\infty} \chi_{[-t, t]}(x) d \nu(t)=\int_{0}^{\infty} \frac{1}{2 t} \chi_{[-t, t]}(x) d \mu(t)
$$

For $x<0$ the above formula holds by symmetry.
Since

$$
\int_{0}^{\infty} d \mu(t)=\int_{0}^{\infty} 2 t d \nu(t)=\int_{0}^{\infty} \int \chi_{[-t, t]}(x) d x d \nu(t)=\int g(x) d x=1
$$

μ is a probability measure.
If μ and $g(x)$ satisfy the lemma's assumptions then $g(x)$ is obviously symmetric and monotone on $[0, \infty)$ and since as above $\int g(x) d x=1, g(x)$ is the density of some random s.u. variable.

Lemma 2. If $X=\sum_{i=1}^{n} X_{i}$ and X_{i} are independent s.u. random variables, then X is s.u. In particular, if $X=\sum_{i=1}^{n} a_{i} t_{i}$, where the t_{i} are independent random variables uniformly distributed on $[-1,1]$ and $a_{i} \in \mathbb{R}$, then X is symmetric unimodal.

Proof. It suffices to prove the lemma for $n=2$ and proceed by induction.

Let X_{1} and X_{2} be independent s.u. variables with density functions g_{1}, g_{2} and measures μ_{1}, μ_{2} as in Lemma 1. Then $X_{1}+X_{2}$ has the density

$$
g(x)=g_{1} * g_{2}(x)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{4 t s} \chi_{[-t, t]} * \chi_{[-s, s]}(x) d \mu(t) d \mu(s)
$$

and obviously g is symmetric and nonincreasing on $[0, \infty)$.
Corollary 1. Let $p>q>0$ and X_{1}, \ldots, X_{n} be a sequence of independent symmetric unimodal random variables. Then

$$
(p+1)^{1 / p}\left(E\left|\sum_{i=1}^{n} X_{i}\right|^{p}\right)^{1 / p} \geq(q+1)^{1 / q}\left(E\left|\sum_{i=1}^{n} X_{i}\right|^{q}\right)^{1 / q}
$$

Proof. By Lemma 2, the random variable $X=\sum_{i=1}^{n} X_{i}$ is s.u. Let $g(x)$ be the density of X and μ the measure given for X by Lemma 1 . Then

$$
\begin{aligned}
\left(E\left|\sum_{i=1}^{n} X_{i}\right|^{p}\right)^{q / p} & =\left(\int_{\mathbb{R}}|x|^{p} \int_{0}^{\infty} \frac{1}{2 t} \chi_{[-t, t]}(x) d \mu(t) d x\right)^{q / p} \\
& =\left(\int_{0}^{\infty}\left(\frac{1}{2 t} \int_{\mathbb{R}}|x|^{p} \chi_{[-t, t]}(x) d x\right) d \mu(t)\right)^{q / p}
\end{aligned}
$$

So by the Jensen inequality,

$$
\begin{aligned}
\left(E\left|\sum_{i=1}^{n} X_{i}\right|^{p}\right)^{q / p} & \geq \int_{0}^{\infty}\left(\frac{1}{2 t} \int_{\mathbb{R}}|x|^{p} \chi_{[-t, t]}(x) d x\right)^{q / p} d \mu(t) \\
& =\int_{0}^{\infty} \frac{q+1}{(p+1)^{q / p}}\left(\frac{1}{2 t} \int_{\mathbb{R}}|x|^{q} \chi_{[-t, t]}(x) d x\right) d \mu(t) \\
& =\frac{q+1}{(p+1)^{q / p}}\left(\int_{\mathbb{R}} \int_{0}^{\infty}|x|^{q} \frac{1}{2 t} \chi_{[-t, t]}(x) d \mu(t) d x\right) \\
& =\frac{q+1}{(p+1)^{q / p}}\left(E\left|\sum_{i=1}^{n} X_{i}\right|^{q}\right)
\end{aligned}
$$

Lemma 3. Let $p \geq 1$ and define
$G(t)=\left\{\begin{array}{l}(p+2) \frac{(t+1)^{p+1}-(t-1)^{p+1}}{t^{2}}-\frac{(t+1)^{p+2}-(t-1)^{p+2}}{t^{3}} \\ (p+2) \frac{(1+t)^{p+1}+(1-t)^{p+1}}{t^{2}}-\frac{(1+t)^{p+2}-(1-t)^{p+2}}{t^{3}} \geq 1, \\ \text { for } 0<t<1 .\end{array}\right.$
Then G is nondecreasing on $(0, \infty)$ if $p \geq 2$ and nonincreasing if $1 \leq p \leq 2$.
The proof is based on the following lemma:
Lemma 4. Let $p \geq 1$ and let

$$
\begin{array}{rlrl}
f_{1}(t)= & (p-1)\left((1+t)^{p}-(1-t)^{p}\right) & \\
& -p\left((1+t)^{p-1}-(1-t)^{p-1}\right) & \text { for } t \in[0,1] \\
f_{2}(t)= & (1+t)^{p}\left(\left(p^{2}-1\right) t^{2}-3 p t+3\right) & \\
& -(1-t)^{p}\left(\left(p^{2}-1\right) t^{2}+3 p t+3\right) \quad \text { for } t \in[0,1] \\
f_{3}(t)= & (t+1)^{p}\left(\left(p^{2}-1\right) t^{2}-3 p t+3\right) & & \\
& -(t-1)^{p}\left(\left(p^{2}-1\right) t^{2}+3 p t+3\right) \quad & \text { for } t>1 .
\end{array}
$$

Then f_{1}, f_{2} and f_{3} are nonnegative for $p \geq 2$ and nonpositive for $1 \leq p \leq 2$.

Proof. Assume first that $p \geq 2$. We have

- $f_{1}(0)=0$ and

$$
f_{1}^{\prime}(t)=p(p-1) t\left((1+t)^{p-2}-(1-t)^{p-2}\right) \geq 0 \quad \text { for } t \in[0,1]
$$

- $f_{2}(0)=0$ and

$$
f_{2}^{\prime}(t)=(p+2)(p+1) t f_{1}(t) \geq 0 \quad \text { for } t \in[0,1] .
$$

- $f_{3}(t)=3\left(t^{2}-1\right)^{2}\left((t+1)^{p-2}-(t-1)^{p-2}\right)$

$$
\begin{aligned}
& +(p-2) t\left[\left((p+2) t^{2}-3\right)\left((t+1)^{p-1}-(t-1)^{p-1}\right)\right. \\
& \left.+(p-1) t\left((t+1)^{p-1}+(t-1)^{p-1}\right)\right] \geq 0 \quad \text { for } t>1 .
\end{aligned}
$$

For $p \in[1,2]$ the proof is analogous.
Proof of Lemma 3. Since $G(t)$ is continuous it suffices to show that $G(t)$ is nondecreasing (nonincreasing for $p \in[1,2]$) on $(0,1)$ and $(1, \infty)$. But

$$
G^{\prime}(t)= \begin{cases}t^{-4} f_{3}(t) & \text { if } t>1, \\ t^{-4} f_{2}(t) & \text { if } 0<t<1 .\end{cases}
$$

Hence $G^{\prime}(t) \geq 0$ for $p \geq 2$ and $G^{\prime}(t) \leq 0$ for $1 \leq p \leq 2$, by Lemma 4 .
Lemma 5. If t_{1}, t_{2}, t_{3} are independent random variables uniformly distributed on $[-1,1]$ and $a, b, c, d>0, a^{2}+b^{2}=c^{2}+d^{2}$ with $c \geq a \geq b \geq d$, then

$$
E\left|t_{1}+a t_{2}+b t_{3}\right|^{p} \leq E\left|t_{1}+c t_{2}+d t_{3}\right|^{p} \quad \text { for } p \in[1,2]
$$

and

$$
E\left|t_{1}+a t_{2}+b t_{3}\right|^{p} \geq E\left|t_{1}+c t_{2}+d t_{3}\right|^{p} \quad \text { for } p \geq 2
$$

Proof. Since

$$
|x|^{p}=\frac{d^{3}}{d x^{3}}\left(\frac{x^{3}|x|^{p}}{(p+1)(p+2)(p+3)}\right)
$$

we easily check by integrating by parts that for

$$
c_{p}=\frac{1}{4(p+1)(p+2)(p+3)}
$$

we have

$$
\begin{aligned}
E\left|t_{1}+a t_{2}+b t_{3}\right|^{p}= & \frac{1}{8} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1}\left|x_{1}+a x_{2}+b x_{3}\right|^{p} d x_{1} d x_{2} d x_{3} \\
= & c_{p}\left(\frac{(a+b+1)^{3}|a+b+1|^{p}+(a-b-1)^{3}|a-b-1|^{p}}{a b}\right. \\
& \left.-\frac{(a-b+1)^{3}|a-b+1|^{p}+(a+b-1)^{3}|a+b-1|^{p}}{a b}\right)
\end{aligned}
$$

Let $k=a^{2}+b^{2}, s=2 a b$. Then $a-b=\sqrt{k-s}, a+b=\sqrt{k+s}$ and

$$
\begin{aligned}
f(s)= & E\left|t_{1}+a t_{2}+b t_{3}\right|^{p} \\
= & 2 c_{p}\left(\frac{(\sqrt{k+s}+1)^{3}|\sqrt{k+s}+1|^{p}+(\sqrt{k-s}-1)^{3}|\sqrt{k-s}-1|^{p}}{s}\right) \\
& \left.-\frac{(\sqrt{k-s}+1)^{3}|\sqrt{k-s}+1|^{p}+(\sqrt{k+s}-1)^{3}|\sqrt{k+s}-1|^{p}}{s}\right) \\
= & 2 c_{p} \frac{g(s)}{s} .
\end{aligned}
$$

We are to show that for fixed $k, f(s)$ is nondecreasing if $p \geq 2$ (nonincreasing if $p \in[1,2])$ on $(0, k)$.

Since $g(0)=0$ it suffices to prove that $g^{\prime}(s)$ is nondecreasing (nonincreasing). We have

$$
g^{\prime \prime}(s)=\frac{p+3}{4}(G(\sqrt{k+s})-G(\sqrt{k-s}))
$$

where $G(t)$ was defined in Lemma 3. Hence $g^{\prime \prime}(s) \geq 0$ for $p \geq 2$ and $g^{\prime \prime}(s) \leq 0$ for $p \in[1,2]$ (by Lemma 3) and the proof is complete.

Corollary 2. If X, t_{1}, t_{2} are independent random variables, t_{1}, t_{2} are uniformly distributed on $[-1,1], X$ is symmetric unimodal and $a, b, c, d>0$, $a^{2}+b^{2}=c^{2}+d^{2}$ with $c \geq a \geq b \geq d$, then

$$
E\left|X+a t_{1}+b t_{2}\right|^{p} \leq E\left|X+c t_{1}+d t_{2}\right|^{p} \quad \text { for } p \in[1,2]
$$

and

$$
E\left|X+a t_{1}+b t_{2}\right|^{p} \geq E\left|X+c t_{1}+d t_{2}\right|^{p} \quad \text { for } p \geq 2
$$

Proof. Let $g(x)$ be the density function of X and μ be the measure given by Lemma 1. Let t_{3} be a random variable independent of t_{1}, t_{2} uniformly distributed on $[-1,1]$. We have, for $p \in[1,2]$,

$$
\begin{aligned}
E\left|X+a t_{1}+b t_{2}\right|^{p} & =\int_{-\infty}^{\infty} E\left|x+a t_{1}+b t_{2}\right|^{p} g(x) d x \\
& =\int_{0}^{\infty} \frac{1}{2 s} \int_{-s}^{s} E\left|t+a t_{1}+b t_{2}\right|^{p} d t d \mu(s) \\
& =\int_{0}^{\infty} E\left|s t_{3}+a t_{1}+b t_{2}\right|^{p} d \mu(s) \\
& \leq \int_{0}^{\infty} E\left|s t_{3}+c t_{1}+d t_{2}\right|^{p} d \mu(s)=E\left|X+c t_{1}+d t_{2}\right|^{p}
\end{aligned}
$$

The second equality follows from Fubini's theorem, and the inequality is a consequence of Lemma 5 .

For $p \geq 2$ we proceed in the same way.
Definition 2. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ be two sequences of real numbers. We say that x is majorized by y and write $x \prec y$ if $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$ and $\sum_{i=1}^{k} x_{i}^{*} \leq \sum_{i=1}^{k} y_{i}^{*}$ for $k=1, \ldots, n$, where $\left(x_{i}^{*}\right)$ and (y_{i}^{*}) are the nonincreasing rearrangements of x and y.

Proposition 1. Let $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$ be two sequences of real numbers such that $\left(a_{i}^{2}\right) \prec\left(b_{i}^{2}\right)$ and t_{1}, \ldots, t_{n} be a sequence of independent random variables uniformly distributed on $[-1,1]$. Then

$$
\left(E\left|\sum_{i=1}^{n} a_{i} t_{i}\right|^{p}\right)^{1 / p} \leq\left(E\left|\sum_{i=1}^{n} b_{i} t_{i}\right|^{p}\right)^{1 / p} \quad \text { for } p \in[1,2]
$$

and

$$
\left(E\left|\sum_{i=1}^{n} a_{i} t_{i}\right|^{p}\right)^{1 / p} \geq\left(E\left|\sum_{i=1}^{n} b_{i} t_{i}\right|^{p}\right)^{1 / p} \quad \text { for } p \geq 2
$$

Proof. By the lemma of Muirhead (cf. [4], Chapter 1.B) it suffices to prove the inequalities if $a_{i}^{2}=b_{i}^{2}$ for $i \neq j, k, a_{j}^{2}=t b_{j}^{2}+(1-t) b_{k}^{2}$ and $a_{k}^{2}=t b_{k}^{2}+(1-t) b_{j}^{2}$ for some $j, k \in\{1, \ldots, n\}$ and $t \in(0,1)$. By symmetry we can also assume that a_{i} and b_{i} are nonnegative. So finally Proposition 1 follows from Corollary 2 if we set $X=\sum_{i \neq j, k} a_{i} t_{i}$.

Let g be a standard normal variable and

$$
\gamma_{p}=\left(E|g|^{p}\right)^{1 / p}=\sqrt{2}\left(\frac{\Gamma\left(\frac{p+1}{2}\right)}{\sqrt{\pi}}\right)^{1 / p}
$$

We have the following
THEOREM 1. If t_{1}, \ldots, t_{n} is a sequence of independent random variables uniformly distributed on $[-1,1]$, and a_{1}, \ldots, a_{n} are real numbers, then

$$
\left(E\left|\sum_{i=1}^{n} a_{i} t_{i}\right|^{2}\right)^{1 / 2} \leq \gamma_{p}^{-1}\left(E\left|\sum_{i=1}^{n} a_{i} t_{i}\right|^{p}\right)^{1 / p} \quad \text { for } p \in[1,2]
$$

and

$$
\left(E\left|\sum_{i=1}^{n} a_{i} t_{i}\right|^{p}\right)^{1 / p} \leq \gamma_{p}\left(E\left|\sum_{i=1}^{n} a_{i} t_{i}\right|^{2}\right)^{1 / 2} \quad \text { for } p \in[2, \infty)
$$

The above constants are the best possible.
Proof. Let $p \in[1,2]$. By Proposition 1,

$$
E\left|\sum_{i=1}^{n} a_{i} t_{i}\right|^{p} \geq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{p / 2} E\left|\sum_{i=1}^{n} \frac{1}{\sqrt{n}} t_{i}\right|^{p} .
$$

But by the central limit theorem $\lim _{n \rightarrow \infty} E\left|\sum_{i=1}^{n}(1 / \sqrt{n}) t_{i}\right|^{p}=\left(\sqrt{1 / 3} \gamma_{p}\right)^{p}$ so

$$
\left(E\left|\sum_{i=1}^{n} a_{i} t_{i}\right|^{p}\right)^{1 / p} \geq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{1 / 2} \sqrt{1 / 3} \gamma_{p}=\gamma_{p}\left(E\left|\sum_{i=1}^{n} a_{i} t_{i}\right|^{2}\right)^{1 / 2}
$$

This proves the first inequality of the theorem. The second one can be established in an analogous way.

The central limit theorem shows that these constants cannot be improved. As a corollary from Proposition 1 we get the following answer to a question posed by A. Pełczyński:

Proposition 2. If t_{1}, \ldots, t_{n} is a sequence of independent random variables uniformly distributed on $[-1,1], \varepsilon_{1}, \ldots, \varepsilon_{n}$ is a Bernoulli sequence of random variables and a_{1}, \ldots, a_{n} are real numbers, then

$$
\frac{1}{2} E\left|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right| \leq E\left|\sum_{i=1}^{n} a_{i} t_{i}\right| \leq \frac{2}{3} E\left|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right|
$$

The above constants are optimal.
Proof. Since for fixed a the function $b \mapsto E\left|a t_{1}+b t_{2}\right|$ is symmetric and convex it takes its maximal value on $[-|a|,|a|]$ at $b=|a|$. Hence

$$
E\left|a t_{1}+b t_{2}\right| \leq \max (|a|,|b|) E\left|t_{1}+t_{2}\right|=\frac{2}{3} \max (|a|,|b|)
$$

Let us first prove the second inequality of the proposition. By symmetry we can assume that $a_{1} \geq \ldots \geq a_{n} \geq 0$. There are two possibilities:

Case 1: $a_{1}^{2} \geq \sum_{i=2}^{n} a_{i}^{2}$. Proposition 1 then yields

$$
E\left|\sum_{i=1}^{n} a_{i} t_{i}\right| \leq E\left|a_{1} t_{1}+\left(\sum_{i=2}^{n} a_{i}^{2}\right)^{1 / 2} t_{2}\right| .
$$

Hence since $E\left|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right| \geq a_{1}$, by (1) the inequality holds.
Case 2: $a_{1}^{2}<\sum_{i=2}^{n} a_{i}^{2}$. From Proposition 1 we deduce that

$$
E\left|\sum_{i=1}^{n} a_{i} t_{i}\right| \leq E\left|\sqrt{\frac{\sum_{i=1}^{n} a_{i}^{2}}{2}} t_{1}+\sqrt{\frac{\sum_{i=1}^{n} a_{i}^{2}}{2}} t_{2}\right|=\frac{\sqrt{2}}{3} \sqrt{\sum_{i=1}^{n} a_{i}^{2}}
$$

This combined with the Khinchin inequality

$$
\begin{equation*}
\sqrt{\sum_{i=1}^{n} a_{i}^{2}} \leq \sqrt{2} E\left|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right| \tag{5}
\end{equation*}
$$

completes the proof in this case.

Let $\sigma=\sigma\left(\operatorname{sign}\left(t_{1}\right), \ldots, \operatorname{sign}\left(t_{n}\right)\right)$. Then $E\left(\left(t_{1}, \ldots, t_{n}\right) \mid \sigma\right)$ has the same distribution as $\frac{1}{2}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ and the first inequality of the proposition is a simple consequence of the Jensen inequality.

To see that the constants are optimal it suffices to take $n=1, a_{1}=1$ for the first inequality and $n=2, a_{1}=a_{2}=1$ for the second.
II. The vector case. In the sequel we will consider the linear space \mathbb{R}^{n} with a norm $\|\cdot\|$. The Lebesgue measure on \mathbb{R}^{n} will be denoted by $|\cdot|$. We will consider some analogues in \mathbb{R}^{n} of unimodal real variables. Our definitions are different from what can be found in the literature (cf. [2]).

Definition 3. Let X be a bounded random vector with values in \mathbb{R}^{n}.
We call X convex-uniform (c.u.) if X is uniformly distributed on some open bounded convex symmetric set A_{X}, i.e. for each measurable set $B \subset \mathbb{R}^{n}$,

$$
\operatorname{Pr}(X \in B)=\frac{\left|B \cap A_{X}\right|}{\left|A_{X}\right|}
$$

We say that X is semi-convex-uniform (s.c.u.) if X has a density g and there exist a natural number k, functions g_{1}, \ldots, g_{k}, and nonnegative numbers $\alpha_{1}, \ldots, \alpha_{k}$ with $\sum_{i=1}^{k} \alpha_{i}=1$ such that $g=\sum_{i=1}^{k} \alpha_{i} g_{i}$ and g_{i} is the density of some c.u. random vector X_{i} for $i=1, \ldots, k$.
X is approximately-convex-uniform (a.c.u.) if there exist $M>0$ and a sequence X_{1}, X_{2}, \ldots of s.c.u. random vectors bounded in norm by M converging in distribution to X.

Lemma 6. Let X and Y be independent convex-uniform random vectors with values in \mathbb{R}^{n}. Then $X+Y$ is a.c.u.

Proof. Let A_{X} and A_{Y} be the convex sets from Definition 3. For $v \in \mathbb{R}^{n}$ define

$$
\begin{aligned}
& P_{v}=\left\{(x, y) \in A_{X} \times A_{Y}: x+y=v\right\}, \\
& F_{v}=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: x+y=v\right\} .
\end{aligned}
$$

There exists a constant K such that $X+Y$ has a density g given by

$$
g(v)=K \lambda_{2 n-1}\left(P_{v}\right)
$$

where $\lambda_{2 n-1}$ is the Lebesgue measure on the $(2 n-1)$-dimensional subspace F_{v}. First we show that for each $a>0$ the set

$$
S_{a}=\left\{v \in \mathbb{R}^{n}: g(v) \geq a\right\}
$$

is convex. Indeed, let $v, w \in S_{a}$ and $\alpha \in(0,1)$. Since

$$
P_{\alpha v+(1-\alpha) w} \supset \alpha P_{v}+(1-\alpha) P_{w}
$$

we get by the Brunn-Minkowski inequality (cf. [2])

$$
\begin{aligned}
g(\alpha v+(1-\alpha) w) & =K \lambda_{2 n-1}\left(P_{\alpha v+(1-\alpha) w}\right) \geq K \lambda_{2 n-1}\left(P_{v}\right)^{\alpha} \lambda_{2 n-1}\left(P_{w}\right)^{1-\alpha} \\
& \geq g(v)^{\alpha} g(w)^{1-\alpha} \geq a^{\alpha} a^{1-\alpha}=a
\end{aligned}
$$

Since the sets A_{X} and A_{Y} are bounded, so is the function g and there exists a number M such that $S_{a}=\emptyset$ for $a>M$. For a natural number j define

$$
f_{j}=\sum_{k=0}^{j M} \operatorname{Pr}(g(X+Y) \in(k / j,(k+1) / j]) \varrho_{k / j}
$$

where ϱ_{a} is the density of a random vector uniformly distributed on S_{a}. Then f_{j} is the density of some semi-convex-uniform random vector Z_{j}. It is easy to observe that the sequence Z_{j} is uniformly bounded and converges in distribution to $X+Y$. And this means that $X+Y$ is a.c.u.

Corollary 3. If X_{1}, \ldots, X_{k} is a sequence of independent a.c.u. random variables with values in \mathbb{R}^{n}, then $\sum_{i=1}^{k} X_{i}$ is an a.c.u. random vector.

Proof. For $k=2$ the corollary is a simple consequence of Lemma 6, for $k>2$ we proceed by induction.

Lemma 7. If $p>q>0$ and X is a convex-uniform random vector with values in \mathbb{R}^{n}, then

$$
\left(\frac{p+n}{n}\right)^{1 / p}\left(E\|X\|^{p}\right)^{1 / p} \geq\left(\frac{q+n}{n}\right)^{1 / q}\left(E\|X\|^{q}\right)^{1 / q}
$$

Proof. With the notation of Definition 3,

$$
E\|X\|^{p}=\frac{1}{\left|A_{X}\right|} \int_{A_{X}}\|x\|^{p} d x
$$

Let $\varepsilon>0$. Then

$$
\begin{aligned}
& (1+\varepsilon)^{n+p} \int_{A_{X}}\|x\|^{p} d x=\int_{(1+\varepsilon) A_{X}}\|x\|^{p} d x=\left(\int_{A_{X}}+\int_{(1+\varepsilon) A_{X}-A_{X}}\right)\|x\|^{p} d x \\
& \geq \int_{A_{X}}\|x\|^{p} d x+\left|(1+\varepsilon) A_{X}-A_{X}\right|^{1-p / q}\left(\int_{(1+\varepsilon) A_{X}-A_{X}}\|x\|^{q} d x\right)^{p / q} \\
& \left.=\int_{A_{X}}\|x\|^{p} d x+\left(\left((1+\varepsilon)^{n}-1\right)\left|A_{X}\right|\right)^{1-p / q}\left((1+\varepsilon)^{n+q}-1\right) \int_{A_{X}}\|x\|^{q} d x\right)^{p / q}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left(\frac{(1+\varepsilon)^{n+p}-1}{(1+\varepsilon)^{n}-1}\right)^{1 / p} & \left(\frac{1}{\left|A_{X}\right|} \int_{A_{X}}\|x\|^{p} d x\right)^{1 / p} \\
& \geq\left(\frac{(1+\varepsilon)^{n+q}-1}{(1+\varepsilon)^{n}-1}\right)^{1 / q}\left(\frac{1}{\left|A_{X}\right|} \int_{A_{X}}\|x\|^{q} d x\right)^{1 / q}
\end{aligned}
$$

The inequality of the lemma is obtained by letting $\varepsilon \rightarrow 0$.
Proposition 3. If $p>q>0$ and X_{1}, \ldots, X_{k} are independent a.c.u. random vectors with values in \mathbb{R}^{n}, then for $S=\sum_{i=1}^{k} X_{i}$,

$$
\left(\frac{p+n}{n}\right)^{1 / p}\left(E\|S\|^{p}\right)^{1 / p} \geq\left(\frac{q+n}{n}\right)^{1 / q}\left(E\|S\|^{q}\right)^{1 / q}
$$

Proof. According to Corollary 3 we can assume that $k=1$. By an approximation argument it suffices to prove the inequality for S a s.c.u. random vector. But in this case it is a simple consequence of Lemma 7 and the Jensen inequality.

Finally, since $x_{i} t_{i}$ is an a.c.u. random vector we obtain the following corollary:

Corollary 4. If $p>q>0$ and t_{1}, \ldots, t_{k} are independent random variables uniformly distributed on $[-1,1]$ and x_{1}, \ldots, x_{k} are vectors in \mathbb{R}^{n}, then for $S=\sum_{i=1}^{k} t_{i} x_{i}$,

$$
\left(\frac{p+n}{n}\right)^{1 / p}\left(E\|S\|^{p}\right)^{1 / p} \geq\left(\frac{q+n}{n}\right)^{1 / q}\left(E\|S\|^{q}\right)^{1 / q}
$$

Remark. The above results are also valid for $p>q>-n$ and the proofs are very similar.

Acknowledgements. This work grew out of some useful discussions with Prof. S. Kwapie/n and Prof. A. Pełczyński.

REFERENCES

[1] K. Ball, Cube slicing in \mathbb{R}^{n}, Proc. Amer. Math. Soc. 97 (1986), 465-473.
[2] V. V. Buldygin and A. B. Kharazishvili, Brunn-Minkowski Inequalities and Their Applications, Naukova Dumka, Kiev, 1985 (in Russian).
[3] U. Haagerup, The best constants in the Khintchine inequality, Studia Math. 70 (1982), 231-283.
[4] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1979.
[5] S. J. Szarek, On the best constants in the Khinchine inequality, Studia Math. 58 (1976), 197-208.

DEPARTMENT OF MATHEMATICS
WARSAW UNIVERSITY
BANACHA 2
02-097 WARSZAWA, POLAND

