Tails and moments estimates for some types
of chaos *

Rafal Latata T

Abstract

Let X; be a sequence of independent symmetric real random
variables with logarithmically concave tails. We consider a variable
X =2 i2j;;XiXj, where a;; are real numbers. We derive approx-
imate formulas for the tails and moments of X and its decoupled
version, which are exact up to some universal constants.

Definitions and notation. Let X;, X ]/ be two independent sequences
of independent symmetric random variables with logarithmically concave
tails, i.e. the functions Nj, N; : [0,00) — [0, 00| defined by the formulas

N;(t) = —-In P(|X;| > t)
and

N;(t) = —In P(|X;| > ¢)

J

are convex. Since it is only a matter of normalization we may and will
assume that for all 7 and j

inf{t: N;(t) > 1} = inf{t : N;(t) > 1} = 1. (1)
Let us define the functions N; by the formula

SN for [t] <1
Nilt) = { Ni(Jt]) for |t > 1.
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For sequences (a;) of real numbers and p > 0 we put

l@i)llxvp = sup{d aiby = 3° Nibi) < p}

and

(@)l = (3= af)'”.

In a similar way we define N]'. and ||(a;)||7 -
For matrices (a; ;) and p > 0 we define

l@i) vy = sup{ asbics = 30 Nilb) < p,>° Nj(e;) < p}.

We denote by (g;) the Bernoulli sequence, i.e. a sequence of i.i.d. sym-
metric r.v. taking on values +1. A sequence of independent standard A/(0, 1)
Gaussian random variables will be denoted by (g;) and the canonical Gaus-
sian measure on R" by v,.

For a random variable X and p > 0 we write

IX1l, = (B1X[7)V7.

We will also use the notation a ~¢ b to denote that C~'a < b < Ca.

In this paper we will prove the following theorem

Theorem 1 Let (a;;) be a square summable matriz and X = Zai,inX;.
Then for each p > 1

1Xlp ~o (@)l a p + (A llwvp + 1B s
where A; = ( a”)l/Z, B; = ( ozzj)l/2 and C' is a universal constant.

We postpone the proof of Theorem 1 till the end of this article and now
present some corollaries and examples.

Corollary 1 Let (a;;) be a square summable matriz, such that a;; =0 and
a;j = a;; for alli,j. Then for eachp > 1

1> i XiXllp ~e (@i lvap + (A,

where A; = (X a2,)Y? and C is a universal constant.
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Proof. Let X; be an independent copy of X;, then by the result of de la
Pena, Montgomery-Smith (cf [2]) about decoupling chaos we have for p > 1

132 @i XXy~ I i XX,

with some universal constant K. Hence Corollary 1 is an immediate con-
cequence of Theorem 1 if we notice that A; = B; by the symmetry of the
matrix (a; ;).

Corollary 2 There exist universal constants 0 < ¢ < C' < oo such that
under the assumptions of Corollary 1, for each t > 1

P(I>ai ;i X: X5 > C(l[(aij) Ivve + 1(A:)|Ine)) < e

and
P ai XiX;1 > c(ll(aij) v ae + 1(A)||lare)) = min(e, e™).

Proof. The first inequality follows from Corollary 1 and Chebyshev’s
inequality. To get the second inequality we first use Corollary 1 and Propo-
sition 1 from below to get

137 iy XiX;llzp < 4C% Y- ai XiX;lp for p > 1.

The inequality now may be obtained by Corollary 1 and the Paley-Zygmund
inequality as in [3].

By simple calculations we may easily derive from Corollary 1 the follow-
ing two examples of interest.

Example 1. If a matrix (a; ;) satisfies the assumptions of Corollary 1
then for some universal constant K and any p > 1 we have

1> ai9i95llp ~& Pl(@i) i, + /Pl (@i 5) |l s,

where
(@i j) lia—te = sup{d_ @i bic; « [[(b:)ll2, [|(c;)]l2 < 1}
and

l(ai)lms = O ai,)' >

Example 2. Under the assumptions of Corollary 1 we have
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1> aijeicilly ~x sup{d_ aijbici : [|(b:)ll2, [1(¢5)ll2 < p, [bil, |ej] < 1}

+ 20 AT+ VB (AN,

1<p i>p
where A} denotes a nondecreasing rearrangement of the sequence A; and K
is a universal constant.
Remark. Example 1 may be also derived in a simpler way. Using the
invariance of Gaussian r.v. under orthogonal transformations, it is enough
to prove that for any sequence (d;) of real numbers we have

13- digigills ~x, Pl o + v/BII(i)]2

This easily follows from the results of [3] (see Theorem 2 below).
The following theorem was established in a slightly less general setting

by Gluskin and Kwapieri in [3] and in full generality in [5].

Theorem 2 There exists a universal constant C7 < oo such that for any
square summable sequence (a;) and p > 1 we have

13- aiXilly ~c ll(@i)llyp- (2)

In particular for any p,q > 1 there exists a constant C,,, which depends
only on p and q such that

1> aiXill, < Cpgll Y- aiXilly- (3)

Remark. The inequality (3) may be also obtained by hypercontractive
methods or direct calculations.

We will also use the following theorem of M. Talagrand (see [8] and [6]
for a simpler proof with better constants).

Theorem 3 Let A be the measure on IR with the density %e"x‘ and \" be
the product measure @_; A on IR"™. Then for any Borel subset A of IR™ with
A'(A) > 0 and any s > 0 we have

N(A+V) >1—N"(A) e,

where
Vi={z € R":> min(|z,],z}) < 36s}.



In the next part of the paper we will need some additional definitions.
We will say that a measure p on IR is symmetric unimodal if it has a density
with respect to the Lebesgue measure, which is symmetric and nonincreasing
on [0,00). A nonnegative Borel measure p on IR" will be called logconcave
if

WA + (1= 1)B) = i (A)~(B)

for any nonempty Borel sets A, B in IR" and ¢t € (0,1). A real random
variable will be called symmetric unimodal (logconcave) if its distribution
is symmetric unimodal (logconcave).

By the results of Borell [1] products of logconcave measures are logcon-
cave and nondegenerate measures on IR are logconcave if and only if they
have logconcave densities with respect to the Lebesgue measure. In partic-
ular any symmetric nondegenerate logconcave real r.v. has logconcave tails
and is symmetric unimodal.

Proposition 1 The following inequalities are satisfied

(@)l xp < All(ai)llnp for A= 1,p >0 (4)
1 0s5) o ap < X0 (@3) Ly Jor A 2 1,p >0, 5)
and
VPO (@)Y < l(ai)llavp < pai + B3 _(a))?, (6)
i>p 7
where (af) is a nonincreasing rearrangement of the sequence (|a;|).

Proof. Inequalities (4) and (5) follow easily from the observation that
Ni(tz) < tNy(z) for any t € [0,1] and real number z. To prove (6) let us
fix a sequence (b;) such that 3, N;(b;) < p and let J = {i : b; > 1}. Then
since N(z) > x for x > 1 we have ¥;c; a;b; < pa’ and since Nj(z) = x2 for
2] <1 we get Yy aibi < \/p(i(a})?) 2.

To prove the other inequality in (6) let k = [p| + 1, A = (k(a})? +
Yisi(@)?)V2, by = sgn(a;)/paj /A for |a;| > aj, and b; = \/pa;/A for |a;| <
a;. Then |b;| <1, ZNi(bi) =Y 0? =p and

D aibi 2 VPA = VR (i))

i>p



Proposition 2 For any random variable X; with logconcave tails normal-
ized as in (1) we have

1
§<1—e_1§E|XZ-|§1 (7)

and i
3<2- 4e !t < B|IX;F <2 (8)

Proof. By our normalization property (1) and the convexity of N; we
get 0 < Ny(t) <t for t € [0,1] and N;(t) > max(0,k(t — 1) + 1) for some
k > 1 and all £ > 0. Proposition easily follows by integration by parts.

Lemma 1 Let py, ..., 1, and vy, ..., v, be symmetric probabilistic logcon-
cave measures on IR such that

Vi Viso (=1, 1)) < wil[=1, 1)), (9)

=1 R...0 ty and v =11 @ ... Q@ v,. Then for any conver symmetric
Borel set K in IR" we have

u(K) <v(K).

Proof. It is enough to prove that for any symmetric logconcave measure
on IR"! and convex symmetric set K we have

1 @ p(K) < v @ p(K).

Let fort € R, K; = {x € R"' : (t,z) € K} and f(t) = u(K;). By the
convexity of K we have for any A € (0,1) and s,t € IR such that K;, K, # ()

)\Kt + (]. - )\)Ks C K/\t-f—(l—)\)S‘

Therefore f is logconcave on IR and since it is also symmetric, it is nonin-
creasing on [0,00). Hence approximating f by > a;Ij_, ;) we obtain from

(9)
@ () = [ fWdn(®) < [ FEdn ) =0 @ p(K).



Lemma 2 For allt > 0 the following inequality holds

t,t]) / e 200 > o2/
(= /_27r >

Proof. Since for any x > 0, e * 4+ e 1/* < 1+x + 1+i,1 =1, Lemm;at 1
—12/2

follows from well known (and easy to check) estimate v ([—t,t]) > 1—e

Lemma 3 For any matriz (a;;) and C > 23, ;a7 ; we have

_2 Zz] a?,j’

l\:)\r—t

max|2a”xz| <1 Z|Za”xz <C)>
Proof. From the result of Khatri [4] and Sidak [7] we have

n n
(max| 3 aigzi| < 1,313 aizl” < C)
=1 ;=1

> ([T Yol € (SIS o <00 (o)

By Lemma 2 we have

n n

(| Zn:ai,jl“il <1 =n(=(Ca) 2 (X ad,) ) = e P Xma (10)

=1 i=1 i=1

Since E3; | >0, i gil> =3, a ja; ], from Chebyshev’s inequality we obtain

1
Z\Za”xl\2<0 )=1-P Z|Za”gz|2>0 3 (12)
Lemma 3 follows from (10), (11) and (12).
Lemma 4 Let Yy, ...,Y, be symmetric unimodal real 1.v.’s and d; = EY}?.

Then for any matriz (b; ;) we have

maX‘sz]Y|<1 Z’Zbljy‘2<1+42db 411 4Zi,jdib?,j



Proof. Let Y; have the distribution u; with the density f; and p =
®™" ;. Since f; are nonnegative, symmetric, nonincreasing on [0, 00) and
1; are probability measures, there exist probability measures my, ..., m, on
IR such that for each i

o 1

f][_m] (C(J)dmz (t)

filw) = 0o 2t

We also have

[e%s) 00 1
/ 12dm; () = 3 / / 22— Iy (x)dadmi(t) = 3 / 2 fi(z)dz = 3d;.
0 o Jr 2t " R

For any Borel set A in IR" we have

p(A) = [ v (Adma(t) . dma(t), (13)

where v, denotes a uniform probability measure on [—t1,t;] x ... x
[—tn, tn]. We will also write Vi instead of v

From Lemma 1 it immediately follows that for any convex symmetric
set K in R™, v" —(K) > v,(K). Hence by Lemma 3

\/71'/2

9 t"(:pEIR” max|2bwml|<1 Z|Zb”xz|2<0)

7 =1

:y\/T(:UGR” max\Zb”t\/>x,|<1Z|Zbut\fxz|2<0)

=1

_ 4

1202
T i Pl e <oy (14)

1,7 1, —

>

l\D\»—t

Since the function % is convex we obtain

/ X M dmy (1) . dm(t) > exp(— /R ) thbfjdml (1) ... dmn(t,))

12
= exp(—? Z dib?,j)’
1,3
Using the above and the obvious estimate

/ne_% i,j z zg[{ Z 122 >C}dm1(t1) dmn(tn) S G*C

i, 44,



we obtain by (13) and (14)

u(r € R™: max blxl<1 bla:12<1+4 d;b?;
5J 5J

7 =1

> —4Z”db _5—1 42”db”>4 4Z”db

[\] \

Lemma 5 Let Yy, ..., Y, be symmetric unimodal r.v.’s such that EY? < 4.
Then for any p > 0

1
£l Zau My < 101Blyrp) 2 767

Proof. For p <1, [|(a;)|lx", = v/Pll(a;)|2 and the lemma follows easily
from Chebyshev’s inequality. So we will assume that p > 1. Without loss of
generality we may also assume that By > By > ... and [|(B;)|x", = p. Let

b a;,;/B;j forj<p
" a; for j>p

and d; = EY?/4. Then by (6) we get

Zdb <Zb lp) + > Bi <p+p (B, < 2p

Jj>p

Moreover if max; | >, bijys| < 1 and 3, |3 bijy> < 1+43,;d:b7; then
by (6)

Za”yz [N p S ( Zauyz i<l P pmaX|ZaUyl|+\/_ Z|Zauyz 1/2

i>p 7
<N(Bj)llp+p+/pBp+1) < 5p.

Hence by Lemma 4

P ais¥if 2l < SIBlInep) 2 + exp ~A i,

=1



Corollary 3 There exists Cs < 0o such that for any matriz (a; ;) andp > 0

EIIZGM My < Calll(ain)llyar p + 1B a7 p)-

Proof. For p < 1 Corollary follows easily by (8), so we will asssume
that p > 1. Suppose first that all X;’s are also unimodal. Then P(|X;| <
t) > tP(|X;| <1)=t(1—e') for t € [0,1]. So for all ¢ > 0

Ni(t) = —InP(|X;| > ) > (1 — e 1)t > (15)

DO | =+

Let F; be an odd function, whose restriction to IR" is the inverse of N;. Then
X; has the distribution Fj(\), where A is the same symmetric exponential
measure as in Theorem 3. Let

A={reR": Za” @)l p < 10[(B) a3

Then by Lemma 5 and (8)

1 _
Hzau My < 100(B) ) = 7™
4

Let s >0, 2 =y+ 2z withy € Aand z € V,. Let A; = Fi(z;) — Fi(y),
then by (15) and since N; is convex we get A; < 2min(F;(|z]), |zi]). So for
36s > p we get

Z@u HNp<2sup{HZa” War, 3 Ni(bi) < 365}

=1

72s 72s
< fSUP{H Zau My o Do Ni(by) < p} = 7“(“@]‘)”]\[,/\//,;7'

Hence for 36s > p

72s
Zau @)y p < 100(B)lIap + ?H(a@j)H/\/,J\/”,p‘

So by Theorem 3
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72s
IIZau N p > 10[(By)lp, + p —I[(ai)llya p)

<1 — A" (A+V,) < 4e®,
Integrating by parts we therefore get for any sy > p/36

7259 288
_l’_ R

B Zau Nap < 10[(B; )”/\/',p+H(ai,j)HN,N',p(T ) e dr).
50

Choosing so = 9p we get

E||( Z@m Mo < Calll@ilnnr p + 1By )

Now let X; be arbitrary r.v.’s with logconcave tails, satlsfylng the nor-
malization property (1). Let X; be a r.v. with the density c;e™ Nillzl) where
ci = ([re NilEhdy) =1 Let a; = inf{t > 0: P(|tX;| > 1) > e}, V; = a; X,

Ni(t) = —In P(JY}| > t) = —In P(jou X;| > 1)

and ~
o ) Ni([t]) for [t > 1
Mi(t) = { t? for [t| <1

Functions N; are convex, satisfy the normalization property (1) and vari-
ables Y; are unimodal, so by the first part of this proof

E||( Zam My < Cslllaig) g p + 1By ) (16)

where

H(azj>H/\/Np—SuP{ZaZJbCJ ZM <p,ZN ¢j) < p}.

Let us notice that

and



Hence

i %0 %0 2t
P(X;| >t) = 201/ e Ni@ g < 2/ e~ N/t dy = Te’Ni(t),
] .

t

so for t > 2 we obtain
P(|X;] > t) <2 Nil) < 2e72Nill/2) < o=Nilt/2), (17)

We also get
~ 2 oo
O EDEE /t e~ Ni@) g > e Ni(5/2), (18)

From (17) and the normalization property (1) we get that a; > 1/2. Since
P(|X;| <t) < 2¢;t <2t we obtain that «; < 4. Therefore we get by (18) for
t>5/2

P(IX;| >t) < P(|5X;/2| > t) < P(]50;X;| > t) = P(|5Y;| > t).

So by the contraction principle

2 Z%X Iixizs/2)llnp < SEJI( Zau M
i=1 =1
Also by the contraction principle, since by (7) E|Y;| > 1/2
)
E||( Z%X Lyxigzs/o)lln p < 52| Zaué‘z v p < SEI( Z@u M o

=1 =1 =1

Therefore
E|( Zam N, < 10E]|( Z@m N p- (19)

i=1
Let t > 8, then by (17) we have
P([Yi| > t) = P(laiXi| > t) < P(IX;] > t/4) < e V05,
Hence N;(t) > N;(t/8) for t > 8, so M;(t) > N;(t/8) for all t and

sy < Sl 0
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(16), (19) and (20) complete the proof.

Proof of Theorem 1. First we estimate ||X||, from below. By the
Jensen inequality and symmetry of X; we have

X1y > 132 XiB] 3 a1 Xl -
J J

But by (3) and (8) we get

’ _ / _ 1 ~N—
B 0% 2 IS Xl > G ba2,) V2 = 071 A,
J J

J

Hence by Theorem 2
X1, = C7HIDZ Al = (CC)THI(A v (21)

In a similar way we prove that
1X1lp = (CCTHI(B) - (22)
By Theorem 2 we also have that for any (c;) with -, N]'(cj) < p we have
1X 1, > CTHE] D aiie; XiP)7 = O3 aigei) g
i\j j
Taking the supremum over all such sequences (c¢;) we get
1X1p = Cr2 I (ai) | vw - (23)

(21), (22) and (23) complete the proof of this part of Theorem 1.
To prove the estimation from above let us first notice that X; =Y, + Z;
for some symmetric random variables Y; and Z; such that

N Y <
P(Yi| > t) = e N where Ni(t) = { i\f(t) igi i N 1

and |Z;] < 1 a.e., we will also assume that the Y; are independent and so
are the Z;. In the same way we split X; = Y; + Z,. By the contraction
principle and since by (7) E|Y;|, E|Y; | > 1/2,

1Y ai; ZiY5 |, < 1Y aigeY |l < 201> ai, ViV,
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and

1> aiiZiZll, < 1Y aijeiZilly < 2013 aiYiZyll, < 41D aiYiYy |y

Hence
1X[p < I aijZiZlly + 1D ai ZiYillp + 1 D aisViZjlly + 11> ai ViV llp

<" ai ViV, |y
So it is enough to prove that for p > 1
1> aiYiYillp < Cl(aip) Iy arp + 1A [nvp + 1B lIar -
To simplify the notation let
my = [[(aij) v np + 1 (Al + 1By e

Then m, > ||[(Ai)l|xa+1(B))ly 1 = 2(5i 5 af;)'/? Since by (8), BY?, E(Y;)* <
2, we get

! ’ / 1
P(I> aiYiY;| = 2m,) < P(|> ] aiYiY, [P > 4B ai; YY) < T (24)
From Corollary 3 we have
1
P(|l Za” N p= 4C3my,) < 1 (25)
and . .
Z Q4,5 ] HNp > 4C3mp> < 1 (26)

Let F;, F ]' : R — R be odd functions, whose restrictions to IR* are the
inverses of Ni, NJ/ respectively. Then Yi,Yj/ have distributions Fj(\) and

/

F;(A), where A is the same symmetric exponential measure as in Theorem

3. Let
A={(z,2') e R™: | 1> ai i Fi( )|<2mp7

Zalﬂ xl ||N p? Zazj ] ||/\/'p<403mp}
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then by (24), (25) and (26)

N (A) >

| =

Hence by Theorem 3 for s > 0
MNAFV) > 1 —de .
Let (z,2") = (y+ 2,y +2') with (y,9') € A, (2,2) € V.. Let A; =
Fi(z;) — Fi(y;) and A;. = Fj/(x;) - Fjl(y;) By the convexity of N; we have
|A;| < 2F(|x; — yi|), therefore

ZN (A;/2) < ZN i(J2:]) = > min(|z), 27) < 36s.
By the similar reason we have
ZNj(Aj/2) < 36s.
J

Hence

| 0 AE )] < 25up (S 0y ()b 32 Ni(h) < 365)
2V ¢ J

<2013 ai i F () llacss-
J
Therefore by (4) we have

288s
|Za”AF yj |<—|| Za” yj MNinp < Csmy, for 36s > p.
(27)
In a similar way we prove
288
|Za” (i) A il < SC’3mp for 36s > p. (28)
p

We also have

| Z ai,inAH S 4511[){2 ai’jbicj . Z NZ(bJ, Z NJ/(CJ) S 368}
5 4,J ( J
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= 4| (ai;) [l xrp 365
So by (5) we get for 36s > p

365 365
|Za1]AA | <4(— D ) ||(aw)”/\/]\/ p<4( D ) M. (29)

i,
By (27), (28) and (29) and the definition of the set A we get

2
]Zaw )] <(2+2 8])850 + 4(?)29)2)77117 < C4(;)2mp for s > p.

Therefore for s > p

IZ%YY | > 04( )*my)

= )\Zn((x’w € R*™ : ‘Zaz] )‘ > 04( ) mp)

— AQ"(A + Vi) < de”®.
Hence integrating by parts
B a4, ViV < Chmi(1 +4/ e Vidg) < CPmil,
i
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