Tails and moments estimates for some types of chaos *

Rafał Latała ${ }^{\dagger}$

Abstract

Let X_{i} be a sequence of independent symmetric real random variables with logarithmically concave tails. We consider a variable $X=\sum_{i \neq j} a_{i, j} X_{i} X_{j}$, where $a_{i, j}$ are real numbers. We derive approximate formulas for the tails and moments of X and its decoupled version, which are exact up to some universal constants.

Definitions and notation. Let X_{i}, X_{j}^{\prime} be two independent sequences of independent symmetric random variables with logarithmically concave tails, i.e. the functions $N_{i}, N_{j}^{\prime}:[0, \infty) \rightarrow[0, \infty]$ defined by the formulas

$$
N_{i}(t)=-\ln P\left(\left|X_{i}\right| \geq t\right)
$$

and

$$
N_{j}^{\prime}(t)=-\ln P\left(\left|X_{j}^{\prime}\right| \geq t\right)
$$

are convex. Since it is only a matter of normalization we may and will assume that for all i and j

$$
\begin{equation*}
\inf \left\{t: N_{i}(t) \geq 1\right\}=\inf \left\{t: N_{j}^{\prime}(t) \geq 1\right\}=1 \tag{1}
\end{equation*}
$$

Let us define the functions \hat{N}_{i} by the formula

$$
\hat{N}_{i}(t)= \begin{cases}t^{2} & \text { for }|t| \leq 1 \\ N_{i}(|t|) & \text { for }|t|>1 .\end{cases}
$$

[^0]For sequences $\left(a_{i}\right)$ of real numbers and $p>0$ we put

$$
\left\|\left(a_{i}\right)\right\|_{\mathcal{N}, p}=\sup \left\{\sum a_{i} b_{i}: \sum \hat{N}_{i}\left(b_{i}\right) \leq p\right\}
$$

and

$$
\left\|\left(a_{i}\right)\right\|_{p}=\left(\sum a_{i}^{p}\right)^{1 / p}
$$

In a similar way we define \hat{N}_{j}^{\prime} and $\left\|\left(a_{j}\right)\right\|_{\mathcal{N}^{\prime}, p}$.
For matrices $\left(a_{i, j}\right)$ and $p>0$ we define

$$
\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}, \mathcal{N}^{\prime}, p}=\sup \left\{\sum a_{i, j} b_{i} c_{j}: \sum \hat{N}_{i}\left(b_{i}\right) \leq p, \sum \hat{N}_{j}^{\prime}\left(c_{j}\right) \leq p\right\} .
$$

We denote by $\left(\varepsilon_{i}\right)$ the Bernoulli sequence, i.e. a sequence of i.i.d. symmetric r.v. taking on values ± 1. A sequence of independent standard $\mathcal{N}(0,1)$ Gaussian random variables will be denoted by $\left(g_{i}\right)$ and the canonical Gaussian measure on \mathbb{R}^{n} by γ_{n}.

For a random variable X and $p>0$ we write

$$
\|X\|_{p}=\left(E|X|^{p}\right)^{1 / p}
$$

We will also use the notation $a \sim_{C} b$ to denote that $C^{-1} a \leq b \leq C a$.
In this paper we will prove the following theorem
Theorem 1 Let $\left(a_{i, j}\right)$ be a square summable matrix and $X=\sum a_{i, j} X_{i} X_{j}^{\prime}$. Then for each $p \geq 1$

$$
\|X\|_{p} \sim_{C}\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}, \mathcal{N}^{\prime}, p}+\left\|\left(A_{i}\right)\right\|_{\mathcal{N}, p}+\left\|\left(B_{j}\right)\right\|_{\mathcal{N}^{\prime}, p}
$$

where $A_{i}=\left(\sum_{j} a_{i, j}^{2}\right)^{1 / 2}, B_{j}=\left(\sum_{i} a_{i, j}^{2}\right)^{1 / 2}$ and C is a universal constant.
We postpone the proof of Theorem 1 till the end of this article and now present some corollaries and examples.

Corollary 1 Let $\left(a_{i, j}\right)$ be a square summable matrix, such that $a_{i, i}=0$ and $a_{i, j}=a_{j, i}$ for all i, j. Then for each $p \geq 1$

$$
\left\|\sum a_{i, j} X_{i} X_{j}\right\|_{p} \sim_{\tilde{C}}\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}, \mathcal{N}, p}+\left\|\left(A_{i}\right)\right\|_{\mathcal{N}, p},
$$

where $A_{i}=\left(\sum_{j} a_{i, j}^{2}\right)^{1 / 2}$ and \tilde{C} is a universal constant.

Proof. Let X_{i}^{\prime} be an independent copy of X_{i}, then by the result of de la Peña, Montgomery-Smith (cf [2]) about decoupling chaos we have for $p \geq 1$

$$
\left\|\sum a_{i, j} X_{i} X_{j}\right\|_{p} \sim_{K}\left\|\sum a_{i, j} X_{i} X_{j}^{\prime}\right\|_{p}
$$

with some universal constant K. Hence Corollary 1 is an immediate concequence of Theorem 1 if we notice that $A_{i}=B_{i}$ by the symmetry of the matrix $\left(a_{i, j}\right)$.

Corollary 2 There exist universal constants $0<c<C<\infty$ such that under the assumptions of Corollary 1, for each $t \geq 1$

$$
P\left(\left|\sum a_{i, j} X_{i} X_{j}\right| \geq C\left(\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}, \mathcal{N}, t}+\left\|\left(A_{i}\right)\right\|_{\mathcal{N}, t}\right)\right) \leq e^{-t}
$$

and

$$
P\left(\left|\sum a_{i, j} X_{i} X_{j}\right| \geq c\left(\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}, \mathcal{N}, t}+\left\|\left(A_{i}\right)\right\|_{\mathcal{N}, t}\right)\right) \geq \min \left(c, e^{-t}\right)
$$

Proof. The first inequality follows from Corollary 1 and Chebyshev's inequality. To get the second inequality we first use Corollary 1 and Proposition 1 from below to get

$$
\left\|\sum a_{i, j} X_{i} X_{j}\right\|_{2 p} \leq 4 \tilde{C}^{2}\left\|\sum a_{i, j} X_{i} X_{j}\right\|_{p} \text { for } p \geq 1
$$

The inequality now may be obtained by Corollary 1 and the Paley-Zygmund inequality as in [3].

By simple calculations we may easily derive from Corollary 1 the following two examples of interest.

Example 1. If a matrix $\left(a_{i, j}\right)$ satisfies the assumptions of Corollary 1 then for some universal constant K and any $p \geq 1$ we have

$$
\left\|\sum a_{i, j} g_{i} g_{j}\right\|_{p} \sim_{K} p\left\|\left(a_{i, j}\right)\right\|_{l_{2} \rightarrow l_{2}}+\sqrt{p}\left\|\left(a_{i, j}\right)\right\|_{H S}
$$

where

$$
\left\|\left(a_{i, j}\right)\right\|_{l_{2} \rightarrow l_{2}}=\sup \left\{\sum a_{i, j} b_{i} c_{j}:\left\|\left(b_{i}\right)\right\|_{2},\left\|\left(c_{j}\right)\right\|_{2} \leq 1\right\}
$$

and

$$
\left\|\left(a_{i, j}\right)\right\|_{H S}=\left(\sum a_{i, j}^{2}\right)^{1 / 2} .
$$

Example 2. Under the assumptions of Corollary 1 we have

$$
\begin{gathered}
\left\|\sum a_{i, j} \varepsilon_{i} \varepsilon_{j}\right\|_{p} \sim_{K} \sup \left\{\sum_{i, j} a_{i} b_{i}:\left\|\left(b_{i}\right)\right\|_{2},\left\|\left(c_{j}\right)\right\|_{2} \leq p,\left|b_{i}\right|,\left|c_{j}\right| \leq 1\right\} \\
+\sum_{i \leq p} A_{i}^{*}+\sqrt{p}\left(\sum_{i>p}\left(A_{i}^{*}\right)^{2}\right)^{1 / 2}
\end{gathered}
$$

where A_{i}^{*} denotes a nondecreasing rearrangement of the sequence A_{i} and K is a universal constant.

Remark. Example 1 may be also derived in a simpler way. Using the invariance of Gaussian r.v. under orthogonal transformations, it is enough to prove that for any sequence $\left(d_{i}\right)$ of real numbers we have

$$
\left\|\sum d_{i} g_{i} g_{i}^{\prime}\right\|_{p} \sim_{K_{1}} p\left\|\left(d_{i}\right)\right\|_{\infty}+\sqrt{p}\left\|\left(d_{i}\right)\right\|_{2}
$$

This easily follows from the results of [3] (see Theorem 2 below).
The following theorem was established in a slightly less general setting by Gluskin and Kwapień in [3] and in full generality in [5].

Theorem 2 There exists a universal constant $C_{1}<\infty$ such that for any square summable sequence $\left(a_{i}\right)$ and $p \geq 1$ we have

$$
\begin{equation*}
\left\|\sum a_{i} X_{i}\right\|_{p} \sim_{C_{1}}\left\|\left(a_{i}\right)\right\|_{\mathcal{N}, p} \tag{2}
\end{equation*}
$$

In particular for any $p, q \geq 1$ there exists a constant $C_{p, q}$, which depends only on p and q such that

$$
\begin{equation*}
\left\|\sum a_{i} X_{i}\right\|_{p} \leq C_{p, q}\left\|\sum a_{i} X_{i}\right\|_{q} \tag{3}
\end{equation*}
$$

Remark. The inequality (3) may be also obtained by hypercontractive methods or direct calculations.

We will also use the following theorem of M. Talagrand (see [8] and [6] for a simpler proof with better constants).

Theorem 3 Let λ be the measure on \mathbb{R} with the density $\frac{1}{2} e^{-|x|}$ and λ^{n} be the product measure $\otimes_{i=1}^{n} \lambda$ on \mathbb{R}^{n}. Then for any Borel subset A of \mathbb{R}^{n} with $\lambda^{n}(A)>0$ and any $s>0$ we have

$$
\lambda^{n}\left(A+V_{s}\right) \geq 1-\lambda^{n}(A)^{-1} e^{-s}
$$

where

$$
V_{s}=\left\{x \in \mathbb{R}^{n}: \sum \min \left(\left|x_{i}\right|, x_{i}^{2}\right) \leq 36 s\right\} .
$$

In the next part of the paper we will need some additional definitions. We will say that a measure μ on \mathbb{R} is symmetric unimodal if it has a density with respect to the Lebesgue measure, which is symmetric and nonincreasing on $[0, \infty)$. A nonnegative Borel measure μ on \mathbb{R}^{n} will be called logconcave if

$$
\mu(t A+(1-t) B) \geq \mu^{t}(A) \mu^{1-t}(B)
$$

for any nonempty Borel sets A, B in \mathbb{R}^{n} and $t \in(0,1)$. A real random variable will be called symmetric unimodal (logconcave) if its distribution is symmetric unimodal (logconcave).

By the results of Borell [1] products of logconcave measures are logconcave and nondegenerate measures on \mathbb{R} are logconcave if and only if they have logconcave densities with respect to the Lebesgue measure. In particular any symmetric nondegenerate logconcave real r.v. has logconcave tails and is symmetric unimodal.

Proposition 1 The following inequalities are satisfied

$$
\begin{gather*}
\left\|\left(a_{i}\right)\right\|_{\mathcal{N}, \lambda p} \leq \lambda\left\|\left(a_{i}\right)\right\|_{\mathcal{N}, p} \text { for } \lambda \geq 1, p>0 \tag{4}\\
\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}, \mathcal{N}^{\prime}, \lambda p} \leq \lambda^{2}\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}, \mathcal{N}^{\prime}, p} \text { for } \lambda \geq 1, p>0, \tag{5}
\end{gather*}
$$

and

$$
\begin{equation*}
\sqrt{p}\left(\sum_{i>p}\left(a_{i}^{*}\right)^{2}\right)^{1 / 2} \leq\left\|\left(a_{i}\right)\right\|_{\mathcal{N}, p} \leq p a_{1}^{*}+\sqrt{p}\left(\sum_{i}\left(a_{i}^{*}\right)^{2}\right)^{1 / 2} \tag{6}
\end{equation*}
$$

where $\left(a_{i}^{*}\right)$ is a nonincreasing rearrangement of the sequence $\left(\left|a_{i}\right|\right)$.
Proof. Inequalities (4) and (5) follow easily from the observation that $\hat{N}_{i}(t x) \leq t \hat{N}_{i}(x)$ for any $t \in[0,1]$ and real number x. To prove (6) let us fix a sequence $\left(b_{i}\right)$ such that $\sum_{i} \hat{N}_{i}\left(b_{i}\right) \leq p$ and let $J=\left\{i: b_{i} \geq 1\right\}$. Then since $\hat{N}_{i}(x) \geq x$ for $x \geq 1$ we have $\sum_{i \in J} a_{i} b_{i} \leq p a_{1}^{*}$ and since $\hat{N}_{i}(x)=x^{2}$ for $|x| \leq 1$ we get $\sum_{i k J} a_{i} b_{i} \leq \sqrt{p}\left(\sum_{i}\left(a_{i}^{*}\right)^{2}\right)^{1 / 2}$.

To prove the other inequality in (6) let $k=\lfloor p\rfloor+1, A=\left(k\left(a_{k}^{*}\right)^{2}+\right.$ $\left.\sum_{i>k}\left(a_{i}^{*}\right)^{2}\right)^{1 / 2}, b_{i}=\operatorname{sgn}\left(a_{i}\right) \sqrt{p} a_{k}^{*} / A$ for $\left|a_{i}\right| \geq a_{k}^{*}$ and $b_{i}=\sqrt{p} a_{i} / A$ for $\left|a_{i}\right| \leq$ a_{k}^{*}. Then $\left|b_{i}\right| \leq 1, \sum \hat{N}_{i}\left(b_{i}\right)=\sum b_{i}^{2}=p$ and

$$
\sum a_{i} b_{i} \geq \sqrt{p} A \geq \sqrt{p}\left(\sum_{i>p}\left(a_{i}^{*}\right)^{2}\right)^{1 / 2} .
$$

Proposition 2 For any random variable X_{i} with logconcave tails normalized as in (1) we have

$$
\begin{equation*}
\frac{1}{2}<1-e^{-1} \leq E\left|X_{i}\right| \leq 1 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2}<2-4 e^{-1} \leq E\left|X_{i}\right|^{2} \leq 2 \tag{8}
\end{equation*}
$$

Proof. By our normalization property (1) and the convexity of N_{i} we get $0 \leq N_{i}(t) \leq t$ for $t \in[0,1]$ and $N_{i}(t) \geq \max (0, k(t-1)+1)$ for some $k \geq 1$ and all $t \geq 0$. Proposition easily follows by integration by parts.

Lemma 1 Let μ_{1}, \ldots, μ_{n} and ν_{1}, \ldots, ν_{n} be symmetric probabilistic logconcave measures on \mathbb{R} such that

$$
\begin{equation*}
\forall_{i} \forall_{t>0} \mu_{i}([-t, t]) \leq \nu_{i}([-t, t]), \tag{9}
\end{equation*}
$$

$\mu=\mu_{1} \otimes \ldots \otimes \mu_{n}$ and $\nu=\nu_{1} \otimes \ldots \otimes \nu_{n}$. Then for any convex symmetric Borel set K in \mathbb{R}^{n} we have

$$
\mu(K) \leq \nu(K)
$$

Proof. It is enough to prove that for any symmetric logconcave measure on \mathbb{R}^{n-1} and convex symmetric set K we have

$$
\mu_{1} \otimes \mu(K) \leq \nu_{1} \otimes \mu(K)
$$

Let for $t \in \mathbb{R}, K_{t}=\left\{x \in \mathbb{R}^{n-1}:(t, x) \in K\right\}$ and $f(t)=\mu\left(K_{t}\right)$. By the convexity of K we have for any $\lambda \in(0,1)$ and $s, t \in \mathbb{R}$ such that $K_{t}, K_{s} \neq \emptyset$

$$
\lambda K_{t}+(1-\lambda) K_{s} \subset K_{\lambda t+(1-\lambda) s} .
$$

Therefore f is logconcave on \mathbb{R} and since it is also symmetric, it is nonincreasing on $[0, \infty)$. Hence approximating f by $\sum a_{j} I_{\left[-t_{j}, t_{j}\right]}$ we obtain from (9)

$$
\mu_{1} \otimes \mu(K)=\int_{R} f(t) d \mu_{1}(t) \leq \int_{R} f(t) d \nu_{1}(t)=\nu_{1} \otimes \mu(K) .
$$

Lemma 2 For all $t>0$ the following inequality holds

$$
\gamma_{1}([-t, t])=\frac{1}{\sqrt{2 \pi}} \int_{-t}^{t} e^{-x^{2} / 2} d x \geq e^{-2 / t^{2}}
$$

Proof. Since for any $x>0, e^{-x}+e^{-1 / x} \leq \frac{1}{1+x}+\frac{1}{1+x^{-1}}=1$, Lemma 1 follows from well known (and easy to check) estimate $\gamma_{1}([-t, t]) \geq 1-e^{-t^{2} / 2}$.

Lemma 3 For any matrix $\left(a_{i, j}\right)$ and $C \geq 2 \sum_{i, j} a_{i, j}^{2}$ we have

$$
\gamma_{n}\left(\max _{j}\left|\sum_{i=1}^{n} a_{i, j} x_{i}\right| \leq 1, \sum_{j}\left|\sum_{i=1}^{n} a_{i, j} x_{i}\right|^{2} \leq C\right) \geq \frac{1}{2} e^{-2 \sum_{i, j} a_{i, j}^{2}}
$$

Proof. From the result of Khatri [4] and Sidak [7] we have

$$
\begin{gather*}
\quad \gamma_{n}\left(\max _{j}\left|\sum_{i=1}^{n} a_{i, j} x_{i}\right| \leq 1, \sum_{j}\left|\sum_{i=1}^{n} a_{i, j} x_{i}\right|^{2} \leq C\right) \\
\geq\left(\prod_{j} \gamma_{n}\left(\left|\sum_{i=1}^{n} a_{i, j} x_{i}\right| \leq 1\right)\right) \gamma_{n}\left(\sum_{j}\left|\sum_{i=1}^{n} a_{i, j} x_{i}\right|^{2} \leq C\right) . \tag{10}
\end{gather*}
$$

By Lemma 2 we have

$$
\begin{equation*}
\gamma_{n}\left(\left|\sum_{i=1}^{n} a_{i, j} x_{i}\right| \leq 1\right)=\gamma_{1}\left(\left[-\left(\sum_{i=1}^{n} a_{i, j}^{2}\right)^{-1 / 2},\left(\sum_{i=1}^{n} a_{i, j}^{2}\right)^{-1 / 2}\right]\right) \geq e^{-2 \sum_{i=1}^{n} a_{i, j}^{2}} . \tag{11}
\end{equation*}
$$

Since $E \sum_{j}\left|\sum_{i=1}^{n} a_{i, j} g_{i}\right|^{2}=\sum_{i, j} a_{i, j}^{2}$, from Chebyshev's inequality we obtain

$$
\begin{equation*}
\gamma_{n}\left(\sum_{j}\left|\sum_{i=1}^{n} a_{i, j} x_{i}\right|^{2} \leq C\right)=1-P\left(\sum_{j}\left|\sum_{i=1}^{n} a_{i, j} g_{i}\right|^{2}>C\right) \geq \frac{1}{2} \tag{12}
\end{equation*}
$$

Lemma 3 follows from (10), (11) and (12).
Lemma 4 Let Y_{1}, \ldots, Y_{n} be symmetric unimodal real r.v.'s and $d_{i}=E Y_{i}^{2}$. Then for any matrix $\left(b_{i, j}\right)$ we have

$$
P\left(\max _{j}\left|\sum_{i=1}^{n} b_{i, j} Y_{i}\right| \leq 1, \sum_{j}\left|\sum_{i=1}^{n} b_{i, j} Y_{i}\right|^{2} \leq 1+4 \sum d_{i} b_{i, j}^{2}\right) \geq \frac{1}{4} e^{-4 \sum_{i, j} d_{i} b_{i, j}^{2}}
$$

Proof. Let Y_{i} have the distribution μ_{i} with the density f_{i} and $\mu=$ $\otimes_{i=1}^{n} \mu_{i}$. Since f_{i} are nonnegative, symmetric, nonincreasing on $[0, \infty)$ and μ_{i} are probability measures, there exist probability measures m_{1}, \ldots, m_{n} on \mathbb{R} such that for each i

$$
f_{i}(x)=\int_{0}^{\infty} \frac{1}{2 t} I_{[-t, t]}(x) d m_{i}(t) .
$$

We also have

$$
\int_{0}^{\infty} t^{2} d m_{i}(t)=3 \int_{0}^{\infty} \int_{R} x^{2} \frac{1}{2 t} I_{[-t, t]}(x) d x d m_{i}(t)=3 \int_{R} x^{2} f_{i}(x) d x=3 d_{i} .
$$

For any Borel set A in \mathbb{R}^{n} we have

$$
\begin{equation*}
\mu(A)=\int_{R^{n}} \nu_{t_{1}, \ldots, t_{n}}^{n}(A) d m_{1}\left(t_{1}\right) \ldots d m_{n}\left(t_{n}\right) \tag{13}
\end{equation*}
$$

where $\nu_{t_{1}, \ldots, t_{n}}^{n}$ denotes a uniform probability measure on $\left[-t_{1}, t_{1}\right] \times \ldots \times$ $\left[-t_{n}, t_{n}\right]$. We will also write ν_{t}^{n} instead of $\nu_{t, \ldots, t}^{n}$.

From Lemma 1 it immediately follows that for any convex symmetric set K in $\mathbb{R}^{n}, \nu_{\sqrt{\pi / 2}}^{n}(K) \geq \gamma_{n}(K)$. Hence by Lemma 3

$$
\begin{gather*}
\nu_{t_{1}, \ldots, t_{n}}^{n}\left(x \in \mathbb{R}^{n}: \max _{j}\left|\sum_{i=1}^{n} b_{i, j} x_{i}\right| \leq 1, \sum_{j}\left|\sum_{i=1}^{n} b_{i, j} x_{i}\right|^{2} \leq C\right) \\
=\nu_{\sqrt{\pi / 2}}^{n}\left(x \in \mathbb{R}^{n}: \max _{j}\left|\sum_{i=1}^{n} b_{i, j} t_{i} \sqrt{\frac{2}{\pi}} x_{i}\right| \leq 1, \sum_{j}\left|\sum_{i=1}^{n} b_{i, j} t_{i} \sqrt{\frac{2}{\pi}} x_{i}\right|^{2} \leq C\right) \\
\geq \frac{1}{2} e^{-\frac{4}{\pi} \sum_{i, j} t_{i}^{2} b_{i, j}^{2}} I_{\left\{\frac{4}{\pi} \sum_{i, j} t_{i}^{2} b_{i, j}^{2} \leq C\right\}} \tag{14}
\end{gather*}
$$

Since the function e^{-x} is convex we obtain

$$
\begin{aligned}
\int_{R^{n}} e^{-\frac{4}{\pi} \sum_{i, j} t_{i}^{2} b_{i, j}^{2}} d m_{1}\left(t_{1}\right) \ldots d m_{n}\left(t_{n}\right) & \geq \exp \left(-\int_{R^{n}} \frac{4}{\pi} \sum_{i, j} t_{i}^{2} b_{i, j}^{2} d m_{1}\left(t_{1}\right) \ldots d m_{n}\left(t_{n}\right)\right) \\
= & \exp \left(-\frac{12}{\pi} \sum_{i, j} d_{i} b_{i, j}^{2}\right)
\end{aligned}
$$

Using the above and the obvious estimate

$$
\int_{R^{n}} e^{-\frac{4}{\pi} \sum_{i, j} t_{i}^{2} b_{i, j}^{2}} I_{\left\{\frac{4}{\pi} \sum_{i, j} t_{i}^{2} b_{i, j}^{2}>C\right\}} d m_{1}\left(t_{1}\right) \ldots d m_{n}\left(t_{n}\right) \leq e^{-C}
$$

we obtain by (13) and (14)

$$
\begin{aligned}
& \mu\left(x \in \mathbb{R}^{n}: \max _{j}\left|\sum_{i=1}^{n} b_{i, j} x_{i}\right| \leq 1, \sum_{j}\left|\sum_{i=1}^{n} b_{i, j} x_{i}\right|^{2} \leq 1+4 \sum d_{i} b_{i, j}^{2}\right) \\
& \geq \frac{1}{2} e^{-4 \sum_{i, j} d_{i} b_{i, j}^{2}}-\frac{1}{2} e^{-1-4 \sum_{i, j} d_{i} b_{i, j}^{2}} \geq \frac{1}{4} e^{-4 \sum_{i, j} d_{i} b_{i, j}^{2}} .
\end{aligned}
$$

Lemma 5 Let Y_{1}, \ldots, Y_{n} be symmetric unimodal r.v.'s such that $E Y_{i}^{2} \leq 4$. Then for any $p>0$

$$
P\left(\left\|\left(\sum_{i=1}^{n} a_{i, j} Y_{i}\right)\right\|_{\mathcal{N}^{\prime}, p} \leq 10\left\|\left(B_{j}\right)\right\|_{\mathcal{N}^{\prime}, p}\right) \geq \frac{1}{4} e^{-8 p}
$$

Proof. For $p \leq 1,\left\|\left(a_{j}\right)\right\|_{\mathcal{N}^{\prime}, p}=\sqrt{p}\left\|\left(a_{j}\right)\right\|_{2}$ and the lemma follows easily from Chebyshev's inequality. So we will assume that $p>1$. Without loss of generality we may also assume that $B_{1} \geq B_{2} \geq \ldots$ and $\left\|\left(B_{j}\right)\right\|_{\mathcal{N}^{\prime}, p}=p$. Let

$$
b_{i, j}= \begin{cases}a_{i, j} / B_{j} & \text { for } j \leq p \\ a_{i, j} & \text { for } j>p\end{cases}
$$

and $d_{i}=E Y_{i}^{2} / 4$. Then by (6) we get

$$
\sum_{i, j} d_{i} b_{i, j}^{2} \leq \sum_{i, j} b_{i, j}^{2}=\lfloor p\rfloor+\sum_{j>p} B_{j}^{2} \leq p+p^{-1}\left\|\left(B_{j}\right)\right\|_{\mathcal{N}^{\prime}, p}^{2} \leq 2 p .
$$

Moreover if $\max _{j}\left|\sum_{i} b_{i, j} y_{i}\right| \leq 1$ and $\sum_{j}\left|\sum_{i} b_{i, j} y_{i}\right|^{2} \leq 1+4 \sum_{i, j} d_{i} b_{i, j}^{2}$ then by (6)

$$
\begin{gathered}
\left\|\left(\sum_{i=1}^{n} a_{i, j} y_{i}\right)\right\|_{\mathcal{N}^{\prime}, p} \leq\left\|\left(\sum_{i=1}^{n} a_{i, j} y_{i}\right)_{j \leq p}\right\|_{\mathcal{N}^{\prime}, p}+p \max _{j>p}\left|\sum_{i} a_{i, j} y_{i}\right|+\sqrt{p}\left(\sum_{j>p}\left|\sum_{i} a_{i, j} y_{i}\right|^{2}\right)^{1 / 2} \\
\leq\left\|\left(B_{j}\right)\right\|_{\mathcal{N}^{\prime}, p}+p+\sqrt{p(8 p+1)} \leq 5 p .
\end{gathered}
$$

Hence by Lemma 4

$$
P\left(\left\|\left(\sum_{i=1}^{n} a_{i, j} Y_{i} / 2\right)\right\|_{\mathcal{N}^{\prime}, p} \leq 5\left\|\left(B_{j}\right)\right\|_{\mathcal{N}^{\prime}, p}\right) \geq \frac{1}{4} \exp \left(-4 \sum_{i, j} d_{i} b_{i, j}^{2}\right) \geq \frac{1}{4} e^{-8 p} .
$$

Corollary 3 There exists $C_{3}<\infty$ such that for any matrix $\left(a_{i, j}\right)$ and $p>0$

$$
E\left\|\left(\sum_{i=1}^{n} a_{i, j} X_{i}\right)\right\|_{\mathcal{N}^{\prime}, p} \leq C_{3}\left(\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}, \mathcal{N}^{\prime}, p}+\left\|\left(B_{j}\right)\right\|_{\mathcal{N}^{\prime}, p}\right)
$$

Proof. For $p<1$ Corollary follows easily by (8), so we will asssume that $p \geq 1$. Suppose first that all X_{i} 's are also unimodal. Then $P\left(\left|X_{i}\right|<\right.$ $t) \geq t P\left(\left|X_{i}\right| \leq 1\right)=t\left(1-e^{-1}\right)$ for $t \in[0,1]$. So for all $t>0$

$$
\begin{equation*}
N_{i}(t)=-\ln P\left(\left|X_{i}\right| \geq t\right) \geq\left(1-e^{-1}\right) t \geq \frac{t}{2} \tag{15}
\end{equation*}
$$

Let F_{i} be an odd function, whose restriction to \mathbb{R}^{+}is the inverse of N_{i}. Then X_{i} has the distribution $F_{i}(\lambda)$, where λ is the same symmetric exponential measure as in Theorem 3. Let

$$
A=\left\{x \in \mathbb{R}^{n}:\left\|\left(\sum_{i=1}^{n} a_{i, j} F_{i}\left(x_{i}\right)\right)\right\|_{\mathcal{N}^{\prime}, p} \leq 10\left\|\left(B_{j}\right)\right\|_{\mathcal{N}^{\prime}, p}\right\} .
$$

Then by Lemma 5 and (8)

$$
\lambda^{n}(A)=P\left(\left\|\left(\sum_{i=1}^{n} a_{i, j} X_{i}\right)\right\|_{\mathcal{N}^{\prime}, p} \leq 10\left\|\left(B_{j}\right)\right\|_{\mathcal{N}^{\prime}, p}\right) \geq \frac{1}{4} e^{-8 p} .
$$

Let $s>0, x=y+z$ with $y \in A$ and $z \in V_{s}$. Let $\Delta_{i}=F_{i}\left(x_{i}\right)-F_{i}\left(y_{i}\right)$, then by (15) and since N_{i} is convex we get $\Delta_{i} \leq 2 \min \left(F_{i}\left(\left|z_{i}\right|\right),\left|z_{i}\right|\right)$. So for $36 s \geq p$ we get

$$
\begin{aligned}
& \left\|\left(\sum_{i=1}^{n} a_{i, j} \Delta_{i}\right)\right\|_{\mathcal{N}^{\prime}, p} \leq 2 \sup \left\{\left\|\left(\sum_{i=1}^{n} a_{i, j} b_{i}\right)\right\|_{\mathcal{N}^{\prime}, p}: \sum \hat{N}_{i}\left(b_{i}\right) \leq 36 s\right\} \\
\leq & \frac{72 s}{p} \sup \left\{\left\|\left(\sum_{i=1}^{n} a_{i, j} b_{i}\right)\right\|_{\mathcal{N}^{\prime}, p}: \sum \hat{N}_{i}\left(b_{i}\right) \leq p\right\}=\frac{72 s}{p}\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}, \mathcal{N}^{\prime}, p}
\end{aligned}
$$

Hence for $36 s \geq p$

$$
\left\|\left(\sum_{i=1}^{n} a_{i, j} F_{i}\left(x_{i}\right)\right)\right\|_{\mathcal{N}^{\prime}, p} \leq 10\left\|\left(B_{j}\right)\right\|_{\mathcal{N}^{\prime}, p}+\frac{72 s}{p}\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}, \mathcal{N}^{\prime}, p} .
$$

So by Theorem 3

$$
\begin{gathered}
P\left(\left\|\left(\sum_{i=1}^{n} a_{i, j} X_{i}\right)\right\|_{\mathcal{N}^{\prime}, p}>10\left\|\left(B_{j}\right)\right\|_{\mathcal{N}^{\prime}, p}+\frac{72 s}{p}\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}, \mathcal{N}^{\prime}, p}\right) \\
\leq 1-\lambda^{n}\left(A+V_{s}\right) \leq 4 e^{8 p-s} .
\end{gathered}
$$

Integrating by parts we therefore get for any $s_{0} \geq p / 36$

$$
E\left\|\left(\sum_{i=1}^{n} a_{i, j} X_{i}\right)\right\|_{\mathcal{N}^{\prime}, p} \leq 10\left\|\left(B_{j}\right)\right\|_{\mathcal{N}^{\prime}, p}+\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}, \mathcal{N}^{\prime}, p}\left(\frac{72 s_{0}}{p}+\frac{288}{p} \int_{s_{0}}^{\infty} e^{8 p-x} d x\right) .
$$

Choosing $s_{0}=9 p$ we get

$$
E\left\|\left(\sum_{i=1}^{n} a_{i, j} X_{i}\right)\right\|_{\mathcal{N}^{\prime}, p} \leq \tilde{C}_{3}\left(\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}^{\mathcal{N}}, \mathcal{N}^{\prime}, p}+\left\|\left(B_{j}\right)\right\|_{\mathcal{N}^{\prime}, p}\right)
$$

Now let X_{i} be arbitrary r.v.'s with logconcave tails, satisfying the normalization property (1). Let \tilde{X}_{i} be a r.v. with the density $c_{i} e^{-N_{i}(|x|)}$, where $c_{i}=\left(\int_{R} e^{-N_{i}(|x|)} d x\right)^{-1}$. Let $\alpha_{i}=\inf \left\{t>0: P\left(\left|t \tilde{X}_{i}\right| \geq 1\right) \geq e^{-1}\right\}, Y_{i}=\alpha_{i} X_{i}$,

$$
\tilde{N}_{i}(t)=-\ln P\left(\left|Y_{i}\right| \geq t\right)=-\ln P\left(\left|\alpha_{i} \tilde{X}_{i}\right| \geq t\right)
$$

and

$$
M_{i}(t)=\left\{\begin{array}{ll}
\tilde{N}_{i}(|t|) & \text { for }|t|>1 \\
t^{2} & \text { for }|t| \leq 1
\end{array} .\right.
$$

Functions \tilde{N}_{i} are convex, satisfy the normalization property (1) and variables Y_{i} are unimodal, so by the first part of this proof

$$
\begin{equation*}
E\left\|\left(\sum_{i=1}^{n} a_{i, j} Y_{i}\right)\right\|_{\mathcal{N}^{\prime}, p} \leq \tilde{C}_{3}\left(\left\|\left(a_{i, j}\right)\right\|_{\tilde{\mathcal{N}}^{\prime}, \mathcal{N}^{\prime}, p}+\left\|\left(B_{j}\right)\right\|_{\mathcal{N}^{\prime}, p}\right) \tag{16}
\end{equation*}
$$

where

$$
\left\|\left(a_{i, j}\right)\right\|_{\tilde{\mathcal{N}}, \mathcal{N}^{\prime}, p}=\sup \left\{\sum a_{i, j} b_{i} c_{j}: \sum M_{i}\left(b_{i}\right) \leq p, \sum \hat{N}_{j}^{\prime}\left(c_{j}\right) \leq p\right\} .
$$

Let us notice that

$$
c_{i}^{-1} \leq 2\left(1+\int_{1}^{\infty} e^{-x} d x\right)<3
$$

and

$$
c_{i}^{-1} \geq 2 \int_{0}^{1} e^{-x} d x>1
$$

Hence

$$
P\left(\left|\tilde{X}_{i}\right| \geq t\right)=2 c_{i} \int_{t}^{\infty} e^{-N_{i}(x)} d x \leq 2 \int_{t}^{\infty} e^{-x N_{i}(t) / t} d x=\frac{2 t}{N_{i}(t)} e^{-N_{i}(t)},
$$

so for $t \geq 2$ we obtain

$$
\begin{equation*}
P\left(\left|\tilde{X}_{i}\right| \geq t\right) \leq 2 e^{-N_{i}(t)} \leq 2 e^{-2 N_{i}(t / 2)} \leq e^{-N_{i}(t / 2)} . \tag{17}
\end{equation*}
$$

We also get

$$
\begin{equation*}
P\left(\left|\tilde{X}_{i}\right| \geq t\right) \geq \frac{2}{3} \int_{t}^{\infty} e^{-N_{i}(x)} d x \geq t e^{-N_{i}(5 t / 2)} . \tag{18}
\end{equation*}
$$

From (17) and the normalization property (1) we get that $\alpha_{i} \geq 1 / 2$. Since $P\left(\left|\tilde{X}_{i}\right| \leq t\right) \leq 2 c_{i} t \leq 2 t$ we obtain that $\alpha_{i} \leq 4$. Therefore we get by (18) for $t \geq 5 / 2$

$$
P\left(\left|X_{i}\right| \geq t\right) \leq P\left(\left|5 \tilde{X}_{i} / 2\right| \geq t\right) \leq P\left(\left|5 \alpha_{i} \tilde{X}_{i}\right| \geq t\right)=P\left(\left|5 Y_{i}\right| \geq t\right)
$$

So by the contraction principle

$$
E\left\|\left(\sum_{i=1}^{n} a_{i, j} X_{i} I_{\left\{\left|X_{i}\right| \geq 5 / 2\right\}}\right)\right\|_{\mathcal{N}^{\prime}, p} \leq 5 E\left\|\left(\sum_{i=1}^{n} a_{i, j} Y_{i}\right)\right\|_{\mathcal{N}^{\prime}, p} .
$$

Also by the contraction principle, since by (7) $E\left|Y_{i}\right| \geq 1 / 2$

$$
E\left\|\left(\sum_{i=1}^{n} a_{i, j} X_{i} I_{\left\{\left|X_{i}\right| \leq 5 / 2\right\}}\right)\right\|_{\mathcal{N}^{\prime}, p} \leq \frac{5}{2} E\left\|\left(\sum_{i=1}^{n} a_{i, j} \varepsilon_{i}\right)\right\|_{\mathcal{N}^{\prime}, p} \leq 5 E\left\|\left(\sum_{i=1}^{n} a_{i, j} Y_{i}\right)\right\|_{\mathcal{N}^{\prime}, p} .
$$

Therefore

$$
\begin{equation*}
E\left\|\left(\sum_{i=1}^{n} a_{i, j} X_{i}\right)\right\|_{\mathcal{N}^{\prime}, p} \leq 10 E\left\|\left(\sum_{i=1}^{n} a_{i, j} Y_{i}\right)\right\|_{\mathcal{N}^{\prime}, p} . \tag{19}
\end{equation*}
$$

Let $t \geq 8$, then by (17) we have

$$
P\left(\left|Y_{i}\right| \geq t\right)=P\left(\left|\alpha_{i} \tilde{X}_{i}\right| \geq t\right) \leq P\left(\left|\tilde{X}_{i}\right| \geq t / 4\right) \leq e^{-N_{i}(t / 8)} .
$$

Hence $\tilde{N}_{i}(t) \geq N_{i}(t / 8)$ for $t \geq 8$, so $M_{i}(t) \geq \hat{N}_{i}(t / 8)$ for all t and

$$
\begin{equation*}
\left\|\left(a_{i, j}\right)\right\|_{\tilde{\mathcal{N}}, \mathcal{N}^{\prime}, p} \leq 8\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}, \mathcal{N}^{\prime}, p} . \tag{20}
\end{equation*}
$$

(16), (19) and (20) complete the proof.

Proof of Theorem 1. First we estimate $\|X\|_{p}$ from below. By the Jensen inequality and symmetry of X_{i} we have

$$
\|X\|_{p} \geq\left\|\sum_{i} X_{i} E\left|\sum_{j} a_{i, j} X_{j}^{\prime}\right|\right\|_{p}
$$

But by (3) and (8) we get

$$
E\left|\sum_{j} a_{i, j} X_{j}^{\prime}\right| \geq C_{2,1}^{-1}\left\|\sum_{j} a_{i, j} X_{j}^{\prime}\right\|_{2} \geq C_{2,1}^{-1}\left(\sum_{j} \frac{1}{2} a_{i, j}^{2}\right)^{1 / 2}=\tilde{C}^{-1} A_{i} .
$$

Hence by Theorem 2

$$
\begin{equation*}
\|X\|_{p} \geq \tilde{C}^{-1}\left\|\sum_{i} A_{i} X_{i}\right\|_{p} \geq\left(\tilde{C} C_{1}\right)^{-1}\left\|\left(A_{i}\right)\right\|_{\mathcal{N}, p} \tag{21}
\end{equation*}
$$

In a similar way we prove that

$$
\begin{equation*}
\|X\|_{p} \geq\left(\tilde{C} C_{1}\right)^{-1}\left\|\left(B_{j}\right)\right\|_{\mathcal{N}^{\prime}, p} \tag{22}
\end{equation*}
$$

By Theorem 2 we also have that for any $\left(c_{j}\right)$ with $\sum_{j} \hat{N}_{j}^{\prime}\left(c_{j}\right) \leq p$ we have

$$
\|X\|_{p} \geq C_{1}^{-1}\left(E\left|\sum_{i, j} a_{i, j} c_{j} X_{i}\right|^{p}\right)^{1 / p} \geq C_{1}^{-2}\left\|\left(\sum_{j} a_{i, j} c_{j}\right)\right\|_{\mathcal{N}, p}
$$

Taking the supremum over all such sequences $\left(c_{j}\right)$ we get

$$
\begin{equation*}
\|X\|_{p} \geq C_{1}^{-2}\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}, \mathcal{N}^{\prime}, p} \tag{23}
\end{equation*}
$$

(21), (22) and (23) complete the proof of this part of Theorem 1.

To prove the estimation from above let us first notice that $X_{i}=Y_{i}+Z_{i}$ for some symmetric random variables Y_{i} and Z_{i} such that

$$
P\left(\left|Y_{i}\right| \geq t\right)=e^{-\tilde{N}_{i}(t)}, \text { where } \tilde{N}_{i}(t)= \begin{cases}t & \text { for } t \leq 1 \\ N_{i}(t) & \text { for } t>1\end{cases}
$$

and $\left|Z_{i}\right| \leq 1$ a.e., we will also assume that the Y_{i} are independent and so are the Z_{i}. In the same way we split $X_{i}^{\prime}=Y_{i}^{\prime}+Z_{i}^{\prime}$. By the contraction principle and since by (7) $E\left|Y_{i}\right|, E\left|Y_{i}^{\prime}\right| \geq 1 / 2$,

$$
\left\|\sum a_{i, j} Z_{i} Y_{j}^{\prime}\right\|_{p} \leq\left\|\sum a_{i, j} \varepsilon_{i} Y_{j}^{\prime}\right\|_{p} \leq 2\left\|\sum a_{i, j} Y_{i} Y_{j}^{\prime}\right\|_{p}
$$

and

$$
\left\|\sum a_{i, j} Z_{i} Z_{j}^{\prime}\right\|_{p} \leq\left\|\sum a_{i, j} \varepsilon_{i} Z_{j}^{\prime}\right\|_{p} \leq 2\left\|\sum a_{i, j} Y_{i} Z_{j}^{\prime}\right\|_{p} \leq 4\left\|\sum a_{i, j} Y_{i} Y_{j}^{\prime}\right\|_{p}
$$

Hence

$$
\begin{gathered}
\|X\|_{p} \leq\left\|\sum a_{i, j} Z_{i} Z_{j}^{\prime}\right\|_{p}+\left\|\sum a_{i, j} Z_{i} Y_{j}^{\prime}\right\|_{p}+\left\|\sum a_{i, j} Y_{i} Z_{j}^{\prime}\right\|_{p}+\left\|\sum a_{i, j} Y_{i} Y_{j}^{\prime}\right\|_{p} \\
\leq 9\left\|\sum a_{i, j} Y_{i} Y_{j}^{\prime}\right\|_{p} .
\end{gathered}
$$

So it is enough to prove that for $p \geq 1$

$$
\left\|\sum a_{i, j} Y_{i} Y_{j}^{\prime}\right\|_{p} \leq C\left(\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}, \mathcal{N}^{\prime}, p}+\left\|\left(A_{i}\right)\right\|_{\mathcal{N}, p}+\left\|\left(B_{j}\right)\right\|_{\mathcal{N}^{\prime}, p}\right)
$$

To simplify the notation let

$$
m_{p}=\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}^{\prime}, \mathcal{N}^{\prime}, p}+\left\|\left(A_{i}\right)\right\|_{\mathcal{N}, p}+\left\|\left(B_{j}\right)\right\|_{\mathcal{N}^{\prime}, p}
$$

Then $m_{p} \geq\left\|\left(A_{i}\right)\right\|_{\mathcal{N}, 1}+\left\|\left(B_{j}\right)\right\|_{\mathcal{N}^{\prime}, 1}=2\left(\sum_{i, j} a_{i, j}^{2}\right)^{1 / 2}$. Since by (8), $E Y_{i}^{2}, E\left(Y_{j}^{\prime}\right)^{2} \leq$ 2 , we get

$$
\begin{equation*}
P\left(\left|\sum a_{i, j} Y_{i} Y_{j}^{\prime}\right| \geq 2 m_{p}\right) \leq P\left(\left|\sum a_{i, j} Y_{i} Y_{j}^{\prime}\right|^{2} \geq 4 E\left|\sum a_{i, j} Y_{i} Y_{j}^{\prime}\right|^{2}\right) \leq \frac{1}{4} \tag{24}
\end{equation*}
$$

From Corollary 3 we have

$$
\begin{equation*}
P\left(\left\|\left(\sum_{i=1}^{n} a_{i, j} Y_{i}\right)\right\|_{\mathcal{N}^{\prime}, p} \geq 4 C_{3} m_{p}\right) \leq \frac{1}{4} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(\left\|\left(\sum_{j=1}^{n} a_{i, j} Y_{j}^{\prime}\right)\right\|_{\mathcal{N}, p} \geq 4 C_{3} m_{p}\right) \leq \frac{1}{4} \tag{26}
\end{equation*}
$$

Let $F_{i}, F_{j}^{\prime}: R \rightarrow R$ be odd functions, whose restrictions to \mathbb{R}^{+}are the inverses of $\tilde{N}_{i}, \tilde{N}_{j}^{\prime}$ respectively. Then Y_{i}, Y_{j}^{\prime} have distributions $F_{i}(\lambda)$ and $F_{j}^{\prime}(\lambda)$, where λ is the same symmetric exponential measure as in Theorem 3. Let

$$
\begin{gathered}
A=\left\{\left(x, x^{\prime}\right) \in \mathbb{R}^{2 n}:\left|\sum a_{i, j} F_{i}\left(x_{i}\right) F_{j}^{\prime}\left(x_{j}^{\prime}\right)\right| \leq 2 m_{p},\right. \\
\left.\left\|\left(\sum_{i=1}^{n} a_{i, j} F_{i}\left(x_{i}\right)\right)\right\|_{\mathcal{N}^{\prime}, p},\left\|\left(\sum_{j=1}^{n} a_{i, j} F_{j}^{\prime}\left(x_{j}^{\prime}\right)\right)\right\|_{\mathcal{N}, p} \leq 4 C_{3} m_{p}\right\},
\end{gathered}
$$

then by (24), (25) and (26)

$$
\lambda^{2 n}(A) \geq \frac{1}{4}
$$

Hence by Theorem 3 for $s>0$

$$
\lambda^{2 n}\left(A+V_{s}\right) \geq 1-4 e^{-s}
$$

Let $\left(x, x^{\prime}\right)=\left(y+z, y^{\prime}+z^{\prime}\right)$ with $\left(y, y^{\prime}\right) \in A,\left(z, z^{\prime}\right) \in V_{s}$. Let $\Delta_{i}=$ $F_{i}\left(x_{i}\right)-F_{i}\left(y_{i}\right)$ and $\Delta_{j}^{\prime}=F_{j}^{\prime}\left(x_{j}^{\prime}\right)-F_{j}^{\prime}\left(y_{j}^{\prime}\right)$. By the convexity of \tilde{N}_{i} we have $\left|\Delta_{i}\right| \leq 2 F_{i}\left(\left|x_{i}-y_{i}\right|\right)$, therefore

$$
\sum_{i} \hat{N}_{i}\left(\Delta_{i} / 2\right) \leq \sum_{i} \hat{N}_{i}\left(F_{i}\left(\left|z_{i}\right|\right)\right)=\sum_{i} \min \left(\left|z_{i}\right|, z_{i}^{2}\right) \leq 36 s
$$

By the similar reason we have

$$
\sum_{j} \hat{N}_{j}^{\prime}\left(\Delta_{j}^{\prime} / 2\right) \leq 36 s
$$

Hence

$$
\begin{aligned}
\left|\sum_{i, j} a_{i, j} \Delta_{i} F_{j}^{\prime}\left(y_{j}^{\prime}\right)\right| \leq & 2 \sup \left\{\sum_{i}\left(\sum_{j} a_{i, j} F_{j}^{\prime}\left(y_{j}^{\prime}\right)\right) b_{i}: \sum_{i} \hat{N}_{i}\left(b_{i}\right) \leq 36 s\right\} \\
& \leq 2\left\|\left(\sum_{j} a_{i, j} F_{j}^{\prime}\left(y_{j}^{\prime}\right)\right)\right\|_{\mathcal{N}, 36 s} .
\end{aligned}
$$

Therefore by (4) we have

$$
\begin{equation*}
\left|\sum_{i, j} a_{i, j} \Delta_{i} F_{j}^{\prime}\left(y_{j}^{\prime}\right)\right| \leq \frac{72 s}{p}\left\|\left(\sum_{j} a_{i, j} F_{j}^{\prime}\left(y_{j}^{\prime}\right)\right)\right\|_{\mathcal{N}, p} \leq \frac{288 s}{p} C_{3} m_{p} \text { for } 36 s \geq p \tag{27}
\end{equation*}
$$

In a similar way we prove

$$
\begin{equation*}
\left|\sum_{i, j} a_{i, j} F_{i}\left(y_{i}\right) \Delta_{j}^{\prime}\right| \leq \frac{288 s}{p} C_{3} m_{p} \text { for } 36 s \geq p \tag{28}
\end{equation*}
$$

We also have

$$
\left|\sum_{i, j} a_{i, j} \Delta_{i} \Delta_{j}^{\prime}\right| \leq 4 \sup \left\{\sum_{i, j} a_{i, j} b_{i} c_{j}: \sum_{i} \hat{N}_{i}\left(b_{i}\right), \sum_{j} \hat{N}_{j}^{\prime}\left(c_{j}\right) \leq 36 s\right\}
$$

$$
=4\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}, \mathcal{N}^{\prime}, 36 s} .
$$

So by (5) we get for $36 s \geq p$

$$
\begin{equation*}
\left|\sum_{i, j} a_{i, j} \Delta_{i} \Delta_{j}^{\prime}\right| \leq 4\left(\frac{36 s}{p}\right)^{2}\left\|\left(a_{i, j}\right)\right\|_{\mathcal{N}, \mathcal{N}^{\prime}, p} \leq 4\left(\frac{36 s}{p}\right)^{2} m_{p} . \tag{29}
\end{equation*}
$$

By (27), (28) and (29) and the definition of the set A we get

$$
\left|\sum_{i, j} a_{i, j} F_{i}\left(x_{i}\right) F_{j}^{\prime}\left(x_{j}^{\prime}\right)\right| \leq\left(2+2 \frac{288 s}{p} C_{3}+4\left(\frac{36 s}{p}\right)^{2}\right) m_{p} \leq C_{4}\left(\frac{s}{p}\right)^{2} m_{p} \text { for } s \geq p
$$

Therefore for $s \geq p$

$$
\begin{gathered}
P\left(\left|\sum_{i, j} a_{i, j} Y_{i} Y_{j}^{\prime}\right|>C_{4}\left(\frac{s}{p}\right)^{2} m_{p}\right) \\
=\lambda^{2 n}\left(\left(x, x^{\prime}\right) \in \mathbb{R}^{2 n}:\left|\sum_{i, j} a_{i, j} F_{i}\left(x_{i}\right) F_{j}^{\prime}\left(x_{j}^{\prime}\right)\right|>C_{4}\left(\frac{s}{p}\right)^{2} m_{p}\right) \\
\leq 1-\lambda^{2 n}\left(A+V_{s}\right) \leq 4 e^{-s} .
\end{gathered}
$$

Hence integrating by parts

$$
E\left|\sum_{i, j} a_{i, j} Y_{i} Y_{j}^{\prime}\right|^{p} \leq C_{4}^{p} m_{p}^{p}\left(1+4 \int_{1}^{\infty} x^{p-1} e^{-p \sqrt{x}} d x\right) \leq C^{p} m_{p}^{p} .
$$

Acknowledgments. This research was carried out when the author was working in the Institute of Mathematics Polish Academy of Science.

References

[1] C. Borell, Convex measures on locally convex spaces, Ark. Math. 12 (1974), 239-252.
[2] V. H. de la Peña, S. J. Montgomery-Smith, Bounds on the tail probability of U-statistics and quadratic forms, Bull. Amer. Math. Soc. 31 (1994), 223-227.
[3] E. D. Gluskin, S. Kwapień, Tail and moment estimates for sums of independent random variables with logarithmically concave tails, Studia Math. 114 (1995), 303-309.
[4] C. G. Khatri, On certain inequalities for normal distributions and their applications to simultaneous confidence bounds, Ann. Math. Statist. 38 (1967), 1853-1867.
[5] R. Latała, Tail and moment estimates for sums of independent random vectors with logarithmically concave tails, Studia Math. 118 (1996), 301304.
[6] B. Maurey, Some deviation inequalities, Geom. Funct. Anal. 1 (1991), 188-197.
[7] Z. Sidak, Rectangular confidence regions for the means of multivariate normal distributions, J. Amer. Statist. Assoc. 62 (1967), 626-633.
[8] M.Talagrand, A new isoperimetric inequality and the concentration of measure phenomenon, in: Israel Seminar (GAFA), Lecture Notes in Math. 1469, Springer, 1991, 94-124.

Institute of Mathematics
Warsaw University
Banacha 2
02-097 Warszawa, Poland
E-mail:rlatala@mimuw.edu.pl

[^0]: *1991 Mathematics Subject Classification: 60E15
 † partially supported by KBN Grant 2 P301 02207

