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Abstract

Let Xi be a sequence of independent symmetric real random
variables with logarithmically concave tails. We consider a variable
X =

∑
i 6=j ai,jXiXj , where ai,j are real numbers. We derive approx-

imate formulas for the tails and moments of X and its decoupled
version, which are exact up to some universal constants.

Definitions and notation. Let Xi, X
′
j be two independent sequences

of independent symmetric random variables with logarithmically concave
tails, i.e. the functions Ni, N

′
j : [0,∞)→ [0,∞] defined by the formulas

Ni(t) = − lnP (|Xi| ≥ t)

and
N
′

j(t) = − lnP (|X ′j| ≥ t)

are convex. Since it is only a matter of normalization we may and will
assume that for all i and j

inf{t : Ni(t) ≥ 1} = inf{t : N
′

j(t) ≥ 1} = 1. (1)

Let us define the functions N̂i by the formula

N̂i(t) =

{
t2 for |t| ≤ 1
Ni(|t|) for |t| > 1.
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For sequences (ai) of real numbers and p > 0 we put

‖(ai)‖N ,p = sup{
∑

aibi :
∑

N̂i(bi) ≤ p}

and
‖(ai)‖p = (

∑
api )

1/p.

In a similar way we define N̂
′
j and ‖(aj)‖N ′ ,p.

For matrices (ai,j) and p > 0 we define

‖(ai,j)‖N ,N ′ ,p = sup{
∑

ai,jbicj :
∑

N̂i(bi) ≤ p,
∑

N̂
′
j(cj) ≤ p}.

We denote by (εi) the Bernoulli sequence, i.e. a sequence of i.i.d. sym-
metric r.v. taking on values±1. A sequence of independent standardN (0, 1)
Gaussian random variables will be denoted by (gi) and the canonical Gaus-
sian measure on IRn by γn.

For a random variable X and p > 0 we write

‖X‖p = (E|X|p)1/p.

We will also use the notation a ∼C b to denote that C−1a ≤ b ≤ Ca.

In this paper we will prove the following theorem

Theorem 1 Let (ai,j) be a square summable matrix and X =
∑
ai,jXiX

′
j.

Then for each p ≥ 1

‖X‖p ∼C ‖(ai,j)‖N ,N ′ ,p + ‖(Ai)‖N ,p + ‖(Bj)‖N ′ ,p,

where Ai = (
∑
j a

2
i,j)

1/2, Bj = (
∑
i a

2
i,j)

1/2 and C is a universal constant.

We postpone the proof of Theorem 1 till the end of this article and now
present some corollaries and examples.

Corollary 1 Let (ai,j) be a square summable matrix, such that ai,i = 0 and
ai,j = aj,i for all i, j. Then for each p ≥ 1

‖
∑

ai,jXiXj‖p ∼C̃ ‖(ai,j)‖N ,N ,p + ‖(Ai)‖N ,p,

where Ai = (
∑
j a

2
i,j)

1/2 and C̃ is a universal constant.
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Proof. Let X
′
i be an independent copy of Xi, then by the result of de la

Peña, Montgomery-Smith (cf [2]) about decoupling chaos we have for p ≥ 1

‖
∑

ai,jXiXj‖p ∼K ‖
∑

ai,jXiX
′

j‖p

with some universal constant K. Hence Corollary 1 is an immediate con-
cequence of Theorem 1 if we notice that Ai = Bi by the symmetry of the
matrix (ai,j).

Corollary 2 There exist universal constants 0 < c < C < ∞ such that
under the assumptions of Corollary 1, for each t ≥ 1

P (|
∑

ai,jXiXj| ≥ C(‖(ai,j)‖N ,N ,t + ‖(Ai)‖N ,t)) ≤ e−t

and

P (|
∑

ai,jXiXj| ≥ c(‖(ai,j)‖N ,N ,t + ‖(Ai)‖N ,t)) ≥ min(c, e−t).

Proof. The first inequality follows from Corollary 1 and Chebyshev’s
inequality. To get the second inequality we first use Corollary 1 and Propo-
sition 1 from below to get

‖
∑

ai,jXiXj‖2p ≤ 4C̃2‖
∑

ai,jXiXj‖p for p ≥ 1.

The inequality now may be obtained by Corollary 1 and the Paley-Zygmund
inequality as in [3].

By simple calculations we may easily derive from Corollary 1 the follow-
ing two examples of interest.

Example 1. If a matrix (ai,j) satisfies the assumptions of Corollary 1
then for some universal constant K and any p ≥ 1 we have

‖
∑

ai,jgigj‖p ∼K p‖(ai,j)‖l2→l2 +
√
p‖(ai,j)‖HS,

where
‖(ai,j)‖l2→l2 = sup{

∑
ai,jbicj : ‖(bi)‖2, ‖(cj)‖2 ≤ 1}

and
‖(ai,j)‖HS = (

∑
a2
i,j)

1/2.

Example 2. Under the assumptions of Corollary 1 we have
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‖
∑

ai,jεiεj‖p ∼K sup{
∑

ai,jbicj : ‖(bi)‖2, ‖(cj)‖2 ≤ p, |bi|, |cj| ≤ 1}

+
∑
i≤p

A∗i +
√
p(

∑
i>p

(A∗i )
2)1/2,

where A∗i denotes a nondecreasing rearrangement of the sequence Ai and K
is a universal constant.

Remark. Example 1 may be also derived in a simpler way. Using the
invariance of Gaussian r.v. under orthogonal transformations, it is enough
to prove that for any sequence (di) of real numbers we have

‖
∑

digig
′

i‖p ∼K1 p‖(di)‖∞ +
√
p‖(di)‖2.

This easily follows from the results of [3] (see Theorem 2 below).

The following theorem was established in a slightly less general setting
by Gluskin and Kwapień in [3] and in full generality in [5].

Theorem 2 There exists a universal constant C1 < ∞ such that for any
square summable sequence (ai) and p ≥ 1 we have

‖
∑

aiXi‖p ∼C1 ‖(ai)‖N ,p. (2)

In particular for any p, q ≥ 1 there exists a constant Cp,q, which depends
only on p and q such that

‖
∑

aiXi‖p ≤ Cp,q‖
∑

aiXi‖q. (3)

Remark. The inequality (3) may be also obtained by hypercontractive
methods or direct calculations.

We will also use the following theorem of M. Talagrand (see [8] and [6]
for a simpler proof with better constants).

Theorem 3 Let λ be the measure on IR with the density 1
2
e−|x| and λn be

the product measure ⊗ni=1λ on IRn. Then for any Borel subset A of IRn with
λn(A) > 0 and any s > 0 we have

λn(A+ Vs) ≥ 1− λn(A)−1e−s,

where
Vs = {x ∈ IRn :

∑
min(|xi|, x2

i ) ≤ 36s}.
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In the next part of the paper we will need some additional definitions.
We will say that a measure µ on IR is symmetric unimodal if it has a density
with respect to the Lebesgue measure, which is symmetric and nonincreasing
on [0,∞). A nonnegative Borel measure µ on IRn will be called logconcave
if

µ(tA+ (1− t)B) ≥ µt(A)µ1−t(B)

for any nonempty Borel sets A,B in IRn and t ∈ (0, 1). A real random
variable will be called symmetric unimodal (logconcave) if its distribution
is symmetric unimodal (logconcave).

By the results of Borell [1] products of logconcave measures are logcon-
cave and nondegenerate measures on IR are logconcave if and only if they
have logconcave densities with respect to the Lebesgue measure. In partic-
ular any symmetric nondegenerate logconcave real r.v. has logconcave tails
and is symmetric unimodal.

Proposition 1 The following inequalities are satisfied

‖(ai)‖N ,λp ≤ λ‖(ai)‖N ,p for λ ≥ 1, p > 0 (4)

‖(ai,j)‖N ,N ′ ,λp ≤ λ2‖(ai,j)‖N ,N ′ ,p for λ ≥ 1, p > 0, (5)

and √
p(

∑
i>p

(a∗i )
2)1/2 ≤ ‖(ai)‖N ,p ≤ pa∗1 +

√
p(

∑
i

(a∗i )
2)1/2, (6)

where (a∗i ) is a nonincreasing rearrangement of the sequence (|ai|).

Proof. Inequalities (4) and (5) follow easily from the observation that
N̂i(tx) ≤ tN̂i(x) for any t ∈ [0, 1] and real number x. To prove (6) let us
fix a sequence (bi) such that

∑
i N̂i(bi) ≤ p and let J = {i : bi ≥ 1}. Then

since N̂i(x) ≥ x for x ≥ 1 we have
∑
i∈J aibi ≤ pa∗1 and since N̂i(x) = x2 for

|x| ≤ 1 we get
∑
iε/J aibi ≤

√
p(

∑
i(a
∗
i )

2)1/2.
To prove the other inequality in (6) let k = bpc + 1, A = (k(a∗k)

2 +∑
i>k(a

∗
i )

2)1/2, bi = sgn(ai)
√
pa∗k/A for |ai| ≥ a∗k and bi =

√
pai/A for |ai| ≤

a∗k. Then |bi| ≤ 1,
∑
N̂i(bi) =

∑
b2i = p and∑

aibi ≥
√
pA ≥ √p(

∑
i>p

(a∗i )
2)1/2.
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Proposition 2 For any random variable Xi with logconcave tails normal-
ized as in (1) we have

1

2
< 1− e−1 ≤ E|Xi| ≤ 1 (7)

and
1

2
< 2− 4e−1 ≤ E|Xi|2 ≤ 2. (8)

Proof. By our normalization property (1) and the convexity of Ni we
get 0 ≤ Ni(t) ≤ t for t ∈ [0, 1] and Ni(t) ≥ max(0, k(t − 1) + 1) for some
k ≥ 1 and all t ≥ 0. Proposition easily follows by integration by parts.

Lemma 1 Let µ1, . . . , µn and ν1, . . . , νn be symmetric probabilistic logcon-
cave measures on IR such that

∀i ∀t>0 µi([−t, t]) ≤ νi([−t, t]), (9)

µ = µ1 ⊗ . . . ⊗ µn and ν = ν1 ⊗ . . . ⊗ νn. Then for any convex symmetric
Borel set K in IRn we have

µ(K) ≤ ν(K).

Proof. It is enough to prove that for any symmetric logconcave measure
on IRn−1 and convex symmetric set K we have

µ1 ⊗ µ(K) ≤ ν1 ⊗ µ(K).

Let for t ∈ IR, Kt = {x ∈ IRn−1 : (t, x) ∈ K} and f(t) = µ(Kt). By the
convexity of K we have for any λ ∈ (0, 1) and s, t ∈ IR such that Kt, Ks 6= ∅

λKt + (1− λ)Ks ⊂ Kλt+(1−λ)s.

Therefore f is logconcave on IR and since it is also symmetric, it is nonin-
creasing on [0,∞). Hence approximating f by

∑
ajI[−tj ,tj ] we obtain from

(9)

µ1 ⊗ µ(K) =
∫
IR
f(t)dµ1(t) ≤

∫
IR
f(t)dν1(t) = ν1 ⊗ µ(K).
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Lemma 2 For all t > 0 the following inequality holds

γ1([−t, t]) =
1√
2π

∫ t

−t
e−x

2/2dx ≥ e−2/t2 .

Proof. Since for any x > 0, e−x + e−1/x ≤ 1
1+x

+ 1
1+x−1 = 1, Lemma 1

follows from well known (and easy to check) estimate γ1([−t, t]) ≥ 1−e−t2/2.

Lemma 3 For any matrix (ai,j) and C ≥ 2
∑
i,j a

2
i,j we have

γn(max
j
|
n∑
i=1

ai,jxi| ≤ 1,
∑
j

|
n∑
i=1

ai,jxi|2 ≤ C) ≥ 1

2
e−2

∑
i,j
a2
i,j .

Proof. From the result of Khatri [4] and Sidak [7] we have

γn(max
j
|
n∑
i=1

ai,jxi| ≤ 1,
∑
j

|
n∑
i=1

ai,jxi|2 ≤ C)

≥ (
∏
j

γn(|
n∑
i=1

ai,jxi| ≤ 1))γn(
∑
j

|
n∑
i=1

ai,jxi|2 ≤ C). (10)

By Lemma 2 we have

γn(|
n∑
i=1

ai,jxi| ≤ 1) = γ1([−(
n∑
i=1

a2
i,j)
−1/2, (

n∑
i=1

a2
i,j)
−1/2]) ≥ e−2

∑n

i=1
a2
i,j . (11)

Since E
∑
j |

∑n
i=1 ai,jgi|2 =

∑
i,j a

2
i,j, from Chebyshev’s inequality we obtain

γn(
∑
j

|
n∑
i=1

ai,jxi|2 ≤ C) = 1− P (
∑
j

|
n∑
i=1

ai,jgi|2 > C) ≥ 1

2
. (12)

Lemma 3 follows from (10), (11) and (12).

Lemma 4 Let Y1, . . . , Yn be symmetric unimodal real r.v.’s and di = EY 2
i .

Then for any matrix (bi,j) we have

P (max
j
|
n∑
i=1

bi,jYi| ≤ 1,
∑
j

|
n∑
i=1

bi,jYi|2 ≤ 1 + 4
∑

dib
2
i,j) ≥

1

4
e−4

∑
i,j
dib

2
i,j .
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Proof. Let Yi have the distribution µi with the density fi and µ =
⊗ni=1µi. Since fi are nonnegative, symmetric, nonincreasing on [0,∞) and
µi are probability measures, there exist probability measures m1, . . . ,mn on
IR such that for each i

fi(x) =
∫ ∞
0

1

2t
I[−t,t](x)dmi(t).

We also have∫ ∞
0

t2dmi(t) = 3
∫ ∞
0

∫
R
x2 1

2t
I[−t,t](x)dxdmi(t) = 3

∫
R
x2fi(x)dx = 3di.

For any Borel set A in IRn we have

µ(A) =
∫
Rn
νnt1,...,tn(A)dm1(t1) . . . dmn(tn), (13)

where νnt1,...,tn denotes a uniform probability measure on [−t1, t1] × . . . ×
[−tn, tn]. We will also write νnt instead of νnt,...,t.

From Lemma 1 it immediately follows that for any convex symmetric
set K in IRn, νn√

π/2
(K) ≥ γn(K). Hence by Lemma 3

νnt1,...,tn(x ∈ IRn : max
j
|
n∑
i=1

bi,jxi| ≤ 1,
∑
j

|
n∑
i=1

bi,jxi|2 ≤ C)

= νn√
π/2

(x ∈ IRn : max
j
|
n∑
i=1

bi,jti

√
2

π
xi| ≤ 1,

∑
j

|
n∑
i=1

bi,jti

√
2

π
xi|2 ≤ C)

≥ 1

2
e−

4
π

∑
i,j
t2i b

2
i,jI{ 4

π

∑
i,j
t2i b

2
i,j≤C}

. (14)

Since the function e−x is convex we obtain∫
IRn
e−

4
π

∑
i,j
t2i b

2
i,jdm1(t1) . . . dmn(tn) ≥ exp(−

∫
IRn

4

π

∑
i,j

t2i b
2
i,jdm1(t1) . . . dmn(tn))

= exp(−12

π

∑
i,j

dib
2
i,j).

Using the above and the obvious estimate∫
IRn
e−

4
π

∑
i,j
t2i b

2
i,jI{ 4

π

∑
i,j
t2i b

2
i,j>C}

dm1(t1) . . . dmn(tn) ≤ e−C
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we obtain by (13) and (14)

µ(x ∈ IRn : max
j
|
n∑
i=1

bi,jxi| ≤ 1,
∑
j

|
n∑
i=1

bi,jxi|2 ≤ 1 + 4
∑

dib
2
i,j)

≥ 1

2
e−4

∑
i,j
dib

2
i,j − 1

2
e−1−4

∑
i,j
dib

2
i,j ≥ 1

4
e−4

∑
i,j
dib

2
i,j .

Lemma 5 Let Y1, . . . , Yn be symmetric unimodal r.v.’s such that EY 2
i ≤ 4.

Then for any p > 0

P (‖(
n∑
i=1

ai,jYi)‖N ′ ,p ≤ 10‖(Bj)‖N ′ ,p) ≥
1

4
e−8p.

Proof. For p ≤ 1, ‖(aj)‖N ′ ,p =
√
p‖(aj)‖2 and the lemma follows easily

from Chebyshev’s inequality. So we will assume that p > 1. Without loss of
generality we may also assume that B1 ≥ B2 ≥ . . . and ‖(Bj)‖N ′ ,p = p. Let

bi,j =

{
ai,j/Bj for j ≤ p
ai,j for j > p

and di = EY 2
i /4. Then by (6) we get∑

i,j

dib
2
i,j ≤

∑
i,j

b2i,j = bpc+
∑
j>p

B2
j ≤ p+ p−1‖(Bj)‖2N ′ ,p ≤ 2p.

Moreover if maxj |
∑
i bi,jyi| ≤ 1 and

∑
j |

∑
i bi,jyi|2 ≤ 1 + 4

∑
i,j dib

2
i,j then

by (6)

‖(
n∑
i=1

ai,jyi)‖N ′ ,p ≤ ‖(
n∑
i=1

ai,jyi)j≤p‖N ′ ,p+pmax
j>p
|
∑
i

ai,jyi|+
√
p(

∑
j>p

|
∑
i

ai,jyi|2)1/2

≤ ‖(Bj)‖N ′ ,p + p+
√
p(8p+ 1) ≤ 5p.

Hence by Lemma 4

P (‖(
n∑
i=1

ai,jYi/2)‖N ′ ,p ≤ 5‖(Bj)‖N ′ ,p) ≥
1

4
exp(−4

∑
i,j

dib
2
i,j) ≥

1

4
e−8p.
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Corollary 3 There exists C3 <∞ such that for any matrix (ai,j) and p > 0

E‖(
n∑
i=1

ai,jXi)‖N ′ ,p ≤ C3(‖(ai,j)‖N ,N ′ ,p + ‖(Bj)‖N ′ ,p).

Proof. For p < 1 Corollary follows easily by (8), so we will asssume
that p ≥ 1. Suppose first that all Xi’s are also unimodal. Then P (|Xi| <
t) ≥ tP (|Xi| ≤ 1) = t(1− e−1) for t ∈ [0, 1]. So for all t > 0

Ni(t) = − lnP (|Xi| ≥ t) ≥ (1− e−1)t ≥ t

2
. (15)

Let Fi be an odd function, whose restriction to IR+ is the inverse of Ni. Then
Xi has the distribution Fi(λ), where λ is the same symmetric exponential
measure as in Theorem 3. Let

A = {x ∈ IRn : ‖(
n∑
i=1

ai,jFi(xi))‖N ′ ,p ≤ 10‖(Bj)‖N ′ ,p}.

Then by Lemma 5 and (8)

λn(A) = P (‖(
n∑
i=1

ai,jXi)‖N ′ ,p ≤ 10‖(Bj)‖N ′ ,p) ≥
1

4
e−8p.

Let s > 0, x = y + z with y ∈ A and z ∈ Vs. Let ∆i = Fi(xi) − Fi(yi),
then by (15) and since Ni is convex we get ∆i ≤ 2 min(Fi(|zi|), |zi|). So for
36s ≥ p we get

‖(
n∑
i=1

ai,j∆i)‖N ′ ,p ≤ 2 sup{‖(
n∑
i=1

ai,jbi)‖N ′ ,p :
∑

N̂i(bi) ≤ 36s}

≤ 72s

p
sup{‖(

n∑
i=1

ai,jbi)‖N ′ ,p :
∑

N̂i(bi) ≤ p} =
72s

p
‖(ai,j)‖N ,N ′ ,p.

Hence for 36s ≥ p

‖(
n∑
i=1

ai,jFi(xi))‖N ′ ,p ≤ 10‖(Bj)‖N ′ ,p +
72s

p
‖(ai,j)‖N ,N ′ ,p.

So by Theorem 3
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P (‖(
n∑
i=1

ai,jXi)‖N ′ ,p > 10‖(Bj)‖N ′ ,p +
72s

p
‖(ai,j)‖N ,N ′ ,p)

≤ 1− λn(A+ Vs) ≤ 4e8p−s.

Integrating by parts we therefore get for any s0 ≥ p/36

E‖(
n∑
i=1

ai,jXi)‖N ′ ,p ≤ 10‖(Bj)‖N ′ ,p + ‖(ai,j)‖N ,N ′ ,p(
72s0

p
+

288

p

∫ ∞
s0

e8p−xdx).

Choosing s0 = 9p we get

E‖(
n∑
i=1

ai,jXi)‖N ′ ,p ≤ C̃3(‖(ai,j)‖N ,N ′ ,p + ‖(Bj)‖N ′ ,p).

Now let Xi be arbitrary r.v.’s with logconcave tails, satisfying the nor-
malization property (1). Let X̃i be a r.v. with the density cie

−Ni(|x|), where
ci = (

∫
R e
−Ni(|x|)dx)−1. Let αi = inf{t > 0 : P (|tX̃i| ≥ 1) ≥ e−1}, Yi = αiXi,

Ñi(t) = − lnP (|Yi| ≥ t) = − lnP (|αiX̃i| ≥ t)

and

Mi(t) =

{
Ñi(|t|) for |t| > 1
t2 for |t| ≤ 1

.

Functions Ñi are convex, satisfy the normalization property (1) and vari-
ables Yi are unimodal, so by the first part of this proof

E‖(
n∑
i=1

ai,jYi)‖N ′ ,p ≤ C̃3(‖(ai,j)‖Ñ ,N ′ ,p + ‖(Bj)‖N ′ ,p), (16)

where

‖(ai,j)‖Ñ ,N ′ ,p = sup{
∑

ai,jbicj :
∑

Mi(bi) ≤ p,
∑

N̂
′
j(cj) ≤ p}.

Let us notice that
c−1
i ≤ 2(1 +

∫ ∞
1

e−xdx) < 3

and

c−1
i ≥ 2

∫ 1

0
e−xdx > 1.
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Hence

P (|X̃i| ≥ t) = 2ci

∫ ∞
t

e−Ni(x)dx ≤ 2
∫ ∞
t

e−xNi(t)/tdx =
2t

Ni(t)
e−Ni(t),

so for t ≥ 2 we obtain

P (|X̃i| ≥ t) ≤ 2e−Ni(t) ≤ 2e−2Ni(t/2) ≤ e−Ni(t/2). (17)

We also get

P (|X̃i| ≥ t) ≥ 2

3

∫ ∞
t

e−Ni(x)dx ≥ te−Ni(5t/2). (18)

From (17) and the normalization property (1) we get that αi ≥ 1/2. Since
P (|X̃i| ≤ t) ≤ 2cit ≤ 2t we obtain that αi ≤ 4. Therefore we get by (18) for
t ≥ 5/2

P (|Xi| ≥ t) ≤ P (|5X̃i/2| ≥ t) ≤ P (|5αiX̃i| ≥ t) = P (|5Yi| ≥ t).

So by the contraction principle

E‖(
n∑
i=1

ai,jXiI{|Xi|≥5/2})‖N ′ ,p ≤ 5E‖(
n∑
i=1

ai,jYi)‖N ′ ,p.

Also by the contraction principle, since by (7) E|Yi| ≥ 1/2

E‖(
n∑
i=1

ai,jXiI{|Xi|≤5/2})‖N ′ ,p ≤
5

2
E‖(

n∑
i=1

ai,jεi)‖N ′ ,p ≤ 5E‖(
n∑
i=1

ai,jYi)‖N ′ ,p.

Therefore

E‖(
n∑
i=1

ai,jXi)‖N ′ ,p ≤ 10E‖(
n∑
i=1

ai,jYi)‖N ′ ,p. (19)

Let t ≥ 8, then by (17) we have

P (|Yi| ≥ t) = P (|αiX̃i| ≥ t) ≤ P (|X̃i| ≥ t/4) ≤ e−Ni(t/8).

Hence Ñi(t) ≥ Ni(t/8) for t ≥ 8, so Mi(t) ≥ N̂i(t/8) for all t and

‖(ai,j)‖Ñ ,N ′ ,p ≤ 8‖(ai,j)‖N ,N ′ ,p. (20)
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(16), (19) and (20) complete the proof.

Proof of Theorem 1. First we estimate ‖X‖p from below. By the
Jensen inequality and symmetry of Xi we have

‖X‖p ≥ ‖
∑
i

XiE|
∑
j

ai,jX
′

j|‖p.

But by (3) and (8) we get

E|
∑
j

ai,jX
′

j| ≥ C−1
2,1‖

∑
j

ai,jX
′

j‖2 ≥ C−1
2,1(

∑
j

1

2
a2
i,j)

1/2 = C̃−1Ai.

Hence by Theorem 2

‖X‖p ≥ C̃−1‖
∑
i

AiXi‖p ≥ (C̃C1)
−1‖(Ai)‖N ,p. (21)

In a similar way we prove that

‖X‖p ≥ (C̃C1)
−1‖(Bj)‖N ′ ,p. (22)

By Theorem 2 we also have that for any (cj) with
∑
j N̂

′
j(cj) ≤ p we have

‖X‖p ≥ C−1
1 (E|

∑
i,j

ai,jcjXi|p)1/p ≥ C−2
1 ‖(

∑
j

ai,jcj)‖N ,p.

Taking the supremum over all such sequences (cj) we get

‖X‖p ≥ C−2
1 ‖(ai,j)‖N ,N ′ ,p. (23)

(21), (22) and (23) complete the proof of this part of Theorem 1.
To prove the estimation from above let us first notice that Xi = Yi + Zi

for some symmetric random variables Yi and Zi such that

P (|Yi| ≥ t) = e−Ñi(t), where Ñi(t) =

{
t for t ≤ 1
Ni(t) for t > 1

and |Zi| ≤ 1 a.e., we will also assume that the Yi are independent and so
are the Zi. In the same way we split X

′
i = Y

′
i + Z

′
i . By the contraction

principle and since by (7) E|Yi|, E|Y
′
i | ≥ 1/2,

‖
∑

ai,jZiY
′

j ‖p ≤ ‖
∑

ai,jεiY
′

j ‖p ≤ 2‖
∑

ai,jYiY
′

j ‖p

13



and

‖
∑

ai,jZiZ
′

j‖p ≤ ‖
∑

ai,jεiZ
′

j‖p ≤ 2‖
∑

ai,jYiZ
′

j‖p ≤ 4‖
∑

ai,jYiY
′

j ‖p.

Hence

‖X‖p ≤ ‖
∑

ai,jZiZ
′

j‖p + ‖
∑

ai,jZiY
′

j ‖p + ‖
∑

ai,jYiZ
′

j‖p + ‖
∑

ai,jYiY
′

j ‖p

≤ 9‖
∑

ai,jYiY
′

j ‖p.

So it is enough to prove that for p ≥ 1

‖
∑

ai,jYiY
′

j ‖p ≤ C(‖(ai,j)‖N ,N ′ ,p + ‖(Ai)‖N ,p + ‖(Bj)‖N ′ ,p).

To simplify the notation let

mp = ‖(ai,j)‖N ,N ′ ,p + ‖(Ai)‖N ,p + ‖(Bj)‖N ′ ,p.

Thenmp ≥ ‖(Ai)‖N ,1+‖(Bj)‖N ′ ,1 = 2(
∑
i,j a

2
i,j)

1/2. Since by (8), EY 2
i , E(Y

′
j )2 ≤

2, we get

P (|
∑

ai,jYiY
′

j | ≥ 2mp) ≤ P (|
∑

ai,jYiY
′

j |2 ≥ 4E|
∑

ai,jYiY
′

j |2) ≤
1

4
. (24)

From Corollary 3 we have

P (‖(
n∑
i=1

ai,jYi)‖N ′ ,p ≥ 4C3mp) ≤
1

4
(25)

and

P (‖(
n∑
j=1

ai,jY
′

j )‖N ,p ≥ 4C3mp) ≤
1

4
. (26)

Let Fi, F
′
j : R → R be odd functions, whose restrictions to IR+ are the

inverses of Ñi, Ñ
′
j respectively. Then Yi, Y

′
j have distributions Fi(λ) and

F
′
j (λ), where λ is the same symmetric exponential measure as in Theorem

3. Let
A = {(x, x′) ∈ IR2n : |

∑
ai,jFi(xi)F

′

j (x
′

j)| ≤ 2mp,

‖(
n∑
i=1

ai,jFi(xi))‖N ′ ,p, ‖(
n∑
j=1

ai,jF
′

j (x
′

j))‖N ,p ≤ 4C3mp},

14



then by (24), (25) and (26)

λ2n(A) ≥ 1

4
.

Hence by Theorem 3 for s > 0

λ2n(A+ Vs) ≥ 1− 4e−s.

Let (x, x
′
) = (y + z, y

′
+ z

′
) with (y, y

′
) ∈ A, (z, z

′
) ∈ Vs. Let ∆i =

Fi(xi) − Fi(yi) and ∆
′
j = F

′
j (x

′
j) − F

′
j (y

′
j). By the convexity of Ñi we have

|∆i| ≤ 2Fi(|xi − yi|), therefore∑
i

N̂i(∆i/2) ≤
∑
i

N̂i(Fi(|zi|)) =
∑
i

min(|zi|, z2
i ) ≤ 36s.

By the similar reason we have∑
j

N̂
′

j(∆
′

j/2) ≤ 36s.

Hence

|
∑
i,j

ai,j∆iF
′

j (y
′

j)| ≤ 2 sup{
∑
i

(
∑
j

ai,jF
′

j (y
′

j))bi :
∑
i

N̂i(bi) ≤ 36s}

≤ 2‖(
∑
j

ai,jF
′

j (y
′

j))‖N ,36s.

Therefore by (4) we have

|
∑
i,j

ai,j∆iF
′

j (y
′

j)| ≤
72s

p
‖(

∑
j

ai,jF
′

j (y
′

j))‖N ,p ≤
288s

p
C3mp for 36s ≥ p.

(27)
In a similar way we prove

|
∑
i,j

ai,jFi(yi)∆
′

j| ≤
288s

p
C3mp for 36s ≥ p. (28)

We also have

|
∑
i,j

ai,j∆i∆
′

j| ≤ 4 sup{
∑
i,j

ai,jbicj :
∑
i

N̂i(bi),
∑
j

N̂
′

j(cj) ≤ 36s}
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= 4‖(ai,j)‖N ,N ′ ,36s.

So by (5) we get for 36s ≥ p

|
∑
i,j

ai,j∆i∆
′

j| ≤ 4(
36s

p
)2‖(ai,j)‖N ,N ′ ,p ≤ 4(

36s

p
)2mp. (29)

By (27), (28) and (29) and the definition of the set A we get

|
∑
i,j

ai,jFi(xi)F
′

j (x
′

j)| ≤ (2 + 2
288s

p
C3 + 4(

36s

p
)2)mp ≤ C4(

s

p
)2mp for s ≥ p.

Therefore for s ≥ p

P (|
∑
i,j

ai,jYiY
′

j | > C4(
s

p
)2mp)

= λ2n((x, x′) ∈ IR2n : |
∑
i,j

ai,jFi(xi)F
′

j (x
′

j)| > C4(
s

p
)2mp)

≤ 1− λ2n(A+ Vs) ≤ 4e−s.

Hence integrating by parts

E|
∑
i,j

ai,jYiY
′

j |p ≤ Cp
4m

p
p(1 + 4

∫ ∞
1

xp−1e−p
√
xdx) ≤ Cpmp

p.
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