On \mathcal{Z}_{p}-norms of random vectors

Rafał Latała *

Abstract

To any n-dimensional random vector X we may associate its L_{p}-centroid body $\mathcal{Z}_{p}(X)$ and the corresponding norm. We formulate a conjecture concerning the bound on the $\mathcal{Z}_{p}(X)$-norm of X and show that it holds under some additional symmetry assumptions. We also relate our conjecture with estimates of covering numbers and Sudakov-type minorization bounds.

1 Introduction. Formulation of the Problem.

Let $p \geq 2$ and $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random vector in \mathbb{R}^{n} such that $\mathbb{E}|X|^{p}<\infty$. We define the following two norms on \mathbb{R}^{n} :

$$
\|t\|_{\mathcal{M}_{p}(X)}:=\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p} \quad \text { and } \quad\|t\|_{\mathcal{Z}_{p}(X)}:=\sup \left\{|\langle t, s\rangle|:\|s\|_{\mathcal{M}_{p}(X)} \leq 1\right\} .
$$

By $\mathcal{M}_{p}(X)$ and $\mathcal{Z}_{p}(X)$ we will also denote unit balls in these norms, i.e.

$$
\mathcal{M}_{p}(X):=\left\{t \in \mathbb{R}^{n}:\|t\|_{\mathcal{M}_{p}(X)} \leq 1\right\} \text { and } \mathcal{Z}_{p}(X):=\left\{t \in \mathbb{R}^{n}:\|t\|_{\mathcal{Z}_{p}(X)} \leq 1\right\}
$$

The set $\mathcal{Z}_{p}(X)$ is called the L_{p}-centroid body of X (or rather of the distribution of X). It was introduced (under a different normalization) for uniform distributions on convex bodies in [9]. Investigation of L_{p}-centroid bodies played a crucial role in the Paouris proof of large deviations bounds for Euclidean norms of log-concave vectors [10]. Such bodies also appears in questions related to the optimal concentration of log-concave vectors [7].

Let us introduce a bit of useful notation. We set $|t|:=\|t\|_{2}=\sqrt{\langle t, t\rangle}$ and $B_{2}^{n}=\{t \in$ $\left.\mathbb{R}^{n}:|t| \leq 1\right\}$. By $\|Y\|_{p}=\left(\mathbb{E}|Y|^{p}\right)^{1 / p}$ we denote the L_{p}-norm of a random variable Y. Letter C denotes universal constants (that may differ at each occurence), we write $f \sim g$ if $\frac{1}{C} f \leq g \leq C f$.

Let us begin with a simple case, when a random vector X is rotationally invariant. Then $X=R U$, where U has a uniform distribution on S^{n-1} and $R=|X|$ is a nonnegative random variable, independent of U. We have for any vector $t \in \mathbb{R}^{n}$ and $p \geq 2$,

$$
\|\langle t, U\rangle\|_{p}=|t|\left\|U_{1}\right\|_{p} \sim \sqrt{\frac{p}{n+p}}|t|,
$$

[^0]where U_{1} is the first coordinate of U. Therefore
$$
\|t\|_{\mathcal{M}_{p}(X)}=\left\|U_{1}\right\|_{p}\|R\|_{p}|t| \quad \text { and } \quad\|t\|_{\mathcal{Z}_{p}(X)}=\left\|U_{1}\right\|_{p}^{-1}\|R\|_{p}^{-1}|t| .
$$

So

$$
\begin{equation*}
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{p}\right)^{1 / p}=\left\|U_{1}\right\|_{p}^{-1}\|R\|_{p}^{-1}\left(\mathbb{E}|X|^{p}\right)^{1 / p}=\left\|U_{1}\right\|_{p}^{-1} \sim \sqrt{\frac{n+p}{p}} . \tag{1}
\end{equation*}
$$

This motivates the following problem.
Problem 1. Is it true that for (at least a large class of) centered n-dimensional random vectors X,

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{2}\right)^{1 / 2} \leq C \sqrt{\frac{n+p}{p}} \quad \text { for } p \geq 2 \text {, }
$$

or maybe even

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{p}\right)^{1 / p} \leq C \sqrt{\frac{n+p}{p}} \quad \text { for } p \geq 2 \text { ? }
$$

Notice that the problem is linearly-invariant, since

$$
\begin{equation*}
\|A X\|_{\mathcal{Z}_{p}(A X)}=\|X\|_{\mathcal{Z}_{p}(X)} \quad \text { for any } A \in \operatorname{GL}(n) \tag{2}
\end{equation*}
$$

For any centered random vector X with nondegenerate covariance matrix, random vector $Y=\operatorname{Cov}(X)^{-1 / 2} X$ is isotropic (i.e. centered with identity covariance matrix). We have $\mathcal{M}_{2}(Y)=\mathcal{Z}_{2}(Y)=B_{2}^{n}$, hence

$$
\mathbb{E}\|X\|_{\mathcal{Z}_{2}(X)}^{2}=\mathbb{E}\|Y\|_{\mathcal{Z}_{2}(Y)}^{2}=\mathbb{E}|Y|^{2}=n
$$

Next remark shows that the answer to our problem is positive in the case $p \geq n$.
Remark 1. For $p \geq n$ and any n-dimensional random vector X we have $\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{p}\right)^{1 / p} \leq$ 10.

Proof. Let S be a $1 / 2$-net in the unit ball of $\mathcal{M}_{p}(X)$ such that $|S| \leq 5^{n}$ (such net exists by the volume-based argument, cf. [1, Corollary 4.1.15]). Then

$$
\begin{aligned}
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{p}\right)^{1 / p} & \leq 2\left(\mathbb{E} \sup _{t \in S}|\langle t, X\rangle|^{p}\right)^{1 / p} \leq 2\left(\mathbb{E} \sum_{t \in S}|\langle t, X\rangle|^{p}\right)^{1 / p} \\
& \leq 2|S|^{1 / p} \sup _{t \in S}\left(\left.\mathbb{E}\langle t, X\rangle\right|^{p}\right)^{1 / p} \leq 2 \cdot 5^{n / p}
\end{aligned}
$$

L_{p}-centroid bodies play an important role in the study of vectors uniformly distributed on convex bodies and a more general class of log-concave vectors. A random vector with a nondenerate covariance matrix is called log-concave if its density has the form e^{-h}, where $h: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ is convex. If X is centered and log-concave then

$$
\begin{equation*}
\|\langle t, X\rangle\|_{p} \leq \lambda \frac{p}{q}\|\langle t, X\rangle\|_{q} \quad \text { for } p \geq q \geq 2 \tag{3}
\end{equation*}
$$

where $\lambda=2(\lambda=1$ if X is symmetric and log-concave and $\lambda=3$ for arbitrary log-concave vectors). One of open problems for log-concave vectors [7] states that for such vectors, arbitrary norm $\|\|$ and $q \geq 1$,

$$
\left(\mathbb{E}\|X\|^{q}\right)^{1 / q} \leq C\left(\mathbb{E}\|X\|+\sup _{\|t\|_{*} \leq 1}\|\langle t, X\rangle\|_{q}\right)
$$

In particular one may expect that for log-concave vectors

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{q}\right)^{1 / q} \leq C\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}+\sup _{t \in \mathcal{M}_{p}(X)}\|\langle t, X\rangle\|_{q}\right) \leq C\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}+\frac{\max \{p, q\}}{p}\right)
$$

As a result it is natural to state the following variant of Problem 1.
Problem 2. Let X be a centered log-concave n-dimensional random vector. Is it true that

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{q}\right)^{1 / q} \leq C \sqrt{\frac{n}{p}} \quad \text { for } 2 \leq p \leq n, 1 \leq q \leq \sqrt{p n}
$$

In Section 2 we show that Problems 1 and 2 have affirmative solutions in the class of unconditional vectors. In Section 3 we relate our problems to estimates of covering numbers. We also show that the first estimate in Problem 1 holds if the random vector X satisfies the Sudakov-type minorization bound.

2 Bounds for unconditional random vectors

In this section we consider the class of unconditional random vectors in \mathbb{R}^{n}, i.e. vectors X having the same distribution as $\left(\varepsilon_{1}\left|X_{1}\right|, \varepsilon_{2}\left|X_{2}\right|, \ldots, \varepsilon_{n}\left|X_{n}\right|\right)$, where $\left(\varepsilon_{i}\right)$ is a sequence of independent symmetric ± 1 random variables (Rademacher sequence), independent of X.

Our first result shows that formula (1) may be extended to the unconditional case for p even. We use the standard notation - for a multiindex $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), x \in \mathbb{R}^{n}$ and $m=\sum \alpha_{i}, x^{\alpha}:=\prod_{i} x_{i}^{\alpha_{i}}$ and $\binom{m}{\alpha}:=m!/\left(\prod_{i} \alpha_{i}!\right)$.

Proposition 2. We have for any $k=1,2, \ldots$ and any n-dimensional unconditional random vector X such that $\mathbb{E}|X|^{2 k}<\infty$,

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{2 k}(X)}^{2 k}\right)^{1 /(2 k)} \leq c_{2 k}:=\left(\sum_{\|\alpha\|_{1}=k} \frac{\binom{k}{\alpha}^{2}}{\binom{2 k}{2 \alpha}}\right)^{1 /(2 k)} \sim \sqrt{\frac{n+k}{k}}
$$

where the summation runs over all multiindices $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with nonnegative integer coefficients such that $\|\alpha\|_{1}=\sum_{i=1}^{n} \alpha_{i}=k$.
Proof. Observe first that

$$
\mathbb{E}|\langle t, X\rangle|^{2 k}=\mathbb{E}\left|\sum_{i=1}^{n} t_{i} \varepsilon_{i} X_{i}\right|^{2 k}=\sum_{\|\alpha\|_{1}=k}\binom{2 k}{2 \alpha} t^{2 \alpha} \mathbb{E} X^{2 \alpha}
$$

For any $t, s \in \mathbb{R}^{n}$ we have

$$
|\langle t, s\rangle|^{k}=\sum_{\|\alpha\|_{1}=k}\binom{k}{\alpha} t^{\alpha} s^{\alpha} .
$$

So by the Cauchy-Schwarz inequality,

$$
\|s\|_{\mathcal{Z}_{2 k}(X)}^{k}=\sup \left\{|\langle t, s\rangle|^{k}: \mathbb{E}|\langle t, X\rangle|^{2 k} \leq 1\right\} \leq\left(\sum_{\|\alpha\|_{1}=k} \frac{\binom{k}{\alpha}^{2}}{\binom{2 k}{2 \alpha}} s^{2 \alpha}\right)^{1 / 2} X^{2 \alpha} .
$$

To see that $c_{2 k} \sim \sqrt{(n+k) / k}$ observe that

$$
\frac{\binom{k}{\alpha}^{2}}{\binom{2 k}{2 \alpha}}=\binom{2 k}{k}^{-1} \prod_{i=1}^{n}\binom{2 \alpha_{i}}{\alpha_{i}} .
$$

Therefore, since $1 \leq\binom{ 2 l}{l} \leq 2^{2 l}$, we get

$$
4^{-k}\binom{n+k-1}{k} \leq c_{2 k}^{2 k} \leq 4^{k}\binom{n+k-1}{k} .
$$

Corollary 3. Let X be an unconditional n-dimensional random vector. Then

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{2 k}\right)^{1 / 2 k} \leq C \sqrt{\frac{n+p}{p}} \quad \text { for any positive integer } k \leq \frac{p}{2}
$$

Proof. By the monotonicity of $L_{2 k}$-norms we may and will assume that $k=\lfloor p / 2\rfloor$. Then by Proposition 2,

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{2 k}\right)^{1 / 2 k} \leq\left(\mathbb{E}\|X\|_{\mathcal{Z}_{2 k}(X)}^{2 k}\right)^{1 / 2 k} \leq C \sqrt{\frac{n+k}{k}} \leq C \sqrt{\frac{n+p}{p}} .
$$

In the unconditional log-concave case we may bound higher moments of $\|X\|_{\mathcal{Z}_{p}(X)}$.
Theorem 4. Let X be an unconditional log-concave n-dimensional random vector. Then for $p, q \geq 2$,

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{q}\right)^{1 / q} \leq C\left(\sqrt{\frac{n+p}{p}}+\sup _{t \in \mathcal{M}_{p}(X)}\|\langle t, X\rangle\|_{q}\right) \leq C\left(\sqrt{\frac{n+p}{p}}+\frac{q}{p}\right) .
$$

In order to show this result we will need the following lemma.
Lemma 5. Let $2 \leq p \leq n, X$ be an unconditional random vector in \mathbb{R}^{n} such that $\mathbb{E}|X|^{p}<$ ∞ and $\mathbb{E}\left|X_{i}\right|=1$. Then

$$
\begin{equation*}
\|s\|_{\mathcal{Z}_{p}(X)} \leq \sup _{I \subset[n], I \mid \leq p} \sup _{\|t\|_{\mathcal{M}_{p}(X)} \leq 1}\left|\sum_{i \in I} t_{i} s_{i}\right|+C_{1} \sup _{\|t\|\left\|_{\mathcal{M}_{p}(X)} \leq 1,\right\| t \|_{2} \leq p^{-1 / 2}}\left|\sum_{i=1}^{n} t_{i} s_{i}\right| . \tag{4}
\end{equation*}
$$

Proof. We have by the unconditionality of X and Jensen's inequality,

$$
\|t\|_{\mathcal{M}_{p}(X)}=\left\|\sum_{i=1}^{n} t_{i} \varepsilon_{i}\left|X_{i}\right|\right\|_{p} \geq\left\|\sum_{i=1}^{n} t_{i} \varepsilon_{i} \mathbb{E}\left|X_{i}\right|\right\|_{p} .
$$

By the result of Hitczenko [5], for numbers a_{1}, \ldots, a_{n},

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right\|_{p} \sim \sum_{i \leq p} a_{i}^{*}+\sqrt{p}\left(\sum_{i>p}\left|a_{i}^{*}\right|^{2}\right)^{1 / 2}, \tag{5}
\end{equation*}
$$

where $\left(a_{i}^{*}\right)_{i \leq n}$ denotes the nonincreasing rearrangement of $\left(\left|a_{i}\right|\right)_{i \leq n}$. Thus

$$
\sqrt{p}\left(\sum_{i>p}\left|t_{i}^{*}\right|^{2}\right)^{1 / 2} \leq C_{1}\|t\|_{\mathcal{M}_{p}(X)}
$$

and (4) easily follows.

Proof of Theorem 4. The last bound in the assertion follows by (3). It is easy to see that (increasing q if necessary) it is enough to consider the case $q \geq \sqrt{n p}$.

If $q \geq n$ then the similar argument as in the proof of Remark 1 shows that

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{q}\right)^{1 / q} \leq 2 \cdot 5^{n / q} \sup _{t \in \mathcal{M}_{p}(X)}\|\langle t, X\rangle\|_{q} \leq 10 \sup _{t \in \mathcal{M}_{p}(X)}\|\langle t, X\rangle\|_{q} .
$$

Finally, consider the remaining case $\sqrt{p n} \leq q \leq n$. By (2) we may assume that $\mathbb{E}\left|X_{i}\right|=1$ for all i. By the log-concavity $\|\langle t, X\rangle\|_{q_{1}} \leq C \frac{q_{1}}{q_{2}}\|\langle t, X\rangle\|_{q_{2}}$ for $q_{1} \geq q_{2} \geq 1$, in particular $\sigma_{i}:=\left\|X_{i}\right\|_{2} \leq C$.

Let $\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}$ be i.i.d. symmetric exponential random variables with variance 1 . By [6 , Theorem 3.1] we have

$$
\begin{aligned}
& \left\|\|t\|_{\mathcal{M}_{p}(X)} \leq 1,\right\| t \|_{2} \leq p^{-1 / 2} \\
& \\
& \quad \leq \sum_{i=1}^{n} t_{i} X_{i} \mid \|_{q} \\
& \quad \leq C\left(\| \|\|t\|_{\mathcal{M}_{p}(X)} \leq 1,\|t\|_{2} \leq p^{-1 / 2}\right. \\
& \left.\left.\sup _{i=1}\left|\sum_{i=1}^{n} t_{i} \sigma_{i} \mathcal{E}_{i}\right|\right|_{1}+\sup _{\|t\|_{\mathcal{M}_{p}(X)} \leq 1,\|t\|_{2} \leq p^{-1 / 2}}\|\langle t, X\rangle\|_{q}\right) .
\end{aligned}
$$

We have

$$
\sup _{\|t\|_{\mathcal{M}_{p}(X)} \leq 1,\|t\|_{2} \leq p^{-1 / 2}}\|\langle t, X\rangle\|_{q} \leq \sup _{\|t\|_{\mathcal{M}_{p}(X)} \leq 1}\|\langle t, X\rangle\|_{q}
$$

and

$$
\left\|\|t\|_{\mathcal{M}_{p}(X)} \leq 1,\right\| t\left\|_{2} \leq p^{-1 / 2}\left|\sum_{i=1}^{n} t_{i} \sigma_{i} \mathcal{E}_{i}\right|\right\|_{1} \leq \frac{1}{\sqrt{p}}\left\|\sqrt{\sum_{i=1}^{n} \sigma_{i}^{2} \mathcal{E}_{i}^{2}}\right\|_{1} \leq \frac{1}{\sqrt{p}} \sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}} \leq C \sqrt{\frac{n}{p}}
$$

Thus

$$
\left\|\sup _{\|t\|_{\mathcal{M}_{p}(X)} \leq 1,\|t\|_{2} \leq p^{-1 / 2}}\left|\sum_{i=1}^{n} t_{i} X_{i}\right|\right\|_{q} \leq C\left(\sqrt{\frac{n}{p}}+\sup _{\|t\|_{\mathcal{M}_{p}(X)} \leq 1}\|\langle t, X\rangle\|_{q}\right) .
$$

Let for each $I \subset[n], P_{I} X=\left(X_{i}\right)_{i \in I}$ and S_{I} be a $1 / 2$-net in $\mathcal{M}_{p}\left(P_{I} X\right)$ of cardinality at
most $5^{|I|}$. We have

$$
\begin{aligned}
\left\|\sup _{I \subset[n],|I| \leq p} \sup _{\|t\| \|_{p}(X) \leq 1}\left|\sum_{i \in I} t_{i} X_{i}\right|\right\| & \leq 2\left\|\sup _{I \subset[n],|I| \leq p} \sup _{t \in S_{I}}\left|\sum_{i \in I} t_{i} X_{i}\right|\right\|_{q} \\
& \leq 2\left(\sum_{I \subset[n],|I| \leq p} \sum_{t \in S_{I}} \mathbb{E}\left|\sum_{i \in I} t_{i} X_{i}\right|^{q}\right)^{1 / q} \\
& \leq 2 \cdot 5^{p / q}|\{I \subset[n],|I| \leq p\}|^{1 / q} \sup _{I} \sup _{t \in S_{I}}\left\|\sum_{i \in I} t_{i} X_{i}\right\|_{q} \\
& \leq 10\left(\frac{e n}{p}\right)^{p / q} \sup _{t \in \mathcal{M}_{p}(X)}\left\|\sum_{i \in I} t_{i} X_{i}\right\|_{q} \\
& \leq C \sup _{t \in \mathcal{M}_{p}(X)}\left\|\sum_{i \in I} t_{i} X_{i}\right\|_{q}
\end{aligned}
$$

where the last estimate follows from $q \geq \sqrt{n p}$.
Hence the assertion follows by Lemma 5 .
Corollary 6. Let X be an unconditional log-concave n-dimensional random vector and $2 \leq p \leq n$. Then

$$
\begin{equation*}
\frac{1}{C} \sqrt{\frac{n}{p}} \leq \mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)} \leq\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{\sqrt{n p}}\right)^{1 / \sqrt{n p}} \leq C \sqrt{\frac{n}{p}} \tag{6}
\end{equation*}
$$

and

$$
\mathbb{P}\left(\|X\|_{\mathcal{Z}_{p}(X)} \geq \frac{1}{C} \sqrt{\frac{n}{p}}\right) \geq \frac{1}{C}, \quad \mathbb{P}\left(\|X\|_{\mathcal{Z}_{p}(X)} \geq C t \sqrt{\frac{n}{p}}\right) \leq e^{-t \sqrt{n p}} \text { for } t \geq 1
$$

Proof. The upper bound in (6) easily follows by Theorem 4. In fact we have for $t \geq 1$,

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{t \sqrt{n p}}\right)^{1 /(t \sqrt{n p})} \leq C t \sqrt{\frac{n}{p}},
$$

hence the Chebyshev inequality yields the upper tail bound for $\|X\|_{\mathcal{Z}_{p}(X)}$.
To establish lower bounds we may assume that X is additionally isotropic. Then by the result of Bobkov and Nazarov [3] we have $\|\langle t, X\rangle\|_{p} \leq C\left(\sqrt{p}\|t\|_{2}+p\|t\|_{\infty}\right)$. This easily gives

$$
\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)} \geq \frac{1}{C} \sqrt{\frac{n}{p}} \mathbb{E} X_{\lceil n / 2\rceil}^{*} \geq \frac{1}{C} \sqrt{\frac{n}{p}},
$$

where the last inequality follows by Lemma 7 below.

By the Paley-Zygmund inequality we get

$$
\mathbb{P}\left(\|X\|_{\mathcal{Z}_{p}(X)} \geq \frac{1}{C} \sqrt{\frac{n}{p}}\right) \geq \mathbb{P}\left(\|X\|_{\mathcal{Z}_{p}(X)} \geq \frac{1}{2} \mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}\right) \geq \frac{\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}\right)^{2}}{4 \mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{2}} \geq c
$$

Lemma 7. Let X by a symmetric isotropic n-dimensional log-concave vector. Then $\mathbb{E} X_{\lceil n / 2\rceil}^{*} \geq \frac{1}{C}$.
Proof. Let $a_{i}>0$ be such that $\mathbb{P}\left(X_{i} \geq a_{i}\right)=3 / 8$. Then by the log-concavity of X_{i}, $\mathbb{P}\left(\left|X_{i}\right| \geq t a_{i}\right)=2 \mathbb{P}\left(X_{i} \geq t a_{i}\right) \leq(3 / 4)^{t}$ for $t \geq 1$ and integration by parts yields $\left\|X_{i}\right\|_{2} \leq$ $C a_{i}$. Thus $a_{i} \geq c_{1}$ for a constant $c_{1}>0$.

Let $S=\sum_{i=1}^{n} I_{\left\{\left|X_{i}\right| \geq c_{1}\right\}}$. Then $\mathbb{E} S=\sum_{i=1}^{n} \mathbb{P}\left(\left|X_{i}\right| \geq c_{1}\right) \geq 3 n / 4$. On the other hand $\mathbb{E} S \leq \frac{n}{2}+n \mathbb{P}\left(X_{\lceil n / 2\rceil}^{*} \geq c_{1}\right)$, so

$$
\mathbb{E} X_{\lceil n / 2\rceil}^{*} \geq c_{1} \mathbb{P}\left(X_{\lceil n / 2\rceil}^{*} \geq c_{1}\right) \geq c_{1} / 4
$$

The next example shows that the tail and moment bounds in Corollary 6 are optimal.
Example. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be an isotropic random vector with i.i.d. symmetric exponential coordinates (i.e. X has the density $2^{n / 2} \exp \left(-\sqrt{2}\|x\|_{1}\right)$). Then $\left(\mathbb{E}\left|X_{i}\right|^{p}\right)^{1 / p} \leq$ $p / 2$, so $\frac{2}{p} e_{i} \in \mathcal{M}_{p}(X)$ and

$$
\mathbb{P}\left(\|X\|_{\mathcal{Z}_{p}(X)} \geq t \sqrt{n / p}\right) \geq \mathbb{P}\left(\left|X_{i}\right| \geq t \sqrt{n p} / 2\right) \geq e^{-t \sqrt{n p} / \sqrt{2}}
$$

and for $q=s \sqrt{n p}, s \geq 1$,

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{q}\right)^{1 / q} \geq \frac{2}{p}\left\|X_{i}\right\|_{q} \geq c q / p=c s \sqrt{n / p}
$$

3 General case - approach via entropy numbers

In this section we propose a method of deriving estimates for \mathcal{Z}_{p}-norms via entropy estimates for \mathcal{M}_{p}-balls and Euclidean distance. We use a standard notation - for sets $T, S \subset \mathbb{R}^{n}$, by $N(T, S)$ we denote the minimal number of translates of S that are enough to cover T. If S is the ε-ball with respect to some translation-invariant metric d then $N(T, S)$ is also denoted as $N(T, d, \varepsilon)$ and is called the metric entropy of T with respect to d.

We are mainly interested in log-concave vectors or random vectors which satisfy moment estimates

$$
\begin{equation*}
\|\langle t, X\rangle\|_{p} \leq \lambda \frac{p}{q}\|\langle t, X\rangle\|_{q} \quad \text { for } p \geq q \geq 2 \tag{7}
\end{equation*}
$$

Let us start with a simple bound.

Proposition 8. Suppose that X is isotropic in \mathbb{R}^{n} and (7) holds. Then for any $p \geq 2$ and $\varepsilon>0$ we have

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{2}\right)^{1 / 2} \leq \varepsilon \sqrt{n}+\frac{e \lambda}{p} \max \left\{p, \log N\left(\mathcal{M}_{p}(X), \varepsilon B_{2}^{n}\right)\right\}
$$

Proof. Let $N=N\left(\mathcal{M}_{p}(X), \varepsilon B_{2}^{n}\right)$ and choose $t_{1}, \ldots, t_{N} \in \mathcal{M}_{p}(X)$ such that $\mathcal{M}_{p}(X) \subset$ $\bigcup_{i=1}^{N}\left(t_{i}+\varepsilon B_{2}^{n}\right)$. Then

$$
\|x\|_{\mathcal{Z}_{p}(X)} \leq \varepsilon|x|+\sup _{i \leq N}\left\langle t_{i}, x\right\rangle .
$$

Let $r=\max \{p, \log N\}$. We have

$$
\begin{aligned}
\left(\mathbb{E} \sup _{i \leq N}\left|\left\langle t_{i}, X\right\rangle\right|^{2}\right)^{1 / 2} & \leq\left(\mathbb{E} \sup _{i \leq N}\left|\left\langle t_{i}, X\right\rangle\right|^{r}\right)^{1 / r} \leq\left(\sum_{i=1}^{N} \mathbb{E}\left|\left\langle t_{i}, X\right\rangle\right|^{r}\right)^{1 / r} \\
& \leq N^{1 / r} \sup _{i}\left\|\left\langle t_{i}, X\right\rangle\right\|_{r} \leq e \lambda \frac{r}{p} \sup _{i}\left\|\left\langle t_{i}, X\right\rangle\right\|_{p} \leq e \lambda \frac{r}{p} .
\end{aligned}
$$

Remark 9. The Paouris inequality [10] states that for isotropic log-concave vectors and $q \geq 2,\left(\mathbb{E}|X|^{q}\right)^{1 / q} \leq C(\sqrt{n}+q)$, so for such vectors and $q \geq 2$,

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{q}\right)^{1 / q} \leq C \varepsilon(\sqrt{n}+q)+\frac{2 e}{p} \max \left\{p, q, \log N\left(\mathcal{M}_{p}(X), \varepsilon B_{2}^{n}\right)\right\}
$$

Unfortunately, the known estimates for entropy numbers of \mathcal{M}_{p}-balls are rather weak.
Theorem 10 ([4, Proposition 9.2.8]). Assume that X is isotropic log-concave and $2 \leq p \leq$ \sqrt{n}. Then

$$
\log N\left(\mathcal{M}_{p}(X), \frac{t}{\sqrt{p}} B_{2}^{n}\right) \leq C \frac{n \log ^{2} p \log t}{t} \quad \text { for } 1 \leq t \leq \min \left\{\sqrt{p}, \frac{1}{C} \frac{n \log p}{p^{2}}\right\}
$$

Corollary 11. Let X be isotropic log-concave, then

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{p}\right)^{1 / p} \leq C\left(\frac{n}{p}\right)^{3 / 4} \log p \sqrt{\log n} \quad \text { for } 2 \leq p \leq \frac{1}{C} n^{3 / 7} \log ^{-2 / 7} n
$$

Proof. We apply Theorem 10 with $t=(n / p)^{1 / 4} \log p \log ^{1 / 2} n$ and Proposition 8 with $\varepsilon=$ $t p^{-1 / 2}$.

Remark 12. Suppose that X is centered and the following stronger bound than (7) (satisfied for example for Gaussian vectors) holds

$$
\begin{equation*}
\|\langle t, X\rangle\|_{p} \leq \lambda \sqrt{\frac{p}{q}}\|\langle t, X\rangle\|_{q} \quad \text { for } p \geq q \geq 2 \tag{8}
\end{equation*}
$$

Then for any $2 \leq p \leq n$,

$$
\frac{1}{\lambda} \sqrt{\frac{2 n}{p}} \leq\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{2}\right)^{1 / 2} \leq\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{n}\right)^{1 / n} \leq 10 \lambda \sqrt{\frac{n}{p}}
$$

Proof. Without loss of generality we may assume that X is isotropic. We have

$$
\|\langle t, X\rangle\|_{p} \leq \lambda \sqrt{p / 2}\|\langle t, X\rangle\|_{2}=\lambda \sqrt{p / 2}|t|,
$$

so $\mathcal{M}_{p}(X) \supset \lambda^{-1} \sqrt{2 / p} B_{2}^{n}$ and

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{2}\right)^{1 / 2} \geq \frac{1}{\lambda} \sqrt{\frac{2}{p}}\left(\mathbb{E}|X|^{2}\right)^{1 / 2}=\frac{1}{\lambda} \sqrt{\frac{2 n}{p}}
$$

On the other hand let S be a $1 / 2$-net in $\mathcal{M}_{p}(X)$ of cardinality at most 5^{n}. Then

$$
\begin{aligned}
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{n}\right)^{1 / n} & \leq 2\left(\mathbb{E} \sup _{t \in S}|\langle t, X\rangle|^{n}\right)^{1 / n} \leq 2\left(\sum_{t \in S} \mathbb{E}|\langle t, X\rangle|^{n}\right)^{1 / n} \\
& \leq 2|S|^{1 / n} \sup _{t \in S}\|\langle t, X\rangle\|_{n} \leq 10 \lambda \sqrt{\frac{n}{p}} \sup _{t \in S}\|\langle t, X\rangle\|_{p} \leq 10 \lambda \sqrt{\frac{n}{p}} .
\end{aligned}
$$

Recall that the Sudakov minoration principle [11] states that if G is an isotropic Gaussian vector in \mathbb{R}^{n} then for any bounded $T \subset \mathbb{R}^{n}$ and $\varepsilon>0$,

$$
\mathbb{E} \sup _{t \in T}\langle t, G\rangle \geq \frac{1}{C} \varepsilon \sqrt{\log N\left(T, \varepsilon B_{2}^{n}\right)} .
$$

So we can say that a random vector X in \mathbb{R}^{n} satisfies the L_{2}-Sudakov minoration with a constant C_{X} if for any bounded $T \subset \mathbb{R}^{n}$ and $\varepsilon>0$,

$$
\mathbb{E} \sup _{t \in T}\langle t, X\rangle \geq \frac{1}{C_{X}} \varepsilon \sqrt{\log N\left(T, \varepsilon B_{2}^{n}\right)} .
$$

Example. Any unconditional n-dimensional random vector satisfies the L_{2}-Sudakov minoration with constant $C \sqrt{\log (n+1)} /\left(\min _{i \leq n} \mathbb{E}\left|X_{i}\right|\right)$.

Indeed, we have by the unconditionality, Jensen's inequality and the contraction principle,

$$
\mathbb{E} \sup _{t \in T} \sum_{i=1}^{n} t_{i} X_{i}=\mathbb{E} \sup _{t \in T} \sum_{i=1}^{n} t_{i} \varepsilon_{i}\left|X_{i}\right| \geq \mathbb{E} \sup _{t \in T} \sum_{i=1}^{n} t_{i} \varepsilon_{i} \mathbb{E}\left|X_{i}\right| \geq \min _{i \leq n} \mathbb{E}\left|X_{i}\right| \mathbb{E} \sup _{t \in T} \sum_{i=1}^{n} t_{i} \varepsilon_{i} .
$$

On the other hand, the classical Sudakov minoration and the contraction principle yields

$$
\begin{aligned}
\frac{1}{C} \varepsilon \sqrt{\log N\left(T, \varepsilon B_{2}^{n}\right)} & \leq \mathbb{E} \sup _{t \in T} \sum_{i=1}^{n} t_{i} g_{i} \leq \mathbb{E} \max _{i \leq n}\left|g_{i}\right| \mathbb{E} \sup _{t \in T} \sum_{i=1}^{n} t_{i} \varepsilon_{i} \\
& \leq C \sqrt{\log (n+1)} \mathbb{E} \sup _{t \in T} \sum_{i=1}^{n} t_{i} \varepsilon_{i}
\end{aligned}
$$

However the L_{2}-Sudakov minoration constant may be quite large in the isotropic case even for unconditional vectors if we do not assume that L_{1} and L_{2} norms of X_{i} are comparable. Indeed, let $\mathbb{P}\left(X= \pm n^{1 / 2} e_{i}\right)=\frac{1}{2 n}$ for $i=1, \ldots, n$, where e_{1}, \ldots, e_{n} is the canonical basis of \mathbb{R}^{n}. Then X is isotropic and unconditional. Let $T=\left\{t \in \mathbb{R}^{n}:\|t\|_{\infty} \leq n^{-1 / 2}\right\}$. Then

$$
\mathbb{E} \sup _{t \in T}|\langle t, X\rangle| \leq 1
$$

However, by the volume-based estimate,

$$
N\left(T, \varepsilon B_{2}^{n}\right) \geq \frac{\operatorname{vol}(T)}{\operatorname{vol}\left(\varepsilon B_{2}^{n}\right)} \geq\left(\frac{1}{C \varepsilon}\right)^{n}
$$

hence

$$
\sup _{\varepsilon>0} \varepsilon \sqrt{\log N\left(\left(T, \varepsilon B_{2}^{n}\right)\right.} \geq \frac{1}{C} \sqrt{n}
$$

Thus the L_{2}-Sudakov constant $C_{X} \geq \sqrt{n} / C$ in this case.
Next proposition shows that random vectors with uniformly log-convex density satisfy the L_{2}-Sudakov minoration.

Proposition 13. Suppose that a symmetric random vector X in \mathbb{R}^{n} has the density of the form e^{h} such that $\operatorname{Hess}(h) \geq-\alpha \operatorname{Id}$ for some $\alpha>0$. Then X satisfies the L_{2}-Sudakov minoration with constant $C_{X} \leq C \sqrt{\alpha}$.

Proof. We will follow the method of the proof of the (dual) classical Sudakov inequality (cf. (3.15) and its proof in [8]).

Let T be a bounded symmetric set and

$$
A:=\mathbb{E} \sup _{t \in T}|\langle t, X\rangle|
$$

By the duality of entropy numbers [2] we need to show that $\log ^{1 / 2} N\left(\varepsilon^{-1} B_{2}^{n}, T^{o}\right) \leq$ $C \varepsilon^{-1} \alpha^{1 / 2} A$ for $\varepsilon>0$ or equivalently that

$$
\begin{equation*}
N\left(\delta B_{2}^{n}, 6 A T^{o}\right) \leq \exp \left(C \alpha \delta^{2}\right) \quad \text { for } \delta>0 \tag{9}
\end{equation*}
$$

To this end let $N=N\left(\delta B_{2}^{n}, 6 A T^{o}\right)$. If $N=1$ there is nothing to show, so assume that $N \geq 2$. Then we may choose $t_{1}, \ldots, t_{N} \in \delta B_{2}^{n}$ such that the balls $t_{i}+3 A T^{0}$ are disjoint. Let $\mu=\mu_{X}$ be the distribution of X. By the Chebyshev inequality,

$$
\mu\left(3 A T^{0}\right)=1-\mathbb{P}\left(\sup _{t \in T}|\langle t, X\rangle|>3 A\right) \geq \frac{2}{3} .
$$

Observe also that for any symmetric set K and $t \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\mu(t+K) & =\int_{K} e^{h(x-t)} d x=\int_{K} e^{h(x+t)} d x=\int_{K} \frac{1}{2}\left(e^{h(x-t)}+e^{h(x+t)}\right) d x \\
& \geq \int_{K} e^{(h(x-t)+h(x+t)) / 2} d x
\end{aligned}
$$

By Taylor's expansion we have for some $\theta \in[0,1]$,

$$
\frac{h(x-t)+h(x+t)}{2}=h(x)+\frac{1}{4}(\langle\operatorname{Hessh}(x+\theta t) t, t\rangle+\langle\operatorname{Hessh}(x-\theta t) t, t\rangle) \geq h(x)-\frac{1}{2} \alpha|t|^{2} .
$$

Thus

$$
\mu(t+K) \geq \int_{K} e^{h(x)-\alpha|t|^{2} / 2}=e^{-\alpha|t|^{2} / 2} \mu(K)
$$

and

$$
1 \geq \sum_{i=1}^{N} \mu\left(t_{i}+3 A T^{0}\right) \geq \sum_{i=1}^{N} e^{-\alpha\left|t_{i}\right|^{2} / 2} \mu\left(3 A T^{0}\right) \geq \frac{2 N}{3} e^{-\alpha \delta^{2} / 2} \geq N^{1 / 3} e^{-\alpha \delta^{2} / 2}
$$

and (9) easily follows.

Proposition 14. Suppose that X satisfies the L_{2}-Sudakov minoration with constant C_{X}. Then for any $p \geq 2$

$$
N\left(\mathcal{M}_{p}(X), \frac{e C_{X}}{\sqrt{p}} B_{2}^{n}\right) \leq e^{p}
$$

In particular if X is isotropic we have for $2 \leq p \leq n$,

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{2}\right)^{1 / 2} \leq e\left(C_{X} \sqrt{\frac{n}{p}}+1\right) .
$$

Proof. Suppose that $N=N\left(\mathcal{M}_{p}(X), e C_{X} p^{-1 / 2} B_{2}^{n}\right) \geq e^{p}$. We can choose $t_{1}, \ldots, t_{N} \in$ $\mathcal{M}_{p}(X)$, such that $\left\|t_{i}-t_{j}\right\|_{2} \geq e C_{X} p^{-1 / 2}$. We have

$$
\mathbb{E} \sup _{i \geq N}\left\langle t_{i}, X\right\rangle \geq \frac{1}{C_{X}} e C_{X} p^{-1 / 2} \sqrt{\log N}>e
$$

However on the other hand,

$$
\mathbb{E} \sup _{i \geq N}\left\langle t_{i}, X\right\rangle \leq\left(\mathbb{E} \sup _{i \geq N}\left|\left\langle t_{i}, X\right\rangle\right|^{p}\right)^{1 / p} \leq\left(\sum_{i \geq N} \mathbb{E}\left|\left\langle t_{i}, X\right\rangle\right|^{p}\right)^{1 / p} \leq N^{1 / p} \max _{i}\left\|\left\langle t_{i}, X\right\rangle\right\|_{p} \leq e
$$

To show the second estimate we proceed in a similar way as in the proof of Proposition 8. We choose $T \subset \mathcal{M}_{p}(X)$ such that $|T| \leq e^{p}$ and $\mathcal{M}_{p}(X) \subset T+e C_{X} p^{-1 / 2} B_{2}^{n}$. We have

$$
\|X\|_{\mathcal{Z}_{p}(X)} \leq e C_{X} p^{-1 / 2}|X|+\sup _{t \in T}|\langle t, X\rangle|
$$

so that

$$
\left(\mathbb{E}\|X\|_{\mathcal{Z}_{p}(X)}^{2}\right)^{1 / 2} \leq e C_{X} p^{-1 / 2}\left(\mathbb{E}|X|^{2}\right)^{1 / 2}+\left(\mathbb{E} \sup _{t \in T}|\langle t, X\rangle|^{2}\right)^{1 / 2}
$$

Vector X is isotropic, so $\mathbb{E}|X|^{2}=n$ and since $T \subset \mathcal{M}_{p}(X)$ and $p \geq 2$ we get

$$
\begin{aligned}
&\left(\mathbb{E} \sup _{t \in T}|\langle t, X\rangle|^{2}\right)^{1 / 2} \leq\left(\mathbb{E}_{\left.\sup _{t \in T}|\langle t, X\rangle|^{p}\right)^{1 / p} \leq\left(\sum_{t \in T} \mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p}}\right. \\
& \leq|T|^{1 / p} \max _{t \in T}\|\mid\langle t, X\rangle\|_{p} \leq e
\end{aligned}
$$

References

[1] S. Artstein-Avidan, A. Giannopoulos and V. D. Milman, Asymptotic Geometric Analysis. Part I, Mathematical Surveys and Monographs 202, American Mathematical Society, Providence, RI, 2015.
[2] S. Artstein, V. D. Milman and S. J. Szarek, Duality of metric entropy, Ann. of Math. (2) 159 (2004), 1313-1328.
[3] S. Bobkov and F. L. Nazarov, On convex bodies and log-concave probability measures with unconditional basis, in: Geometric Aspects of Functional Analysis, 53-69, Lecture Notes in Math. 1807, Springer, Berlin, 2003.
[4] S. Brazitikos, A. Giannopoulos, P. Valettas and B. H. Vritsiou, Geometry of isotropic convex bodies, Mathematical Surveys and Monographs 196, American Mathematical Society, Providence, RI, 2014.
[5] P. Hitczenko, Domination inequality for martingale transforms of a Rademacher sequence, Israel J. Math. 84 (1993) 161-178.
[6] R. Latała, Weak and strong moments of random vectors, Marcinkiewicz Centenary Volume, Banach Center Publ. 95 (2011), 115-121.
[7] R. Latała, On some problems concerning log-concave random vectors, Convexity and Concentration, 525-539, IMA Vol. Math. Appl. 161, Springer, 2017.
[8] M. Ledoux and M. Talagrand, Probability in Banach Spaces. Isoperimetry and Processes, Springer, Berlin, 1991.
[9] E. Lutvak and G. Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997), 1-16.
[10] G. Paouris, Concentration of mass on convex bodies, Geom. Funct. Anal. 16 (2006), 1021-1049.
[11] V. N. Sudakov, Gaussian measures, Cauchy measures and ε-entropy, Soviet Math. Dokl. 10 (1969), 310-313.

Rafał Latała
Institute of Mathematics
University of Warsaw
Banacha 2
02-097 Warszawa
Poland
rlatala@mimuw.edu.pl

[^0]: *Supported by the National Science Centre, Poland grant 2015/18/A/ST1/00553

