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Abstract
To any n-dimensional random vector X we may associate its Lp-centroid body

Zp(X) and the corresponding norm. We formulate a conjecture concerning the bound
on the Zp(X)-norm of X and show that it holds under some additional symmetry
assumptions. We also relate our conjecture with estimates of covering numbers and
Sudakov-type minorization bounds.

1 Introduction. Formulation of the Problem.

Let p ≥ 2 and X = (X1, . . . , Xn) be a random vector in Rn such that E|X|p < ∞. We
define the following two norms on Rn:

‖t‖Mp(X) := (E|〈t,X〉|p)1/p and ‖t‖Zp(X) := sup{|〈t, s〉| : ‖s‖Mp(X) ≤ 1}.

By Mp(X) and Zp(X) we will also denote unit balls in these norms, i.e.

Mp(X) := {t ∈ Rn : ‖t‖Mp(X) ≤ 1} and Zp(X) := {t ∈ Rn : ‖t‖Zp(X) ≤ 1}.

The set Zp(X) is called the Lp-centroid body of X (or rather of the distribution of X).
It was introduced (under a different normalization) for uniform distributions on convex
bodies in [9]. Investigation of Lp-centroid bodies played a crucial role in the Paouris proof
of large deviations bounds for Euclidean norms of log-concave vectors [10]. Such bodies
also appears in questions related to the optimal concentration of log-concave vectors [7].

Let us introduce a bit of useful notation. We set |t| := ‖t‖2 =
√
〈t, t〉 and Bn

2 = {t ∈
Rn : |t| ≤ 1}. By ‖Y ‖p = (E|Y |p)1/p we denote the Lp-norm of a random variable Y .
Letter C denotes universal constants (that may differ at each occurence), we write f ∼ g
if 1

C f ≤ g ≤ Cf .
Let us begin with a simple case, when a random vector X is rotationally invariant.

Then X = RU , where U has a uniform distribution on Sn−1 and R = |X| is a nonnegative
random variable, independent of U . We have for any vector t ∈ Rn and p ≥ 2,

‖〈t, U〉‖p = |t|‖U1‖p ∼
√

p

n+ p
|t|,
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where U1 is the first coordinate of U . Therefore

‖t‖Mp(X) = ‖U1‖p‖R‖p|t| and ‖t‖Zp(X) = ‖U1‖−1
p ‖R‖−1

p |t|.

So (
E‖X‖pZp(X)

)1/p
= ‖U1‖−1

p ‖R‖−1
p (E|X|p)1/p = ‖U1‖−1

p ∼
√
n+ p

p
. (1)

This motivates the following problem.

Problem 1. Is it true that for (at least a large class of) centered n-dimensional random
vectors X, (

E‖X‖2Zp(X)

)1/2
≤ C

√
n+ p

p
for p ≥ 2,

or maybe even (
E‖X‖pZp(X)

)1/p
≤ C

√
n+ p

p
for p ≥ 2?

Notice that the problem is linearly-invariant, since

‖AX‖Zp(AX) = ‖X‖Zp(X) for any A ∈ GL(n). (2)

For any centered random vector X with nondegenerate covariance matrix, random
vector Y = Cov(X)−1/2X is isotropic (i.e. centered with identity covariance matrix). We
have M2(Y ) = Z2(Y ) = Bn

2 , hence

E‖X‖2Z2(X) = E‖Y ‖2Z2(Y ) = E|Y |2 = n.

Next remark shows that the answer to our problem is positive in the case p ≥ n.

Remark 1. For p ≥ n and any n-dimensional random vector X we have (E‖X‖pZp(X))
1/p ≤

10.

Proof. Let S be a 1/2-net in the unit ball of Mp(X) such that |S| ≤ 5n (such net exists
by the volume-based argument, cf. [1, Corollary 4.1.15]). Then

(E‖X‖pZp(X))
1/p ≤ 2

(
E sup
t∈S
|〈t,X〉|p

)1/p

≤ 2

(
E
∑
t∈S
|〈t,X〉|p

)1/p

≤ 2|S|1/p sup
t∈S

(E〈t,X〉|p)1/p ≤ 2 · 5n/p.
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Lp-centroid bodies play an important role in the study of vectors uniformly distributed
on convex bodies and a more general class of log-concave vectors. A random vector with a
nondenerate covariance matrix is called log-concave if its density has the form e−h, where
h : Rn → (−∞,∞] is convex. If X is centered and log-concave then

‖〈t,X〉‖p ≤ λ
p

q
‖〈t,X〉‖q for p ≥ q ≥ 2, (3)

where λ = 2 (λ = 1 if X is symmetric and log-concave and λ = 3 for arbitrary log-concave
vectors). One of open problems for log-concave vectors [7] states that for such vectors,
arbitrary norm ‖ ‖ and q ≥ 1,

(E‖X‖q)1/q ≤ C

(
E‖X‖+ sup

‖t‖∗≤1
‖〈t,X〉‖q

)
.

In particular one may expect that for log-concave vectors

(E‖X‖qZp(X))
1/q ≤ C

(
E‖X‖Zp(X) + sup

t∈Mp(X)
‖〈t,X〉‖q

)
≤ C

(
E‖X‖Zp(X) +

max{p, q}
p

)
.

As a result it is natural to state the following variant of Problem 1.

Problem 2. Let X be a centered log-concave n-dimensional random vector. Is it true
that

(E‖X‖qZp(X))
1/q ≤ C

√
n

p
for 2 ≤ p ≤ n, 1 ≤ q ≤ √pn.

In Section 2 we show that Problems 1 and 2 have affirmative solutions in the class
of unconditional vectors. In Section 3 we relate our problems to estimates of covering
numbers. We also show that the first estimate in Problem 1 holds if the random vector X
satisfies the Sudakov-type minorization bound.

2 Bounds for unconditional random vectors

In this section we consider the class of unconditional random vectors in Rn, i.e. vectors
X having the same distribution as (ε1|X1|, ε2|X2|, . . . , εn|Xn|), where (εi) is a sequence of
independent symmetric ±1 random variables (Rademacher sequence), independent of X.

Our first result shows that formula (1) may be extended to the unconditional case for
p even. We use the standard notation – for a multiindex α = (α1, . . . , αn), x ∈ Rn and
m =

∑
αi, xα :=

∏
i x

αi
i and

(
m
α

)
:= m!/(

∏
i αi!).
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Proposition 2. We have for any k = 1, 2, . . . and any n-dimensional unconditional random
vector X such that E|X|2k <∞,

(
E‖X‖2kZ2k(X)

)1/(2k)
≤ c2k :=

 ∑
‖α‖1=k

(
k
α

)2(
2k
2α

)
1/(2k)

∼
√
n+ k

k
,

where the summation runs over all multiindices α = (α1, . . . , αn) with nonnegative integer
coefficients such that ‖α‖1 =

∑n
i=1 αi = k.

Proof. Observe first that

E|〈t,X〉|2k = E

∣∣∣∣∣
n∑
i=1

tiεiXi

∣∣∣∣∣
2k

=
∑
‖α‖1=k

(
2k
2α

)
t2αEX2α.

For any t, s ∈ Rn we have

|〈t, s〉|k =
∑
‖α‖1=k

(
k

α

)
tαsα.

So by the Cauchy-Schwarz inequality,

‖s‖kZ2k(X) = sup{|〈t, s〉|k : E|〈t,X〉|2k ≤ 1} ≤

 ∑
‖α‖1=k

(
k
α

)2(
2k
2α

) s2α

EX2α

1/2

.

To see that c2k ∼
√

(n+ k)/k observe that(
k
α

)2(
2k
2α

) =
(

2k
k

)−1 n∏
i=1

(
2αi
αi

)
.

Therefore, since 1 ≤
(
2l
l

)
≤ 22l, we get

4−k
(
n+ k − 1

k

)
≤ c2k2k ≤ 4k

(
n+ k − 1

k

)
.

Corollary 3. Let X be an unconditional n-dimensional random vector. Then(
E‖X‖2kZp(X)

)1/2k
≤ C

√
n+ p

p
for any positive integer k ≤ p

2
.
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Proof. By the monotonicity of L2k-norms we may and will assume that k = bp/2c. Then
by Proposition 2,(

E‖X‖2kZp(X)

)1/2k
≤
(
E‖X‖2kZ2k(X)

)1/2k
≤ C

√
n+ k

k
≤ C

√
n+ p

p
.

In the unconditional log-concave case we may bound higher moments of ‖X‖Zp(X).

Theorem 4. Let X be an unconditional log-concave n-dimensional random vector. Then
for p, q ≥ 2,

(E‖X‖qZp(X))
1/q ≤ C

(√
n+ p

p
+ sup
t∈Mp(X)

‖〈t,X〉‖q

)
≤ C

(√
n+ p

p
+
q

p

)
.

In order to show this result we will need the following lemma.

Lemma 5. Let 2 ≤ p ≤ n, X be an unconditional random vector in Rn such that E|X|p <
∞ and E|Xi| = 1. Then

‖s‖Zp(X) ≤ sup
I⊂[n],|I|≤p

sup
‖t‖Mp(X)≤1

∣∣∣∣∣∑
i∈I

tisi

∣∣∣∣∣+ C1 sup
‖t‖Mp(X)≤1,‖t‖2≤p−1/2

∣∣∣∣∣
n∑
i=1

tisi

∣∣∣∣∣ . (4)

Proof. We have by the unconditionality of X and Jensen’s inequality,

‖t‖Mp(X) =

∥∥∥∥∥
n∑
i=1

tiεi|Xi|

∥∥∥∥∥
p

≥

∥∥∥∥∥
n∑
i=1

tiεiE|Xi|

∥∥∥∥∥
p

.

By the result of Hitczenko [5], for numbers a1, . . . , an,

∥∥∥∥∥
n∑
i=1

aiεi

∥∥∥∥∥
p

∼
∑
i≤p

a∗i +
√
p

∑
i>p

|a∗i |2
1/2

, (5)

where (a∗i )i≤n denotes the nonincreasing rearrangement of (|ai|)i≤n. Thus

√
p

∑
i>p

|t∗i |2
1/2

≤ C1‖t‖Mp(X)

and (4) easily follows.
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Proof of Theorem 4. The last bound in the assertion follows by (3). It is easy to see that
(increasing q if necessary) it is enough to consider the case q ≥ √np.

If q ≥ n then the similar argument as in the proof of Remark 1 shows that(
E‖X‖qZp(X)

)1/q
≤ 2 · 5n/q sup

t∈Mp(X)
‖〈t,X〉‖q ≤ 10 sup

t∈Mp(X)
‖〈t,X〉‖q.

Finally, consider the remaining case
√
pn ≤ q ≤ n. By (2) we may assume that

E|Xi| = 1 for all i. By the log-concavity ‖〈t,X〉‖q1 ≤ C q1
q2
‖〈t,X〉‖q2 for q1 ≥ q2 ≥ 1, in

particular σi := ‖Xi‖2 ≤ C.
Let E1, . . . , En be i.i.d. symmetric exponential random variables with variance 1. By

[6, Theorem 3.1] we have∥∥∥∥∥∥ sup
‖t‖Mp(X)≤1,‖t‖2≤p−1/2

∣∣∣∣∣
n∑
i=1

tiXi

∣∣∣∣∣
∥∥∥∥∥∥
q

≤ C

∥∥∥∥∥∥ sup
‖t‖Mp(X)≤1,‖t‖2≤p−1/2

∣∣∣∣∣
n∑
i=1

tiσiEi

∣∣∣∣∣
∥∥∥∥∥∥

1

+ sup
‖t‖Mp(X)≤1,‖t‖2≤p−1/2

‖〈t,X〉‖q

 .

We have
sup

‖t‖Mp(X)≤1,‖t‖2≤p−1/2

‖〈t,X〉‖q ≤ sup
‖t‖Mp(X)≤1

‖〈t,X〉‖q

and ∥∥∥∥∥∥ sup
‖t‖Mp(X)≤1,‖t‖2≤p−1/2

∣∣∣∣∣
n∑
i=1

tiσiEi

∣∣∣∣∣
∥∥∥∥∥∥

1

≤ 1
√
p

∥∥∥∥∥∥
√√√√ n∑

i=1

σ2
i E2
i

∥∥∥∥∥∥
1

≤ 1
√
p

√√√√ n∑
i=1

σ2
i ≤ C

√
n

p
.

Thus ∥∥∥∥∥∥ sup
‖t‖Mp(X)≤1,‖t‖2≤p−1/2

∣∣∣∣∣
n∑
i=1

tiXi

∣∣∣∣∣
∥∥∥∥∥∥
q

≤ C

(√
n

p
+ sup
‖t‖Mp(X)≤1

‖〈t,X〉‖q

)
.

Let for each I ⊂ [n], PIX = (Xi)i∈I and SI be a 1/2-net inMp(PIX) of cardinality at
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most 5|I|. We have∥∥∥∥∥ sup
I⊂[n],|I|≤p

sup
‖t‖Mp(X)≤1

∣∣∣∣∣∑
i∈I

tiXi

∣∣∣∣∣
∥∥∥∥∥
q

≤ 2

∥∥∥∥∥ sup
I⊂[n],|I|≤p

sup
t∈SI

∣∣∣∣∣∑
i∈I

tiXi

∣∣∣∣∣
∥∥∥∥∥
q

≤ 2

 ∑
I⊂[n],|I|≤p

∑
t∈SI

E

∣∣∣∣∣∑
i∈I

tiXi

∣∣∣∣∣
q
1/q

≤ 2 · 5p/q|{I ⊂ [n], |I| ≤ p}|1/q sup
I

sup
t∈SI

∥∥∥∥∥∑
i∈I

tiXi

∥∥∥∥∥
q

≤ 10
(
en

p

)p/q
sup

t∈Mp(X)

∥∥∥∥∥∑
i∈I

tiXi

∥∥∥∥∥
q

≤ C sup
t∈Mp(X)

∥∥∥∥∥∑
i∈I

tiXi

∥∥∥∥∥
q

,

where the last estimate follows from q ≥ √np.
Hence the assertion follows by Lemma 5.

Corollary 6. Let X be an unconditional log-concave n-dimensional random vector and
2 ≤ p ≤ n. Then

1
C

√
n

p
≤ E‖X‖Zp(X) ≤

(
E‖X‖

√
np

Zp(X)

)1/
√
np
≤ C

√
n

p
(6)

and

P
(
‖X‖Zp(X) ≥

1
C

√
n

p

)
≥ 1
C
, P

(
‖X‖Zp(X) ≥ Ct

√
n

p

)
≤ e−t

√
np for t ≥ 1.

Proof. The upper bound in (6) easily follows by Theorem 4. In fact we have for t ≥ 1,(
E‖X‖t

√
np

Zp(X)

)1/(t
√
np)
≤ Ct

√
n

p
,

hence the Chebyshev inequality yields the upper tail bound for ‖X‖Zp(X).
To establish lower bounds we may assume that X is additionally isotropic. Then by

the result of Bobkov and Nazarov [3] we have ‖〈t,X〉‖p ≤ C(
√
p‖t‖2 + p‖t‖∞). This easily

gives

E‖X‖Zp(X) ≥
1
C

√
n

p
EX∗dn/2e ≥

1
C

√
n

p
,

where the last inequality follows by Lemma 7 below.
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By the Paley-Zygmund inequality we get

P
(
‖X‖Zp(X) ≥

1
C

√
n

p

)
≥ P

(
‖X‖Zp(X) ≥

1
2

E‖X‖Zp(X)

)
≥

(E‖X‖Zp(X))2

4E‖X‖2Zp(X)

≥ c.

Lemma 7. Let X by a symmetric isotropic n-dimensional log-concave vector. Then
EX∗dn/2e ≥

1
C .

Proof. Let ai > 0 be such that P(Xi ≥ ai) = 3/8. Then by the log-concavity of Xi,
P(|Xi| ≥ tai) = 2P(Xi ≥ tai) ≤ (3/4)t for t ≥ 1 and integration by parts yields ‖Xi‖2 ≤
Cai. Thus ai ≥ c1 for a constant c1 > 0.

Let S =
∑n

i=1 I{|Xi|≥c1}. Then ES =
∑n

i=1 P(|Xi| ≥ c1) ≥ 3n/4. On the other hand
ES ≤ n

2 + nP(X∗dn/2e ≥ c1), so

EX∗dn/2e ≥ c1P(X∗dn/2e ≥ c1) ≥ c1/4.

The next example shows that the tail and moment bounds in Corollary 6 are optimal.

Example. Let X = (X1, . . . , Xn) be an isotropic random vector with i.i.d. symmetric
exponential coordinates (i.e. X has the density 2n/2 exp(−

√
2‖x‖1)). Then (E|Xi|p)1/p ≤

p/2, so 2
pei ∈Mp(X) and

P
(
‖X‖Zp(X) ≥ t

√
n/p

)
≥ P(|Xi| ≥ t

√
np/2) ≥ e−t

√
np/
√

2

and for q = s
√
np, s ≥ 1,(

E‖X‖qZp(X)

)1/q
≥ 2
p
‖Xi‖q ≥ cq/p = cs

√
n/p.

3 General case – approach via entropy numbers

In this section we propose a method of deriving estimates for Zp-norms via entropy es-
timates for Mp-balls and Euclidean distance. We use a standard notation – for sets
T, S ⊂ Rn, by N(T, S) we denote the minimal number of translates of S that are enough to
cover T . If S is the ε-ball with respect to some translation-invariant metric d then N(T, S)
is also denoted as N(T, d, ε) and is called the metric entropy of T with respect to d.

We are mainly interested in log-concave vectors or random vectors which satisfy moment
estimates

‖〈t,X〉‖p ≤ λ
p

q
‖〈t,X〉‖q for p ≥ q ≥ 2. (7)

Let us start with a simple bound.
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Proposition 8. Suppose that X is isotropic in Rn and (7) holds. Then for any p ≥ 2 and
ε > 0 we have (

E‖X‖2Zp(X)

)1/2
≤ ε
√
n+

eλ

p
max {p, logN(Mp(X), εBn

2 )} .

Proof. Let N = N(Mp(X), εBn
2 ) and choose t1, . . . , tN ∈ Mp(X) such that Mp(X) ⊂⋃N

i=1(ti + εBn
2 ). Then

‖x‖Zp(X) ≤ ε|x|+ sup
i≤N
〈ti, x〉.

Let r = max{p, logN}. We have(
E sup
i≤N
|〈ti, X〉|2

)1/2

≤

(
E sup
i≤N
|〈ti, X〉|r

)1/r

≤

(
N∑
i=1

E|〈ti, X〉|r
)1/r

≤ N1/r sup
i
‖〈ti, X〉‖r ≤ eλ

r

p
sup
i
‖〈ti, X〉‖p ≤ eλ

r

p
.

Remark 9. The Paouris inequality [10] states that for isotropic log-concave vectors and
q ≥ 2, (E|X|q)1/q ≤ C(

√
n+ q), so for such vectors and q ≥ 2,(

E‖X‖qZp(X)

)1/q
≤ Cε(

√
n+ q) +

2e
p

max{p, q, logN(Mp(X), εBn
2 )}.

Unfortunately, the known estimates for entropy numbers of Mp-balls are rather weak.

Theorem 10 ([4, Proposition 9.2.8]). Assume that X is isotropic log-concave and 2 ≤ p ≤√
n. Then

logN
(
Mp(X),

t
√
p
Bn

2

)
≤ Cn log2 p log t

t
for 1 ≤ t ≤ min

{
√
p,

1
C

n log p
p2

}
.

Corollary 11. Let X be isotropic log-concave, then(
E‖X‖pZp(X)

)1/p
≤ C

(
n

p

)3/4

log p
√

log n for 2 ≤ p ≤ 1
C
n3/7 log−2/7 n.

Proof. We apply Theorem 10 with t = (n/p)1/4 log p log1/2 n and Proposition 8 with ε =
tp−1/2.

Remark 12. Suppose that X is centered and the following stronger bound than (7) (satisfied
for example for Gaussian vectors) holds

‖〈t,X〉‖p ≤ λ
√
p

q
‖〈t,X〉‖q for p ≥ q ≥ 2. (8)
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Then for any 2 ≤ p ≤ n,

1
λ

√
2n
p
≤
(
E‖X‖2Zp(X)

)1/2
≤
(
E‖X‖nZp(X)

)1/n
≤ 10λ

√
n

p
.

Proof. Without loss of generality we may assume that X is isotropic. We have

‖〈t,X〉‖p ≤ λ
√
p/2‖〈t,X〉‖2 = λ

√
p/2|t|,

so Mp(X) ⊃ λ−1
√

2/pBn
2 and(

E‖X‖2Zp(X)

)1/2
≥ 1
λ

√
2
p

(
E|X|2

)1/2 =
1
λ

√
2n
p
.

On the other hand let S be a 1/2-net in Mp(X) of cardinality at most 5n. Then

(
E‖X‖nZp(X)

)1/n
≤ 2

(
E sup
t∈S
|〈t,X〉|n

)1/n

≤ 2

(∑
t∈S

E|〈t,X〉|n
)1/n

≤ 2|S|1/n sup
t∈S
‖〈t,X〉‖n ≤ 10λ

√
n

p
sup
t∈S
‖〈t,X〉‖p ≤ 10λ

√
n

p
.

Recall that the Sudakov minoration principle [11] states that if G is an isotropic Gaus-
sian vector in Rn then for any bounded T ⊂ Rn and ε > 0,

E sup
t∈T
〈t, G〉 ≥ 1

C
ε
√

logN(T, εBn
2 ).

So we can say that a random vector X in Rn satisfies the L2-Sudakov minoration with a
constant CX if for any bounded T ⊂ Rn and ε > 0,

E sup
t∈T
〈t,X〉 ≥ 1

CX
ε
√

logN(T, εBn
2 ).

Example. Any unconditional n-dimensional random vector satisfies the L2-Sudakov mi-
noration with constant C

√
log(n+ 1)/(mini≤n E|Xi|).

Indeed, we have by the unconditionality, Jensen’s inequality and the contraction prin-
ciple,

E sup
t∈T

n∑
i=1

tiXi = E sup
t∈T

n∑
i=1

tiεi|Xi| ≥ E sup
t∈T

n∑
i=1

tiεiE|Xi| ≥ min
i≤n

E|Xi|E sup
t∈T

n∑
i=1

tiεi.
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On the other hand, the classical Sudakov minoration and the contraction principle yields

1
C
ε
√

logN(T, εBn
2 ) ≤ E sup

t∈T

n∑
i=1

tigi ≤ E max
i≤n
|gi|E sup

t∈T

n∑
i=1

tiεi

≤ C
√

log(n+ 1)E sup
t∈T

n∑
i=1

tiεi.

However the L2-Sudakov minoration constant may be quite large in the isotropic case
even for unconditional vectors if we do not assume that L1 and L2 norms of Xi are compa-
rable. Indeed, let P(X = ±n1/2ei) = 1

2n for i = 1, . . . , n, where e1, . . . , en is the canonical
basis of Rn. Then X is isotropic and unconditional. Let T = {t ∈ Rn : ‖t‖∞ ≤ n−1/2}.
Then

E sup
t∈T
|〈t,X〉| ≤ 1.

However, by the volume-based estimate,

N(T, εBn
2 ) ≥ vol(T )

vol(εBn
2 )
≥
(

1
Cε

)n
,

hence
sup
ε>0

ε
√

logN((T, εBn
2 ) ≥ 1

C

√
n.

Thus the L2-Sudakov constant CX ≥
√
n/C in this case.

Next proposition shows that random vectors with uniformly log-convex density satisfy
the L2-Sudakov minoration.

Proposition 13. Suppose that a symmetric random vector X in Rn has the density of
the form eh such that Hess(h) ≥ −αId for some α > 0. Then X satisfies the L2-Sudakov
minoration with constant CX ≤ C

√
α.

Proof. We will follow the method of the proof of the (dual) classical Sudakov inequality
(cf. (3.15) and its proof in [8]).

Let T be a bounded symmetric set and

A := E sup
t∈T
|〈t,X〉|.

By the duality of entropy numbers [2] we need to show that log1/2N(ε−1Bn
2 , T

o) ≤
Cε−1α1/2A for ε > 0 or equivalently that

N(δBn
2 , 6AT

o) ≤ exp(Cαδ2) for δ > 0. (9)
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To this end let N = N(δBn
2 , 6AT

o). If N = 1 there is nothing to show, so assume that
N ≥ 2. Then we may choose t1, . . . , tN ∈ δBn

2 such that the balls ti + 3AT 0 are disjoint.
Let µ = µX be the distribution of X. By the Chebyshev inequality,

µ(3AT 0) = 1− P
(

sup
t∈T
|〈t,X〉| > 3A

)
≥ 2

3
.

Observe also that for any symmetric set K and t ∈ Rn,

µ(t+K) =
∫
K
eh(x−t)dx =

∫
K
eh(x+t)dx =

∫
K

1
2

(eh(x−t) + eh(x+t))dx

≥
∫
K
e(h(x−t)+h(x+t))/2dx.

By Taylor’s expansion we have for some θ ∈ [0, 1],

h(x− t) + h(x+ t)
2

= h(x) +
1
4

(〈Hessh(x+ θt)t, t〉+ 〈Hessh(x− θt)t, t〉) ≥ h(x)− 1
2
α|t|2.

Thus
µ(t+K) ≥

∫
K
eh(x)−α|t|

2/2 = e−α|t|
2/2µ(K)

and

1 ≥
N∑
i=1

µ(ti + 3AT 0) ≥
N∑
i=1

e−α|ti|
2/2µ(3AT 0) ≥ 2N

3
e−αδ

2/2 ≥ N1/3e−αδ
2/2

and (9) easily follows.

Proposition 14. Suppose that X satisfies the L2-Sudakov minoration with constant CX .
Then for any p ≥ 2

N

(
Mp(X),

eCX√
p
Bn

2

)
≤ ep.

In particular if X is isotropic we have for 2 ≤ p ≤ n,(
E‖X‖2Zp(X)

)1/2
≤ e

(
CX

√
n

p
+ 1
)
.

Proof. Suppose that N = N(Mp(X), eCXp−1/2Bn
2 ) ≥ ep. We can choose t1, . . . , tN ∈

Mp(X), such that ‖ti − tj‖2 ≥ eCXp−1/2. We have

E sup
i≥N
〈ti, X〉 ≥

1
CX

eCXp
−1/2

√
logN > e.
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However on the other hand,

E sup
i≥N
〈ti, X〉 ≤

(
E sup
i≥N
|〈ti, X〉|p

)1/p

≤

∑
i≥N

E|〈ti, X〉|p
1/p

≤ N1/p max
i
‖〈ti, X〉‖p ≤ e.

To show the second estimate we proceed in a similar way as in the proof of Proposition
8. We choose T ⊂Mp(X) such that |T | ≤ ep and Mp(X) ⊂ T + eCXp

−1/2Bn
2 . We have

‖X‖Zp(X) ≤ eCXp−1/2|X|+ sup
t∈T
|〈t,X〉|

so that (
E‖X‖2Zp(X)

)1/2
≤ eCXp−1/2(E|X|2)1/2 +

(
E sup
t∈T
|〈t,X〉|2

)1/2

.

Vector X is isotropic, so E|X|2 = n and since T ⊂Mp(X) and p ≥ 2 we get

(
E sup
t∈T
|〈t,X〉|2

)1/2

≤
(

E sup
t∈T
|〈t,X〉|p

)1/p

≤

(∑
t∈T

E|〈t,X〉|p
)1/p

≤ |T |1/p max
t∈T
‖|〈t,X〉‖p ≤ e.
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