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We give necessary and sufficient conditions for the (bounded)
law of the iterated logarithm for U -statistics in Hilbert spaces. As a
tool we also develop moment and tail estimates for canonical Hilbert-
space valued U -statistics of arbitrary order, which are of independent
interest.

1. Introduction. In the last two decades we have witnessed a rapid
development in the asymptotic theory of U -statistics, boosted by the intro-
duction of the so called ’decoupling’ techniques (see [5–7]), which allow to
treat U -statistics conditionally as sums of independent random variables.
This approach yielded better understanding of U -statistics versions of the
classical limit theorems of probability. Necessary and sufficient conditions
were found for the strong law of large numbers [17], the central limit theo-
rem [10, 19] and the law of the iterated logarithm [2, 11]. Also some sharp
exponential inequalities for canonical U -statistics have been found [1, 8, 14].
Analysis of the aforementioned results shows an interesting phenomenon.
Namely, the natural counterparts of the necessary and sufficient conditions
for sums of i.i.d. random variables (U -statistics of degree 1), remain sufficient
for U -statistics of arbitrary degree, but with an exception for the CLT, they
cease to be necessary. The correct conditions turn out to be much more in-
volved and are expressed for instance in terms of convergence of some series
(LLN) or as growth conditions for some functions (LIL).

A natural problem is an extension of the above results to the infinite-
dimensional setting. There has been some progress in this direction, and
partial answers have been found, usually under the assumption on the geo-
metrical structure of the space in which the values of a U -statistic are taken.
In general however the picture is far from being complete and the necessary
and sufficient conditions are known only in the case of the CLT for Hilbert
space valued U -statistics (see [5, 10] for the proof of sufficiency in type 2
spaces and necessity in cotype 2 spaces respectively).
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In this article we generalize to separable Hilbert spaces the results from [2]
on necessary and sufficient conditions for the LIL for real valued U -statistics.
The conditions are expressed only in terms of the U -statistic kernel and the
distribution of the underlying i.i.d. sequence and can be also considered a
generalization of results from [13], where the LIL for i.i.d. sums in Hilbert
spaces was characterized. We consider only the bounded version of the LIL
and do not give the exact value of the lim sup nor determine the limiting set.
Except for the classical case of sums of i.i.d. random variables, the problem
of finding the lim sup is at the moment open even in the one dimensional
case (see [3, 5, 15] for some partial results) and the problem of the geometry
of the limiting set and the compact LIL is solved only under suboptimal
integrability conditions [3].

The organization of the paper is as follows. First, in Section 3 we prove
sharp exponential inequalities for canonical U -statistics, which generalize
the results of [1, 8] for the real-valued case. Then, after recalling some ba-
sic facts about the LIL we give necessary and sufficient condition for the
LIL for decoupled, canonical U -statistics (Theorem 2). The quite involved
proof is given in the two subsequent sections. Finally we conclude with our
main result (Theorem 4), which gives a characterization of the LIL for un-
decoupled U -statistics and follows quite easily from Theorem 2 and the one
dimensional result.

2. Notation. For an integer d, let (Xi)i∈N, (X(k)
i )i∈N,1≤k≤d be indepen-

dent random variables with values in a Polish space Σ, equipped with the
Borel σ-field F . Let also (εi)i∈N, (ε(k)

i )i∈N,1≤k≤d be independent Rademacher
variables, independent of (Xi)i∈N, (X(k)

i )i∈N,1≤k≤d.
Consider moreover measurable functions hi : Σd → H, where (H, | · |) is a

separable Hilbert space (we will denote both the norm in H and the absolute
value of a real number by | · |, the context will however prevent ambiguity).

To shorten the notation, we will use the following convention. For i =
(i1, . . . , id) ∈ {1, . . . , n}d we will write Xi (resp. Xdec

i ) for (Xi1 , . . . , Xid),
(resp. (X(1)

i1
, . . . , X

(d)
id

)) and εi (resp. εdec
i ) for the product εi1 · . . . · εid (resp.

ε
(1)
i1
· . . . · ε(d)

id
), the notation being thus slightly inconsistent, which however

should not lead to a misunderstanding. The U -statistics will therefore be
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denoted∑
i∈Id

n

hi(Xi) (an undecoupled U -statistic)

∑
|i|≤n

hi(Xdec
i ) (a decoupled U -statistic)

∑
i∈Id

n

εihi(Xi) (an undecoupled randomized U -statistic)

∑
|i|≤n

εdec
i hi(Xdec

i ) (a decoupled randomized U -statistic),

where

|i| = max
k=1,...,d

ik,

Id
n = {i : |i| ≤ n, ij 6= ik for j 6= k}.

Since in this notation {1, . . . , d} = I1
d we will write

Id = {1, 2, . . . , d}.

Throughout the article we will write Ld, L to denote constants depending
only on d and universal constants respectively. In all those cases the values
of a constant may differ at each occurrence.

For I ⊆ Id, we will write EI to denote integration with respect to variables
(X(j)

i )i∈N,j∈I .

3. Moment inequalities for U-statistics in Hilbert space . In this
section we will present sharp moment and tail inequalities for Hilbert space
valued U -statistics, which in the sequel will constitute an important ingredi-
ent in the analysis of the LIL. These estimates are a natural generalization
of inequalities for real valued U-statistics presented in [1].

Let us first introduce some definitions.

Definition 1. For a nonempty, finite set I let PI be the family consist-
ing of all partitions J = {J1, . . . , Jk} of I into nonempty, pairwise disjoint
subsets. Let us also define for J as above deg(J ) = k. Additionally let
P∅ = {∅} with deg(∅) = 0.
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Definition 2. For a nonempty set I ⊆ Id consider J = {J1, . . . , Jk} ∈
PI . For an array (hi)i∈Id

n
of H-valued kernels and fixed value of iIc, define

‖(hi)iI‖J = sup
{∣∣∣∑

iI

EI [hi(Xdec
i )

deg(J )∏
j=1

f
(j)
iJj

(Xdec
iJj

)]
∣∣∣ : f

(j)
iJj

: ΣJj → R

E
∑
iJj

|f (j)
iJj

(Xdec
iJj

)|2 ≤ 1 for j = 1, . . . ,deg(J )
}
.

Let moreover ‖(hi)i∅‖∅ = |hi|.

Remark. It is worth mentioning that for I = Id, ‖ · ‖J is a deterministic
norm, whereas for I ( Id it is a random variable, depending on Xdec

iIc .
Quantities given by the above definition suffice to obtain precise moment

estimates for real valued U -statistics. However, to bound the moments of
U -statistics with values in general Hilbert spaces, we will need to introduce
one more definition.

Definition 3. For nonempty sets K ⊆ I ⊆ Id consider J = {J1, . . . , Jk} ∈
PI\K . For an array (hi)i∈Id

n
of H-valued kernels and fixed value of iIc, define

‖(hi)iI‖K,J = sup
{
|
∑
iI

EI [〈hi(Xdec
i ), giK (Xdec

iK
)〉

deg(J )∏
j=1

f
(j)
iJj

(Xdec
iJj

)]| :

f
(j)
iJj

: ΣJj → R, giK : ΣK → H , E
∑
iK

|giK (Xdec
iK

)|2 ≤ 1

E
∑
iJj

|f (j)
iJj

(Xdec
iJj

)|2 ≤ 1 for j = 1, . . . ,deg(J )
}
.

Remark. One can see that the only difference between the above definition
and Definition 2 is that the latter distinguishes one set of coordinates and
allows functions corresponding to this set to take values in H. Moreover,
since the norm in H satisfies | · | = sup|φ|≤1〈φ, ·〉, we can treat Definition 2
as a counterpart of Definition 3 for K = ∅. We will use this convention to
simplify the statements of the subsequent theorems. Thus, from now on, we
will write

‖ · ‖∅,J := ‖ · ‖J .
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Example. For d = 2 and I = {1, 2}, the above definition gives

‖(hij(Xi, Yj))i,j‖∅,{{1,2}} = sup
{∣∣∣E∑

ij

hij(Xi, Yj)fij(Xi, Yj)
∣∣∣ :

E
∑
ij

f(Xi, Yj)2 ≤ 1
}

= sup
φ∈H,|φ|≤1

√
E
∑
ij

〈φ, hij(Xi, Yj)〉2,

‖(hij(Xi, Yj))i,j‖∅,{{1}{2}} = sup
{∣∣∣E∑

ij

hij(Xi, Yj)fi(Xi)gj(Yj)
∣∣∣ :

∑
i

Ef(Xi)2,
∑
j

Eg(Yj)2 ≤ 1
}
,

‖(hij(Xi, Yj))i,j‖{1},{{2}} = sup
{

E
∑
ij

〈fi(Xi), hij(Xi, Yj)〉gj(Yj) :

E
∑

i

|f(Xi)|2, E
∑
j

g(Yj)2 ≤ 1
}
,

‖(hij(Xi, Yj))i,j‖{1,2},∅ = sup
{

E
∑
ij

〈fij(Xi, Yj), hij(Xi, Yj)〉 :

E
∑
ij

|f(Xi, Yj)|2 ≤ 1
}

=
√∑

i,j

E|hij(Xi, Yj)|2.

We can now present the main result of this section.

Theorem 1. For any array of H-valued, completely degenerate kernels
(hi)i and any p ≥ 2, we have

E
∣∣∑

i

h(Xdec
i )

∣∣p ≤ Lp
d

( ∑
K⊆I⊆Id

∑
J∈PI\K

pp(#Ic+degJ /2)EIc max
iIc

‖(hi)iI‖
p
K,J

)
.

The proof of the above theorem proceeds along the lines of arguments
presented in [1, 8]. In particular we will need the following moment estimates
for suprema of empirical processes [8].

Lemma 1 ([8, Proposition 3.1], see also [4, Theorem 12]). Let X1, . . . , Xn

be independent random variables with values in (Σ,F) and T be a countable
class of measurable real functions on Σ, such that for all f ∈ T and i ∈



6 R. ADAMCZAK AND R. LATA LA

In, Ef(Xi) = 0 and Ef(Xi)2 < ∞. Consider the random variable S :=
supf∈T |

∑
i f(Xi)|. Then for all p ≥ 1,

ESp ≤ Lp

[
(ES)p + pp/2σp + ppE max

i
sup
f∈T

|f(Xi)|p
]

,

where
σ2 = sup

f∈T

∑
i

Ef(Xi)2.

We will also need the following technical lemma.

Lemma 2 (Lemma 5 in [1]). For α > 0 and arbitrary nonnegative kernels
gi : Σd → R+ and p > 1 we have

pαp
∑

i

Egp
i ≤ Lp

dp
αd

pαpE max
i

gp
i +

∑
I({1,...,d}

p#IpEI max
iI

(
∑
iIc

EIcgi)p

 .

Before stating the next lemma, let us introduce some more definitions,
concerning J –norms of deterministic matrices

Definition 4. Let (ai)i∈Id
n

be a d-indexed array of real numbers. For
J = {J1, . . . , Jk} ∈ PId

define

‖(ai)i‖J = sup
{∑

i

aix
(1)
iJ1
· · ·x(k)

iJk
:
∑
iJ1

(x(1)
iJ1

)2 ≤ 1, . . . ,
∑
iJk

(x(k)
iJk

)2 ≤ 1
}
.

We will also need

Definition 5. For i ∈ Nd−1× In let ai : Σ → R be measurable functions
and Z1, . . . , Zn be independent random variables with values in Σ. For a
partition J = {J1, . . . , Jk} ∈ PId

(d ∈ J1), let us define

‖(ai(Zid))i‖J = sup
{√√√√∑

iJ1

E
( ∑

iId\J1

ai(Zid)x
(2)
iJ2
· · ·x(k)

iJk

)2
:

∑
iJ2

(x(2)
iJ2

)2 ≤ 1, . . . ,
∑
iJk

(x(k)
iJk

)2 ≤ 1
}
.
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Remark. All the definitions of norms presented so far, seem quite similar
and indeed they can be all interpreted as injective tensor-product norms on
proper spaces. We have decided to introduce them separately by explicit
formulas, because this form appears in our applications.

The next lemma is crucial for obtaining moment inequalities for canonical
real-valued U -statistics of order greater than 2. In the context of U -statistics
in Hilbert spaces we will need it already for d = 2.

Lemma 3 (Theorem 5 in [1]). Let Z1, . . . , Zn be independent random
variables with values in (Σ,F). For i ∈ Nd−1×In let ai : Σ → R be measurable
functions, such that EZai(Zid) = 0. Then, for all p ≥ 2 we have

E‖(
∑
id

ai(Zid))iId−1
‖ ≤ Ld

∑
J∈PId

p(1+deg (J )−d)/2‖(ai(Zid))i‖J

+ Ld

∑
J∈PId−1

p1+(1+deg(J )−d)/2
√

E max
id

‖(ai(Zid))iId−1
‖2
J ,

where ‖·‖ denotes the norm of a (d−1)-indexed matrix, regarded as a (d−1)-
linear operator on (l2)d−1 (thus the ‖ · ‖{1}...{d−1}–norm in our notation).

To prove Theorem 1, we will need to adapt the above lemma to be able
to bound the (K,J )-norms of sums of independent kernels.

Definition 6. We define a partial order ≺ on PI as

I ≺ J

if and only if for all I ∈ I, there exists J ∈ J , such that I ⊆ J .

Lemma 4. Assume that
∑

i E|hi(Xdec
i )|2 < ∞. Then for any K ⊆ Id−1

and J = {J1, . . . , Jk} ∈ PId−1\K and all p ≥ 2,

Ed‖(
∑
id

hi(Xdec
i ))iId−1

‖K,J(1)

≤ Ld

( ∑
K⊆L⊆Id, K∈PId\L :

J∪{K,{d}}≺K∪{L}

p(degK−degJ )/2‖(hi)iId
‖L,K

+
∑

K⊆L⊆Id−1, K∈PId−1\L :

J∪{K}≺K∪{L}

p1+(degK−degJ )/2
√

Ed max
id

‖(hi)iId−1
‖2

L,K

)
.



8 R. ADAMCZAK AND R. LATA LA

Remark. In the above lemma we slightly abuse the notation, by identifying
for K = ∅ the partition {∅} ∪ J with J .

Given Lemma 3, the proof of Lemma 4 is not complicated, the main idea
is just a change of basis, however due to complicated notation it is quite
difficult to write it directly. We find it more convenient to write the proof
in terms of tensor products of Hilbert spaces.

Let us begin with a classical fact.

Lemma 5. Let H be a separable Hilber space and X a Σ-valued random
variable. Then H⊗L2(X) ' L2(X, H), where L2(X, H) is the space of square
integrable random variables of the form f(X), f : Σ → H-measurable. With
the above identification, for h ∈ H, f(X) ∈ L2(X), we have h ⊗ f(X) =
hf(X) ∈ L2(X, H).

Proof of Lemma 4. To avoid problems with notation, which would
lengthen an intuitively easy proof, we will omit some technical details, re-
lated to obvious identification of some tensor product of Hilbert spaces (in
the spirit of Lemma 5). Similarly, when considering linear functionals on a
space, which can be written as a tensor product in several ways, we will
switch to the most convenient notation, without further explanations.

Let

H0 = H ⊗
[
⊗l∈K (⊕n

i=1L
2(X(l)

i )] ' ⊕|iK |≤nL2(Xdec
iK

,H)

and, for j = 1, . . . , k,

Hi = ⊗l∈Jj
(⊕n

i=1L
2(X(l)

i )) ' ⊕|iJj
|≤nL2(Xdec

iJj
).

In the case K = ∅, we have (using the common convention for empty
products) H0 ' H.

For id = 1, . . . , n and fixed value of X
(d)
id

, let Aid be a linear functional on
H̃ = ⊕|iId−1

|≤nL2(Xdec
iId−1

,H) ' ⊗k
j=0Hk, given by (hi(Xdec

i ))|iId−1
|≤n ∈ H̃,

with the formula

Aid((giId−1
(Xdec

iId−1
))iId−1

) = 〈(giId−1
(Xdec

iId−1
))iId−1

, (hi(Xdec
i ))iId−1

〉H̃
=

∑
|iId−1

|≤n

E{1,...,d−1}〈giId−1
(Xdec

iId−1
), hi(Xdec

i )〉H .

As functions of X
(d)
id

, Aid = Aid(X
(d)
id

) are independent random linear func-
tionals. Thus they determine also random (k + 1)-linear functionals on
⊕k

j=0Hk, given by

(h0, h1, . . . , hk) 7→ Aid(h0 ⊗ h1 ⊗ . . .⊗ hk).
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If we denote by ‖·‖ the norm of a (k+1)-linear functional, the left hand-side
of (1), can be written as

E
∥∥ n∑

id=1

Aid(X
(d)
id

)
∥∥.

Moreover, denoting by ‖Aid‖HS the norm of Aid seen as a linear operator on
⊗k

j=0Hj (by analogy with the Hilbert-Schmidt norm of a matrix), we have

n∑
id=1

E‖Aid(X
(d)
id

)‖2
HS = ‖(hi)i‖2

Id,∅ < ∞,

so the sequence Aid(X
(d)
id

), determines a linear functional A on H̃⊗[⊕n
id=1L

2(X(d)
id

)] '
⊕|i|≤nL2(Xdec

i ,H) ' ⊕n
id=1L

2(X(d)
id

, H̃), given by the formula

A(g1(X
(d)
1 ), . . . , gn(X(d)

n )) =
n∑

id=1

E[Aid(X
(d)
id

)(gid(X
(d)
id

))].

It is easily seen, that if we interpret the domain of this functional as⊕|i|≤nL2(Xdec
i ,H),

then it corresponds to the multimatrix (hi(Xdec
i ))i.

Let us now introduce the following notation, consistent with the definition
of ‖ · ‖J . If T is a linear functional on ⊗m

j=0Ej for some Hilbert spaces Ej ,
and I = {L1, . . . , Lr} ∈ PIm∪{0}, then let ‖T‖I denote the norm of T as a
r-linear functional on ⊕r

i=1[⊗j∈LiEj ], given by

(e1, . . . , er) 7→ T (e1 ⊗ . . .⊗ er).

Now, denoting Hk+1 = ⊕n
id=1L

2(X(d)
id

), we can apply the above definition

to H̃ ⊗ [⊕n
id=1L

2(X(d)
id

)] ' ⊗k+1
j=0Hj and use Lemma 3 to obtain

E
∥∥ n∑

id=1

Aid(X
(d)
id

)
∥∥ ≤Ld

∑
I∈PIk+1∪{0}

p(1+deg (I)−(k+2))/2‖A‖I

+ Ld

∑
I∈PIk∪{0}

p1+(1+deg(I)−(k+2))/2
√

E max
id

‖Aid(X
(d)
id

)‖2
I .(2)

This inequality is just the statement of the Lemma, which follows from
,,associativity” of the tensor product and its ,,distributivity” with respect
to the simple sum of Hilbert spaces. Indeed, denoting Jk+1 = {d}, we have
for 0 /∈ Li and U =

⋃
j∈Li

Jj ,

⊗j∈LiHj ' ⊗j∈Li ⊗l∈Jj
(⊕n

s=1L
2(X(l)

s )) ' ⊗l∈U (⊕n
s=1L

2(X(l)
s )) ' ⊕|iU |≤nL2(Xdec

iU
).
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Similarly, if 0 ∈ Li,

⊗j∈LiHj ' [⊕|iK |≤nL2(Xdec
iK

,H)]× [⊗0 6=j∈Li
⊗l∈Jj

(⊕n
s=1L

2(X(l)
s ))]

' ⊕|iU |≤nL2(Xdec
iU

,H),

where U = (
⋃

0 6=j∈Li
Jj) ∪K. Using the fact that for fixed X

(d)
id

, Aid corre-
sponds to the multimatrix (hi(Xdec

i ))|iId−1
|≤n, and A corresponds to (hi(Xdec

i ))|i|≤n,
we can see, that each summand ‖ · ‖I on the right hand side of (2) is equal
to some summand ‖ · ‖L,K on the right hand side of (1). Informally speak-
ing and abusing slightly the notation (in the case K = ∅), we ,,merge” the
elements of the partition {{d}, J1, . . . , Jk,K} or {J1, . . . , Jk,K} in a way
described by the partition I, thus obtaining the partition {L} ∪K, where L
is the set corresponding in the new partition to the set Li ∈ I, containing 0
(in particular, if K = ∅ and {0} ∈ I, then L = ∅). Let us also notice, that
deg(I) = deg(K) + 1, hence

1 + deg(I)− (k + 2) = deg(K)− deg(J ),

which shows, that also the powers of p on the right hand sides of (1) and
(2) are the same, completing the proof.

Proof of Theorem 1. For d = 1, the theorem is an obvious conse-
quence of Lemma 1. Indeed, since | · | = sup|φ|≤1 |φ(·)|, and we can restrict
the supremum to a countable set of functionals, we have

E|
∑

i

hi(Xi)|p ≤ Lp((E|∑
i

hi(Xi)|)p + pp/2 sup
|φ|≤1

(
∑

i

E〈φ, hi(Xi)〉2)p/2

+ ppE max
i
|hi(Xi)|p

)
.

But E|
∑

i hi(Xi)| ≤
√

E|
∑

i hi(Xi)|2 =
√∑

i E|hi(Xi)|2 = ‖(hi)i‖{1},∅
and we also have sup|φ|≤1(

∑
i E〈φ, hi(Xi)〉2)1/2 = ‖(hi)i‖∅,{1} and maxi |hi(Xi)| =

maxi ‖hi‖∅,∅.
We will now proceed by induction with respect to d. Assume that the

theorem is true for all integers smaller than d ≥ 2 and denote Ĩc = Ic\{d}
for I ⊆ Id. Then, applying it for fixed X

(d)
id

to the array of functions

(
∑

id
hi(x1, . . . , xd−1, X

(d)
id

)iId−1
, we get by the Fubini theorem

E|
∑

i

hi(Xdec
i )|p

≤ Lp
d−1

( ∑
K⊆I⊆Id−1

∑
J∈PI\K

pp(#Ĩc+degJ /2)
∑
iĨc

EIc‖(
∑
id

hi)iI‖
p
K,J

)
,
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where we have replaced the maxima in iIc by sums (we can afford this
apparent loss, since we will be able to fix it with Lemma 2). Now, from
Lemma 1 (applied to Ed) it follows that

Ed‖(
∑
id

hi)iI‖
p
K,J ≤ Lp

(
(Ed‖(

∑
id

hi)iI‖K,J )p + pp/2‖(hi)iI∪{d}‖
p
K,J∪{{d}}

+ pp
∑
id

Ed‖(hi)iI‖
p
K,J

)
.

Since Ĩc = (I ∪ {d})c, degJ ∪ {{d}} = degJ + 1 and #Ic = #Ĩc + 1,
combining the above inequalities gives

E|
∑

i

hi(Xdec
i )|p ≤ Lp

d

( ∑
K⊆I⊆Id

∑
J∈PI\K

pp(#Ic+degJ /2)EIc

∑
iIc

‖(hi)iI‖
p
K,J

+
∑

K⊆I⊆Id−1

∑
J∈PI\K

pp(#Ĩc+degJ /2)
∑
iĨc

EĨc(Ed‖(
∑
id

hi)iI‖K,J )p
)
.

By applying Lemma 4 to the second sum on the right hand side, we get

E|
∑

i

hi(Xdec
i )|p ≤ Lp

d

( ∑
K⊆I⊆Id

∑
J∈PI\K

pp(#Ic+degJ /2)EIc

∑
iIc

‖(hi)iI‖
p
K,J

)
.

(3)

We can now finish the proof using Lemma 2. We apply it to EIc for I 6= Id,
with #Ic instead of d and p/2 instead of p (for p = 2 the theorem is trivial,
so we can assume that p > 2) and α = 2#Ic + degJ + #Ic. Using the fact
that (p/2)α#Ic ≤ Lp

d and E‖(hi)iI‖2
K,J ≤

∑
iI

EI |hi|2, we get

EIc

∑
iIc

‖(hi)iI‖
p
K,J ≤ p−αp/2L̃p

d

(
pαp/2EIc max

iIc
‖(hi)iI‖

p
K,J

+ max
J(Ic

p#Jp/2EJ max
iJ

(
∑
iIc\J

EIc\J‖(hi)iI‖
2
K,J

)p/2

≤ L̄p
d

(
EIc max

iIc
‖(hi)iI‖

p
K,J

+ p−(#Ic+degJ /2)p max
J⊆Ic

EJ max
iJ

(
∑
iJc

EJc |h(Xdec
i )|2)p/2

)
= L̃p

d

(
EIc max

iIc
‖(hi)iI‖

p
K,J + p−(#Ic+degJ /2)p max

J⊆Ic
EJ max

iJ
‖(hi)iJc‖p

Jc,∅

)
,

which allows us to replace the sums in iIc on the right-hand side of (3) by
the corresponding maxima, proving the inequality in question.
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Theorem 1 gives a precise estimate for moments of canonical Hilbert space
valued U -statistics. In the sequel however we will need a weaker estimate,
using the ‖ · ‖K,J norms only for I = Id and specialized to the case hi = h.
Before we formulate a proper corollary, let us introduce

Definition 7. Let h : Σd → H be a canonical kernel. Let moreover
X1, X2, . . . , Xd be i.i.d random variables with values in Σ. Denote X =
(X1, . . . , Xd) and for J ⊆ Id, XJ = (Xj)j∈J . For K ⊆ I ⊆ Id and J =
{J1, . . . , Jk} ∈ PI\K , we define

‖h‖K,J = sup
{
EI〈h(X), g(XK)〉

k∏
j=1

fj(XJj ) : g : Σ#K → H, E|g(XK)|2 ≤ 1,

fj : Σ#Jj → R, Efj(XJj ))
2 ≤ 1, j = 1, . . . , k

}
.

In other words ‖h‖K,J is the ‖ · ‖K,J of an array (hi)|i|=1, with h(1,...,1) = h.

Remark. For I = Id, ‖h‖K,J is a norm, whereas for I ( Id, it is a random
variable, depending on XIc .

It is also easy to see that if all the variables X
(j)
i are i.i.d. and for all

|i| ≤ n we have hi = h, then for any fixed value of iIc ,

‖(hi)|iI |≤n‖K,J = ‖h‖K,J n#I/2,

where ‖h‖K,J is defined with respect to any i.i.d. sequence X1, . . . , Xd of
the form Xj = X

(j)
ij

for j ∈ Ic.
We also have ‖h‖K,J ≤

√
EI |h(X)|2, which together with the above ob-

servations allows us to derive the following

Corollary 1. For all p ≥ 2, we have

E|
∑

i

h(Xdec
i )|p ≤Lp

d

( ∑
K⊆Id

∑
J∈PId\K

pp degJ /2ndp/2‖h‖p
K,J

+
∑
I(Id

pp(d+#Ic)/2n#Ip/2EIc max
iIc

(EI |h(Xdec
i )|2)p/2

)

The Chebyshev inequality gives the following corollary for bounded ker-
nels
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Corollary 2. If h is bounded, then for all t ≥ 0,

P
(
|
∑

i

h(Xdec
i )| ≥ Ld(nd/2(E|h|2)1/2 + t)

)
≤

Ld exp
[
− 1

Ld

(
min

K(Id,J∈PId\K

( t

nd/2‖h‖K,J

)2/ deg(J ))
∧

∧
(

min
I(Id

( t

n#I/2‖(EI |h|2)1/2‖∞

)2/(d+#Ic))]
.

Before we formulate the version of exponential inequalities that will be
useful for the analysis of the LIL, let us recall the classical definition of
Hoeffding projections.

Definition 8. For an integrable kernel h : Σd → H, define πdh : Σk →
R with the formula

πdh(x1, . . . , xk) = (δx1 −P)× (δx2 −P)× . . .× (δxd
−P)h,

where P is the law of X1.

Remark. It is easy to see that πkh is canonical. Moreover πdh = h iff h is
canonical.

The following Lemma was proven for H = R in [2] (Lemma 1). The proof
given there works for an arbitrary Banach space.

Lemma 6. Consider an arbitrary family of integrable kernels hi : Σd →
H, |i| ≤ n. For any p ≥ 1 we have∥∥ ∑

|i|≤n

πdhi(Xdec
i )

∥∥
p
≤ 2d

∥∥ ∑
|i|≤n

εdec
i hi(Xdec

i )
∥∥

p
.

In the sequel we will use exponential inequalities to U -statistics generated
by πdh, where h will be a non-necessarily canonical kernel of order d. Since
the kernel h̃((ε1, X1), . . . , (εd, Xd)) = ε1 · · · εdh(X1, . . . , Xd), where εi’s are
i.i.d. Rademacher variables independent of Xi’s is always canonical, Corol-
lary 1, Lemma 6 and the Chebyshev inequality give us also the following
corollary (note that ‖h̃‖K,J = ‖h‖K,J )



14 R. ADAMCZAK AND R. LATA LA

Corollary 3. If h is bounded, then for all p ≥ 0,

P
(∣∣∣∑

i

πdh(Xdec
i )

∣∣∣ ≥ Ld(nd/2(E|h|2)1/2 + t)
)
≤

Ld exp
[
− 1

Ld

(
min

K(Id,J∈PId\K

( t

nd/2‖h‖K,J

)2/ deg(J ))
∧

∧
(

min
I(Id

( t

n#I/2‖(EI |h|2)1/2‖∞

)2/(d+#Ic))]
.

4. The equivalence of several LIL statements. In this section we
will recall general results on the correspondence of various statements of the
LIL. We will state them without proofs, since all of them have been proven
in [9] and [2] in the real case and the proofs can be directly transferred to
the Hilbert space case, with some simple modifications that we will indicate.

Before we proceed, let us introduce the assumptions and notation common
for the remaining part of the article.

• We assume that (Xi)i∈N, (X(k)
i )i∈N,1≤k≤d are i.i.d. and h : Σd → H is

a measurable function.
• Recall that (εi)i∈N, (ε(k)

i )i∈N,1≤k≤d are independent Rademacher vari-
ables, independent of (Xi)i∈N, (X(k)

i )i∈N,1≤k≤d.
• To avoid technical problems with small values of h let us also define

LLx = loglog (x ∨ ee).
• We will also occasionally write X for (X1, . . . , Xd) and for I ⊆ Id,

XI = (Xi)i∈I . Sometimes we will write simply h instead of h(X).
• We will use the letter K to denote constants depending only on the

function h.

We will need the following simple fact

Lemma 7. If E|h|2/(LL|h|)d = K < ∞ then E(|h|2 ∧ u) ≤ L(loglog u)d

with L depending only on K and d.

The next lemma comes from [9]. It is proven there for H = R but the
argument is valid also for general Banach spaces.

Lemma 8. Let h : Σd → H be a symmetric function. There exist con-
stants Ld, such that if

(4) lim sup
n→∞

1
(nloglog n)d/2

∣∣ ∑
i∈Id

n

h(Xi)
∣∣ < C a.s.,
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then

(5)
∞∑

n=1

P
(∣∣ ∑
|i|≤2n

εdec
i h(Xdec

i )
∣∣ ≥ D2nd/2 logd/2 n

)
< ∞

for D = LdC.

Lemma 9. For a symmetric function h : Σd → H, the LIL (4) is equiv-
alent to the decoupled LIL

(6) lim sup
n→∞

1
(nloglog n)d/2

∣∣ ∑
i∈Id

n

h(Xdec
i )

∣∣ < D a.s.,

meaning that (4) implies (6) with D = LdC, and conversely (6) implies (4)
with C = LdD.

Proof. This is Lemma 8 in [2]. The proof is the same as there, one
needs only to replace l∞ with l∞(H) – the space of bounded H-valued
sequences.

The next lemma also comes from [2] (Lemma 9). Although stated for real
kernels, its proof relies on an inductive argument with a stronger, Banach-
valued hypothesis.

Lemma 10. There exists a universal constant L < ∞, such that for any
kernel h : Σd → H we have

P
(
max
|j|≤n

∣∣ ∑
i : ik≤jk,k=1...d

h(Xdec
i )

∣∣ ≥ t
)
≤ LdP

(∣∣ ∑
|i|≤n

h(Xdec
i )

∣∣ ≥ t/Ld).
Corollary 4. Consider a kernel h : Σd → H and α > 0. If

∞∑
n=1

P(|
∑
|i|≤2n

h(Xdec
i )| ≥ C2nα logα n) < ∞,

then
lim sup

n→∞

1
(nloglog n)α

∣∣ ∑
|i|≤2n

h(Xdec
i )

∣∣ ≤ Ld,αC a.s.

Proof. Given Lemma 10, the proof is the same as the one for real kernels,
presented in [2] (Corollary 1 therein).
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The next lemma shows that the contribution to a decoupled U-statistic
from the ’diagonal’, i.e. from the sum over multiindices i /∈ Id

n is negligible.
The proof given in [2] (Lemma 10) is still valid, since the only part which
cannot be directly transferred to the Banach space setting is the estimate of
variance of canonical U-statistics, which is the same in the real and general
Hilbert space case.

Lemma 11. If h : Σd → H is canonical and satisfies

E(|h|2 ∧ u) = O((loglog u)β),

for some β, then

(7) lim sup
n→∞

1
(nloglog n)d/2

∣∣ ∑
|i|≤n

∃j 6=kij=ik

h(Xdec
i )

∣∣ = 0 a.s.

Corollary 5. The randomized decoupled LIL

(8) lim sup
n→∞

1
(nloglog n)d/2

∣∣ ∑
|i|≤n

εdec
i h(Xdec

i )
∣∣ < C

is equivalent to (5), meaning then if (8) holds then so does (5) with D = LdC
and (5) implies (8) with C = LdD.

The proof is the same as for the real-valued case, given in [2] (Corollary
2), one only needs to replace h2 by |h|2 and use the formula for the second
moments in Hilbert spaces.

Corollary 6. For a symmetric, canonical kernel h : Σd → H, the LIL
(4) is equivalent to the decoupled LIL ’with diagonal’

(9) lim sup
n→∞

1
(nloglog n)d/2

∣∣ ∑
|i|≤n

h(Xdec
i )

∣∣ < D

again meaning that there are constants Ld such that if (4) holds for some D
then so does (9) for D = LdC, and conversely, (9) implies (4) for C = LdD.

Proof. The proof is the same as in the real case (see [2], Corollary 3).
Although the integrability of the kernel guaranteed by the LIL is worse in
the Hilbert space case, it still allows one to use Lemma 11.
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5. The canonical decoupled case. Before we formulate the necessary
and sufficient conditions for the bounded LIL in Hilbert spaces, we need

Definition 9. For a canonical kernel h : Σd → H, K ⊆ Id, J =
{J1, . . . , Jk} ∈ PId\K and u > 0 we define

‖h‖K,J ,u = sup{E〈h(X), g(XK)〉
k∏

i=1

fi(XJi) : g : ΣK → H,

fi : ΣJi → R, ‖g‖2, ‖fi‖2 ≤ 1, ‖g‖∞, ‖fi‖∞ ≤ u},

where for K = ∅ by g(XK) we mean an element g ∈ H, and ‖g‖2 denotes
just the norm of g in H (alternatively we may think of g as of a random
variable measurable with respect to σ((Xi)i∈∅), hence constant). Thus the
condition on g becomes in this case just |g| ≤ 1.

Example. For d = 2, the above definition reads as

‖h(X1, X2)‖∅,{{1,2}},u = sup{|Eh(X1, X2)f(X1, X2)| :
Ef(X1, X2)2 ≤ 1, ‖f‖∞ ≤ u},

‖h(X1, X2)‖∅,{{1}{2}},u = sup{|Eh(X1, X2)f(X1)g(X2)| :
Ef(X1)2, Eg(X2)2 ≤ 1
‖f‖∞, ‖g‖∞ ≤ u},

‖h(X1, X2)‖{1},{{2}},u = sup{E〈f(X1), h(X1, X2)〉g(X2) :

E|f(X1)|2, Eg(X2)2 ≤ 1
‖f‖∞, ‖g‖∞,≤ u}

‖h(X1, X2)‖{1,2},∅,u = sup{E〈f(X1, X2), h(X1, X2)〉 :
E|f(X1, X2)|2 ≤ 1, ‖f‖∞ ≤ u}.

Theorem 2. Let h be a canonical H-valued symmetric kernel in d vari-
ables. Then the decoupled LIL

(10) lim sup
n→∞

1
nd/2(loglog n)d/2

∣∣ ∑
|i|≤n

h(Xdec
i )| < C

holds if and only if

E
|h|2

(LL|h|)d
< ∞(11)
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and for all K ⊆ Id,J ∈ PId\K

(12) lim sup
u→∞

1
(loglog u)(d−degJ )/2

‖h‖K,J ,u < D.

More precisely, if (10) holds for some C then (12) is satisfied for D = LdC
and conversely, (11) and (12) implies (10) with C = LdD.

Remark. Using Lemma 7 one can easily check that the condition (12) with
D < ∞ for I = Id is implied by (11).

6. Necessity. The proof is a refinement of ideas from [16], used to study
random matrix approximations of the operator norm of kernel integral op-
erators.

Lemma 12. If a, t > 0 and h is a nonnegative d-dimensional kernel such
that NdEh(X) ≥ ta and ‖EIh(X)‖∞ ≤ N−#Ia for all ∅ ⊆ I ( {1, . . . , d},
then

∀λ∈(0,1) P(
∑
|i|≤N

h(Xdec
i ) ≥ λta) ≥ (1−λ)2

t

t + 2d − 1
≥ (1−λ)22−d min(1, t).

Proof. We have

E
( ∑
|i|≤N

h(Xdec
i )

)2
=
∑
|i|≤N

∑
|j|≤N

Eh(Xdec
i )h(Xdec

j )

=
∑
I⊆Id

∑
|i|≤N

∑
|j|≤N :

{k : ik=jk}=I

Eh(Xdec
i )h(Xdec

j )

=
∑
I⊆Id

∑
|i|≤N

∑
|j|≤N :

{k : ik=jk}=I

E[h(Xdec
i )EIch(Xdec

j )]

≤ N2d(Eh(X))2 +
∑

∅6=I⊆Id

Nd+#Ic
Eh(X)‖EIch(X)‖∞

≤ N2d(Eh(X))2 + (2d − 1)NdaEh(X)

≤ N2d(Eh(X))2 + (2d − 1)t−1N2d(Eh(X))2

≤ t + 2d − 1
t

(
E
∑
|i|≤n

h(Xdec
i )

)2
.

The lemma follows now from the Paley-Zygmund inequality (see e.g. [5],
Corollary 3.3.2.), which says that for an arbitrary nonnegative random vari-
able S,

P(S ≥ λS) ≥ (1− λ)2
(ES)2

ES2
.
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Corollary 7. Let A ⊆ Σd be a measurable set, such that

∀∅(I({1,...,d}∀xIc∈ΣIc PI((xIc , XI) ∈ A) ≤ N−#I .

Then

P(∃|i|≤N Xdec
i ∈ A) ≥ 2−d min(NdP(X ∈ A), 1).

Proof. We apply Lemma 12 with h = IA, a = 1, t = NdP(X ∈ A) and
λ → 0+.

Lemma 13. Suppose that Zj are nonnegative r.v.’s, p > 0 and aj ∈ R
are such that P(Zj ≥ aj) ≥ p for all j. Then

P(
∑
j

Zj ≥ p
∑
j

aj/2) ≥ p/2.

Proof. Let α := P(
∑

j Zj ≥ p
∑

j aj/2), then

p
∑
j

aj ≤ E(
∑
j

min(Zj , aj)) ≤ α
∑
j

aj + p
∑
j

aj/2.

Theorem 3. Let Y be a r.v. independent of X
(j)
i . Suppose that for each

n, an ∈ R, hn is a d + 1-dimensional nonnegative kernel such that∑
n

P
( ∑
|i|≤2n

hn(Xdec
i , Y ) ≥ an

)
< ∞.

Let p > 0, then there exists a constant Cd(p) depending only on p and d
such that the sets

An :=
{
x ∈ Sd : ∀n≤m≤2d−1n PY (hm(x, Y ) ≥ Cd(p)2d(n−m)am) ≥ p

}
,

satisfy
∑

2dnP(X ∈ An) < ∞.

Proof. We will show by induction on d, that the assertion holds with
C1(p) := 1, C2(p) := 12/p and

Cd(p) := 12p−1 max
1≤l≤d−1

Cd−l(2−l−4p/3) for d = 3, 4, . . . .
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For d = 1 we have

1
2

min(2nP(X ∈ An), 1) ≤ P(∃|i|≤2n Xdec
i ∈ An)

= P(∃|i|≤2n PY (hn(Xdec
i , Y ) ≥ an) ≥ p)

≤ P(PY (
∑
|i|≤2n

hn(Xdec
i , Y ) ≥ an) ≥ p)

≤ p−1P(
∑
|i|≤2n

hn(Xdec
i , Y ) ≥ an).

Before investigating the case d > 1 let us define

Ãn := An \
⋃

m>n

Am.

The sets Ãn are pairwise disjoint and obviously Ãn ⊂ An. Notice that
since Cd(p) ≥ 1,

P(X ∈ An) ≤ P(PY (hn(X, Y ) ≥ an)) ≤ p−1P(
∑
|i|≤2n

hn(Xdec
i , Y ) ≥ an).

Hence
∑

n P(X ∈ An) < ∞, so P(X ∈ lim supAn) = 0. But if x /∈ lim supAn,
then

∑
n 2ndIAn(x) ≤

∑
n 2nd+1IÃn

(x). So it is enough to show that
∑

2dnP(X ∈
Ãn) < ∞.

Induction step. Suppose that the statement holds for all d′ < d, we will
show it for d. First we will inductively construct sets

Ãn = A0
n ⊃ A1

n ⊃ . . . ⊃ Ad−1
n

such that for 1 ≤ l ≤ d− 1,

(13) ∀∅(I({1,...,d−1}, #I≤l ∀xIc PI((xIc , XI) ∈ Al
n) ≤ 2−n#I

and

(14)
∑
n

2ndP(X ∈ Al−1
n \Al

n) < ∞.

Suppose that 1 ≤ l ≤ d − 1 and the set Al−1
n was already defined. Let

I ⊂ {1, . . . , d} be such that #I = l and let j ∈ I. Notice that
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PI((xIc , XI) ∈ Al−1
n ) = EjPI\{j}((xIc , Xj , XI\{j}) ∈ Al−1

n ) ≤ 2−n(l−1)

by the property (13) of the set Al−1
n . Let us define for n(l− 1) + 1 ≤ k ≤ nl,

BI
n,k := {xIc : PI((xIc , XI) ∈ Al−1

n ) ∈ (2−k, 2−k+1]}

and

BI
n :=

nl⋃
k=n(l−1)+1

BI
n,k = {xIc : PI((xIc , XI) ∈ Al−1

n ) > 2−nl}.

We have

∑
n

2dnP(X ∈ Al−1
n , XIc ∈ BI

n) ≤ 2
∑
n

nl∑
k=n(l−1)+1

2dn−kP(XIc ∈ BI
n)

= 2EkI
1(XIc),

where

kI
1(xIc) :=

∑
n

nl∑
k=n(l−1)+1

2dn−kIBI
n,k

(xIc).

Let m ≥ 1 and

CI
m := {xIc : 2(m+1)(d−l) > k1(xIc) ≥ 2m(d−l)}.

Notice that for n > m and k ≤ nl, 2dn−k ≥ 2(d−l)(m+1), moreover

∑
n<m/2

nl∑
k=n(l−1)+1

2dn−k ≤
∑

n<m/2

2(d−l+1)n ≤ 4
3
2(d−l+1)(m−1)/2 ≤ 2

3
2(d−l)m.

Hence

xIc ∈ CI
m ⇒

∑
m/2≤n≤m

nl∑
k=n(l−1)+1

2dn−kIBI
n,k

(xIc) ≥ 1
3
2(d−l)m.(15)

Let m ≤ r ≤ 2d−2m, if m/2 ≤ n ≤ m, then since Al−1
n ⊂ An we have for all

x ∈ Sd,
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PY (hr(x, Y ) ≥ Cd(p)2d(n−r)arIAl−1
n

(x)) ≥ p,

therefore, since Al−1
n ⊂ Ãn are pairwise disjoint,

PY

(
hr(x, Y ) ≥ Cd(p)2−drar

∑
m/2≤n≤m

2dnIAl−1
n

(x)
)
≥ p.

Hence, by Lemma 13,

(16) PY

( ∑
|iI |≤2r

hr(xIc ,Xdec
iI

, Y ) ≥ p

2
Cd(p)2−drar

∑
|iI |≤2r

k2,xIc (Xdec
iI

)
)
≥ p

2
,

where

k2,xIc (xI) :=
∑

m/2≤n≤m

2dnIAl−1
n

(xIc , xI).

We have ‖k2,xIc‖∞ ≤ 2dm and for ∅ 6= J ( I, by the property (13) of
Al−1

n ,

EJk2,xIc (xI\J , XJ) =
∑

m/2≤n≤m

2dnPJ

(
(xIc , xI\J , XJ) ∈ Al−1

n

)
≤

∑
m/2≤n≤m

2(d−#J)n ≤ 2(d−#J)m+1.

Moreover for xIc ∈ CI
m, by the definition of BI

n,k and (15),

Ek2,xIc (XI) ≥
∑

m/2≤n≤m

nl∑
k=n(l−1)+1

2dnPI((xIc , XI) ∈ Al−1
n )IBI

n,k
(xIc)

≥
∑

m/2≤n≤m

nl∑
k=n(l−1)+1

2dn−kIBI
n,k

(xIc) ≥ 1
3
2(d−l)m.

Therefore by Lemma 12 (with l instead of d and a = 2(d−l)m+rl+1, t =
1/6, N = 2r, λ = 1/2), for m ≤ r ≤ 2d−2m,

P
( ∑
|iI |≤2r

k2,xIc (Xdec
iI

) ≥ 1
6
2(d−l)m+rl

)
≥ 1

3
2−l−3.



THE LIL FOR U -STATISTICS IN HILBERT SPACES 23

Combining the above estimate with (16) we get (for xIc ∈ CI
m and m ≤ r ≤

2d−2m),

PI,Y

( ∑
|iI |≤2r

hr(xIc ,Xdec
iI

, Y ) ≥ p

12
Cd(p)2(d−l)(m−r)ar

)
≥ 1

3
2−l−4p.

Let us define Ỹ := ((X(j)
i )j∈I , Y ) and h̃n(xIc , Ỹ ) :=

∑
|iI |≤2n hn(xIc ,Xdec

iI
, Y ).

Then∑
n

P(
∑

|iIc |≤2n

h̃n(Xdec
iIc , Ỹ ) ≥ an) =

∑
n

P(
∑
|i|≤2n

hn(Xdec
i , Y ) ≥ an) < ∞.

Moreover (since Cd(p) ≥ 12p−1Cd−l(2−l−4p/3)),

CI
m ⊆

{
∀m≤r≤2d−2m PỸ (h̃r(xIc , Ỹ ) ≥ Cd−l(2−l−4p/3)2(d−l)(m−r)ar) ≥ 2−l−4p/3

}
.

Hence by the induction assumption,∑
m

2(d−l)mP(XIc ∈ CI
m) < ∞,

so EkI
1(XIc) < ∞ and thus

(17) ∀#I=l

∑
n

2dnP(X ∈ Al−1
n , XIc ∈ BI

n) < ∞.

We set

Al
n := {x ∈ Al−1

n : xIc /∈ BI
n for all I ⊂ {1, . . . , d},#I = l}.

The set Al
n satisfies the condition (13) by the definition of BI

n and the
property (13) for Al−1

n . The condition (14) follows by (17).
Notice that the set Ad−1

n satisfies the assumptions of Corollary 7 with
N = 2n, therefore if Cd(p) ≥ 1,

2−d min(1, 2ndP(X ∈ Ad−1
n )) ≤ P(∃|i|≤2n Xdec

i ∈ Ad−1
n ) ≤ P(∃|i|≤2n Xdec

i ∈ Ãn)

≤ P(∃|i|≤2n PY (hn(Xdec
i , Y ) ≥ Cd(p)an) ≥ p)

≤ P(PY (
∑
|i|≤2n

hn(Xdec
i , Y ) ≥ an) ≥ p)

≤ p−1P(
∑
|i|≤2n

hn(Xdec
i , Y ) ≥ an).
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Therefore
∑

n 2ndP(X ∈ Ad−1
n ) < ∞, so by (14) we get

∑
n

2ndP
(
X ∈ Ãn) =

∑
n

2nd(
d−1∑
l=1

P(X ∈ Al−1
n \Al

n) + P(X ∈ Ad−1
n )

)
< ∞.

Corollary 8. If∑
n

P
( ∑
|i|≤2n

h2(Xdec
i ) ≥ ε2nd(log n)α

)
< ∞

for some ε > 0 and α ∈ R,
then E h2

(LL|h|)α < ∞.

Proof. We apply Theorem 3 with hn = h2 and an = ε2nd logd n in the
degenerate case when Y is deterministic. It is easy to notice that h2 ≥
C̃d(p, ε)2dn logd n implies that

∀n≤m≤2d−1n h2 ≥ Cd(p)2d(n−m)am.

To prove the necessity part of Theorem 2 we will also need the following
Lemmas

Lemma 14 ([2], Lemma 12). Let g : Σd → R be a square integrable func-
tion. Then

Var(
∑
|i|≤n

g(Xdec
i )) ≤ (2d − 1)n2d−1Eg(X)2.

Lemma 15 ([2], Lemma 5). If E(|h|2 ∧ u) = O((loglog u)β) then

E|h|1{|h|≥s} = O(
(loglog s)β

s
).

Lemma 16. Let (ai)i∈Id
n

be a d–indexed array of vectors from a Hilbert
space H. Consider a random variable

S :=
∣∣∣ ∑
|i|≤n

ai

d∏
k=1

ε
(k)
ik

∣∣∣ = ∣∣∣ ∑
|i|≤n

aiε
dec
i

∣∣∣.
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For any set K ⊆ Id and a partition J = {J1, . . . , Jm} ∈ PId\K let us define

‖(ai)‖∗K,J ,p := sup
{
|
∑
|i|≤n

〈ai, α
(0)
iK
〉

m∏
k=1

α
(k)
iJk
| :
∑
iK

|α(0)
iK
|2 ≤ 1,

∑
iJk

(α(k)
iJk

)2 ≤ p,

∀imax Jk
∈In

∑
i�Jk

(α(k)
iJk

)2 ≤ 1, k = 1, . . . ,m
}
,

where �J = J\{max J} (here
∑

i∅
ai = ai).

Then, for all p ≥ 1,

‖S‖p ≥
1
Ld

∑
K⊆Id,J∈PId\K

‖(ai)‖∗K,J ,p.

In particular for some constant cd

P(S ≥ cd

∑
K⊆Id,J∈PId\K

‖(ai)‖∗K,J ,p) ≥ cd ∧ e−p.

Remark. For K = ∅, we define

‖(ai)‖∗∅,J ,p := sup
{∣∣∣ ∑

|i|≤n

ai

m∏
k=1

α
(k)
iJk

∣∣∣ : (α(k)
iJk

)iJk
∈ R(I

#Jk
n ),

∑
iJk

(α(k)
iJk

)2 ≤ p,

∀imax Jk
∈In

∑
i�Jk

(α(k)
iJk

)2 ≤ 1, k = 1, . . . ,m
}
,

It is also easy to see that for a d-indexed matrix, ‖(ai)i‖Id,{∅},p =
√∑

i |ai|2 =
‖S‖2 and thus does not depend on p. Since it will not be important in the
applications, we keep a uniform notation with the subscript p.

Examples. For d = 1, we have

‖(ai)i≤n‖∗∅,{{1}},p = sup
{∣∣ n∑

i=1

aiαi

∣∣ : n∑
i=1

α2
i ≤ p, |αi| ≤ 1, i = 1, . . . , n

}
,

‖(ai)i≤n‖∗{1},∅,p = sup
{∑

〈ai, αi〉 :
∑

|αi|2 ≤ 1
}

=

√√√√ n∑
i=1

|ai|2,
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whereas for d = 2, we get

‖(aij)i,j≤n‖∗∅,{{1},{2}},p = sup
{∣∣ n∑

i,j=1

aijαiβj

∣∣ : n∑
i=1

α2
i ≤ p,

n∑
j=1

β2
j ≤ p,

∀i∈In |αi| ≤ 1,∀j∈In |βj | ≤ 1
}
,

‖(aij)i,j≤n‖∗∅,{I2},p = sup
{∣∣ n∑

i,j=1

aijαij

∣∣ : n∑
i,j=1

α2
ij ≤ p,∀j∈In

n∑
i=1

α2
ij ≤ 1

}
,

‖(aij)i,j≤n‖∗{1},{{2}},p = sup
{∣∣ n∑

i,j=1

〈aij , αi〉βj

∣∣ : n∑
i=1

|αi|2 ≤ 1,

n∑
j=1

β2
j ≤ p,∀j∈In |βj | ≤ 1

}
,

‖(aij)i,j≤n‖∗I2,∅,p = sup
{∣∣ n∑

i,j=1

〈aij , αij〉
∣∣ : n∑

i,j=1

α2
ij ≤ 1

}
=
√∑

ij

|aij |2.

Proof of Lemma 16. We will combine the classical hypercontractivity
property of Rademacher chaoses (see e.g. [5], p. 110-116) with Lemma 3 in
[2], which says that for H = R we have

‖S‖p ≥
1
Ld

∑
J∈PId

‖(ai)‖∅,J ,p.(18)

Since ‖(ai)‖Id,{∅},p =
√∑

i |ai|2 = ‖S‖2, the inequality ‖S‖p ≥ L−1‖(ai)‖Id,{∅},p
is just Jensen’s inequality (p ≥ 2) or the aforesaid hypercontractivity of
Rademacher chaos (p ∈ (1, 2)). On the other hand, for K 6= Id and J ∈
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PId\K , we have

‖S‖p =
(
EId\KEK

∣∣∣∑
iK

∏
k∈K

ε
(k)
ik

∑
iId\K

ai

∏
k/∈K

ε
(k)
ik

∣∣∣p)1/p

≥ 1
L#K

(
EId\K

(∑
iK

∣∣∣ ∑
iId\K

ai

∏
k/∈K

ε
(k)
ik

∣∣∣2)p/2)1/p

=
1

L#K

(
EId\K sup∑

iK
|α(0)

iK
|2≤1

∣∣∣ ∑
iId\K

∑
iK

〈α(0)
iK

, ai〉
∏
k/∈K

ε
(k)
ik

∣∣∣p)1/p

≥ 1
L#K

(
sup∑

iK
|α(0)

iK
|2≤1

EId\K

∣∣∣ ∑
iId\K

∑
iK

〈α(0)
iK

, ai〉
∏
k/∈K

ε
(k)
ik

∣∣∣p)1/p

≥ 1
L#KLd−#K

sup∑
iK

|α(0)
iK
|2≤1

∥∥∥(∑
iK

〈α(0)
iK

, ai〉)iId\K

∥∥∥
∅,J ,p

=
1

L#KLd−#K
‖(ai)‖K,J ,p,

where the first inequality follows from hypercontractivity applied condition-
ally on (ε(k)

i )k/∈K,i∈In
, the second is Jensen’s inequality and the third is (18)

applied for a chaos of order d−#K.
The tail estimate follows from moment estimates by the Paley-Zygmund

inequality and the inequality ‖(ai)‖K,J ,tp ≤ tdegJ ‖(ai)‖K,J ,p for t ≥ 1 just
like in [12, 18].

Proof of necessity. First we will prove the integrability condition
(11). Let us notice that by classical hypercontractive estimates for Rademacher
chaoses and the Paley-Zygmund inequality (or by Lemma 16), we have

Pε

(∣∣∣ ∑
|i|≤2n

εdec
i h(Xdec

i )
∣∣∣ ≥ cd

√ ∑
|i|≤2n

h(Xdec
i )2

)
≥ cd

for some constant cd > 0. By the Fubini theorem it gives

Pε

(∣∣∣ ∑
|i|≤2n

εdec
i h(Xdec

i )
∣∣∣ ≥ D2nd/2 logd/2 n

)
≥ cdP

( ∑
|i|≤2n

h(Xdec
i )2 ≥ D2c−2

d 2nd logd n
)
,

which together with Lemma 8 yields∑
n

P
( ∑
|i|≤2n

h(Xdec
i )2 ≥ D2c−2

d 2nd logd n
)

< ∞.



28 R. ADAMCZAK AND R. LATA LA

The integrability condition (11) follows now from Corollary 8.
Before we proceed to the proof of (12), let us notice that (11) and Lemma

7 imply that

E(|h|2 ∧ u) ≤ K(loglog u)d(19)

for n large enough. The proof of (12) can be now obtained by adapting the
argument for the real valued case.

Since limn→∞
∑2n

k=n
1
k = log 2, (5) implies that there exists N0, such that

for all N > N0, there exists N ≤ n ≤ 2N , satisfying

(20) P
(∣∣∣ ∑

|i|≤2n

εdec
i h(Xdec

i )
∣∣∣ > LdC2nd/2 logd/2 n

)
<

1
10n

.

Let us thus fix N > N0 and consider n as above. Let K ⊆ Id, J =
{J1, . . . , Jk} ∈ PId\K . Let us also fix functions g : Σ#K → H, fj : Σ#Jj → R,
j = 1, . . . , k, such that

‖g(Xk)‖2 ≤ 1, ‖g(XK)‖∞ ≤ 2n/(2k+3),

‖fj(XJj )‖2 ≤ 1, ‖fj(XJj )‖∞ ≤ 2n/(2k+3).

The Chebyshev inequality gives

(21) P(
∑

|iJj
|≤2n

fj(Xdec
iJj

)2 log n ≤ 10 · 2d2#Jjn log n) ≥ 1− 1
10 · 2d

.

Similarly, if K 6= ∅,

(22) P(
∑

|iK |≤2n

|g(Xdec
iK

)|2 ≤ 10 · 2d2#Kn) ≥ 1− 1
10 · 2d

and for K = ∅, |g| ≤ 1 (recall that for K = ∅, the function g is constant).
Moreover for j = 1, . . . , k and sufficiently large N ,

∑
|i�Jj

|≤2n

1
2n#Jj

fj(Xdec
iJj

)2 · log n ≤ 2n#�Jj22n/(2k+3) log n

2n#Jj

≤ 22n/(2k+3) log n

2n
≤ 1.

Without loss of generality we may assume that the sequences (X(j)
i )i,j

and (ε(j)
i )i,j are defined as coordinates of a product probability space. If for
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each j = 1, . . . , k we denote the set from (21) by Ak, and the set from (22)
by A0, we have P(

⋂k
j=0 Ak) ≥ 0.9. Recall now Lemma 16. On

⋂k
j=0 Ak we

can estimate the ‖ · ‖∗K,J ,log n norms of the matrix (h(Xdec
i ))|i|≤2n by using

the test sequences

α
(j)
iJj

=
fj(Xdec

iJj
)
√

log n

101/22d/22n#Jj/2

for j = 1, . . . , k and

α
(0)
iK

=
g(Xdec

iK
)

101/22d/22n#K/2
.

Therefore with probability at least 0.9 we have

‖(h(Xdec
i ))|i|≤2n‖∗K,J ,log n

(23)

≥ (log n)k/2

2d(k+1)/210(k+1)/22(#K+
∑

j
#Jj)n/2

|
∑
|i|≤2n

〈g(Xdec
iK

), h(Xdec
i )〉

k∏
j=1

fj(Xdec
iJj

)|

=
(log n)k/2

2d(k+1)/210(k+1)/22dn/2
|
∑
|i|≤2n

〈g(Xdec
iK

), h(Xdec
i )〉

k∏
j=1

fj(Xdec
iJj

)|.

Our aim is now to further bound from below the right hand side of the
above inequality, to have, via Lemma 16, control from below on the condi-
tional tail probability of

∑
|i|≤2n εdec

i h(Xdec
i ), given the sample (X(j)

i ).
From now on let us assume that

(24) |E〈g(XK), h(X)〉
k∏

j=1

fj(XJj )| > 1.

The Markov inequality, (19) and Lemma 15 give

P
(
|
∑
|i|≤2n

〈g(XK), h(Xdec
iK

)〉1{|h(Xdec
i )|>2n}

k∏
j=1

fj(Xdec
iJj

)| ≥
2nd|E〈g, h〉

∏k
j=1 fj |

4
)

≤ 4
2nd(‖g‖∞

∏k
j=1 ‖fj‖∞) · E|h|1{|h|>2n}

2nd|E〈g, h〉
∏k

j=1 fj |
≤ 42n(k+1)/(2k+3)E|h|1{|h|>2n}

≤ 4K
(log n)d

2
n(k+2)
2k+3

.

(25)
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Let now hn = h1{|h|≤2n}. By the Chebyshev inequality, Lemma 14 and (19)

P
(
|
∑
|i|≤2n

〈g(Xdec
iK

),hn(Xdec
i )〉

k∏
j=1

fj(Xdec
iJj

)− 2ndE〈g, hn〉
k∏

j=1

fj |

≥ 2nd

5
|E〈g, hn〉

k∏
j=1

fj |
)

≤ 25
Var(

∑
|i|≤2n〈g(Xdec

iK
), hn(Xdec

i )〉
∏k

j=1 fj(Xdec
iJj

))

22nd|E〈g, hn〉
∏k

j=1 fj |2

≤ 25
(2d − 1)2n(2d−1)

22nd|E〈g, hn〉
∏k

j=1 fj |2
E|〈g, hn〉

k∏
j=1

fj |2

≤ 25(2d − 1)
22n(k+1)/(2k+3)E|hn|2

2n|E〈g, hn〉
∏k

j=1 fj |2

≤ 25K(2d − 1)
logd n

2n/(2k+3)|E〈g, hn〉
∏k

j=1 fj |2
.(26)

Let us also notice that for large n, by (19), Lemma 15 and (24)

|E〈g, hn〉
k∏

j=1

fj | ≥ |E〈g, h〉
k∏

j=1

fj | − |E〈g, h〉1{|h|>2n}

k∏
j=1

fj |

≥ |E〈g, h〉
k∏

j=1

fj | − 2n(k+1)/(2k+3)K
(log n)d

2n
≥ 5

8
|E〈g, h〉

k∏
j=1

fj | ≥
5
8
.(27)

Inequalities (25), (26) and (27) imply, that for large n with probability at
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least 0.9 we have

|
∑
|i|≤2n

〈g(Xdec
iK

), h(Xdec
i )〉

k∏
j=1

fj(Xdec
iJj

)|

≥ |
∑
|i|≤2n

〈g(Xdec
iK

), hn(Xdec
i )〉

k∏
j=1

fj(Xdec
iJj

)|

− |
∑
|i|≤2n

〈g(Xdec
iK

), h(Xdec
i )〉1{|h(Xdec

i )|>2n}

k∏
j=1

fj(Xdec
iJj

)|

≥ 2nd(4
5
|E〈g, hn〉

n∏
j=1

fj | −
1
4
|E〈g, h〉

k∏
j=1

fj |
)

≥ 2nd(4
5
· 5
8
|E〈g, h〉

n∏
j=1

fj | −
1
4
|E〈g, h〉

k∏
j=1

fj |
)
≥ 2nd

4
|E〈g, h〉

k∏
j=1

fj |.

Together with (23) this yields that for large n with probability at least
0.8,

‖(hi)|i|≤2n‖∗K,J ,log n ≥
2nd/2 logk/2 n

4 · 2d(k+1)/210(k+1)/2
|E〈g, h〉

k∏
j=1

fj |.

Thus, by Lemma 16, for large n

P
(∣∣ ∑
|i|≤2n

εdec
i h(Xdec

i )
∣∣ ≥ cd

2nd/2 logk/2 n

4 · 2d(k+1)/210(k+1)/2
|E〈g, h〉

k∏
j=1

fj |
)
≥ 8

10n
,

which together with (20) gives

|E〈g, h〉
k∏

j=1

fj | ≤ LdC
4 · 2d(k+1)/210(k+1)/2

cd
log(d−k)/2 n.

In particular for sufficiently large N , for arbitrary functions g : Σ#K → H,
fj : Σ#Jj → R, j = 1, . . . , k, such that

‖g(XK)‖∞, ‖fj(XJj )‖2 ≤ 1,

‖g(XK)‖2, ‖fj(XJj )‖∞ ≤ 2N/(2k+3)

we have

|E〈g, h〉
k∏

j=1

fj | ≤ LdC
4 · 2d(k+1)/210(k+1)/2

cd
log(d−k)/2 n ≤ L̃dC log(d−k)/2 N,

which clearly implies (12).
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7. Sufficiency.

Lemma 17. Let H = H(X1, . . . , Xd) be a nonnegative random variable,
such that EH2 < ∞. Then for I ⊆ Id, I 6= ∅,Id,

∞∑
l=0

∞∑
n=1

2l+#IcnPIc(EIH
2 ≥ 22l+#Icn) < ∞.

Proof.∑
l

∑
n

2l+#IcnPIc(EIH
2 ≥ 22l+#Icn) =

∑
l

2lEIc

[∑
n

2#Icn1{EI |H|2≥22l+#Icn}

]
≤
∑

l

21−lEIcEIH
2 ≤ 4EH2 < ∞.

Lemma 18. Let X = (X1, . . . , Xd) and X̃(I) = ((Xi)i∈I , (X
(1)
i )i∈Ic).

Denote H = |h|/(LL|h|)d/2. If E|H|2 < ∞ and hn = h1An, where

An ⊆
{
x : |h(x)|2 ≤ 2nd logd n and ∀I 6=∅,Id

EIH
2 ≤ 2#Icn},

then for I ⊆ Id, I 6= ∅, we have

∑
n

2−n#I

log2d n
E[|hn(X)|2|hn(X̃(I))|2] < ∞.

Proof. a) I = Id

∑
n

E|hn|4

2nd log2d n
≤ E|h|4

∑
n

1
2nd log2d n

1{|h|2≤2nd logd n}

≤ LdE|h|4 1
|h|2(LL|h|)d

< ∞.

b) I 6= Id, ∅. Let us denote by EI , EIc , ẼIc respectively, the expectation
with respect to (Xi)i∈I , (Xi)i∈Ic and (X(1)

i )i∈Ic . Let also h̃, h̃n stand
for h(X̃(I)), hn(X̃(I)) respectively. Then
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∑
n

E(|hn|2 · |h̃n|2)
2n#I log2d n

≤ 2
∑
n

E(|hn|2 · |h̃n|21{|h|≤|h̃|})
2n#I log2d n

≤ 2E
(
|h|2|h̃|21{|h|≤|h̃|}

×
∑
n

1
2n#I log2d n

1{EIc |h|21{|h|2≤22nd}≤Ld2#In logd n, |h̃|2≤22nd}

)
≤ 2E

(
|h|2|h̃|21{|h|≤|h̃|}

×
∑
n

1
2n#I log2d n

1{EIc |h|21{|h|2≤|h̃|2}≤Ld2#In logd n, |h̃|2≤22nd}

)
≤ L̃dE

(
|h|2|h̃|21{|h|≤|h̃|}

1
(EIc |h|21{|h|2≤|h̃|2})(LL|h̃|)d

)
= L̃dEI ẼIc

[
|h̃|2EIc

(
|h|21{|h|≤|h̃|}

1
(EIc |h|21{|h|2≤|h̃|2})(LL|h̃|)d

)]

≤ L̃dE
|h̃|2

(LL|h̃|)d
< ∞,

where to obtain the second inequality, we used the fact that

EIc |h|21{|h|2≤22nd,EIcH2≤2#In}

≤ EIc
|h|2

(LL|h|)d
(loglog 2nd)d1{EIcH2≤2#In}

≤ LdEIcH21{EIcH2≤2#In} logd n ≤ Ld2#In logd n.

Lemma 19. Consider a square integrable, nonnegative random variable
Y . Let Yn = Y 1Bn, with Bn =

⋃
k∈K(n) Ck, where C0, C1, C2, . . . are pairwise

disjoint subsets of Ω and

K(n) = {k ≤ n : E(Y 21Ck
) ≤ 2k−n}.

Then ∑
n

(EY 2
n )2 < ∞
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Proof. Let us first notice that by the Schwarz inequality, we have( ∑
k∈K(n)

E(Y 21Ck
)
)2

=
(
(
∑

k∈K(n)

2(n−k)/22(k−n)/2E(Y 21Ck
)
)2

≤
∑

k∈K(n)

[2n−k(E(Y 21Ck
))2]

∑
k≤n

2k−n

= 2
∑

k∈K(n)

[2n−k(E(Y 21Ck
))2].

Thus ∑
n

(EY 2
n )2 ≤

∑
n

2
∑

k∈K(n)

[2n−k(E(Y 21Ck
))2]

≤ 2
∑

k : E(Y 21Ck
)>0

(E(Y 21Ck
))2

∑
n : k∈K(n)

2n−k

≤ 4
∑

k : E(Y 21Ck
)>0

(E(Y 21Ck
))2 max

n : k∈K(n)
2n−k

≤ 4
∑

k : E(Y 21Ck
)>0

(E(Y 21Ck
))2

1
E(Y 21Ck

)

≤ 4
∑
k

E(Y 21Ck
) = 4EY 2 < ∞.

Proof of sufficiency. The proof consists of several truncation argu-
ments. The first part of it follows the proofs presented in [11] and [2] for
the real-valued case. Then some modifications are required, reflecting the
diminished integrability condition in the Hilbert space case. At each step we
will show that

(28)
∞∑

n=1

P
(∣∣ ∑
|i|≤2n

πdhn(Xdec
i )

∣∣ ≥ C2nd/2 logd/2 n
)

< ∞,

with hn = h1An for some sequence of sets An. In the whole proof we keep
the notation H = |h|/(LL|h|)d/2.

Let us also fix ηd ∈ (0, 1), such that the following implication holds

∀n=1,2,... |h|2 ≤ η2
d2

nd logd n =⇒ H2 ≤ 2nd.(29)
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Step 1. Inequality (28) holds for any C > 0 if

An ⊆
{
x : |h(x)|2 ≥ η2

d2
nd logd n

}
.

We have, by the Chebyshev inequality and the inequality E|πdhn| ≤ 2dE|hn|
(which follows directly from the definition of πd or may be considered a
trivial case of Lemma 6),

∑
n

P
(∣∣ ∑
|i|≤2n

πdhn(Xdec
i )

∣∣ ≥ C2nd/2 logd/2 n
)

≤
∞∑

n=1

E
∣∣∑

|i|≤2n πdhn(Xdec
i )

∣∣
C2nd/2 logd/2 n

≤ 2d
∑
n

2ndE|h|1{|h|>ηd2nd/2 logd/2 n}

C2nd/2 logd/2 n

= 2dC−1E
(
|h|
∑
n

2nd/2

logd/2 n
1{|h|>ηd2nd/2 logd/2 n}

)
≤ LdC

−1E
|h|2

(LL|h|)d
< ∞.

Step 2. Inequality (28) holds for any C > 0 if

An ⊆
{
x : |h(x)|2 ≤ η2

d2
nd logd n, ∃I 6=∅,Id

EIH
2 ≥ 2#Icn}.

As in the previous step, it is enough to prove that

∞∑
n=1

E
∣∣∑

|i|≤2n εdec
i hn(Xdec

i )
∣∣

2nd/2 logd/2 n
< ∞.

The set An can be written as

An =
⋃

I⊆Id,I 6=Id,∅
An(I),

where the sets An(I) are pairwise disjoint and

An(I) ⊆ {x : |h(x)|2 ≤ 22nd, EIH
2 ≥ 2#Icn}.

Therefore it suffices to prove that

(30)
∞∑

n=1

E
∣∣∑

|i|≤2n εdec
i h(Xdec

i )1An(I)(Xdec
i )

∣∣
2nd/2 logd/2 n

< ∞.
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Let for l ∈ N,

An,l(I) := {x : |h(x)|2 ≤ 22nd,

22l+2+#Icn > EIH
2 ≥ 22l+#Icn} ∩An(I).

Then hn1An(I) =
∑∞

l=0 hn,l, where hn,l := hn1An,l(I) (notice that the sum is
actually finite in each point x ∈ Σd as for large l, x /∈ An,l(I)).

We have

E|
∑
|i|≤2n

εdec
i hn,l(Xdec

i )| ≤
∑

|iIc |≤2n

EIcEI |
∑

|iI |≤2n

εdec
iI

hn,l(Xdec
i )|

≤
∑

|iIc |≤2n

EIc(EI |
∑

|iI |≤2n

εdec
iI

hn,l(Xdec
i )|2)1/2

≤ 2(#Ic+#I/2)nEIc(EI |hn,l|2)1/2

≤ Ld[2(#Ic+d/2)n+l+1 logd/2 n]PIc(EIH
2 ≥ 22l+#Icn),

where in the last inequality we used the estimate

EIh
2
n,l ≤LdEI [(log n)dH21{22l+2+#Icn>EIH2≥22l+#Icn}]

≤Ld22l+2+#Icn(log n)d1{EIH2≥22l+#Icn}.

Therefore to get (30) it is enough to show that

∞∑
l=0

∑
n

2l+#IcnPIc(EIH
2 ≥ 22l+#Icn) < ∞.

But this is just the statement of Lemma 17.

Step 3. Inequality (28) holds for any C > 0 if

An ⊆
{
x : |h(x)|2 ≤ η2

d2
nd logd n, ∀I 6=∅,Id

EIH
2 ≤ 2#Icn} ∩

⋃
I(Id

BI
n,

with BI
n =

⋃
k∈K(I,n) CI

k and CI
0 = {x : EIH

2 ≤ 1}, CI
k = {x : 2#Ic(k−1) <

EIH
2 ≤ 2#Ick}, k ≥ 1, K(I, n) = {k ≤ n : E(H21CI

k
) ≤ 2k−n}.

By Lemma 6 and the Chebyshev inequality, it is enough to show that

∑
n

E|
∑
|i|≤2n εdec

i hn(Xdec
i )|4

22nd log2d n
< ∞.
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The Khintchine inequality for Rademacher chaoses gives

L−1
d E|

∑
|i|≤2n

εdec
i hn(Xdec

i )|4 ≤ E(
∑
|i|≤2n

|hn(Xdec
i )|2)2

=
∑
I⊆Id

∑
|i|≤2n

∑
|j|≤2n :

{k : ik=jk}=I

E|[hn(Xdec
i )|2|hn(Xdec

j )|2]

≤
∑
I⊆Id

2nd2n(d−#I)E[|hn(X)|2 · |hn(X̃(I))|2],

where X = (X1, . . . , Xd) and X̃(I) = ((Xi)i∈I , (X
(1)
i )i∈Ic).

To prove the statement of this step it thus suffices to show that for all
I ⊆ Id,

S(I) :=
∑
n

2−n#I

log2d n
E[|hn(X)|2|hn(X̃(I))|2] < ∞.(31)

The case of nonempty I follows from Lemma 18. It thus remains to consider
the case I = ∅. Set H2

I = EIH
2. We have

S(∅) =
∑
n

(E|hn|2)2

log2d n
=
∑
n

(E(
|h|2

logd n
1An))2 ≤ Ld

∑
n

(E(H21An))2

≤ Ld

∑
n

(E(H2
∑
I(Id

1BI
n
))2 ≤ L̃d

∑
I(Id

∑
n

(E(H21BI
n
))2

= L̃d

∑
I(Id

∑
n

(E(H2
I 1BI

n
))2 < ∞

by Lemma 19, applied for Y 2 = EIH
2, since EH2

I = EH2 < ∞.

Step 4. Inequality (28) holds for some C ≤ LdD if

An =
{
x : |h(x)|2 ≤ η2

d2
nd logd n, ∀I 6=∅,Id

EIH
2 ≤ 2#Icn} ∩

⋂
I(Id

(BI
n)c,

where BI
n is defined as in the previous step.

Let us first estimate ‖(EI |hn|2)1/2‖∞ for I ( Id. We have

EI |hn|2 ≤ EI

[
|h|21{|h|2≤ηd2nd logd n}

∑
k≤n,k/∈K(I,n)

1CI
k

]
≤ Ld logd n

∑
k≤n,k/∈K(I,n)

1CI
k
EIH

2.
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The fact that we can restrict the summation to k ≤ n follows directly from
the definition of An for I 6= ∅ and for I = ∅ from (29).

The sets CI
k are pairwise disjoint and thus

‖EI |hn|2‖∞ ≤ (Ld logd n) max
k≤n,k/∈K(I,n)

2#Ick = Ld2#IckI(n) logd n,(32)

where
kI(n) = max{k ≤ n : k /∈ K(I, n)}.

Therefore for C > 0,

∑
n

exp
[
− 1

Ld

( C2nd/2 logd/2 n

2#In/2‖(EI |hn|2)1/2‖∞

)2/(d+#Ic)]
≤
∑
n

∑
k≤n,k/∈K(I,n)

exp
[
− 1

Ld

( C2nd/2 logd/2 n

2#In/22#Ick/2 logd/2 n

)2/(d+#Ic)]

=
∑
k

∑
n≥k, k/∈K(I,n)

exp
[
− 1

L̃d

(
C2#Ic(n−k)/2

)2/(d+#Ic)]
.

Notice that for each k the inner series is bounded by a geometric series
with the ratio smaller than some qd,C < 1 (qd,C depending only on d and
C). Therefore the right hand side of the above inequality is bounded by

K
∑
k

sup
n≥k, k/∈K(I,n)

exp
[
− 1

L̃d

(
C2#Ic(n−k)/2

)2/(d+#Ic)]
,

with the convention sup ∅ = 0. But k /∈ K(I, n) implies that 2#Ic(n−k)/2 ≥
(E(H21CI

k
))−#Ic/2. Therefore the above quantity is further bounded by

K
∑
k

exp
[
− 1

L̃d

(
C−2/#Ic

E(H21CI
k
)
)−#Ic/(d+#Ic)]

≤ L̄dC
−2/#Ic ∑

k

E(H21CI
k
)

= L̄dC
−2/#Ic

EH2 < ∞,

where we used the inequality ex ≥ cdx
α for all x ≥ 0 and 0 ≤ α ≤ 2d. We

have thus proven that for all I ( Id and C,Ld > 0,

∑
n : An 6=∅

exp
[
− 1

Ld

( C2nd/2 logd/2 n

2#In/2‖(EI |hn|2)1/2‖∞

)2/(d+#Ic)]
< ∞.(33)

Now we will turn to the estimation of ‖hn‖J0,J . Let us consider J0 ⊆ Id,
J = {J1, . . . , Jl} ∈ PId\J0

and denote as before X = (X1, . . . , Xd), XI =
(Xi)i∈I . Recall that
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‖hn‖J0,J = sup
{
E〈hn(X), f0(XJ0)〉

l∏
i=1

fi(XJi) : E|f0(XJ0)|2 ≤ 1,

Ef2
i (XJi) ≤ 1, i ≥ 1

}
.

In what follows, to simplify the already quite complicated notation, let us
suppress the arguments of all the functions and write just h instead of h(X)
and fi instead of fi(XJi).

Let us also remark that although f0 plays special role in the definition
of ‖ · ‖J0,J , in what follows the same arguments will apply to all fi’s with
the obvious use of Schwarz inequality for the scalar product in H. We will
therefore not distinguish the case i = 0 and f2

i will denote either the usual
power or 〈f0, f0〉, whereas ‖fi‖2 for i = 0 will be the norm in L2(H,XJ0),
which may happen to be equal just H if J0 = ∅.

Since E|fi|2 ≤ 1, i = 0, . . . , l, then for each j = 0, . . . , l and J ( Jj by the
Schwarz inequality applied conditionally to XJj\J

E|〈hn, f0〉
l∏

i=1

fi1{EJf2
j >a2}|

≤ EJj\J
[
(E(Jj\J)c

l∏
i=0

f2
i )1/21{EJf2

j ≥a2}(E(Jj\J)c |hn|2)1/2]
≤ EJj\J

[
(EJf2

j )1/21{EJf2
j ≥a2}(E(Jj\J)c |hn|2)1/2]

≤ Ld2
k(Jj\J)c (n)#(Jj\J)/2 logd/2 nEJj\J [(EJf2

j )1/21{EJf2
j ≥a2}]

≤ Ld[2
k(Jj\J)c (n)#(Jj\J)/2 logd/2 n]a−1,

where the third inequality follows from (32) and the last one from the ele-
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mentary fact E|X|1{|X|≥a} ≤ a−1E|X|2. This way we obtain

‖hn‖J0,J

(34)

≤ sup{E[〈hn, f0〉
l∏

i=1

fi] : ‖fi‖2 ≤ 1,∀J(Ji ‖(EJf2
i )1/2‖∞ ≤ 2n#(Ji\J)/2}

+ Ld

l∑
i=0

∑
J(Ji

2(k(Ji\J)c (n)−n)#(Ji\J)/2 logd/2 n

≤ sup{E[〈hn, f0〉
l∏

i=1

fi] : ‖fi‖2 ≤ 1,∀J(Ji ‖(EJf2
i )1/2‖∞ ≤ 2n#(Ji\J)/2}

+ Ld

∑
I(Id

2(kI(n)−n)#Ic/2 logd/2 n.

Let us thus consider arbitrary fi, i = 0, . . . , k such that ‖fi‖2 ≤ 1,
‖(EJf2

i )1/2‖∞ ≤ 2n#(Ji\J)/2 for all J ( Ji (note that the latter condition
means in particular that ‖fi‖∞ ≤ 2n#Ji/2).

We have by assumption (12) for sufficiently large n,

|E[〈h, f0〉
k∏

i=1

fi]| ≤ ‖h‖K,J ,2nd/2 ≤ LdD log(d−degJ )/2 n.

We have also

E|〈h, f0〉1{|h|2≥ηd2nd logd n}

k∏
i=1

fi| ≤ E[|h|1{|h|2≥ηd2nd logd n}]
k∏

i=0

‖fi‖∞

≤ 2nd/2E[|h|1{|h|2≥ηd2nd logd n}] =: αn.

Also for I ⊆ Id, I 6= ∅, Id, denoting h̃n = h1{|h|2≤ηd2nd logd n}, we get

E|〈h̃n,f0〉
k∏

i=1

fi1{EIH2≥2n#Ic}|

≤ EIc

[
(EI |h̃n|2)1/21{EIH2≥2n#Ic}

k∏
i=0

(EJi∩I |fi|2)1/2]
≤ [

l∏
i=0

2n#(Ji∩Ic)/2]EIc [(EI |h̃n|2)1/21{EIH2≥2n#Ic}]

≤ Ld2n#Ic/2EIc [(EIH
2 logd n)1/21{EIH2≥2n#Ic}]

≤ Ld[2n#Ic/2 logd/2 n]EIc [(EIH
2)1/21{EIH2≥2n#Ic}] =: βI

n.
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Let us denote h̄n = h̃n
∏
∅6=I(Id

1{EIH2≤2#Icn} and γI
n = E|h̄n1BI

n
|2. Com-

bining the three last inequalities we obtain

|E〈hn, f0〉
l∏

i=1

fi| ≤|E〈h, f0〉
l∏

i=0

fi|+ |E〈hn1Ac
n
, f0〉

l∏
i=1

fi|

≤LdD log(d−degJ )/2 n + E|〈h1{|h|2≥2nd logd n}, f0〉
l∏

i=1

fi|

+
∑

∅6=I(Id

E|〈h̃n1{EIH2≥2n#Ic}, f0〉
l∏

i=1

fi|

+
∑
I(Id

E|〈h̄n1BI
n
, f0〉

l∏
i=1

fi|

≤LdD log(d−degJ )/2 n + αn +
∑

∅6=I(Id

βI
n +

∑
I(Id

√
γI

n.

Now, combining the above estimate with (34), we obtain

‖hn‖J0,J ≤ Ld

∑
I(Id

2(kI(n)−n)#Ic/2 logd/2 n + LdD log(d−degJ )/2 n(35)

+ αn +
∑

∅6=I(Id

βI
n +

∑
I(Id

√
γI

n.

Let us notice that ∑
n

αn

logd/2 n
< ∞,

∀I 6=∅,Id

∑
n

βI
n

logd/2 n
< ∞,(36)

∀I 6=∅,Id

∑
n

(γI
n)2

log2d n
< ∞.

The first inequality was proved in Step 1. The proof of the second one is
straightforward. Indeed, we have

∑
n

βI
n

logd/2 n
= LdEIc [(EIH

2)1/2
∑
n

2n#Ic/21{EIH2≥2n#Ic}]

≤ L̃dEIcEIH
2 = L̃dEH2 < ∞.
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The third inequality is implicitly proved in Step 3. Let us however present
an explicit argument.

∑
n

(γI
n)2

log2d n
≤
∑
n

(
E
|h|21{|h|≤ηd2nd/2 logd/2 n}1BI

n

logd n

)2

≤ Ld

∑
n

(EIcEI(H21BI
n
))2 < ∞

by Lemma 19 applied to the random variable
√

EIH2.
We are now in position to finish the proof. Let us notice that we have

either E(|h|21{|h|2≤22nd}) ≤ 1, or we can use the function

g =
h1{‖h|2≤22nd}

(E(|h|21{|h|2≤22nd}))1/2

as a test function in the definition of ‖h‖Id,∅,2nd , obtaining

(E(|h|21{|h|2≤22nd}))
1/2 = E〈h, g〉 ≤ ‖h‖Id,∅,2nd < D logd n

for large n. Combining this estimate with Corollary 3, we can now write∑
n

P
(
|
∑
|i|≤2n

πdhn(Xdec
i )| ≥ L̃d(D + C)2nd/2 logd/2 n

)
(37)

≤ L̃d

∑
J0(Id

∑
J∈PId\J0

∑
n

exp
[
− 1

L̃d

(C2nd/2 logd/2 n

2nd/2‖hn‖Jo,J

)2/ degJ ]

+ L̃d

∑
I(Id

∑
n

exp
[
− 1

L̃d

( C2nd/2 logd/2 n

2n#I/2‖(EI |hn|2)1/2‖∞

)2/(d+#Ic)]
.

The second series is convergent by (33).
Thus it remains to prove the convergence of the first series. By (35), we

have for all J0,J

exp
[
− 1

L̃d

(C logd/2 n

‖hn‖Jo,J

)2/ degJ ]
≤
∑
I(Id

exp
[
− 1

Ld

( C logd/2 n

2(kI(n)−n)#Ic/2 logd/2 n

)2/ degJ ]

+ exp
[
− 1

Ld

( C logd/2 n

D log(d−degJ )/2 n

)2/ degJ ]
+ exp

[
− 1

Ld

(C logd/2 n

αn

)2/ degJ ]
+ exp

[
− 1

Ld

( C logd/2 n∑
∅6=I(Id

βI
n

)2/ degJ ]
+ exp

[
− 1

Ld

( C logd/2 n∑
I(Id

√
γI

n

)2/ degJ ]
,
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(under our permanent convention that the values of Ld in different equations
need not be the same). The series determined by the three last components
at the right-hand side are convergent by (36) since e−x ≤ Lrx

−r for r > 0.
The series corresponding to the second component is convergent for C large
enough and we can take C = LdD. As for the series corresponding to the
first term, we have, just as in the proof of (33) for any I ( Id,

∑
n

exp
[
− 1

Ld

( C logd/2 n

Ld2(kI(n)−n)#Ic/2 logd/2 n

)2/ degJ ]
≤
∑
k

∑
n≥k,k/∈K(I,n)

exp
[
− 1

L̃d

(
C2(n−k)#Ic/2

)2/ degJ ]

≤ K
∑
k

sup
n≥k,k/∈K(I,n)

exp
[
− 1

L̃d

(
C2(n−k)#Ic/2

)2/ degJ ]
≤ K̄

∑
k

E(H21CI
k
) = K̄EH2 < ∞.

We have thus proven the convergence of the series at the left-hand side of
(37) with C ≤ LdD, which ends Step 5.

Now to finish the proof, we just split Σd for each n into four sets, described
by steps 1–4 and use the triangle inequality, to show that∑

n

P
(∣∣∣ ∑

|i|≤2n

h(Xdec
i )| ≥ LdD2nd/2 logd/2 n

∣∣∣) < ∞,

which proves the sufficiency part of the theorem by Corollary 4.

8. The undecoupled case.

Theorem 4. For any function h : Σd → H and a sequence X1, X2, . . .
of i.i.d., Σ-valued random variables, the LIL (4) holds if and only if h

E
|h|2

(LL|h|)d
< ∞,

h is completely degenerate for the law of X1 and the growth conditions (12)
are satisfied.

More precisely, if (4) holds, then (12) is satisfied with D = LdC and
conversely, (12) together with complete degeneration and the integrability
condition imply (4) with C = LdD.
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Proof. Sufficiency follows from Corollary 6 and Theorem 2. To prove
the necessity assume that (4) holds and observe that from Lemma 8 and
Corollary 5, h satisfies the randomized decoupled LIL (8) and thus, by The-
orem 2, (11) holds and the growth conditions (12) on functions ‖h‖K,J ,u

are satisfied (note that the ‖ · ‖J ,u norms of the kernel h(X1, . . . , Xd) and
ε1 · · · εdh(X1, . . . , Xd) are equal). The complete degeneracy of 〈ϕ, h〉 for any
ϕ ∈ H follows from the necessary conditions for real-valued kernels. Since
by (11), Eih is well defined in the Bochner sense, we must have Eih = 0.
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