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Polish Academy of Sciences, Warsaw University

We give necessary and sufficient conditions for the (bounded)
law of the iterated logarithm for U-statistics in Hilbert spaces. As a
tool we also develop moment and tail estimates for canonical Hilbert-
space valued U-statistics of arbitrary order, which are of independent
interest.

1. Introduction. In the last two decades we have witnessed a rapid
development in the asymptotic theory of U-statistics, boosted by the intro-
duction of the so called 'decoupling’ techniques (see [5-7]), which allow to
treat U-statistics conditionally as sums of independent random variables.
This approach yielded better understanding of U-statistics versions of the
classical limit theorems of probability. Necessary and sufficient conditions
were found for the strong law of large numbers [17], the central limit theo-
rem [10, 19] and the law of the iterated logarithm [2, 11]. Also some sharp
exponential inequalities for canonical U-statistics have been found [1, 8, 14].
Analysis of the aforementioned results shows an interesting phenomenon.
Namely, the natural counterparts of the necessary and sufficient conditions
for sums of i.i.d. random variables (U-statistics of degree 1), remain sufficient
for U-statistics of arbitrary degree, but with an exception for the CLT, they
cease to be necessary. The correct conditions turn out to be much more in-
volved and are expressed for instance in terms of convergence of some series
(LLN) or as growth conditions for some functions (LIL).

A natural problem is an extension of the above results to the infinite-
dimensional setting. There has been some progress in this direction, and
partial answers have been found, usually under the assumption on the geo-
metrical structure of the space in which the values of a U-statistic are taken.
In general however the picture is far from being complete and the necessary
and sufficient conditions are known only in the case of the CLT for Hilbert
space valued U-statistics (see [5, 10] for the proof of sufficiency in type 2
spaces and necessity in cotype 2 spaces respectively).
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In this article we generalize to separable Hilbert spaces the results from [2]
on necessary and sufficient conditions for the LIL for real valued U-statistics.
The conditions are expressed only in terms of the U-statistic kernel and the
distribution of the underlying i.i.d. sequence and can be also considered a
generalization of results from [13], where the LIL for i.i.d. sums in Hilbert
spaces was characterized. We consider only the bounded version of the LIL
and do not give the exact value of the lim sup nor determine the limiting set.
Except for the classical case of sums of i.i.d. random variables, the problem
of finding the limsup is at the moment open even in the one dimensional
case (see [3, 5, 15] for some partial results) and the problem of the geometry
of the limiting set and the compact LIL is solved only under suboptimal
integrability conditions [3].

The organization of the paper is as follows. First, in Section 3 we prove
sharp exponential inequalities for canonical U-statistics, which generalize
the results of [1, 8] for the real-valued case. Then, after recalling some ba-
sic facts about the LIL we give necessary and sufficient condition for the
LIL for decoupled, canonical U-statistics (Theorem 2). The quite involved
proof is given in the two subsequent sections. Finally we conclude with our
main result (Theorem 4), which gives a characterization of the LIL for un-
decoupled U-statistics and follows quite easily from Theorem 2 and the one
dimensional result.

2. Notation. For an integer d, let (X;);en, (Xi(k))ieNJngd be indepen-
dent random variables with values in a Polish space ¥, equipped with the
Borel o-field F. Let also (&;)ien, (E(k)

. )ieN,1<k<d be independent Rademacher
variables, independent of (X;);en, (Xi(k))z‘eNJSde.

Consider moreover measurable functions hi: X% — H, where (H,|-|) is a
separable Hilbert space (we will denote both the norm in H and the absolute
value of a real number by |- |, the context will however prevent ambiguity).

To shorten the notation, we will use the following convention. For i =
(i1,-.+,1q) € {1,...,n}¢ we will write X; (resp. X{) for (X;,,...,X;,),

(resp. (X-(l) e ,X(d))) and ¢ (resp. €!°) for the product ¢;, - ...-&;, (resp.

11 0 iq i
5,511) Ce 52(5)), the notation being thus slightly inconsistent, which however
should not lead to a misunderstanding. The U-statistics will therefore be
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denoted
Z hi(Xj) (an undecoupled U-statistic)
ierd
Z hi(X{e0) (a decoupled U-statistic)
li<n
Z 6ihi(Xj) (an undecoupled randomized U-statistic)
ield
Z eflecp; (X decy (a decoupled randomized U-statistic),
li|<n
where
il = kglax U,
I¢ = {i: |i| < n,ij # iy for j # k}.
Since in this notation {1,...,d} = I} we will write

Ii=1{1,2,...,d}.

Throughout the article we will write Ly, L to denote constants depending
only on d and universal constants respectively. In all those cases the values
of a constant may differ at each occurrence.

For I C I, we will write E; to denote integration with respect to variables

(Xi(j))ieN,jGI-

3. Moment inequalities for U-statistics in Hilbert space . In this
section we will present sharp moment and tail inequalities for Hilbert space
valued U-statistics, which in the sequel will constitute an important ingredi-
ent in the analysis of the LIL. These estimates are a natural generalization
of inequalities for real valued U-statistics presented in [1].

Let us first introduce some definitions.

DEFINITION 1. For a nonempty, finite set I let Py be the family consist-
ing of all partitions J = {J1,..., i} of I into nonempty, pairwise disjoint
subsets. Let us also define for J as above deg(J) = k. Additionally let
Py = {0} with deg(d) = 0.
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DEFINITION 2. For a nonempty set I C Iy consider J ={J1,...,Jx} €
Pr. For an array (hi)iefg of H-valued kernels and fixed value of ifc, define

deg

(J)
||<hi>i,ru=sup{\zm mxe) I AP &sl): )2 -
j=1

EZ]fIJ XdeC )2 <1forj= 1,...,deg(j)}.

Let moreover ||(hi)i,|lg = |hil.

Remark. It is worth mentioning that for I = Iy, || - ||7 is a deterministic
norm, whereas for I C I; it is a random variable, depending on Xfllecc.
Quantities given by the above definition suffice to obtain precise moment
estimates for real valued U-statistics. However, to bound the moments of
U-statistics with values in general Hilbert spaces, we will need to introduce

one more definition.

DEFINITION 3. For nonempty sets K C I C I; consider J = {J1,...,J i} €
Pnx- For an array (hi)iejg of H-valued kernels and fixed value of ife, define

deg(J
|G .7 = sp {1 S0 Er[(s(XE%), gige (X52)) H 79 ¢

i
fi(jj): 2 SR, g 2 - H ’EZ‘giK X?;C)F <1
iK

EZM]) Xdec \2 <lforj= 1;---7deg(j)}'

Remark. One can see that the only difference between the above definition
and Definition 2 is that the latter distinguishes one set of coordinates and
allows functions corresponding to this set to take values in H. Moreover,
since the norm in H satisfies | - | = sup|4<1(¢, ), we can treat Definition 2
as a counterpart of Definition 3 for K = (). We will use this convention to
simplify the statements of the subsequent theorems. Thus, from now on, we
will write

- llo.g =11l
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Ezample. For d =2 and I = {1,2}, the above definition gives
sy (X, Yi))ii g2y = sup {[B D hiy (X3, Y5) i (X5, )| :
]
EY f(X:,Y)? < 1}
tj

= sup \/EZ ¢7 z] Za j 7

¢ |¢|<1

iy (X, Y5 llo g1y 420y —sup{\Eth (X, Y)) fi(Xi)g <Yj>\:
DB, 3R <1},

{1}{{2}}:sup{Ez Fi(Xi), hig (X0, Y)) g5 (Y5):
23 !f(Xi)IQ,E%:g(Yj)? <1},

(i (X3, Y3))ill11.27.0 = sup {E izj<fz‘j(Xz‘v Y;), hij (X3, Y5)) -

EY [f(X. V) <1}
ij

= \/ZE\hz’j(szYj)Q-

i’j

1R (Xi, Y5))ig

We can now present the main result of this section.

THEOREM 1. For any array of H-valued, completely degenerate kernels
(hi); and any p > 2, we have

E| Zh<X?eC)|p S Lp( Z Z pp(#16+deg7/2)EIc maXH( 1)11"1[)(,‘_7)'
i KCICI, jGP[\K

The proof of the above theorem proceeds along the lines of arguments
presented in [1, 8]. In particular we will need the following moment estimates
for suprema of empirical processes [8].

LEMMA 1 ([8, Proposition 3.1], see also [4, Theorem 12]). Let X1,..., X,
be independent random variables with values in (X,F) and T be a countable
class of measurable real functions on X, such that for all f € T and i €
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L,, Ef(X;) = 0 and Ef(X;)? < co. Consider the random variable S :=
supser | 2o; f(Xi)|. Then for allp > 1,

ESP < LP |(ES)P + p"/?0” + pPEmaxsup | f(X;)P |,
1 feT

where
i supZEf(Xi)Q.
FeT S

We will also need the following technical lemma.

LEMMA 2 (Lemma 5in [1]). Fora > 0 and arbitrary nonnegative kernels
gi: ¥4 > R, and p > 1 we have

PP Z ng? < szad p*PE miax g? + Z p#IpEI rnl?x(z Elcgi)p
i IC{L,....d} i

Before stating the next lemma, let us introduce some more definitions,
concerning J-norms of deterministic matrices

DEFINITION 4. Let (ai)icye be a d-indezed array of real numbers. For
J ={J1,...,Jx} € P1, define

k k
1(a)ill 7 = Sup{ZaimSl) : 9,}2 Z(xgl))z <1,.. .,Z(fo:)a < 1}‘
1 1]1 le

We will also need

DEFINITION 5.  Forie N1 x I, let ai: ¥ — R be measurable functions
and Z1,...,Z, be independent random variables with values in Y. For a

partition J = {J1,..., g} € Pr, (d € J1), let us define

I(as(Zi))llr = sup { J SE(Y a(zi)e® 2D

i AV

Y@ <1 Y6l <1

is, i,
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Remark. All the definitions of norms presented so far, seem quite similar
and indeed they can be all interpreted as injective tensor-product norms on
proper spaces. We have decided to introduce them separately by explicit
formulas, because this form appears in our applications.

The next lemma is crucial for obtaining moment inequalities for canonical
real-valued U-statistics of order greater than 2. In the context of U-statistics
in Hilbert spaces we will need it already for d = 2.

LeEMMA 3 (Theorem 5 in [1]). Let Zi,...,Z, be independent random
variables with values in (X, F). Fori € N¥=1xI, let a;: ¥ — R be measurable
functions, such that Ezai(Z;,) = 0. Then, for all p > 2 we have

BN} ai(Zi))iy, | < La Y, p e =D2)(a5(Z;,))ill 7
id JEP1,

Ly Z p1+(1+deg(J)—d)/2\/IEmiaX||(ai(Z2-d))iId_1||2j,
JEPr, | ¢

where ||-|| denotes the norm of a (d—1)-indexed matriz, regarded as a (d—1)-
linear operator on (ly)** (thus the | - ||{1y.. fa—1}-norm in our notation).

To prove Theorem 1, we will need to adapt the above lemma to be able
to bound the (K, J)-norms of sums of independent kernels.

DEFINITION 6. We define a partial order < on Pr as
I<J
if and only if for all I € T, there exists J € J, such that I C J.

LEMMA 4. Assume that 35 E|hi(X{)|2 < oo. Then for any K C Iy
and J ={J1,...,Ji} € Py, \k and allp > 2,

(1) Eall QO m(X{))i,, ks

iq

< Ld( > plAER =B 2| (hy)s, |1k
KCLCI4, KEPp,\ L :
JU{K{d}}<KUIL}
+ > plt(degk—deg ‘7)/2\/Ed max [(hi)ir,_, ||%,1<> :

KCLCIg 4, KePId_l\L :
JU{K}<KU{L}
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Remark. In the above lemma we slightly abuse the notation, by identifying
for K = ) the partition {0} U J with J.

Given Lemma 3, the proof of Lemma 4 is not complicated, the main idea
is just a change of basis, however due to complicated notation it is quite
difficult to write it directly. We find it more convenient to write the proof
in terms of tensor products of Hilbert spaces.

Let us begin with a classical fact.

LEMMA 5. Let H be a separable Hilber space and X a ¥-valued random
variable. Then HRL?*(X) ~ L?(X, H), where L*(X, H) is the space of square
integrable random variables of the form f(X), f: ¥ — H-measurable. With
the above identification, for h € H, f(X) € L*(X), we have h ® f(X) =
hf(X) € L*(X,H).

PROOF OF LEMMA 4. To avoid problems with notation, which would
lengthen an intuitively easy proof, we will omit some technical details, re-
lated to obvious identification of some tensor product of Hilbert spaces (in
the spirit of Lemma 5). Similarly, when considering linear functionals on a
space, which can be written as a tensor product in several ways, we will
switch to the most convenient notation, without further explanations.

Let

l
Hy=H® [ @ex (B LX) = o <n L2 (X5, H)

1 0

and, for j =1,...,k,
l
H; = @1, (O L (X)) = @, <n L (XE).

In the case K = (), we have (using the common convention for empty
products) Hy ~ H.

For ig =1,...,n and fixed value of Xi(j), let A;, be a linear functional on
H = @, <nlP(X§C  H) = ®F_oHy, given by (hi(X{*));, <0 € H,

with the formula

Aia (g, (X5 Mgy ) =g, (XE Digy ((XE))iy, i

gy g4

_ . dec . dec
= Z E{l,...,d—1}<911d71(Xifd_l)vhl(Xi NH-

lir, ,I1<n

lir,

As functions of Xi(;i), A, = A, (XZ-(j)) are independent random linear func-
tionals. Thus they determine also random (k + 1)-linear functionals on

@?ZOHk, given by
(ho,hl,...,hk) l—>Aid(h0®h1®...®hk).
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If we denote by ||-|| the norm of a (k+1)-linear functional, the left hand-side
of (1), can be written as

n
d
E| 3 Ai (X))
ig=1
Moreover, denoting by ||A;, || #s the norm of A;, seen as a linear operator on
®§:OH ; (by analogy with the Hilbert-Schmidt norm of a matrix), we have

- d
> B Ay (XD s = ()il < o0,
ig=1
so the sequence A;, (Xgl)), determines a linear functional A on H ®[@Z:1 L*(X i(j) )] ~
EBMSnLQ(XideC, H) ~ @%:1L2(X-(d) H), given by the formula

14

n

Algr (X)L ga(XD)) = 37 B[4, (XD (g1, (X))

iq=1

Tt is easily seen, that if we interpret the domain of this functional as @|i|§nL2 (Xdee 1),
then it corresponds to the multimatrix (h;(Xge));.
Let us now introduce the following notation, consistent with the definition
of || - | 7. If T is a linear functional on ®7*,E; for some Hilbert spaces Ej;
and Z = {L1,..., L.} € P, uq0), then let | Tz denote the norm of T" as a
r-linear functional on ®]_,[®;cr, Ej], given by

(e1,...,e) = T(e1®...®e€p).
Now, denoting Hyq = @Z:1L2(Xi(j))7 we can apply the above definition

to H® [@ZzlLQ(X.(d))] ~ ®§”‘I&Hj and use Lemma 3 to obtain

td

n
E| Y A, (x| <Ly > plttdes@-(42)2) 4,

ig=1 IEP1k+1U{O}

oa(T)— d
2) iy Z p1+(1+d s(Z) (k+2))/2\/E max ”Aid(Xi(d))H%'
IGPIkU{O} d

This inequality is just the statement of the Lemma, which follows from
,,associativity” of the tensor product and its ,,distributivity” with respect
to the simple sum of Hilbert spaces. Indeed, denoting Ji11 = {d}, we have
for 0 ¢ LZ' and U = UjELi Jj,

QjerHj ~ Qjer; Qe (BT LH(XP)) = @iep (@ LA(XP)) = @y j<n LX),
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Similarly, if 0 € L;,

®jer Hj = @)1 <n L2 (X8, H)] x [®0zjer, ®rer, (@71 L*(XY))]

~ Sy <n L (X H),

where U = (Upxjer, Jj) U K. Using the fact that for fixed Xi(j), A;,
sponds to the multimatrix (h; (X)) \<n» and A corresponds to (hi (X)) ;<.
we can see, that each summand | - ||z on the right hand side of (2) is equal
to some summand || - || x on the right hand side of (1). Informally speak-
ing and abusing slightly the notation (in the case K = (), we ,,merge” the
elements of the partition {{d}, Ji,...,Jx, K} or {J1,...,Ji, K} in a way
described by the partition Z, thus obtaining the partition {L} U K, where L
is the set corresponding in the new partition to the set L; € Z, containing 0
(in particular, if K = () and {0} € Z, then L = )). Let us also notice, that
deg(Z) = deg(K) + 1, hence

1+ deg(Z) — (k +2) = deg(K) — deg(J),

corre-

lirg_y

which shows, that also the powers of p on the right hand sides of (1) and
(2) are the same, completing the proof. O

PrOOF OF THEOREM 1. For d = 1, the theorem is an obvious conse-
quence of Lemma 1. Indeed, since |- | = sup|4|<1 [¢(-)[, and we can restrict
the supremum to a countable set of functionals, we have

E]Zh DIP < LP(( E]Zh P+ pP/2 sup (Y E(g, hi(X;))2)P/?
lo|<1 5

But E|Y; hi(X;)| < VE[Y; hil = V2 ERi(X0)[2 = [[(ha)illf1y
and we also haVe Sup\¢|<1(2 E(¢, h ( )> )1/2 = |[(hi)illp, {1y and max; [h;(X;)| =
max; || hillg,o-

We will now proceed by induction with respect to d. Assume that the
theorem is true for all integers smaller than d > 2 and denote I¢ = I°\{d}

for I C I;. Then, applying it for fixed Xi(j) to the array of functions
(>, hi(w1, .o ma, Xz‘(j))ild,lv we get by the Fubini theorem

E| Y hi(X{)P

<L?

7 1( Z Z pP#IC-i-dng/Q ZEFH Zh‘ IIHKJ)

KCICId 1\7€PI\K IIC
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where we have replaced the maxima in ije by sums (we can afford this

apparent loss, since we will be able to fix it with Lemma 2). Now, from
Lemma 1 (applied to E;) it follows that

Eall (3 hi)ull,z < Lp((EdH(Z higllie.a )P + P2 ige oy W ogany
iq

+PPZEd|| i 11”KJ>

Since I¢ = (I U {d})¢, degJ U{{d}} = degJ + 1 and #I° = #I° + 1,
combining the above inequalities gives

E]Zh X <Ly 3 Y pHEEIREL S () I 5

KCICI, jEP[\K ire
4 Z Z pP#IC+dng/2 ZEIC Ed” Zh‘ IIHKJ )
KCICI;_ 1JGPI\K ife

By applying Lemma 4 to the second sum on the right hand side, we get

(3)
E|Zh Xdec ’p < LP< Z Z pp#Ichdng/Q)EIpZH i 1]” )

KCICI; JePnk ife

We can now finish the proof using Lemma 2. We apply it to Eje for I # I,
with #1¢ instead of d and p/2 instead of p (for p = 2 the theorem is trivial,
so we can assume that p > 2) and o = 2#1¢ + deg J + #1¢. Using the fact
that (p/2)°#1° < L and E|| (ko) % < S, Ealhil?, we get

Ere ()il 7 < 07 P2 L (0" *Ere max | (i) 1 7

1IC\J

< L(Ere max | (ki) 5

_I_

—(#1°+deg J/2)p . decy|2\p/2
P IJnaXEJmax Z]EJ |n(Xde)|2) )
lJc

_ 7P . |1 —(#I°+deg J /2 . ||P
_Ld<EIC max || ()i [l 7 + P e /)pgnga}gEJn}?XI\(hl)mll @)

which allows us to replace the sums in ijc on the right-hand side of (3) by
the corresponding maxima, proving the inequality in question. O
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Theorem 1 gives a precise estimate for moments of canonical Hilbert space
valued U-statistics. In the sequel however we will need a weaker estimate,
using the || - ||x,7 norms only for I = I and specialized to the case h; = h.
Before we formulate a proper corollary, let us introduce

DEFINITION 7. Let h: ¢ — H be a canonical kernel. Let moreover

X1,Xo,...,Xg be i.i.d random wvariables with values in Y. Denote X =
(X1,...,Xq) and for J C 1, X5 = (Xj)jej. For K C 1 C I and J =
{J1,-- -, Ik} € Pni, we define

k

1Bl k. = sup {Er(h(X), g(Xx)) [] £i(X,): g: S5 — H, Elg(Xk)]* <1,
j=1

f] Z#Jj - R, ]Efj(XJJ))Q <l,j=1,... 7k}
In other words ||h||k 7 is the || - | k.7 of an array (hi)jj=1, with h 1y = h.

Remark. For I =14, ||h| k7 is a norm, whereas for I C I, it is a random

variable, depending on Xye.
()

It is also easy to see that if all the variables Xij are i.i.d. and for all
lif <n we have h; = h, then for any fixed value of ije,

1(R) iy 1<nllic.g = [IB]l i, ®172,

where ||h||k,7 is defined with respect to any i.i.d. sequence Xj,..., X, of
the form X; = Xi(jj) for j € I°.

We also have ||h]| k.7 < vEr[h(X)]?, which together with the above ob-
servations allows us to derive the following

COROLLARY 1. For all p > 2, we have
Bl Y h(X{)p <ih( S > prleeT P2 n|k
i KCl, JGP]d\K

+ Z pPUH#I)2 #Ip/2 maX(E[’h(X?ec)‘Q)p/2)
[gld lrc

The Chebyshev inequality gives the following corollary for bounded ker-
nels
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COROLLARY 2. If h is bounded, then for all t > 0,

P(] 32 h(X{)| > La(n®?(E[B]?)2 + 1)) <

1 . t 2/ deg(J)
Lae (= 7 (e 3, G ) )

. t 2/(d+#1I°)
N (i G ) ))

Before we formulate the version of exponential inequalities that will be
useful for the analysis of the LIL, let us recall the classical definition of
Hoeffding projections.

DEFINITION 8. For an integrable kernel h: ©¢ — H, define mgh: ©F —
R with the formula

ﬂdh(acl,...,xk) = ((511 —P) X (5x2 —P) X ... X ((593(1 —P)h,
where P is the law of X;.

Remark. 1t is easy to see that mph is canonical. Moreover wgh = h iff h is
canonical.

The following Lemma was proven for H = R in [2] (Lemma 1). The proof
given there works for an arbitrary Banach space.

LEMMA 6. Consider an arbitrary family of integrable kernels hi: % —
H, |i| <n. For any p > 1 we have

| 32 mabs (X, < 27| 3 d*ehi(Xi*)]],.

lij<n lij<n

In the sequel we will use exponential inequalities to U-statistics generated
by mqh, where h will be a non-necessarily canonical kernel of order d. Since
the kernel h((e1, X1),..., (4, Xq)) = €1---ah(X1, ..., X4), where &;’s are
i.i.d. Rademacher variables independent of X;’s is always canonical, Corol-
lary 1, Lemma 6 and the Chebyshev inequality give us also the following
corollary (note that ||h|| .7 = |hllx.7)
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COROLLARY 3. If h is bounded, then for all p > 0,

IP’(‘ > mah(X{*)

> La(n®*(E[R[2)'/? +1)) <

1 t 2/ deg(J)
Ly (KCId TEP K (W) )

t 2/(d++#1°)
(i G ) ))

Lgexp {

4. The equivalence of several LIL statements. In this section we
will recall general results on the correspondence of various statements of the
LIL. We will state them without proofs, since all of them have been proven
in [9] and [2] in the real case and the proofs can be directly transferred to
the Hilbert space case, with some simple modifications that we will indicate.

Before we proceed, let us introduce the assumptions and notation common
for the remaining part of the article.

e We assume that (X;);en, (XZ»(k)
a measurable function.
e Recall that (&;)ien, (5Ek))iEN,1§k’§d are independent Rademacher vari-

)ieN,1<k<d are i.i.d. and h: ¥4 H is

ables, independent of (X;);en, (Xi(k))ieN,lgkgd-

e To avoid technical problems with small values of h let us also define
LLz = loglog (z V €°).

e We will also occasionally write X for (Xi,...,Xy) and for I C Iy,
X1 = (Xi)ier- Sometimes we will write simply A instead of h(X).

e We will use the letter K to denote constants depending only on the
function h.

We will need the following simple fact

LeEMMA 7. IfE|h|?/(LL|A|)? = K < oo then E(|h|> A u) < L(loglog u)?
with L depending only on K and d.

The next lemma comes from [9]. It is proven there for H = R but the
argument is valid also for general Banach spaces.

LEMMA 8. Let h: % — H be a symmetric function. There exist con-
stants Lg, such that if

1 I h(Xi)| < C as.,
( ) 171111_)8013J (nloglogn d/2| ezld | a.s
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then

(5) STP( Y eleon(Xie)| > D22 log?? n) < oo
n=l  Jij<2n

for D = LyC.

LEMMA 9. For a symmetric function h: ¥ — H, the LIL (4) is equiv-
alent to the decoupled LIL

1

6 i . h Xdec <D a. y
o D gl O < Das

meaning that (4) implies (6) with D = LyC, and conversely (6) implies (4)
with C = LdD

ProoFr. This is Lemma 8 in [2]. The proof is the same as there, one
needs only to replace [*° with [*°(H) — the space of bounded H-valued
sequences. ]

The next lemma also comes from [2] (Lemma 9). Although stated for real
kernels, its proof relies on an inductive argument with a stronger, Banach-
valued hypothesis.

LEMMA 10. There exists a universal constant L < oo, such that for any
kernel h: % — H we have

P(max| 0 A(X{)| > 1) < LB( S0 h(X()| > /L.

1< A
bl=n s <Jek=1..d lij<n

COROLLARY 4. Consider a kernel h: ¥ — H and a > 0. If

o0
STP( D h(X{)| > 02" log™ n) < oo,
n=1  Jij<2n

then

1
i _— h(XdN < L, C as.
e (nloglog n) | |i;n (K < LaaCas

PRrROOF. Given Lemma 10, the proof is the same as the one for real kernels,
presented in [2] (Corollary 1 therein). O
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The next lemma shows that the contribution to a decoupled U-statistic
from the ’diagonal’, i.e. from the sum over multiindices i ¢ I¢ is negligible.
The proof given in [2] (Lemma 10) is still valid, since the only part which
cannot be directly transferred to the Banach space setting is the estimate of
variance of canonical U-statistics, which is the same in the real and general
Hilbert space case.

LEMMA 11. Ifh: X% — H is canonical and satisfies
E(h[? A u) = O((loglog u)”?),

for some (3, then

1
(7) lim sup

— 775 dec)| _
n—00 (nloglogn)d/2’ Z h(X{)| =0 as.

li|<n
Elj;tkljzlk
COROLLARY 5. The randomized decoupled LIL

S eeon(xde)]| <

i|I<n

1
8 li —_—
®) i (nloglog n)d/2 | |

is equivalent to (5), meaning then if (8) holds then so does (5) with D = LyC
and (5) implies (8) with C = LgD.

The proof is the same as for the real-valued case, given in [2] (Corollary
2), one only needs to replace h? by |h|? and use the formula for the second
moments in Hilbert spaces.

COROLLARY 6. For a symmetric, canonical kernel h: % — H, the LIL
(4) is equivalent to the decoupled LIL ’with diagonal’

1
9) lim sup

— 75 h X_dec D
n—oo (nlog]og n)d/Q | Z ( i )| <

iI<n

again meaning that there are constants Lq such that if (4) holds for some D
then so does (9) for D = LyC', and conversely, (9) implies (4) for C = LyD.

PRrOOF. The proof is the same as in the real case (see [2], Corollary 3).
Although the integrability of the kernel guaranteed by the LIL is worse in
the Hilbert space case, it still allows one to use Lemma 11. ]
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5. The canonical decoupled case. Before we formulate the necessary
and sufficient conditions for the bounded LIL in Hilbert spaces, we need

DEFINITION 9. For a canonical kernel h: ¥¢ — H, K C I;, J =
{1, Jk} € Prpg and u > 0 we define

k
hllre,7,u = sup{E(R(X), 9(XK)) [] fi(X5): 9 £% — H,
=1

fi: EJi — R, H9H27 HfZHQ <1 HQHOO7 Hfz”oo < u}7

where for K = () by g(Xg) we mean an element g € H, and ||g||2 denotes
Just the norm of g in H (alternatively we may think of g as of a random
variable measurable with respect to o((X;);cp), hence constant). Thus the
condition on g becomes in this case just |g] < 1.

Ezxample. For d = 2, the above definition reads as

[A(X1, X2)

0,{{1,2}},u = SUP{|EA(X1, X2) (X1, X2)|:
Ef(X1,X2)? <1, flloo < u},
1A (X1, X2)llo, ({1} (2} },0 = SUP{IER(X7, X2) f(X1)g(X2)]:
Ef(X1)%,Eg(X2)® <1
[ £lloos [19lloe < u},
A (X1, Xo)ll (13,42 }.0 = SUP{E(S(X1), h(X1, X2))g(X2):
E[f(X1)[* Eg(X2)® <1
[ flloos 19lloos < u}
1A(X1, X2)ll{1,2),0,u = SUP{E(f (X1, X2), h(X1, X2)):
E’f(XhX?)’z <1, Hf”oo < u}

THEOREM 2. Let h be a canonical H-valued symmetric kernel in d vari-
ables. Then the decoupled LIL

1

. dec
(10) hgl—?olép T2 (loglog )7 | Enh(xi )< C
holds if and only if
h 2
(1) E

(LL[A])¢
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and for all K C I4,J € Pr\k

(12) lim sup < D.

1 I
u—oo  (loglog u)(d—deg J)/2 K,Ju
More precisely, if (10) holds for some C then (12) is satisfied for D = LyC
and conversely, (11) and (12) implies (10) with C = LyD.

Remark. Using Lemma 7 one can easily check that the condition (12) with
D < oo for I = I; is implied by (11).

6. Necessity. The proofis a refinement of ideas from [16], used to study
random matrix approximations of the operator norm of kernel integral op-
erators.

LEMMA 12. Ifa,t > 0 and h is a nonnegative d-dimensional kernel such
that NEh(X) > ta and |Efh(X)|leo < N~#la for all ) C I C {1,...,d},
then

Yae1) PO h(X{€) > Ma) > (1—N)?
i|<N

PROOF. We have

E( 3 h(X?CC))2 =3 3 ER(X{)h(X)

lil<N il<N [j|<N
=3 Y Y EnMX{)hX{)
ICIg[iISN  |jI<N:
{k: ig=jr}=I
=> > Y ER(X{)Eh(X{)]
ICI4 |il<KN [ISN:
{k: =g }=I
< N*(ERX)?+ Y NHFER(X)|Ereh(X)]|oo
0£ICI,

< N?4(Eh(X))? + (27 — 1) N%aEh(X)
< NY(ER(X))? + (24 — Dt IN2(ER(X))?

_HZ ( thdeC).

lil<n

The lemma follows now from the Paley-Zygmund inequality (see e.g. [5],
Corollary 3.3.2.), which says that for an arbitrary nonnegative random vari-
able S,

(ES)?

> > (1 —)\)? )
P(S 2 A8) 2 (1- NP2




THE LIL FOR U-STATISTICS IN HILBERT SPACES 19

COROLLARY 7. Let A C X% be a measurable set, such that

Vocrcqt,.dy Vajeesre Pr((zre, X1) € A) < N~#,
Then

P(Jj<n X € A) > 27 min(NP(X € A),1).

PROOF. We apply Lemma 12 with h = I4, a = 1, t = NYP(X € A) and
A — 0+. O

LEMMA 13. Suppose that Z; are nonnegative r.v.’s, p > 0 and a; € R
are such that P(Z; > a;) > p for all j. Then

P> Zj >p) aj/2) > p/2.
J J
ProOOF. Let a:=P(3;Z; > p>_;a;/2), then
pZaj < E(Zmin(Zj,aj)) < aZaj —I—pZaj/Z
J J J J

O]

THEOREM 3. LetY be a r.v. independent of Xi(j). Suppose that for each
n, a, € R, hy, is a d 4+ 1-dimensional nonnegative kernel such that

ZP( Y (X0, Y) > an) < 0.
no <

Let p > 0, then there exists a constant Cq(p) depending only on p and d
such that the sets

A, ={z € S Vy<m<ad-1y Py (hm(z,Y) > Cd(p)2d("_m)am) > p},
satisfy 3. 29"P(X € A,,) < oo.

ProoF. We will show by induction on d, that the assertion holds with
Ci(p) =1, Ca(p) := 12/p and

— 191 —1-4 _
Ca(p) :==12p  Jnax Ca—1(27"p/3) for d = 3,4,....
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For d =1 we have

1
5 Win(2"P(X € An), 1) < P(J<on Xdee e A,)

= P(3jij<on Py (h(X{,Y) > ay) > p)
SPPy( Y ha(X{™,Y) > an) > p)
i <2m
<p 'P( Y ha(X{Y) > ap).
lij<2n

Before investigating the case d > 1 let us define

Ap = A\ | Anm.

m>n

The sets A,, are pairwise disjoint and obviously A, C A,. Notice that
since Cy(p) > 1,

P(X € Ay) S PPy (ha(X,Y) > an)) < p 'P( Y ha(X{,Y) > ap).

Hence >, P(X € 4,) < 00,50 P(X € limsup A,,) = 0. Butif z ¢ limsup 4,,
then Y, 2", (x) <3, 2" 1 ; (x). Soit is enough to show that 3 29"P(X €
A,) < oo

Induction step. Suppose that the statement holds for all d' < d, we will
show it for d. First we will inductively construct sets

A, =AY > Al 5. 5 A%t
such that for 1 <1 <d—1,

(13) Vocrcq,...d—1y, #1<t Vare Pr((@re, Xr1) € Aly < omn#l
and
(14) > omip(x e AT\ AL) < o0

Suppose that 1 <[ < d — 1 and the set Ail_l was already defined. Let
I c{1,...,d} be such that #I =1 and let j € I. Notice that
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Pr((wre, X1) € Ay ') = EiPp gy ((wre, X5, Xpgzy) € A1) < 270
by the property (13) of the set Al~!. Let us define for n(l—1)+1 < k < nl,

Bl = A{xre: Pr((zpe, X1) € A1) € 27F, 2771
and

nl
Bl= U Bli={zre:Pi((zre,Xs) € A1) > 27"}
k=n(l—1)+1

We have

Z2d"19> XeA ' XeeBl) <2y Z 20" FP(X e € B)
n k=n(l—1)+1

= 2Ekl (X]c ) y
where

l'[c : Z Z 2dn7k[Bfl’k (.%'Ic).

n k=n(l-1)+1
Let m > 1 and

CTI),L = {x]cj 2(m+1)(d—l) > kl(CUIC) Z 2m(d—l)}'

Notice that for n > m and k < nl, 29—k > 2(d=D(m+1) " moreover

nl
3 Y gik < Y gl o 4o@-1+1)(m-1)/2 < < 2o-vm,

n<m/2 k=n(l—-1)+1 n<m/2 3

Wl N

Hence

nl
(15)  xreeCh = > > 2d"—’fIBi)k(xIc)2 gld=tm

m/2<n<m k=n(l-1)+1

W=

Let m < r < 2972 if m/2 < n < m, then since Aﬁl_l C A,, we have for all
z e S,
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Py (hy(z,Y) > Cd(p)Zd("*T)arIA%A(x)) > p,
therefore, since Al=1 A,, are pairwise disjoint,
Py (he(2,Y) > Ca(p)2ar > 2™ La(2)) > p.
m/2<n<m

Hence, by Lemma 13,

ec p —dr ec p
(16) IP’Y( > helwre, XEY) > D002 ar Y- Koy (X )) >

lir|<2r lir]<2r

where
Faage(@r) = 32 2" Ly (we, w).
m/2<n<m

We have ||k zc||oo < 2¢™ and for () # J C I, by the property (13) of
A

Ekoere(xng, X1) = ) Qd"]P’J<(xIC,961\J,XJ) < Al{l)

m/2<n<m
m/2<n<m

Moreover for zjc € CL | by the definition of BTIL,k and (15),

nl
Ekowre(X1) > Y > 2"Pr((ere, Xp) € AT pr (are)
m/2<n<m k=n(l—1)+1 ’
o dn—Fk L oa-
mn— - —l)m
> Y >oo2 Iy (w1e) > 32 .

m/2<n<m k=n(l—-1)+1

Therefore by Lemma 12 (with [ instead of d and a = 2(d¢-Dm+ri+l ¢ —
1/6,N = 2", A =1/2), form < r <292m,

[y

2~1=3,

W =

P(D o (Xi) >

lir|<2r

T o(d=)m+rl
L)
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Combining the above estimate with (16) we get (for x;c € CL and m <r <
2d721,n)7

( Z h .’ch Xdec y )> £C'd(p)Q(dil)(mir)CLT) >

17 ?
lir]<2"

Let us define Y := (X{”)jer, Y) and by (7, V) := p j<on hn(age, X, ).
Then

YYD ha(X{Y) > ay) ZIP’ D ha(X{Y) > ap) < cc.

noije]<2n lij<2n

Moreover (since Cy(p) > 12p71Cy_1(27174p/3)),

Ch € {¥mrcat-2m Py (hn(re, V) > Cyy(27171p/3)21-D0m=1g,) > 2=1=4p /31,

Hence by the induction assumption,
> 2lmp(X e € Cf) < o,
m

so Ekf (Xec) < oo and thus

(17) Vyr— Y 27"P(X € AL Xpe € B)) < o0
We set

AL ={re Al g ¢ B forall T {1,...,d}, #1 =1}.

The set Al satisfies the condition (13) by the definition of B] and the
property (13) for AL=1. The condition (14) follows by (17).

Notice that the set A%~! satisfies the assumptions of Corollary 7 with
N = 2" therefore if Cy(p) > 1,

27 min(1,2""P(X € AT1)) < P(Tjjj<on X € ALY < P(Tjjjcon X € Ay)
< P3jj<on Py (hn(X{*,Y) > Ca(p)an) > p)

<SPPy( Y] ha(X{Y) > an) > p)
lij<2n
<p P ha(X{Y) > ap).

lij<2n
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Therefore 3, 2"P(X € A%~1) < o0, so by (14) we get

Zzndp(x €A, = Zznd(df P(X € AL\ A +P(X € Ag—l)) < 0.

n n =1

O

COROLLARY 8. If

ZIP’( Z h2(X{e¢) > £2md(log n)o‘) < 0

n |i|§2n

for some € >0 and a € R,
then E(LL|h|) < 00.

PRrROOF. We apply Theorem 3 with h,, = h? and a,, = 2"%log?n in the
degenerate case when Y is deterministic. It is easy to notice that h? >
Cy(p,e)2%" log? n implies that

vnSmSQdfln h2 2 Cd(p)Qd(n_m)am
O

To prove the necessity part of Theorem 2 we will also need the following
Lemmas

LEMMA 14 ([2], Lemma 12). Let g: £¢ — R be a square integrable func-
tion. Then
Var( 3 (X)) < (24— 1n?1Bg(X)?,

li|<n
LeEMMA 15 ([2], Lemma 5).  If E(|h|? A u) = O((loglog u)?) then

o (loglog s)” )

Elh 12y = .

LEMMA 16. Let (ai)iefg be a d-indexed array of vectors from a Hilbert
space H. Consider a random variable

S—‘ZCLIHE% —‘Zaldec.

lijl<n = lil<n
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For any set K C Iy and a partition J = {J1,...,Jm} € Prk let us define

l(@)llic.rp = sup {| 3 (i) TT et 15 Do laf) P < 1, Y- (of))?

li<n k=1 ix i,

k
vimaxJk,GIn Z(%(JZ)Q <1, k= 1,...,m},

LoJy

where oJ = J\{max J} (here 37; ai = a;).
Then, for allp > 1,
1 *
IS > 7 > la)lka,

4 KCI4.T€P1 \x

In particular for some constant cq

P(S>ca D, lallkgp) >cane™
KCly,TePr\k

Remark. For K = (), we define

#J,
1@z = sup{| > @ H of]: (o), RO, Y (o) <

fii<n k= iy,

vimaxJkEInZ( 1("2) <1, k=1,. },

LoJy,

It is also easy to see that for a d-indexed matrix, [|(ai)ill7, (01,, = V/2i lail* =
|S]|2 and thus does not depend on p. Since it will not be important in the
applications, we keep a uniform notation with the subscript p.

Ezamples. For d =1, we have

n

n
I(ai)i<nllp (1yyp = sUP L] D aic|: D af <p,fei| <1, i=1,...,n},
=1 =1

n
H(ai)ignml}ﬂ),p = sup { Z aza@z Z ’CKJQ < 1} Z ’%’27
i=1
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whereas for d = 2, we get

n n n
I@ig)ij<nlld, gy, p231,0 = S| D asjeafsl: Y _of <p. 3 87 <p,
i=1 j=1

ij=1
Vier,lail < 1,Yer, |8 < 1},

n n n
(ai)ij<nlloryp = swp i D agagl: Y- afy <p,Vjer, Y af; <1},
=1

ij=1 ij=1
n n
1(ai)ig<all{iy 230 = suP Al D {aij i) Bl D laul® < 1,
ij—1 i=1

n
ZB? < p,Vjer|Bj| <1},
j=1

n

n
[(aij)ij<nllty 0, = sup {| D laij,ig)|: Y af; <1} = > lai|?
ij=1 i=1 \

ProOF OF LEMMA 16. We will combine the classical hypercontractivity
property of Rademacher chaoses (see e.g. [5], p. 110-116) with Lemma 3 in
[2], which says that for H = R we have

1
(18) ISl = 7= > l(@)llogp-

d JEPy,

Since [|(ai)ll1,, 403, = v/ 21 lail* = [|Sl2, the inequality [|S]l, = L™H(ai)ll7,, 10y »
is just Jensen’s inequality (p > 2) or the aforesaid hypercontractivity of
Rademacher chaos (p € (1,2)). On the other hand, for K # I; and J €
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Prox» we have

151 = (EraxBx| > T el 3 o IT
k¢K

ix keK ir\x

> (B (] X I

ik irp\x k¢K

(Eld\K sup > Y a) T =

- .
pr s e i S

1
= L?(( s Ep| 3 Y a) I] <

DS K K ke K

p) 1/p

2)1’/2>1/P

1 P) 1/p

P) 1/p

1 (0)
> —————  sup ’ d (o), a)); ’
Lprcla—pr s~ 1,00 (1K< e ‘@,g,p
lK IK -

1
= —— (@)l k.7p;

LyxLa 4k
where the first inequality follows from hypercontractivity applied condition-
ally on (egk)) k¢K,icl,, the second is Jensen’s inequality and the third is (18)
applied for a chaos of order d — #K.
The tail estimate follows from moment estimates by the Paley-Zygmund
inequality and the inequality [|(a:)| k7. < t4®7||(ai)| k.7, for t > 1 just
like in [12, 18]. O

PROOF OF NECESSITY. First we will prove the integrability condition
(11). Let us notice that by classical hypercontractive estimates for Rademacher
chaoses and the Paley-Zygmund inequality (or by Lemma 16), we have

Po(| D a*h(X{=)| > ey [ 30 h(X{«)?) > g

jij<2n jij<2n

for some constant cg > 0. By the Fubini theorem it gives

(| > &oh(X{e)| > D2 10g"2n) > cgP( Y h(X{)? > D2 22" log?n),
i<z il<2n

which together with Lemma 8 yields

ZIP’( Z h(X{e)?2 > D?c; 22" og? n) < 00.

" lij<2n
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The integrability condition (11) follows now from Corollary 8.
Before we proceed to the proof of (12), let us notice that (11) and Lemma
7 imply that

(19) E(|h|? A u) < K (loglog u)?

for n large enough. The proof of (12) can be now obtained by adapting the
argument for the real valued case.
Since lim,, s Ziﬁn % =log2, (5) implies that there exists Ny, such that

for all N > Ny, there exists N <n < 2N, satisfying

(20) p(| |22 el h (X

1
L CQnd/QI d/2 .
> Lg og n) < 1on

Let us thus fix N > Ny and consider n as above. Let K C I, J =
{J1,---, Jk} € Pry k- Let us also fix functions g: SHE S H, f;: S# S R,
j=1,...,k, such that

lg(Xe)ll2 < 1, |g(Xx) oo < 27/ 2K 43),
155 (XMl < 1 [1£5(X 1) oo < 27/ CEF),

The Chebyshev inequality gives

1

21)  P( > fj(X?ij)Zlogn <10-2%2#/i"logn) > 1 — To 5"

|iJj ‘S2n
Similarly, if K # 0,

1
(22) (Y (X)) <10- 2275 > 1 - )
lirc|<2m )

and for K =), |g| <1 (recall that for K = (), the function g is constant).
Moreover for j = 1,...,k and sufficiently large IV,

1 deerd on#od;92n/(2k+3) logn
i Z|<2 W“fj(xi%) Hlogn < on#Jj
IOJ]' <2n
2n/(2k+3)
LT logn
> on >

Without loss of generality we may assume that the sequences (Xz-(j ))i,j
and (5(»] )

;’)i,; are defined as coordinates of a product probability space. If for
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each j = 1,...,k we denote the set from (21) by A, and the set from (22)
by Ag, we have P(ﬂ?zo Ag) > 0.9. Recall now Lemma 16. On ﬂ?:o Ay we

can estimate the | - ||k 704, norms of the matrix (h(XideC))MSQn by using

the test sequences
G i) ogn
aijj - 101/29d/29n#J;/2

for j=1,...,k and

NOM g(Xsle)

Y = 101/29d/29n#K/2"
Therefore with probability at least 0.9 we have

(23)
(P (X5)) jij<2n 1 7 10 m
> (logn)k/2 ‘ Z Xdec Xdec ﬁ Xdec
T gd(k1)/21 (k1) /29 KL #In/2 T o
(log n)k/2 d d b d
= 2d(k+1)/210( k+1)/22dn/2| Z (XG5, h(X) H X ok

<2 =1

Our aim is now to further bound from below the right hand side of the
above inequality, to have, via Lemma 16, control from below on the condi-

tional tail probability of 37} <on edech(Xdec) | given the sample (Xi(j )).
From now on let us assume that

k
(24) ’E< H XJ | > 1.

The Markov inequality, (19) and Lemma 15 give

ec k ec 2nd’E<gv h> kj’:l f|
P D (9(Xk), AXEE)) L nexeey sany 11 fj(X?Jj )| = 1 =)
j=1

[ij<2n

42”d<ug|roo 1521 1 5llo) - EIRIL {52y
2nd(E(g, h) TT5_; f]

) < 42ntH D/ CREE BT ony
(25)
(logn)?

n(k+2) *
2 2k+3

<4K
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Let now hy,, = h1lyj,j<2ny. By the Chebyshev inequality, Lemma 14 and (19)

B

<| Z Xdec Xdec H f] Xdec 2ndE 97 H

| ‘<2n :

>27‘Eg, Hf]>

o Voo (K)o (X)) T £ 0K)
> 22nd|E<’ n> j:l f]‘

(2d _ 1)2n(2d 1) N
(g, hn) fil
2B (g, ha) [Ty £ L7

22n(k+1)/(2k+3 E‘hn |2

<2521 -
2"[E(g, hn) Hj:l fj|2
log?n

” < 25K (24— 1 '

Let us also notice that for large n, by (19), Lemma 15 and (24)

Hfj’>|E g,h Hf] E(g, h 1{|h\>2"}Hfj
J=1

k

logn k
@7 2 Bl [15 oo (BT en > 2 W1

OO\U(

Inequalities (25), (26) and (27) imply, that for large n with probability at



THE LIL FOR U-STATISTICS IN HILBERT SPACES 31

least 0.9 we have

k
| D (X5, h(XE)) T £5(XE50))

lij<2n J=1
k
> | 3 (gK), b (3509)) [T £5060)
[ij<2n J=1
k
3 (9K, AOXEN) T ey sy T 15X
jil<2n i=1

n k
>2”d Hf]|—— H
zwé Hwa IU}z—m% 1L

N

Together with (23) this yields that for large n with probability at least
0.8,
. ond/2 logk/Qn
1(hi)ij<2n 5,7 Jog n = 4 . 9d(k+1)/21(0(k+1)/2 [E{g, h H fil

Thus, by Lemma 16, for large n

dec dec 2nd/2 log / k
P(I|Z & “h(Xi)| 2 casqmrnyaggrnys B9 h H
i|<an j=1
which together with (20) gives
k . 9d(k+1)/210(k+1)/2
4-2 1
w ] £l < LaC 0 log(@=R)/2p,
: Cd
Jj=1

In particular for sufficiently large N, for arbitrary functions ¢g: X#K — H,
WE »#/i =R, j=1,...,k, such that

19Xk oo, [1£5 (X)) ll2 < 1,

lg(X )2, 11£5(X ) oo < 2N EF9)

we have

4. 2d(k+1)/2 10(k+1)/2

k
h) H fil < LsC log@=R/2 < [,Clog@=H/2 N
j=1

Cd

which clearly implies (12). O
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7. Sufficiency.

LEMMA 17. Let H = H(X1,...,Xy) be a nonnegative random variable,
such that EH? < oco. Then for I C Iy, I # 0,1,

oo
Z Z 2[+#ICH]P)IC (]E[HZ Z 22l+#lcn) < 0.
=0 n=1

PROOF.

SO ot HIp (B H? > 22 HIT) = N " 0lR [Z 2#I M e szt seny
l n 1 n

<> 2" "B ErH? < 4EH? < o0.
l

O]

LEMMA 18. Let X = (X1,...,Xq) and X(I) = (X)ier, (XM)icse).
Denote H = |h|/(LL|h|))¥2. If E|H|? < 0o and h,, = h1,,, where

A, CH{a: |h(x)\2 < 2"dlogdn and V1491, E;H? < Q#IC"},
then for I C Iy, I # (), we have
g—n#! 2 o 2
Y g Elan(X)P|ha(X(1))]?] < oo
log“*n

n

ProOF. a) I =1,

ZM<E“L‘4Z¥1 e
— 2nd10g2dn — — 2ndlog2dn {|h|?<274]og® n}
1
< LEh ' < oo
< LBl s <>

b) I # I4,0. Let us denote by EI,EIC,EIC respectively, the expectation
with respect to (2(1')2-61, (Xi)iere and (Xi(l))ie[c. Let also h, h, stand
for h(X(I)), hn(X(I)) respectively. Then
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b 2 17 |2 -
5 B fhnf?) g Bl Pl i)

a#log?lp — T4 on#l 1og%d
< 2E(|AP1AP Ly <pay
1
x ;WI{EIC“” 1{‘h|2<22nd}_L42#1”10g n, |h|2<22nd})
2
< 2E(|AP1APL iy

=[]

71 In 2 2nd )
277,#] log dn {E[clhl 1{\h|2<\h| }<Ld2# log n, |h‘ <2 }

1
dE(|n?|hI*1 ]

b(x

S 1
_ 2 2 )
= Lal/Ere {|h| EIC(W 1{|h|§|h}(EIC‘h|21{|h|2<il?})<LL|]~l’>d)}
~ 7 2 -
<igm M
(LL|A[)?

where to obtain the second inequality, we used the fact that

]EIC‘h|21{|h|2§22"d,EICH2§2#1n}
|2
S EICW(IOgIOg 2nd)d1{EICH2§2#In}

< LdEICHZ:[{]EICH?gQ#I”} logd n < Lg2# " logd n.
O
LEMMA 19.  Consider a square integrable, nonnegative random variable

Y. LetY, =Y1p, , with B, = Uk‘EK(n) Cly, where Cy, Cy,Cs, ... are pairwise
disjoint subsets of 0 and

K(n) ={k <n:E(Y?1¢,) <287}

Then

> (EY;?)? < oo

n
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PROOF. Let us first notice that by the Schwarz inequality, we have

> E0)) = (X 2<""”/22<’“—">/2E<Y21@>)2

keK(n) keK(n)
keK(n) k<n
—2 3 2 RHEX )
keK(n)
Thus
Y (EY)? <) 2 2" (E(Y?1¢,))?)
n n  keK(n)
<2 Yoo (E(Y 1)) Y 2nk
k:E(Y?1¢,)>0 n: keK(n)

k: E(Y21¢, )>0 n: keK(n)
1
< 2 2

O]

PROOF OF SUFFICIENCY. The proof consists of several truncation argu-
ments. The first part of it follows the proofs presented in [11] and [2] for
the real-valued case. Then some modifications are required, reflecting the
diminished integrability condition in the Hilbert space case. At each step we
will show that

(28) STP( Y maha(X{)| > €22 10g? n) < 0,
= lij<2n

with h, = h14, for some sequence of sets A,,. In the whole proof we keep
the notation H = |h|/(LL|h|)%2.
Let us also fix ng € (0,1), such that the following implication holds

(29) Vo1, |h> < n22"login — H? < 2"
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Step 1. Inequality (28) holds for any C' > 0 if

A, C {z: |h(z))? > 32" og?n}.

We have, by the Chebyshev inequality and the inequality E|rgh,| < 29E|h,,|
(which follows directly from the definition of 74 or may be considered a
trivial case of Lemma 6),

DP(| D maha(X{)| 2 02"/ 10g?/2 )
w2

IE| Z| |<2n Tahn (Xdec)|
C'ond/2 logd/2

33

n=1
2 LRI {5, 20072 108972 n)
C2nd/2 1og?
2nd/2
d 1
=2°C” E(’h‘z d/2 1{\h|>nd2”d/210gd/2n})
|h |2

<L,C'E—"L .
e (V)

<20y

n

Step 2. Inequality (28) holds for any C' > 0 if
A, C {z: |h(z))? < 32" log?n, 31201, E;H? > 2%,
As in the previous step, it is enough to prove that
i E‘ Z\ |<2n f “hy, (Xdec)|
ond/2 1og¥/? p,

n=1

< Q.

The set A,, can be written as

A= U A1),
ICI4,I#14,0

where the sets A, (I) are pairwise disjoint and
Ap(I) C{x: |h(z)? < 22d B H? > 271,
Therefore it suffices to prove that
(30) i E| > jij<2n €?ech(X?j)1An(1)(X?eC)|
ond/2 og/2

n=1

< oQ.
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Let for [ € N,
A (1) = {z: |h(x)]? <2,
22l+2+#lcn > E[H2 > 22l+#13n} N An(I)

Then hyp1a, 1) = 22120 hng, where hy g = hply, WD) (notice that the sum is

actually ﬁmte in each point z € X7 as for large l x ¢ Api(I)).
We have

E| Z edech Xdec | < Z EICE1| Z Eiechml(xgieCM

lij<2n lize|<2m lir]<2m
< N BB YD e, (X))l
lire|<2m lir]<2m

S 2(#18+#1/2)n]EIC (]Ef‘hn,l ‘2)1/2
S Ld[2(#lc+d/2)n+l+1 1Ogd/2 TL]P[C (]E[H2 Z 22l+#lcn)’

where in the last inequality we used the estimate

thi,l §LdE1[(log n)dH21{221+2+#10n>EIH22221+#ICn}]

SLd22l+2+#Icn(10g n)dl{EIH2222l+#Icn}'

Therefore to get (30) it is enough to show that

oo
SON o HEIp (B H? > 22 < oo,
=0 n

But this is just the statement of Lemma 17.
Step 3. Inequality (28) holds for any C' > 0 if
A, CHz: | (z)> < n22"log?n, Vl-#@]dEIH < 211 n UB
ICI,
with BY = Uer(rm) CF and Cf = {2: EfH? < 1}, Cf = {a: 2#1°07D <
EH? <2#IFY k> 1, K(I,n) = {k <n: E(H21C£) < 2k—ny
By Lemma 6 and the Chebyshev inequality, it is enough to show that

Z E| Z\ |<2n f “h, (Xdec)‘
22nd |og2d

n

< Q.
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The Khintchine inequality for Rademacher chaoses gives

Ly'El Y dha(X{) P <E( Y [ha(X{™)?)?

lij<2n li|<2n
=> > > E|[hn(X{) [?|hn (XS10) 2]
ICI4 |i|l<2n ljl<an:
{k: ix=gr =1
< Y 2mdgn @ #DE(| by (X)) - [h(X(T))]2,
ICl,

where X = (X1, ..., X,) and X(I) = (X)ier, (X )icre).

To prove the statement of this step it thus suffices to show that for all
I g Id7

92— n#tl

(31) S = 3 o Bl ()Pl (X)) <

log??

The case of nonempty I follows from Lemma 18. It thus remains to consider
the case I = (). Set H? = E;H?. We have

sy =3 Bl g PP e p Z(E(H?l )
N - logZin N - log?n An d An
<Ldz H2Z]_B[ <Ldzz HlBI
ICI, ICI; n
Lq Y Y (E(Hilp))® < oo
ICI; n

by Lemma 19, applied for Y2 = E;H?, since EH? = EH? < c0.
Step 4. Inequality (28) holds for some C < LyD if

Ay = (o |h(@)[* < 032" og?n, ¥y BrH? < 2#y 0 () (BL),
ICI,

where B£ is defined as in the previous step.
Let us first estimate ||(Er|hn|?)"/?||oo for I C I;. We have

EIVL"‘Q3EI[|h|21{|h|2Snd2"dlogdn} 2 1Cd
k<n,k¢K(I,n)
< Lglog'n ). 1oErH®
k<n,k¢K(In)
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The fact that we can restrict the summation to k < n follows directly from
the definition of A,, for I # () and for I = ) from (29).

The sets C’,g are pairwise disjoint and thus

32 E;|hy, (Lgl o# Ik — [ o#Iki(n) oo
(32)  |[Es|hn]?||loo < (Lalog n)kgn’r&a[g(l’n) og’n,

where

kr(n) =max{k <n: k¢ K(I,n)}.
Therefore for C' > 0,

L ComdPlogh?n  \2/(d+#19)
e | = 7 (grmmye, i, ) |

1 C2mdloghn  \2/(+#1)
= ;k<nk¢ZK (I,n) P [_ fd<2#[n/22#]¢k/2 1Ogd/2n> }

SDINED DI B (e L
d

k n>k, k¢ K(I,n)

2/(d+#10)} .

Notice that for each k the inner series is bounded by a geometric series
with the ratio smaller than some ¢4c < 1 (gq,c depending only on d and
(). Therefore the right hand side of the above inequality is bounded by

)

1 c 2/(d+#I°)
K _ — (co#I(n—k)/2
2 e )

with the convention sup () = 0. But k ¢ K(I,n) implies that 2#/°(»=k)/2 >
(E(H 21015))_#[ °/2. Therefore the above quantity is further bounded by

K ZeXp [ _ g (CHQ/#ICE(HQlCé))_#IC/(CH#IC)} < L,O~2#I° ZE(Hzl%)
d k

= LyC~Y#IEH? < o0,

where we used the inequality e® > cqz® for all x > 0 and 0 < o < 2d. We
have thus proven that for all I C I and C, Lz > 0,

1 ( c2ond/2 logd/2 n )2/(d+#16)}

33 - —
R T

< 0.

Now we will turn to the estimation of ||hy|| s,,7. Let us consider Jy C I,
J =1{J1,...,Ji} € P, and denote as before X = (X1,..., Xyg), X; =
(Xi)ier- Recall that
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l
1l go.7 = sup {E(hn(X), fo(X)) [T fi(X): Elfo(Xs)I” < 1,

=1

Eff(X;) <1,i>1}.

In what follows, to simplify the already quite complicated notation, let us
suppress the arguments of all the functions and write just & instead of h(X)
and f; instead of f;(X,).

Let us also remark that although fy plays special role in the definition
of || - ||jo,7, in what follows the same arguments will apply to all f;’s with
the obvious use of Schwarz inequality for the scalar product in H. We will
therefore not distinguish the case i = 0 and f? will denote either the usual
power or (fo, fo), whereas | f;||2 for i = 0 will be the norm in L?(H, X ,),
which may happen to be equal just H if Jy = (.

Since E|f;|> < 1,i=0,...,l, then for each j =0,...,l and J C .J; by the
Schwarz inequality applied conditionally to X\ s

l
E[(hn, fo) [ [ fz‘l{mjfj%a?}\
=1

l
<Esg[(Eupne [ f7ﬁ2)1/21{1EJf]22a2}(E(JJ\J)C|hn|2)1/2]
=0

< Esa[Erf) 1k, 12502y Eigpnelhnl*) 2]

< Ld2k(Jj\J)c(n)#(Jj\J)/2 logd/Q nEJj\J[(EJfJZ)l/Ql{EJf?>a2}]
7>

< Ld[Qk(J]-\J)C(n)#(Jj\J)/Z logd/2 n]a—l7

where the third inequality follows from (32) and the last one from the ele-
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mentary fact E|X|1{x|>q) < a'E|X|2. This way we obtain
(34)

1Penll.70.7
!

< sup{E[(hn, fo) [] fil: I1fill2 < LVycy, |(Eaf2) 3o < 2n# /2y
=1

l

+ Ldz Z 9\ e (n)=n)#(Ji\J)/2 logd/Qn

i=0 JC.J;
l

< sup{E((hn, fo) [T £il: I fill2 < 1,Yscu; 1By 7)o < 27#IND/2

i=1

+ Ly Z (ki (n)=m)#1%/2 155 d/2 .

ICI,

Let us thus consider arbitrary f;, 4 0,...,k such that ||fi]2 < 1,
I(Es Y200 < 27#UAND/2 for all J C J; (note that the latter condition
means in particular that || f;||co < on#Ji/2)

We have by assumption (12) for sufficiently large n,

k
E[(h, fo) T £ill < 18]l xc. 7 anar2 < LaDlogld=987)/2 .
i=1
We have also
k k

B[, fo) L snyontiogtny L1 Fil < IR pes g anaiogt ] I I filloo
=1 =0

< 2RI oz ot g g ) = O

Also for I C 14,1 # (), 14, denoting hy, = hl{IhIQSndT‘d logdn} We get

k
E[(hn, fo) H filgg, goson#icy]
=1
B k
< Ere[(Brlhnl?) 1, gsonsrey [ [ Eonrl £il)?)
=0

l
< ([T 2#V B e [(Br | ) 21 (5, s gnsre]
=0
< L2"# PR [(ErH? log® n) P 1z, o sonwicy]

< Lg[2"#1 2 10g¥? n)Bre[(BrH?)Y21 5, prasgnaerey] = Bh.
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Let us denote h, = hy, Hotrcr, Yig, m2<o#ieny and vl = IE|l_znlB£|2. Com-
bining the three last inequalities we obtain

l l !
[E(hn, fo) [T fil <IECh, fo) T fil + [E(hnlac, fo) T fil
=1 1=0 =1
l
SLdD lOg(d_dng)/2 n -+ E|<h1{|h|222nd logd n} f0> H fl|

=1
!
+ Y E[(hnlg, gesonsey, fo) [ fil
0AICI, =1
!
+ > El(hnlp, fo) [ fil
i, -1
<LgDlog@=4e N/ 2n 4o, + S gL+ 3 (/AL

0£ICI, ICl,
Now, combining the above estimate with (34), we obtain

(35)  llhallso,s < La D 2010 =# 2 10gd2 n 4 LyDlogl! =4 /2 p

ICIy
+ ap + Z Bl + Z /AL
DAICI4 ICI,
Let us notice that
an
—— < 00,
Zn: logd/2 n
By
36 A —— < 00,
( ) I¢m,[d;10gd/2n

v (72)?

n

The first inequality was proved in Step 1. The proof of the second one is
straightforward. Indeed, we have

ZT}Z”

n log

7
= LaEre[(BrH?)'2 > 221 5 o gniere)]

n

< LgEE;H? = L;EH? < c0.
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The third inequality is implicitly proved in Step 3. Let us however present
an explicit argument.

Z

2

< Z ( Lin<naznir logd/m}lB%)

log log?n

< Lgy (ErE;(H?1p1))* < o0

n

by Lemma 19 applied to the random variable /E; H2.
We are now in position to finish the proof. Let us notice that we have
either E(\h|21{|h|2§22nd}) <1, or we can use the function

g _ h]_{Hh|2§22nd}
(E(|h|21 2 <920ay)) /2

as a test function in the definition of ||A[|}, j ona, Obtaining

(E(|h|21{|h|2§22nd}))1/2 = E(h,g> < ||h||]d,®72"d < Dlogdn
for large n. Combining this estimate with Corollary 3, we can now write

(37) STP(| Y maha(X§9)| > La(D + C)2"42 10g¥? n)

" lij<2n

. nd/21sd/2 e
<Led Y Dew|-- (W)deq

JoClg JGPld\Jo n

- 1 C21/2 og2 2/(d-+#1°)
+La YD :
A = |~ £, (zwrmEmeyers) }

The second series is convergent by (33).

Thus it remains to prove the convergence of the first series. By (35), we
have for all Jy, J

1 ,Clog¥?ny2/degT
eXp[‘L(HhﬁJO,D "]
1 C'log?/? 2/ deg J
= I; eXP {_ Lid(Q(kI(n)fn)zﬁglc/Q ?Ogdﬂ n) ) }
=1id
1 Clog??n 2/ deg J C'log®? ny\ 2/ deg T
+ewp |- Ld(Dlog<dogdng>/2 ) e[~ Ld(%) o]

<01og/ n \2/degJ
Ly

C'log¥?n \2/degJ
e [ Ly >ozrcr, Bt d ( }

Srcr, Vi

[ +exp |-

)
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(under our permanent convention that the values of Ly in different equations
need not be the same). The series determined by the three last components
at the right-hand side are convergent by (36) since e™* < L,x~" for r > 0.
The series corresponding to the second component is convergent for C' large
enough and we can take C' = LyD. As for the series corresponding to the
first term, we have, just as in the proof of (33) for any I C Iy,

1 Clog??n 2/deg J
En: exp { Ly (Ldz(kI(n)—n)#Ic/Z log?/? n) }

<> X exp[—£<02(”_k)#”/2)
d

k n>kk¢K(I,n)

1 n— c 2/ deg J
- K%mkﬁzﬁum)e@[%(@( k)#1 /2) g }

< K) E(H1g) = KEH? < oo
k

2/degj}

We have thus proven the convergence of the series at the left-hand side of
(37) with C' < LyD, which ends Step 5.

Now to finish the proof, we just split ©¢ for each n into four sets, described
by steps 1-4 and use the triangle inequality, to show that

SP(| S0 mx)| > LaD2" 10" n)) < oo,

n lij<2n
which proves the sufficiency part of the theorem by Corollary 4. O

8. The undecoupled case.

THEOREM 4. For any function h: ¥4 — H and a sequence X1, Xo, . ..
of i.i.d., X-valued random variables, the LIL (4) holds if and only if h
>
E—-—s < o0,
(LLAD? =
h is completely degenerate for the law of X1 and the growth conditions (12)
are satisfied.
More precisely, if (4) holds, then (12) is satisfied with D = LyC and
conversely, (12) together with complete degeneration and the integrability
condition imply (4) with C = LgD.
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Proor. Sufficiency follows from Corollary 6 and Theorem 2. To prove
the necessity assume that (4) holds and observe that from Lemma 8 and
Corollary 5, h satisfies the randomized decoupled LIL (8) and thus, by The-
orem 2, (11) holds and the growth conditions (12) on functions ||kl x 7.
are satisfied (note that the || - || 7, norms of the kernel h(Xy,..., Xy) and
g1 eqh(X1,...,X4) are equal). The complete degeneracy of (¢, h) for any
@ € H follows from the necessary conditions for real-valued kernels. Since
by (11), E;h is well defined in the Bochner sense, we must have E;h = 0. [
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