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Abstract

We consider polytopes in Rn that are generated by N vectors in
Rn whose coordinates are independent subgaussian random variables.
(A particular case of such polytopes are symmetric random ±1 poly-
topes generated by N independent vertices of the unit cube.) We show
that for a random pair of such polytopes the Banach-Mazur distance
between them is essentially of a maximal order n. This result is an
analogue of well-known Gluskin’s result for spherical vectors. We also
study the norms of projections on such polytopes and prove an ana-
logue of Gluskin’s and Szarek’s results on basis constants. The proofs
are based on a version of “small ball” estimates for linear images of
random subgaussian vectors.

1 Introduction

The structure of ±1 polytopes, that is, the convex hulls of subsets of the
combinatorial cube {−1, 1}n, is a much studied subject in several areas of
combinatorics (see e.g., [Z]). In the asymptotic geometric analysis the study
of geometric properties of random ±1 polytopes has been initiated by Gi-
annopoulos and Hartzoulaki [GiH] who investigated such properties as vol-
umes, mean widths, inradii and other related geometric parameters. These
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results were further developed by Litvak, Pajor, Rudelson and Tomczak-
Jaegermann in [LPRT] to symmetric random polytopes spanned by vectors
whose coordinates are independent subgaussian random variables with vari-
ance ≥ 1 and uniformly bounded subgaussian constants; and who derived
these results from their lower bounds for smallest singular values of rect-
angular random matrices with independent entries satisfying some moment
conditions. We refer the reader to papers [MePR] and [GGi] for further
developments and generalizations.

Many results mentioned above suggest that random ±1 polytopes typi-
cally display an extremal or “almost” extremal behavior of many geometric
parameters of interest. For polytopes spanned by independent Gaussian (or
spherical) vectors in Rn, studied in asymptotic geometric analysis, a similar
phenomenon is well known since a major result by Gluskin [Gl2] on the diam-
eter of Minkowski compactum, followed by independent results by Gluskin
and Szarek, [Gl3] and [S], on the basis constant. Many other papers contin-
ued this direction; the reader may consult the survey [MT2] and references
therein for details. However, similar results for ±1, or more generally, sub-
gaussian, polytopes, although resting on a similar approach, are far from
being straightforward and require more sophisticated tools.

Geometric results of this paper are variants of the theorems from [Gl2],
[Gl3], [S] for the class of symmetric polytopes spanned by random vectors
with independent subgaussian coordinates with a uniform control of param-
eters. This class includes random ±1 polytopes. In particular, in Theorem
2.3 we establish a lower bound for the Banach–Mazur distance between a
“typical” pair of such polytopes in Rn, of the form cn, where c depends on
the numbers of vectors generating each polytope. In the case when the num-
ber of vectors for both polytopes is proportional to n, for majority of pairs
of such polytopes the Banach–Mazur distance is of maximal possible order,
i.e., constant times the dimension.

Another geometric result, Theorem 2.4, provides a lower estimate for the
minimal norm of a proportional projection for a “typical” subgaussian poly-
tope B (considered as an operator acting on a Banach space generated by B).
As above, if the number of vectors defining B is polynomial in the dimension,
the discussed quantity is (up to a logarithmic factor) of the maximal possible
order, i.e., square root of the dimension.

The paper is organized as follows:
In Section 2 we introduce basic definitions and provide some known im-

portant facts concerning random vectors with subgaussian coordinates. Also
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the main results of the paper are formulated.
Section 3 contains the proof of the main probabilistic result. Namely we

prove in Theorem 2.5 an exponential upper bound for the probability of the
event that an image by a linear operator A : Rn → Rn of a random vector
ξ with independent subgaussian coordinates, belongs to the Euclidean ball
with a specific radius. This is done in terms of the Hilbert–Schmidt and
operator norms of A and the subgaussian constant of ξ.

In the next section we use a recent result from [LPRTV1] to derive from
Theorem 2.5 a general upper estimate of the probability that the image by
a linear operator of a subgaussian vector belongs to a suitable multiple of a
symmetric convex body K ⊂ Rn.

In Section 5 we prove Theorem 2.3 on the Banach–Mazur distance of a
“typical” pair of two random polytopes (that may have different numbers
of vertices). The main new ingredient in the proof is the estimate from the
previous section.

In the last section we prove the result on norms of projections. Here, in
addition to the estimate from Section 4, to overcome difficulties arising from
the lack of rotation invariance of subgaussian vectors, we use a recent result
from [ST] on decoupling weakly depending events.

2 Preliminaries and main results

2.1 General notation We shall use standard notations. In particu-
lar, by |·| and 〈·, ·〉 we denote the canonical Euclidean norm and the canonical
inner product on Rn while e1, . . . , en and Bn

2 stand for the canonical basis
and the Euclidean unit ball in Rn, respectively.

For a subset A ⊂ Rn by conv A we denote the convex hull of A and the
symmetric convex hull of A is denoted by absconv A = conv (A ∪ −A). By
a symmetric convex body B ⊂ Rn we mean a centrally symmetric compact
subset of Rn with nonempty interior, i.e. B is a convex body satisfying
B = −B. Often, we shall identify such a symmetric convex body B with
the n-dimensional Banach space (Rn, ‖ · ‖B) for which B is the unit ball.
Consequently, for a pair of symmetric convex bodies B1, B2 ⊂ Rn and an
operator T ∈ L(Rn) by ‖T‖B1→B2 we shall denote the norm of T considered
as an operator acting from (Rn, ‖ · ‖B1) to (Rn, ‖ · ‖B2). Moreover,

‖T‖HS = (
n∑
i=1

|Tei|2)1/2 and ‖T‖op = ‖T‖Bn
2→Bn

2
.
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Let B1, B2 ⊂ Rn be a pair of symmetric convex bodies. Recall that the
Banach–Mazur distance d(B1, B2) is defined by

d(B1, B2) = inf{‖T‖B1→B2 ‖T−1‖B2→B1}

where infimum is taken over all invertible operators T ∈ Rn.
The volume of a body B ⊂ Rn is denoted by |B|. For a pair of subsets

B1, B2 ⊂ Rn by N(B1, B2) we denote the covering number of B1 by B2, i.e.,
the minimal number of translates of B2 covering B1.

N(B1, B2) := min
{
k | ∃x1, . . . xk such that B1 ⊂

k⋃
i=1

xi +B2

}
.

2.2 Subgaussian random variables and random vectors
By g, gi, i ≥ 1, we denote independent N (0, 1) Gaussian random variables.
By P(·) we denote the probability of an event, and by E, the expectation.

For a random variable ξ and p > 0 we put ‖ξ‖p := (E|ξ|p)1/p. A random
variable ξ is called subgaussian if there exists a constant β <∞ such that

‖ξ‖2k ≤ β‖g‖2k for k = 1, 2, . . . . (2.1)

We shall refer to the infimum over all β satisfying (2.1) as the subgaussian
constant of ξ. Let us mention, although we shall not use it directly here, that
an equivalent definition is often given in terms of the ψ2-norm. Denoting by
ψ2 the Orlicz function ψ2(x) = exp(x2)− 1, ξ is subgaussian if and only if

‖ξ‖ψ2 := inf{t > 0 | Eψ2(ξ/t) ≤ 1} <∞. (2.2)

Denoting by β̃ the subgaussian constant of ξ, a direct calculation shows the
following folklore (and not optimal) estimate

β̃ ≤ ‖ξ‖ψ2 ≤ β̃‖g‖ψ2 = β̃
√

8/3.

The lower estimate follows since Eψ2(X) ≥ EX2k/k! and Eg2k = (2k−1)!! for
k = 1, 2, . . .. The upper one is using the fact that E exp(tg2) = (1 − 2t)−1/2

for t < 1/2.
Apart from Gaussian random variables the prime example of subgaussian

variables are Bernoulli random variables, taking values ±1 with P(ξ = 1) =
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P(ξ = −1) = 1/2. Recall that in this case both variation and the subgaussian
constant are equal to 1.

In this paper we will work with random vectors in Rn of the form ξ =
(ξ1, . . . , ξn), where ξi are independent subgaussian random variables, and
we will refer to such vectors as subgaussian vectors. We will require that
Var(ξi) ≥ 1 and subgaussian constants are at most β. Note that under these
assumptions we have Eξ2

i ≥ Var(ξi) ≥ 1 = Eg2, hence β ≥ 1.

Fact 2.1 Let ξ = (ξ1, . . . , ξn) be as above. Then for any u ≥ 0,

P(|ξ| ≥ u
√
n) ≤ exp

(
n (ln 2− u2/(3β2))

)
. (2.3)

In particular, P
(
|ξ| ≥ 3β

√
n
)
≤ e−2n.

Proof Indeed, for an arbitrary s > 0 and 1 ≤ j ≤ n we have

E exp

(
ξ2
j

s2

)
=

∞∑
k=0

1

k! · s2k
Eξ2k

j ≤
∞∑
k=0

β2k Eg2k

k! · s2k
= E exp

(
(βg)2

s2

)
,

and this last quantity is less than or equal to 2 for e.g., s =
√

3β. For this
choice of s,

P

(
n∑
j=1

ξ2
j ≥ u2n

)
≤ E exp

(
1

s2

(
n∑
j=1

ξ2
j − u2n

))

≤ exp

(
−u

2n

s2

) n∏
j=1

E exp

(
ξ2
j

s2

)
≤ exp

(
−u

2n

3 β2

)
· 2n,

which is the desired result. 2

For N ≥ n consider N random vectors ξj = (ξ1,j, . . . , ξn,j) ∈ Rn (j =
1, . . . , N), where ξi,j are independent subgaussian random variables with
Var(ξi,j) ≥ 1 and subgaussian constants at most β. Denote the matrix
[ξi,j]i≤n,j≤N by Γ.

Fact 2.2 Let N ≥ 2n. In the above notation, consider Γ as an operator
Γ : RN → Rn. Then there exist µ1, µ2 > 0 depending on β only such that

(i) P
(
∃x ∈ Rn s.t. |Γ∗x| < µ1

√
N |x|

)
≤ exp(−µ2N).
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(ii) P
(
µ1B

n
2 6⊂ absconv {ξj}j≤N

)
≤ exp(−µ2N).

Remark Replacing µ1 and µ2 by min(µ1, µ21) we may assume that both µ1

and µ2 less than 1.

Proof (i) follows from the main result in [LPRT] on singular values of
rectangular matrices (Theorem 3.1 and Remark 4 following it).

(ii) Since ξj = Γej for j = 1, . . . , N , condition µ1B
n
2 6⊂ absconv {Γej}j≤N

immediately implies, by separation theorem, that |Γ∗x| < µ1

√
N for some

x ∈ Rn with |x| = 1, and the estimate follows from (i). 2

Remark The condition N ≥ 2n has been chosen only to avoid inessential
constants in further arguments. Indeed, it suffices to use that (i) and (ii)
hold for N ≥ λ0n where λ0 > 1 is some absolute constant. This fact in turn
is a consequence of a much easier variant of the main result in [LPRT] (see
Remarks 3 and 4 after Theorem 3.1 in [LPRT]).

2.3 Main results The main subject of this paper are random poly-
topes in Rn determined by subgaussian vectors. So such a polytope is of the
form

B := absconv {ξj}j≤N , (2.4)

where N ≥ n and ξ1, . . . , ξN are random subgaussian vectors as above. In
the case when ξj’s are Bernoulli vectors (i.e. ξi,j are independent Bernoulli
random variables), the body B is a so called random symmetric ±1-polytope,
that means the symmetric convex hull of N independently chosen vertices of
the unit cube in Rn.

For the moment fix N and M . Let B and B̃ be two such polytopes gener-
ated by independent random variables {ξi,j}j≤N and {ξ̃i,j}j≤M , respectively.
The first theorem says that with a large probability, such a pair (B, B̃) has
the Banach–Mazur distance of order n. More precisely,

Theorem 2.3 There exist µ3 > 2, µ4 > 1 and 0 < µ5 < 1, µ′ > 0 depending
on β only such that the following holds. Suppose N,M > µ3n satisfy

µ4 ln ln(M/n) ≤ N/n ≤ exp exp
(
(1/µ4)M/n

)
. (2.5)
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Let B and B̃ be defined as in (2.4) by independent subgaussian vectors {ξj}j≤N
and {ξ̃j}j≤M , respectively. Then, with probability larger than or equal to
1− 2(M +N + 3) exp(−µ5n), we have

d(B, B̃) ≥ (1/4)αn,

with α =
(
c1 ln(N/n) ln(M/n)

)−µ′
, where c1 > 0 is a universal constant.

The theorem above has its roots in the ground breaking result of Gluskin
[Gl2] which provided the first random construction of pairs of symmetric
convex bodies in Rn with Banach-Mazur distance of the order of cn. For
more recent development in this direction we refer the reader to [MT1] where
a more general situation in a rotation invariant setting is studied.

Another geometric property of a random polytope which we are going
to study is the relation between projection of the polytope onto a linear
subspace E and its section by E. The theorem below states that a typical
body defined as in (2.4) has the property that for every projection P onto E
with n/4 ≤ dimE ≤ 3n/4, the image P (B) of the polytope sticks out of the
multiple of the section α(B ∩ E) for α as large as

√
n (up to a logarithmic

factor).

Theorem 2.4 There exist µ6 > 1 and µ′ > 0 depending on β only such that
the following holds. Suppose that N ≥ µ6n

2 lnn. Let B be defined as in
(2.4) by independent subgaussian vectors. Then, with probability larger than
or equal to 1− (N + 1) exp(−2n), we have, for every projection P : Rn → Rn

with n/4 ≤ rank P ≤ 3n/4,

‖P‖B→B ≥ α
√
n,

with α =
(
c2 ln(N/n)

)−µ′
, where c2 > 0 is a universal constant.

Theorem 2.4 is modelled on results of Gluskin [Gl3] and Szarek [S] who
considered some version of symmetric random polytopes generated by spher-
ical and gaussian points. For more details see also [MT2].

A new ingredient in proofs of the both theorems above is the following
estimate for subgassian vectors which seems to be of independent interest.
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Theorem 2.5 Let A be a non-zero n×n matrix and ξ = (ξ1, . . . , ξn), where
ξi are independent subgaussian random variables with Var(ξi) ≥ 1 and sub-
gaussian constants at most β. Then for any y ∈ Rn we have

P
(
|Aξ − y| ≤ ‖A‖HS/2

)
≤ 2 exp

(
− c0
β4

(‖A‖HS

‖A‖op

)2
)
, (2.6)

where c0 > 0 is a universal constant.

Remark Note that a standard calculation shows that in the situation of
the Theorem, for A = [aij] one has

E|Aξ − y|2 ≥ E|A(ξ − Eξ)|2 =
∑
ij

a2
ijVar(ξj) ≥ ‖A‖2

HS.

Remark It will be convenient for a further argument to assume that c0 ≤
1/2. This is of course possible to do, replacing c0 by min(c0, 1/2).

For Gaussian variables an easy well-known estimate analogous to The-
orem 2.5 may be given in terms of detA (see e.g., [MT2]). The following
strengthening is far less elementary and uses a recent result on small balls
probability, [LaO]. As it might be of independent interest, we include it here
(with the sketch of the proof at the end of Section 3), although it is not used
in the present paper.

Proposition 2.6 Let A be a non-zero n × n matrix and θ = (g1, . . . , gn),
where gi are independent N (0, 1) random variables. Then there exist uni-
versal constants α0 ∈ (0, 1) and κ > 0 such that for any y ∈ Rn and any
α ∈ (0, α0) we have

P
(
|Aθ − y| ≤ α‖A‖HS

)
≤ exp

(
κ logα

(‖A‖HS

‖A‖op

)2
)
. (2.7)

Remark In the theorem above one can make the probability in (2.7) as
small as one wishes by choosing sufficiently small α ∈ (0, α0), which is not
the case for the subgaussian vectors in (2.6).

Remark It follows directly from (2.6) and the definition of covering number
that for for an arbitrary convex body B ⊂ Rn one has

P
(
Aξ ∈ B

)
≤ 2N(B,

1

2
‖A‖HSB

n
2 ) exp

(
− c0
β4

(‖A‖HS

‖A‖op

)2
)
,
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while in the Gaussian case, (2.7) yields the estimate

P
(
Aθ ∈ B

)
≤ N(B,α‖A‖HSB

n
2 ) exp

(
κ logα

(‖A‖HS

‖A‖op

)2
)
,

for an arbitrary α ∈ (0, α0).

3 Operators acting on subgaussian vectors; Euclidean
estimates

In this section we shall prove Theorem 2.5. The argument is based on two
lemmas.

Lemma 3.1 Let ξ1, ξ2, . . . , ξn be a sequence of independent symmetric sub-
gaussian random variables satisfying (2.1) with constant β and B = (bij) be
a symmetric matrix with zero diagonal. Then for any t > 1,

P
(∣∣∣∑

i<j

bijξiξj

∣∣∣ ≥ Cβ2(
√
t‖B‖HS + t‖B‖op)

)
≤ e−t,

where C is a universal constant.

Proof By (2.1) and by the symmetry of ξi we immediately get ‖a+bξi‖2k ≤
‖a + bβgi‖2k for any real numbers a, b and a positive integer k. Hence easy
induction shows that∥∥∥∑

i<j

bijξiξj

∥∥∥
2k
≤
∥∥∥∑
i<j

bijβgiβgj

∥∥∥
2k

= β2
∥∥∥∑
i<j

bijgigj

∥∥∥
2k
.

Using Hanson-Wright estimate (cf. [HaW]) we get

‖
∑
i<j

bijξiξj‖2k ≤ C ′β2(
√

2k‖B‖HS + 2k‖B‖op).

with some universal constant C ′. Take k := dt/2e, then by Chebyshev’s
inequality

P
(∣∣∣∑

i<j

bijξiξj

∣∣∣ ≥ eC ′β2(
√

2k‖B‖HS + 2k‖B‖op)
)
≤ e−2k ≤ e−t.

The statement easily follows, since k ≤ t. 2
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Lemma 3.2 Let ξ1, ξ2, . . . , ξn be a sequence of independent random variables
with finite fourth moments. Then for any nonnegative coefficients bi and
t > 0,

P
( n∑
i=1

bi(Eξ2
i − ξ2

i ) >
(
2t

n∑
i=1

b2iEξ4
i

)1/2) ≤ e−t.

Proof We may obviously assume that
∑n

i=1 b
2
iEξ4

i > 0. For x ≥ 0, we have
e−x = (ex)−1 ≤ (1 + x+ x2/2)−1 ≤ 1− x+ x2/2. Thus for λ ≥ 0,

E exp(−λξ2
i ) ≤ 1− λEξ2

i +
1

2
λ2Eξ4

i ≤ exp(−λEξ2
i +

1

2
λ2Eξ4

i ).

Letting S =
∑n

i=1 bi(Eξ2
i − ξ2

i ), we get E exp(λS) ≤ exp(1
2
λ2
∑n

i=1 b
2
iEξ4

i ),
and for any u ≥ 0,

P(S ≥ u) ≤ inf
λ≥0

E exp(λS − λu) ≤ exp
(
− u2

2
∑n

i=1 b
2
iEξ4

i

)
.

2

Proof of Theorem 2.5 Let ξ′ = (ξ′1, . . . , ξ
′
n) denote the independent copy

of ξ and set θ = (θ1, . . . , θn) := ξ−ξ′. Variables θi are independent symmetric
with subgaussian constants at most 2β. Put

p := P(|Aξ − y| ≤ ‖A‖HS/2).

Then

p2 = P
(
|Aξ − y| ≤ ‖A‖HS/2, |Aξ′ − y| ≤ ‖A‖HS/2

)
≤ P

(
|Aθ| ≤ ‖A‖HS

)
.

Let B = AAT = (bij). Then bii =
∑

j a
2
ij ≥ 0 and

|Aθ|2 = 〈Bθ, θ〉 =
∑
ij

bijθiθj =
∑
i

biiθ
2
i + 2

∑
i<j

bijθiθj.

Notice that Var(θi) = 2Var(ξi) ≥ 2, so that
∑

i bii Eθ2
i ≥ 2tr(B) = 2‖A‖2

HS.
Thus

p2 ≤ P
(
|Aθ|2 ≤ ‖A‖2

HS

)
≤ P

(
2
∑
i<j

bijθiθj +
∑
ii

bii(θ
2
i − Eθ2

i ) ≤ −‖A‖2
HS

)
(3.1)

≤ P
(
|
∑
i<j

bijθiθj| ≥ ‖A‖2
HS/3

)
+ P

(∑
i

bii(θ
2
i − Eθ2

i ) ≤ −‖A‖2
HS/3

)
.
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Notice that we have ‖(bijδi6=j)‖HS ≤ ‖B‖HS = ‖AAT‖HS ≤ ‖A‖op‖A‖HS

and ‖(bijδi6=j)‖op ≤ ‖B‖op + ‖(bijδi=j)‖op ≤ 2‖B‖op ≤ 2‖A‖2
op. Hence by

Lemma 3.1 we get

P
(∣∣∣∑

i<j

bijθiθj

∣∣∣ ≥ ‖A‖2
HS/3

)
≤ 2 exp

(
−(C ′′β4)−1

(
‖A‖HS

‖A‖op

)2)
. (3.2)

We have ‖θi‖4 ≤ 2‖ξi‖4 ≤ 2β‖gi‖4, thus

n∑
i=1

b2iiEθ4
i ≤ 48β4

n∑
i=1

b2ii ≤ 48β4‖B‖2
HS ≤ 48β4‖A‖2

op‖A‖2
HS.

Therefore, by Lemma 3.2,

P
(∑

i

bii(Eθ2
i − θ2

i ) ≥ ‖A‖2
HS/3

)
≤ exp

(
−(C ′′′β4)−1

(
‖A‖HS

‖A‖op

)2)
. (3.3)

Thus by (3.1)-(3.3),

p2 ≤ 4 exp
(
−(max(C ′′, C ′′′)β4)−1

(
‖A‖HS

‖A‖op

)2)
,

which completes the proof. 2

Remark Lemma 3.2 is somewhat special in that we assume that coefficients
are nonnegative. In the general case one has for any sequence of independent
random variables ξi with subgaussian constant at most β and t > 1,

P
(∣∣∣ n∑

i=1

ai(Eξ2
i − ξ2

i )
∣∣∣ > Cβ2(t‖(ai)‖∞ +

√
t|(ai)|)

)
≤ e−t. (3.4)

We provide a sketch of the proof of the inequality (3.4) for the sake of
completeness. Let (ξ̃i) be an independent copy of (ξi). We have by Jensen’s
inequality for p ≥ 1,∥∥∑

i

ai(ξ
2
i − E(ξ2

i ))
∥∥
p
≤
∥∥∑

i

ai(ξ
2
i − ξ̃2

i )
∥∥
p
.

Variables ξ2
i − ξ̃2

i are independent, symmetric and for k ≥ 1, ‖ξ2
i − ξ̃2

i ‖2k ≤
2β2‖g2

i ‖2k ≤ 4β2‖ηi‖2k where ηi are i.i.d. symmetric exponential r.v.’s with
variance 1. Therefore, for positive integer k,∥∥∑

i

ai(ξ
2
i − ξ̃2

i )
∥∥

2k
≤ 4β2

∥∥∑
i

aiηi
∥∥

2k
≤ C1β

2(k‖(ai)‖∞ +
√
k‖(ai)‖2),
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where the last inequality follows by Gluskin-Kwapień estimate [GK]. Hence
by Chebyshev’s inequality

P
(∣∣∣∑

i

ai(ξ
2
i − E(ξ2

i ))
∣∣∣ ≥ eC1β

2(k‖(ai)‖∞ +
√
k‖(ai)‖2)

)
≤ e−2k

and the assertion easily follows.

Remark The assumption about independence of coordinates of random
subgaussian vector ξ is important. Let G ∼ N (0, In) and let θ be a random
variable independent of G with P(θ =

√
2) = P(θ = 0) = 1/2. Put ξ := θG,

then ‖〈y, ξ〉‖2k ≤
√

2|y|‖g‖2k and Var(〈y, ξ〉) ≥ |y|2 for any y ∈ Rn. However
Aξ has an atom with mass at least 1/2 at zero for any matrix A and estimate
given in Theorem 2.5 does not hold in this case.

Proof of Proposition 2.6 By Anderson’s inequality (cf. e.g., [LeTa, p.73])
it suffices to consider the case y = 0. Let T be a countable dense subset of the
unit sphere Sn−1 ⊂ Rn and let (Gt)t∈T be a centered Gaussian process defined
by Gt = 〈Aθ, t〉. Then one can easily check that σ = supt∈T (EG2

t )
1/2 =

‖A‖op whereas (E|Aθ|2)1/2 = ‖A‖HS. It is a standard fact that a median of
a supremum of a centered Gaussian process is equal to its L2-norm, up to
a universal factor. That is, there exist universal constants a, b > 0 such
that M = Med (supt∈T |Gt|) = Med (|Aθ|) satisfies a‖A‖HS ≤ M ≤ b‖A‖HS.
Hence the assertion immediately follows from Theorem 4 in [LaO]. 2

4 Operators acting on subgaussian vectors; general es-
timates

In this section we will get estimates of a similar type as in Theorem 2.5 for
probability that Aξ belongs to a general convex and symmetric set K rather
than to a Euclidean ball. In the case of polytopes given by Gaussian vectors,
studied in depth by many authors cited in the Introduction, and especially in
the case of Gaussian projections of arbitrary bodies, this probability was nat-
urally expressed in terms of the volume of K. In the present subgaussian case,
a natural approach (introduced in a similar context in [LPRTV1, LPRTV2]
and developed in [LPT]) is to cover K by N Euclidean balls of an appropriate
radius and apply Theorem 2.5 combined with an upper bound for the cover-
ing number N . Although one could estimate N in general by, for example,
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Sudakov’s inequality, the use of volumes often gives slightly better bounds.
We therefore follow this approach in our estimates.

Unfortunately a simple bound for N by the volume ratio argument is
too weak in the present situation since we may not be able to make the
probability in the proof of Theorem 2.5 as small as would be required; hence
we need to use a more sophisticated covering argument given by the following
proposition from [LPRTV1, LPRTV2].

For K ⊂ Rn we let VK =
(
|K|/|Bn

2 |
)1/n

.

Proposition 4.1 For every 0 < r ≤ 1/e, every symmetric convex body K ⊂
Rn satisfying Bn

2 ⊂ K, and every 0 < η̃ ≤ ln(4πVK)/ ln(1/r) one has

N (α̃K ∩Bn
2 , rB

n
2 ) ≤ 2η̃n for α̃ = (4πVK)(c1/η̃) ln r ,

where c1 > 0 is a universal constant.

Theorem 4.2 Let A be a non-zero n×n matrix and ξ = (ξ1, . . . , ξn), where
ξi are independent subgaussian random variables with Var(ξi) ≥ 1 and sub-
gaussian constants at most β. Let K ⊂ Rn be a symmetric convex body
satisfying Bn

2 ⊂ K. Then

P
(
Aξ ∈ α‖A‖op

√
nK

)
≤ 3 exp

(
−c0 a(A)2/(2β4)

)
,

where a(A) := ‖A‖HS/‖A‖op,

α = 3β (4πVK)(c2/η) ln(a(A)/(6β
√
n))

and η := a(A)2/(nβ4), where c0 is the constant from Theorem 2.5, and c2 > 0
is a universal constant.

It follows from the proof that one can take c2 = 2c1 ln 2/c0, where c1 is
the constant from Proposition 4.1.

Proof Set Ω1 =
(
|ξ| ≤ 3β

√
n
)

so that by Fact 2.1 the probability of the
complement satisfies P(Ωc

1) ≤ e−2n. We shall show that

P
(
Aξ ∈ α‖A‖op

√
nK ∩ 3β‖A‖op

√
nBn

2

)
≤ 2e−c0 a(A)2/(2β4). (4.1)

Since |Aξ| ≤ ‖A‖op|ξ| ≤ ‖A‖op · 3β
√
n on Ω1, then(

Aξ ∈ α‖A‖op

√
nK

)
⊂
(
Aξ ∈ α‖A‖op

√
nK ∩ 3β‖A‖op

√
nBn

2

)
∪ Ωc

1,

13



which will immediately conclude the desired estimate, by (4.1) and the fact
that c0 a(A)2/(2β4) ≤ 2n (note that c0 ≤ 1, a(A) ≤

√
n and β ≥ 1).

Consider the covering

N : = N
(
α‖A‖op

√
nK ∩ 3β‖A‖op

√
nBn

2 , (‖A‖HS/2)Bn
2

)
= N

( α
3β

K ∩Bn
2 ,

a(A)

6β
√
n
Bn

2

)
,

with the equality obtained by rescaling all sets involved by dividing them
by 3β‖A‖op

√
n. We use Proposition 4.1 with r = a(A)/(6β

√
n) and η̃ =

(c0/(2 ln 2))a(A)2/(nβ4). In particular, η̃ = (18c0/ ln 2)r2/β2 and it is easy
to check that if c0 is sufficiently small (since sup0≤r≤1/6 r

2 ln(1/r) = (ln 6)/36,
c0 ≤ 1/2 works), then η̃ ≤ 1/ ln(1/r), and hence r and η̃ remain in the
appropriate ranges. This yields α satisfying

α/3β = α̃ = (4πVK)(c1/η̃) ln r = (4πVK)(c2/η) ln(a(A)/(6β
√
n)) ,

where η = a(A)2/(nβ4) and c2 = 2c1 ln 2/c0. Most importantly, we get the
estimate N ≤ 2η̃n = exp

(
c0a(A)2/(2β4)

)
.

Let y1, . . . , yN be such that

α‖A‖op

√
nK ∩ 3β‖A‖op

√
nBn

2 ⊂
N⋃
i=1

(yi + (‖A‖HS/2)Bn
2 ) .

By Theorem 2.5 for every 1 ≤ i ≤ N we have

P
(
Aξ ∈ yi + (‖A‖HS/2)Bn

2

)
≤ 2 exp

(
−c0a(A)2/β4

)
.

Thus

P
(
Aξ ∈ α‖A‖op

√
nK ∩ 3β‖A‖op

√
nBn

2

)
≤ N · 2e−c0a(A)2/β4

≤ 2e−c0a(A)2/(2β4),

which concludes the proof of (4.1). 2

The results of the next two Sections are based on a probabilistic estimate
which easily follows from a special case of Theorem 4.2. To fix the setting,
let M ≥ n, let u1, . . . , uM ∈ Rn with |ui| ≤

√
n for 1 ≤ i ≤M , and set

B0 := absconv {ui}i≤M . (4.2)

14



Recall that every operator T : Rn → Rn can be written in the form

Tx =
n∑
l=1

sl(T )〈x, vl〉ṽl for every x ∈ Rn,

where {vl}nl=1 and {ṽl}nl=1 are orthogonal bases and s1(T ) ≥ s2(T ) ≥ . . . ≥
sn(T ) ≥ 0 are uniquely determined by T . The sequence {sl(T )}nl=1 is called
the sequence of s-numbers of T .

Corollary 4.3 Let ξ = (ξ1, . . . , ξn), where ξi are independent subgaussian
random variables with Var(ξi) ≥ 1 and subgaussian constants at most β. Let
1 ≤ m ≤ n and let T : Rn → Rn be an operator with the m’th s-number
sm(T ) ≥ 1. Then

P
(
Tξ ∈ α

√
nB0

)
≤ 3e−µm,

where α = 3β
(
c3 ln(1 + M/n)

)−µ′
, c3 > 0 is a universal constant, µ > 0

depends on β and µ′ > 0 depends on β and λ := n/m.

Proof Let T =
∑n

l=1 sl(T )〈 ·, vl 〉 ṽl be a polar decomposition of T . Set
E ⊂ Rn to be a subspace spanned by {v1, . . . , vm} and let F := T (E). Let
PE and PF denote the orthogonal projections onto E and F respectively,
let T̃ : E → F be the restriction of T to E and let S = T̃−1 : F → E.
Thus PFT = T̃PE, and consequently, the event Tξ ∈ α

√
nB0 is contained in

PEξ ∈ α
√
nSPF (B0).

Note that by the assumption on T we get that ‖S‖op ≤ 1. So SPF (B0) =
absconv {SPFui}i≤M and |SPFui| ≤

√
n for all i ≤M . Finally, let

B′
0 = absconv {SPFu1, . . . , SPFuM ,

√
ne1, . . .

√
nen},

where e1, . . . , en is the standard unit vector basis in Rn. We shall apply
Theorem 4.2 for A = PE and K = B′

0. Note that B′
0 ⊃ Bn

2 and by a well
known estimate (cf., [CP], see also [Gl1]), VB′

0
≤ c′

√
ln(1 +M/n), where

c′ > 0 is a universal constant. Also, a(PE) =
√
m. This yields (setting

λ := n/m),

α = 3β
(
c3 ln(1 +M/n)

)−c4β4λ ln(36β2λ)
,

where c3, c4 > 0 are universal constants. Since SPF (B0) ⊂ B′
0, by Theo-

rem 4.2 we infer that

P
(
PE ξ ∈ α

√
nSPF (B0)

)
≤ P

(
PE ξ ∈ α

√
nB′

0

)
≤ 3e−c0m/(2β

4).
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This concludes the proof by letting µ := c0/(2β
4) and µ′ := c4β

4λ ln(36β2λ).
2

Remark An alternative direct proof of Corollary 4.3 could be done following
the lines of the argument in Theorem 4.2, but replacing the estimate of
Proposition 4.1 by Carl’s estimates ([C]) of the entropy numbers of operators
from a body of the form B0 (or B′

0) to `n2 .

5 Banach–Mazur distances for subgaussian polytopes

For j ≥ 1 let ξj = (ξ1,j, . . . , ξn,j), ξ̃
j = (ξ̃1,j, . . . , ξ̃n,j) ∈ Rn where ξi,j, ξ̃i,j

are independent subgaussian random variables with variances at least 1
and subgaussian constants at most β, and let Ω, Ω̃ denote the underlying
probability spaces. Fix N,M > 2n and recall that we consider polytopes
B = B(ω) := absconv {ξj}j≤N and B̃ = B(ω̃) := absconv {ξ̃j}j≤M .

We first define “good” subsets Ω0 ⊂ Ω and Ω̃0 ⊂ Ω̃. Set

Ω0 =
(
|ξi| ≤ 3β

√
n for 1 ≤ i ≤ N and µ1B

n
2 ⊂ absconv {ξj}j≤2n

)
. (5.1)

The set Ω̃0 ⊂ Ω̃ is defined fully analogously for random vectors ξ̃j and
replacing N by M .

Thus fix ω̃0 ∈ Ω̃0 and note that the polytope

B0 := (1/(3β))B(ω̃0) = absconv {ξ̃j(ω̃0)/(3β)}j≤M

satisfies (4.2), with ui = ξ̃i(ω̃0)/(3β) for 1 ≤ i ≤M.

The argument in the proof of Theorem 2.3 splits into three steps which will
be addressed separately. Let us emphasize that the roles played by random
variables ξj for j ≤ 2n and j > 2n are completely different. In particular,
the latter variables are used in Step I below to obtain probabilistic estimates
while the first 2n of the ξj’s are used to control cardinality of nets in the
space of operators considered in Step II below.

It is therefore convenient to consider Ω as Ω = Ω′ × Ω′′, where Ω′ cor-
responds to the variables {ξj}j≤2n and Ω′′ corresponds to {ξj}2n<j≤N . Fur-
thermore, represent Ω0 as Ω′

0 × Ω′′
0 where Ω′

0 ⊂ Ω′ and Ω′′
0 ⊂ Ω′′ are defined

in a natural way. We will also denote by P,P′′ and P̃ underlying probability
measures defined on Ω,Ω′′ and Ω̃, respectively.
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Step I. Estimate for a fixed operator. With the notation above, let
T : Rn → Rn be an operator with the [n/2]’th s-number s[n/2](T ) ≥ 1. Then

P′′
(
ω′′ |Tξj ∈ α

√
nB0 for 2n < j ≤ N

)
≤ 3N−2n exp

(
−µn(N − 2n)

)
,

(5.2)

where α = 3β
(
c3 ln(M/n)

)−µ′
, c3 > 0 is a universal constant and µ, µ′ > 0

depend on β. Due to the independence of the ξj’s this is an immediate
consequence of Corollary 4.3. The value of α will be fixed till the end of this
section.

The argument in the next two steps will be done for a fixed ω′0 ∈ Ω′
0. Set

ξj1 = ξj(ω′0) for 1 ≤ j ≤ 2n and notice that∣∣absconv {ξj1}j≤2n

∣∣ ≥ µn1 · |Bn
2 |. (5.3)

Step II. δ-net in the set of operators. Fix ω′0 ∈ Ω′
0. By (5.3) we get

µn1 · |Bn
2 | ≤

∣∣absconv {ξj1}j≤2n

∣∣ ≤ (2n

n

)
max
|σ|=n

∣∣absconv {ξj1}j∈σ
∣∣.

Hence there is σ1 ⊂ {1, . . . , 2n} with |σ1| = n such that
∣∣absconv {ξj1}j∈σ1

∣∣ ≥
µ̄n|Bn

2 |, where µ̄ = µ1/4 > 0 depends on β only.

Consider the following set of operators T : Rn → Rn

A := {T |Tξj1 ∈ α
√
nB0 for j ∈ σ1}.

We shall control the cardinality of a minimal net in a smaller set A0 of
operators which will be still sufficient for our purposes. Let

A0 := {T |Tξj1 ∈ α
√
nB0 for j ≤ 2n and s[n/2](T ) = 1} ⊂ A.

Note that B0 ⊃ µ1B
n
2 (as ω̃0 ∈ Ω̃0) and observe that the set of operators A

is of the form that allows to use Proposition 5.3 of [MT1] to estimate cardinal-
ity of nets in its subsets. Namely, using this proposition (with B := α

√
nB0

and E := µ1α
√
nBn

2 ) we get, that for every 0 < δ′ ≤ 1/(3β
√
n) ≤ 1/max |ξj1|

there exists a δ′-net N ⊂ A0 in the operator norm in L(Bn
2 , µ1α

√
nBn

2 ), from
Bn

2 to µ1α
√
nBn

2 , of cardinality

|N | ≤
(
C

δ′

)n2
(

|B| |Bn
1 |

|E| | absconv {ξj1}j∈σ1|

)n

≤
(
C

δ′

)n2
(

|B0| |Bn
1 |

|µ1Bn
2 | | absconv {ξj1}j∈σ1|

)n

≤

(
µ̄′
√

ln(1 +M/n)

µ1δ′
√
n

)n2

,
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where C is a universal constant and µ̄′ depends on β. For the last inequality
note that the estimate from [CP] and the definition of B0 yield

|B0|/|Bn
2 | ≤ (c′

√
ln(1 +M/n))n,

while by the choice of σ1 one has

|Bn
1 |/| absconv {ξj1}j∈σ1| ≤ (µ′′/

√
n)n,

where c′ is a numerical constant and µ′′ depends only on β.
For an arbitrary 0 < δ < µ1α/(3β), considering δ′ = δ/(µ1α

√
n), the

above δ′-net N ⊂ A0 becomes a δ-net in the operator norm in L(Bn
2 , B

n
2 ), of

cardinality

|N | ≤

(
µ̄′ α

√
ln(1 +M/n)

δ

)n2

.

Step III. Approximation argument. Fix ω′0 ∈ Ω′
0. Let 0 < δ <

µ1α/(3β), and let N ⊂ A0 be the δ-net constructed at the end of Step
II. Let T ∈ A0 and let T0 ∈ N be such that ‖T − T0‖op ≤ δ.

Consider ω′′ ∈ Ω′′
0 such that for some 2n < j ≤ N ,

T0ξ
j 6∈ α

√
nB0,

which is equivalent to ‖T0ξ
j‖B0 > α

√
n. Since |ξj| ≤ 3β

√
n and µ1B

n
2 ⊂ B0,

we get

‖Tξj‖B0 ≥ ‖T0ξ
j‖B0 − ‖(T − T0)ξ

j‖B0 > α
√
n− ‖(T − T0)ξ

j‖µ1Bn
2

≥ α
√
n− δ|ξj|/µ1 ≥ (α− 3βδ/µ1)

√
n.

Choosing δ = µ1α/(6β) we obtain ‖Tξj‖B0 > (α/2)
√
n.

This leads to an estimate for probability in Ω0 valid in a wide range of N
and M .

Lemma 5.1 There exist µ3 > 2, µ4 > 1 and 0 < µ̃ < 1 depending on β only
such that the following holds. Suppose N,M > µ3n satisfy

N/n ≥ µ4 ln ln(M/n). (5.4)

Set α = 3β
(
c3 ln(M/n)

)−µ′
, as in Step I. Then

P
(
ω ∈ Ω0 | ∃ T : Rn → Rn with s[n/2](T ) = 1 and

‖Tξj‖B0 ≤ (α/2)
√
n for 1 ≤ j ≤ N

)
≤ 3N exp(−µ̃nN).
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Proof For every fixed ω′0 ∈ Ω′
0 consider a subset of Ω′′

0 defined by

Θω′0
=
{
ω′′ ∈ Ω′′

0 | ∃ T : Rn → Rn with s[n/2](T ) = 1 and

‖Tξj‖B0 ≤ (α/2)
√
n for 1 ≤ j ≤ N

}
and note that the condition on T automatically implies that T ∈ A0. Thus,
by the argument above,

Θω′0
⊂
{
ω′′ ∈ Ω′′

0 | ∃ T ∈ A0 with ‖Tξj‖B0 ≤ (α/2)
√
n for 2n < j ≤ N

}
⊂
{
ω′′ ∈ Ω′′

0 | ∃ T0 ∈ N with ‖T0ξ
j‖B0 ≤ α

√
n for 2n < j ≤ N

}
.

By Step II and Step I, P′′(Θω′0
) is less than or equal to(

6µ̄′βµ−1
1

√
ln(1 +M/n)

)n2

max
T∈N

P′′
(
ω′′ | ‖Tξj‖B0 ≤ α

√
n for 2n < j ≤ N

)
≤
(
µ̄′′
√

ln(1 +M/n)
)n2

3N−2n exp(−µn(N − 2n)),

where µ̄′′, µ depend on β only. The assumption on N and M ensures, with
an appropriate choice of µ3, µ4 and µ̃, that the last quantity is less than or
equal to 3N exp(−µ̃nN). The proof is completed by integrating P′′(Θω′0

) with
respect to ω′0. 2

Proof of Theorem 2.3. If exp(µ5n) ≤ 6 then 1−(M+N+4) exp(−µ5n) < 0
and the statement is obvious. So (decreasing the value of µ5 if necessary) we
may assume that n ≥ n0, where n0 depends on β.

Recall that Ω̃0 is the subset of Ω̃ defined as in (5.1) for subgaussian
variables {ξ̃j}j≤M . In particular, by Facts 2.1 and 2.2

p̃0 := P̃(Ω̃0) ≥ (1− e−2n)M − e−µ22n ≥ 1− (M + 1)e−µ
′
2n.

Similarly p0 := P(Ω0) ≥ 1 − (N + 1)e−µ
′
2n. As observed at the beginning of

this Section, for each ω̃ ∈ Ω̃0 the polytope

B0 = (1/(3β))B(ω̃) = (1/(3β)) absconv {ξ̃j}j≤M

satisfies the condition (4.2).
Note that ‖T‖K→B(ω̃) = (1/(3β))‖T‖K→B0 , for any convex body K ⊂ Rn.

Since N and M in particular satisfy (5.4), by Lemma 5.1 we get, for every
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ω̃ ∈ Ω̃0,

P
(
ω ∈ Ω0 | ‖T‖B(ω)→B(ω̃) ≥ (α/(6β))

√
n for every T : Rn → Rn

with sn/2(T ) = 1
)
≥ p0 − 3N exp(−µ̃nN)

≥ 1− (N + 2) exp(−µ̃′n),

where µ̃, µ̃′ depend on β only. By integrating with respect to ω̃ ∈ Ω̃0 we
conclude

(P× P̃)
(
(ω, ω̃) ∈ Ω0 × Ω̃0 |‖T‖B(ω)→B(ω̃) ≥ (α/(6β))

√
n

for every T : Rn → Rn with s[n/2](T ) = 1
)

≥
(
1− (N + 2) exp(−µ̃′n)

)
p̃0 ≥ 1− (M +N + 3) exp(−µ′2n).

Denote the subset above by Θ.

Now observe that the role of B(ω) and B(ω̃) can be interchanged and that
a version of condition (5.4) for N and M replacing each other is satisfied as
well. Therefore, if we define Θ̃ in a analogous way as Θ above then, clearly,

(P× P̃)(Θ̃) ≥ 1− (M +N + 3) exp(−µ′2n).

Putting these estimates together we get

(P× P̃)(Θ ∩ Θ̃) ≥ 1− 2(M +N + 3) exp(−µ′2n),

where µ′2 > 0 depends on β only. The proof is completed by observing that
for every (ω, ω̃) ∈ Θ ∩ Θ̃ (using α as defined in Lemma 5.1),

d(B(ω), B(ω̃)) ≥ (1/4)
(
c23 ln(N/n) ln(M/n)

)−µ′
n,

where c3, µ
′ > 0 are as in Step I. Indeed, let T : Rn → Rn be an invertible

operator. By multiplying T by a suitable constant we may assume that both
s[n/2](T ) and s[n/2](T

−1) are bigger than or equal to 1. Thus, by the definition
of Θ,

‖T‖B(ω)→B(ω̃) ≥ (1/2)
(
c3 ln(M/n)

)−µ′√
n,

and, by the definition of Θ̃,

‖T−1‖B(ω̃)→B(ω) ≥ (1/2)
(
c3 ln(N/n)

)−µ′√
n.

Passing to the infimum over all T we get the required bound for d(B(ω), B(ω̃)).
2
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6 Mixing operators

Recall that an operator T : Rn → Rn is said to be (m, 1)-mixing, form ≤ n/2,
if there exists a subspace E ⊂ Rn with dimE ≥ m such that

|PE⊥Tx| ≥ |x| for every x ∈ E.

The notion of mixing operators has proved to be a convenient tool in discus-
sions of some geometric properties of finite–dimensional Banach spaces. We
shall use the following obvious properties of mixing operators: an operator
T : Rn → Rn is (m, 1)-mixing if and only if for every λ ∈ R, the operator
T + λId is (m, 1)-mixing. Also, if T is (m, 1)-mixing then T is (k, 1)-mixing
for every k ≤ m. Finally, let us also recall that every operator T : Rn → Rn

of the form T = 2P , where P is a (not necessarily orthogonal) projection of
rank l, is (min{l, n− l}, 1)-mixing.

Theorem 2.4 which we will prove in this Section is an immediate conse-
quence of a more general result below, that provides lower estimates of norms
of operators acting on B(ω) in terms of their mixing properties.

Theorem 6.1 Let ρ ∈ (0, 1/2). There exists µ′6 > 1 depending on β and ρ
such that the following holds. Let N ≥ µ′6n

2 ln(en) and let B be defined as in
(2.4) by independent subgaussian vectors with variance ≥ 1 and subgaussian
constants at most β. Then on a set of probability larger than or equal to
1− (N + 1) exp(−2n) body B(ω) has the property that

‖T‖B(ω)→B(ω) ≥ α
√
n (6.1)

for every (m, 1)-mixing operator T : Rn → Rn and every ρn ≤ m ≤ n/2.

Here α =
(
c′3 ln(N/n)

)−µ′
, where c′3 > 0 is a universal constant and µ′ > 0

depends on ρ and β.

Remark If e2n ≤ µ′6n
2 ln(en) then 1 − (N + 1) exp(−2n) < 0 and the

statement is obvious. So increasing if necessary the value of µ′6 we may
assume that n ≥ n0, where n0 depends on β and ρ. Also we may assume

that µ′ ≥ 1 so it is enough to show (6.1) for α =
(
c3 ln(N/n)

)−µ′
/4 and then

choose c′3 = 4c3.

First note that by the comments above on mixing operators, it is sufficient
to prove that (6.1) holds for all (m, 1)-mixing operators T , for m := dρne. By
adjusting the parameter ρ if necessary we may also assume that dρne ≤ n/2.
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For technical reasons in this section we require somewhat more delicate
definitions of the “good” subsets of Ω. Namely we let

Ω0 =
(
|ξi| ≤ 3β

√
n for 1 ≤ i ≤ N and

µ1B
n
2 ⊂ absconv {ξj}j≤2n ∩ absconv {ξj}2n<j≤4n

)
, (6.2)

where µ1 is from Fact 2.2.

For i ≤ N set Bi = Bi(ω) = absconv {ξj}j 6=i and note that by (6.2) for
each i ≤ N and every ω ∈ Ω0

µ1B
n
2 ⊂ Bi(ω). (6.3)

The proof of Theorem 6.1 goes along lines parallel to these of the proof
of Theorem 2.3. Namely, the first step is to establish a probabilistic estimate
for an arbitrary mixing operator. This is the main part of the argument that
requires more delicate combinatorial-probabilistic considerations. The next
steps are already standard: we find a sufficiently dense net, of well controlled
cardinality, in an appropriate class of operators and, finally, by a standard
approximation argument we deduce the required inequalities for all mixing
operators from similar inequalities for each member of the net.

Step I. Estimate for a fixed operator.

Proposition 6.2 Let N > 4n and 1 ≤ m ≤ n/2 and set ρ := m/n. For
every (m, 1)-mixing operator T : Rn → Rn we have

P
(
ω ∈ Ω0 | ‖T‖B(ω)→B(ω) ≤ α

√
n
)
≤
(
N

`

)(
µ′′
√
ne−µm

)`
,

for α =
(
c3 ln(N/n)

)−µ′
/2, where ` = dN/(2n + 3)e, c3 > 0 is a universal

constant, µ, µ′′ > 0 depend on β and µ′ > 0 depends on β and ρ.

Remark For future reference note that for sufficiently large n ≥ n0(β, ρ)

we have
(
N
`

)
(µ′′

√
n exp(−µm))

` ≤ exp(−µ̃N) where µ̃ > 0 depends on ρ and
β.

Proof Fix n, N , m, T as in the proposition and α′ > 0 to be specified later.
For 1 ≤ i ≤ N consider the subset of Ω0

Ai :=
{
ω ∈ Ω0 | Tξi ∈ α′ absconv (ξj)j≤N

}
=

{
ω ∈ Ω0 | ∃ |λ| ≤ 1 s.t. Tξi − α′λξi ∈ α′(1− |λ|)Bi(ω)

}
⊂

{
ω ∈ Ω0 | ∃ |λ| ≤ 1 s.t. Tξi − α′λξi ∈ α′Bi(ω)

}
.
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Let Λ be a µ1/(3β
√
n)-net in the interval [−1, 1] with |Λ| ≤ 6µ−1

1 β
√
n. Then

by (6.3) and the triangle inequality one gets

Ai ⊂
⋃
λ∈Λ

{
ω ∈ Ω0 | Tξi − α′λξi ∈ 2α′Bi(ω)

}
⊂

⋃
λ∈Λ

{
ω ∈ Ω0,i | Tξi − α′λξi ∈ 2α′Bi(ω)

}
, (6.4)

where
Ω0,i := {ω ∈ Ω | |ξj| ≤ 3β

√
n for j 6= i} ⊃ Ω0.

For λ ∈ Λ denote by Ãi,λ the term corresponding to λ in the latter union
in (6.4). First consider a fixed λ ∈ Λ. Set S = T − α′λIdRn . Let E be an
m-dimensional subspace from the definition of the mixing property for the
operator T , that is, such that |PE⊥Tx| ≥ |x| for every x ∈ E and dimE = m.
Then, by the definition of the operator S and a property of mixing operators
mentioned in the beginning of this section,

|Sx| ≥ |PE⊥Sx| ≥ |x| for every x ∈ E. (6.5)

Since dimE = m, this yields sm(S) ≥ 1, and the probability of Ãi,λ can be
tackled using Corollary 4.3.

Additionally, further parts of the argument will also require some con-
ditional probability considerations. Let Σ{i}c denote the σ-algebra gener-
ated by {ξj}j 6=i. For the moment, let f denote the indicator function of
Ãi,λ and let h = E(f | Σ{i}c) be the conditional expectation of f given
Σ{i}c . We want to get a pointwise estimate for the conditional probability

P
(
Ãi,λ |Σ{i}c

)
(ω) := h(ω), for every ω ∈ Ω.

Note that Ω0,i is Σ{i}c-measurable and Ãi,λ ⊂ Ω0,i. This implies h(ω) = 0
for ω 6∈ Ω0,i. On the other hand, for arbitrary fixed ω ∈ Ω0,i, by Corollary 4.3
and the definition of conditional expectation we have,

h(ω) = P
(
ω′ | Sξi(ω′) ∈ 2α′ absconv {ξj(ω)}j 6=i

)
= P

(
ω′ | Sξi(ω′) ∈ 6α′β absconv {ξj(ω)/(3β)}j 6=i

)
≤ 3e−µm,

therefore,

P
(
Ãi,λ |Σ{i}c

)
(ω) = h(ω) ≤ 3e−µm for every ω ∈ Ω. (6.6)
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Here α′ =
(
c3 ln((N − 1)/n)

)−µ′√
n/2, where c3 > 0 is a universal constant,

µ > 0 depends on β and µ′ > 0 depends on β and ρ. Since λ was an arbitrary
member of the net Λ, this yields,

P(Ãi,λ | Σ{i}c) ≤ 3e−µm for every λ ∈ Λ. (6.7)

Setting Ãi =
⋃
λ∈Λ Ãi,λ, by (6.7) we get

P
(
Ãi|Σ{i}c

)
≤
∑
λ∈Λ

P
(
Ãi,λ|Σ{i}c

)
≤ 18µ−1

1 β
√
n e−µm. (6.8)

Now we are in a position to use a decoupling principle for weakly depen-
dent sets from [ST] which allows us to pass from an estimate of an individ-
ual event such as (6.8) to an estimate for the product of the events which
is needed for the proposition. To this end, for 1 ≤ i ≤ N and a subset
D ⊂ {1, . . . , N}, consider the event

Θi,D =
⋃
λ∈Λ

{
ω ∈ Ω0 | Tξi − α′λξi ∈ 2α′ absconv (ξj)j∈D

}
.

By Caratheodory’s theorem, for any D,

Θi,D ⊂
⋃

D′⊂D,|D′|≤n+1

Θi,D′ .

For J ⊂ {1, . . . , N} by ΣJ denote the σ-algebra generated by {ξj}j∈J . Clearly,
for I, J ⊂ {1, . . . , N} with I ∩ J = ∅, the events {Θj,I | j ∈ J} are ΣI-
conditionally independent. Finally note that in the notation above, by (6.4)
and the definition of Ãi, for every i = 1, 2, . . . , N ,

Ai ⊂ Θi,{i}c ⊂ Ãi. (6.9)

Hence, by (6.8) we get

P
(
Θi,{i}c |Σ{i}c

)
≤ P

(
Ãi|Σ{i}c

)
≤ 18µ−1

1 β
√
n e−µm. (6.10)

Thus, by Theorem 2 in [ST] combined with (6.9) and (6.10) we have

P

(⋂
i≤N

Ai

)
≤ P

(⋂
i≤N

Θi,{i}c

)
≤
(
N

`

)(
18µ−1

1 β
√
ne−µm

)`
, (6.11)
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where ` = dN/(2n+ 3)e.
The proof of the proposition is completed by observing that letting α :=

α′/
√
n we get {

ω ∈ Ω0 | ‖T‖B(ω)→B(ω) ≤ α
√
n
}

=
⋂
i≤N

Ai.

2

Step II. δ-net in the set of operators. Note that by the definition
of Ω0

µ1B
n
2 ⊂ B(ω) ⊂ 3β

√
nBn

2 ,

for every ω ∈ Ω0. Hence for every operator T : Rn → Rn and ω ∈ Ω0

‖T‖B(ω)→B(ω) ≤ ‖T : 3β
√
nBn

2 → µ1B
n
2 ‖ = 3βµ−1

1

√
n‖T‖op. (6.12)

Similarly
‖T‖B(ω)→B(ω) ≥ µ1(3β

√
n)−1‖T‖op. (6.13)

The last inequality yields that if for some T : Rn → Rn we have ‖T‖op ≥
3αβµ−1

1 n, then ‖T‖B(ω)→B(ω) ≥ α
√
n. Therefore, in our proof of Theorem 6.1

we may restrict our considerations to operators satisfying ‖T‖op ≤ 3αβµ−1
1 n.

Let
A := {T | ‖T‖op ≤ 3αβµ−1

1 n and T is (m, 1)-mixing},

let δ = αµ1/(6β) and let N be a δ–net in A (in the operator norm), with
cardinality

|N | ≤ (72β2µ−2
1 n)n

2

. (6.14)

(The existence of such a net follows from the well known “comparison of
volumes” argument.)

Step III. Approximation argument. For every (m, 1)-mixing operator
T : Rn → Rn denote by ΘT ⊂ Ω0 the set considered in Proposition 6.2. Set

Θ = Ω0 \
⋃
T∈N

ΘT . (6.15)

We claim that for every ω ∈ Θ and every (m, 1)-mixing operator T :
Rn → Rn we have

‖T‖B(ω)→B(ω) ≥ (α/2)
√
n, (6.16)
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with, recall, α =
(
c3 ln(N/n)

)−µ′
/2, where c3 and µ′ are from Proposition 6.2.

Indeed, fix ω ∈ Θ and an (m, 1)-mixing operator T . By the considerations
in Step II, if T 6∈ A then (6.16) is satisfied (even with α in place of α/2).
Therefore we may assume that T ∈ A. Let T0 ∈ N be such that ‖T−T0‖op ≤
δ. Since ω ∈ Θ then ‖T0‖B(ω)→B(ω) ≥ α

√
n. This implies that there exists

ξj, for some 1 ≤ j ≤ N , such that

‖T0ξ
j‖B(ω) ≥ α

√
n.

Note that always ‖ξj‖B(ω) ≤ 1. Hence by (6.12) and the choice of δ, we get,
for the same j,

‖T‖B(ω)→B(ω) ≥ ‖Tξj‖B(ω)

≥ ‖T0ξ
j‖B(ω) − ‖(T − T0)ξ

j‖B(ω)

≥ α
√
n− ‖T − T0‖B(ω)→B(ω)‖ξj‖B(ω)

≥ α
√
n− 3βµ−1

1

√
n‖T − T0‖op

≥ (α/2)
√
n. (6.17)

This proves (6.16).

Proof of Theorem 6.1. In view of (6.16), the proof of Theorem 6.1 will
be completed once we get the probability estimate for Θ. By (6.2) and Facts
2.1 and 2.2, and by Proposition 6.2 (and the remark afterwards), (6.15) and
(6.14), we get

P(Θ) ≥ P(Ω0)− (72β2µ−2
1 n)n

2

(
N

`

)(
µ′′
√
ne−µm

)`
≥ 1−Ne−2n − 2e−µ2N − (72β2µ−2

1 n)n
2

e−µ̃N .

The latter expression is larger than or equal to

1−Ne−2n − 3e−µ̃
′N ≥ 1− (N + 1)e−2n,

provided that N ≥ µ̃′′n2 lnn, where µ̃′, µ̃′′ > 0 depend on ρ and β. 2

Proof of Theorem 2.4. The theorem is an immediate consequence of
Theorem 6.1 and the remarks following the definition of mixing operators.
Namely, for every rank m projection P with n/4 ≤ m ≤ 3n/4, the operator
2P is (n/4, 1)-mixing and the conclusion follows from Theorem 6.1, with the
constant in the norm estimate divided by 2. 2
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