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NECESSARY AND SUFFICIENT CONDITIONS FOR THE
STRONG LAW OF LARGE NUMBERS FOR U-STATISTICS

By Rafał Latała1 and Joel Zinn2

Warsaw University and Texas A&M University

Under some mild regularity on the normalizing sequence, we obtain
necessary and sufficient conditions for the strong law of large numbers for
(symmetrized) U-statistics. We also obtain necessary and sufficient condi-
tions for the a.s. convergence of series of an analogous form.

1. Introduction. The general question addressed in this paper is that of
necessary and sufficient conditions for

1
γn

∑
i∈In
εih�Xi� → 0 a.s.,

where In = �i = �ii	 i2	 
 
 
 	 id� � 1 ≤ i1 < i2 < · · · < id ≤ n
	 �Xj
∞j=1 is a
sequence of i.i.d. r.v.’s,Xi = �Xi1	 
 
 
 	Xid�. Without loss of generality, we may
assume that h is symmetric in its arguments.

Further, as in [2] and in [12], it is also important to consider the question
of the almost sure convergence to zero of

1
γn

max
i∈In
�h�Xi��


In fact, it is through the study of this problem that one is able to complete the
characterization for the original question.

Without the symmetrization by Rademachers, Hoeffding [5] in 1961 proved
that for general d and γn =

(
n
d

)
, mean zero is sufficient for the normalized sum

above to go to zero almost surely. And, under a pth moment, one has the a.s.
convergence to zero with γn = nd/p ([10] when 0 < p < 1, in the product case
with mean zero [11] for 1 ≤ p < 2 and in the case of general degenerate h [4]
for 1 < p < 2).

It is somewhat surprising that it took until the 1990’s to see that Hoeffding’s
sufficient condition was not necessary [4]. In the particular case in which
d = 2, h�x	y� = xy and the variables are symmetric, necessary and suffi-
cient conditions were given in [2] in 1995. This was later extended to d ≥ 3
by Zhang [12]. Very recently Zhang [13] obtained “computable” necessary and
sufficient conditions in the case d = 2 and, in general, found equivalent con-
ditions in terms of a law of large numbers for modified maxima. Other related
work is that of [8] in which the different indices go to infinity at their own
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pace and [3] in which the variables in different coordinates can be based on
different distributions.

In this paper we obtain necessary and sufficient conditions for strong laws
for “maxima” for general d. This likely would have enabled one to complete
Zhang’s program. However, we also found a more classical way of handling
the reduction of the case of sums to the case of maxima.

The organization of the paper is as follows. In Section 2 we introduce the
necessary notation and give the basic lemmas. Now the form of our main
theorem is inductive. The reason we present the result in this form is that
the conditions in the case d > 2 are quite involved. Because of the format of
our theorem we first present in Section 3 the case that the function h is the
product of the coordinates. As mentioned earlier, this case received quite a bit
of attention, culminating in Zhang’s paper [12]. In the first part of Section 3 we
show how the methods developed in this paper allow one to give a relatively
simple, and perhaps transparent, proof of Zhang’s result. We then prove the
main result, namely, the necessary and sufficient conditions for the strong law
for symmetric U-statistics. Again, because of our inductive format, in order to
clearly bring out the main ideas of our proof, we also give a simple proof of
Zhang’s result for the case d = 2.

Finally, in Section 4 we consider the question of convergence of multidimen-
sional random series

∑
i∈Zd+ hi�X̃i�. We obtain necessary and sufficient condi-

tions for a.s. convergence in the case of nonnegative or symmetrized kernels.
This generalizes the results of [6] (case d = 2 and hi	j�x	y� = ai	 jxy).

2. Preliminaries and basic lemmas. Let us first introduce the multi-
index notation we will use in the paper:

• i = �ii	 i2	 
 
 
 	 id�	 the multiindex of size d;

• Xi = �Xii	Xi2	 
 
 
 	Xid�, where Xj is a sequence of i.i.d. random vari-
ables with values in some space E and the common law µ;

• X̃i = �X�1�ii 	X
�2�
i2
	 
 
 
 	X

�d�
id
�, where �X�k�j �, k = 1	 
 
 
 	 d, are independent

copies of �Xj�;

• εi = εi1εi2 · · · εid , where �εi� is a Rademacher sequence (i.e., a sequence
of i.i.d. symmetric random variables taking on values ±1) independent
of other random variables;

• ε̃i = ε
�1�
i1
ε
�2�
i2
· · · ε�d�id , where �ε�j�i � is a doubly indexed Rademacher

sequence independent of other random variables;

• µk = ⊗ki=1µ, the product measure on Ek;

• for I ⊂ �1	2	 
 
 
 	 d
, by EI and E
′
I we will denote expectation with

respect to �Xki �k∈I and �Xki �k �∈I, respectively;
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• in the undecoupled caseEIh�Xi� [resp.E
′
Ih�Xi�] will denote expectation

with respect to �Xik�k∈I [resp. �Xik�k �∈I];
• iI = �ik�k∈I and I′ = �1	2	 
 
 
 	 d
\I for I ⊂ �1	2	 
 
 
 	 d
;
• In = �i = �ii	 i2	 
 
 
 	 id� � 1 ≤ i1 < i2 < · · · < id ≤ n
;
• Cn = �i = �ii	 i2	 
 
 
 	 id� � 1 ≤ i1	 i2	 
 
 
 	 id ≤ n
;
• for I ⊂ �1	2	 
 
 
 	 d
 we put ∑iI ai =

∑
j∈Cn � jI′ =iI′ aj;

• AI	x = AxI = �z ∈ EI′ � ∃a ∈ A	aI = xI	 aI′ = z
 for A ⊂ Ed	 I ⊂
�1	 
 
 
 	 d
.

The results in this section were motivated by the difficulty in computing
quantities such as

P

(
max
i	 j≤n

h�Xi	Yj� > t
)
	

where �Xi
 are independent random variables and �Yi
 is an independent
copy, and h is, say, symmetric in its arguments.

In the one-dimensional case, namely, P�maxi≤n ξi > t�, where �ξi
 are inde-
pendent r.v.’s, we have the simple inequality

1
2 min

(∑
i

P��ξi� > t�	1
)
≤ P

(
max
i
�ξi� > t

)
≤ min

(∑
i

P��ξi� > t�	1
)

(1)

If this type of inequality held for any dimension, the proofs and results
would look much the same as in dimension 1. Here we give an example to see
the difference between the cases d = 1 and d > 1.

Consider the set in the unit square given by

A = {�x	y� ∈ �0	1�2 � x < a	y < b or x < b	y < a}
and assume that the Xi	Yj are i.i.d. uniformly distributed on �0	1�. By (1) it
easily follows that

P

(
max

1≤i	j≤n
IA�Xi	Yj� > 0

)
∼ min�na	1�min�nb	1�	

which is equivalent to
∑n
i	 j=1P�IA�Xi	Yj� > 0� ∼ n2ab if and only if both a

and b are of order O�1/n�


Lemma 1. Suppose that the nonnegative functions fi�xi� satisfy the fol-
lowing conditions�

fi�X̃i� ≤ 1 a.s. for all i ∈ Cn(2)

and

EI
∑
iI

fi�X̃i� ≤ 1 a.s. for any I ⊂ �1	2	 
 
 
 	 d
	0 < Card�I� < d
(3)
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Let m̃1 = E
∑
i∈Cn fi�X̃i�. Then

E

(∑
i∈Cn

fi�X̃i�
)2

≤ m̃2
1 + �2d − 1�m̃1(4)

and

P

(∑
i∈Cn

fi�X̃i� ≥
1
2
m̃1

)
≥ 2−d−2 min�m̃1	1�
(5)

Proof. Let S�d� denote the family of nonempty subsets of �1	 
 
 
 	 d
 and
for a fixed I ∈ S�d� and i let

J̃�i	 I� = �j ∈ Cn � jI = iI and jk �= ik for all k �∈ I


Then we have, by (2) and (3),

E

(∑
i∈Cn

fi�X̃i�
)2

≤
(
E
∑
i∈Cn

fi�X̃i�
)2

+ ∑
I∈S�d�

∑
i∈Cn

EIE
′
Ifi�X̃i�E

′
I

∑
j∈J̃�i	I�

fj�X̃j�

≤ m̃2
1 +

∑
I∈S�d�

∑
i∈Cn

EIE
′
Ifi�X̃i� = m̃2

1 +
(
2d − 1

)
m̃1


Inequality (5) follows by (4) and the Paley–Zygmund inequality (cf. [7], Lemma
0.2.1). ✷

The next lemma is an undecoupled version of Lemma 1, the proof of which
is similar to that of Lemma 1 and is omitted.

Lemma 2. Suppose that the nonnegative functions fi�xi� satisfy the fol-
lowing conditions:

fi�Xi� ≤ 1 a.s. for all i ∈ In
and

E′I
∑

j∈J�i	 I�
fj�Xj� ≤ 1 a.s. for all i and I ⊂ �1	2	 
 
 
 	 d
	0 < Card�I� < d	

where

J�i	 I� = {j ∈ In � �k � ∃lik = jl
 = I}

Let m1 = E

∑
i∈In fi�Xi�. Then

E

(∑
i∈In
fi�Xi�

)2

≤m2
1 + �2d − 1�m1(6)

and

P

(∑
i∈In
fi�Xi� ≥

1
2
m1

)
≥ 2−d−2 min�m1	1�
(7)
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In the rest of this paper we will refer to the next corollary as the “section
lemma.”

Corollary 1. If the set A ⊂ Ed satisfies the condition

nd−lµd−l�AI	XI� ≤ 1

a.s. for all I ⊂ �1	 
 
 
 	 d
 with 0 < Card�I� = l < d	
then

P
(∃i∈CnX̃i ∈ A

) ≥ 2−d−2 min
(
ndµd�A�	1

)
and, for n ≥ d,

P
(∃i∈InXi ∈

) ≥ 2−d−2d−dmin
(
ndµd�A�	1

)



Proof. The first inequality follows immediately by Lemma 1 applied to
fi = IA. To prove the second inequality, we use Lemma 2 and notice that

min
((
n

d

)
µd�A�	1

)
≥ d−dmin

(
ndµd�A�	1

)

 ✷

3. Strong laws of large numbers. We will assume in this section that
the sequence γn satisfies the following regularity conditions:

γn is nondecreasing,(8)

γ2n ≤ Cγn for any n	(9) ∑
k≥l

2dk

γ22k
≤ C2

dl

γ22l
for any l = 1	2	 
 
 
 
(10)

As mentioned in the Introduction, we first give a proof of Zhang’s result
[12] for the product case, that is, h�x� = ∏di=1 xi for x ∈ Rd. To state the SLLN
in this case, we need to define numbers cn by the formula

cn = min
{
c > 0 � nE

(
X2

c2
∧ 1

)
≤ 1

}



Theorem 1. Assume that h�x� = ∏di=1 xi and that the r.v.’sXi are symmet-
ric. Then, under the regularity assumptions �8�–�10�, the following are equi-
valent:

1
γn

∑
i∈In
h�Xi� =

1
γn

∑
i∈In

d∏
r=1
Xir → 0 a.s.,(11)

∞∑
k=1

2klP
( l∏
r=1
X2
r >

γ22k

c
2�d−l�
2k

	min
r≤l
X2
r > c

2
2k

)
<∞ for all 1 ≤ l ≤ d
(12)
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Proof. We give only the proof of the necessity of the conditions (12). The
sufficiency can be proved as in Theorem 2. Let

T
�r�
n =

n∑
ir=1
X
�r�
ir

2

and

T
�r�
n �c� =

n∑
ir=1
X
�r�
ir

2 ∧ c2


Step 1. We first reduce to the sum of squares; that is, we will show that
condition (11) implies

γ−2n
∑
i∈In

d∏
r=1
X2
ir
→ 0 a.s.(13)

By the symmetry of X we have that γ−1n
∑
i∈In

∏d
r=1 εirXir → 0 a.s. Thus, for

a.a. sequences �Xi�, the Walsh sums (i.e., the linear combinations of products
of d Rademachers) converge to 0 a.s. Hence, they converge in probability. This
implies (by a result of Bonami about hypercontractivity of Walshes [1]) that
for a.a. sequences �Xi�, γ−2n

∑
i∈In

∏d
r=1X

2
ir
→ 0 and (13) is proved.

Step 2. We now go to a dyadic subsequence and then decouple. By the
Borel–Cantelli lemma, condition (13) implies that

∀ε>0
∞∑
k=1
P

( ∑
i∈I2k−1

d∏
r=1
X2
ir
≥ εγ22k

)
<∞


Now let us notice that I2k ⊇ �i ∈ I2k � �r−1�2k−l < ir ≤ r2k−l for r = 1	 
 
 
 	 d

if l is such that 2l ≥ d. Moreover, the random variables in these blocks are
independent of the other blocks. Thus, we obtain

∀ε>0
∞∑

k=l+1
P

( ∑
i∈C2k−l−1

d∏
r=1

(
X
�r�
ir

)2
≥ εγ22k

)
<∞


Hence, using the regularity assumption (9),

∀ε>0
∞∑
k=1
P

(
d∏
r=1
T
�r�
2k ≥ εγ22k

)
<∞
(14)

Step 3. At this point we use the one-dimensional case of Lemma 1. We
apply it to

c−2n T
�r�
n �cn� =

n∑
j=1

(
X
�r�
j

)2
c2n

∧ 1
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and notice that Ec−2n T
�r�
n �cn� = 1 by the definition of cn. We get that

P
(
T
�r�
n �cn� ≥ 1

2c
2
n

)
= P

(
c−2n T

�r�
n �cn� ≥ 1

2Ec
−2
n T

�r�
n �cn�

)
≥ 1

8 


Hence,

P

(
d∏

r=l+1
T
�r�
n ≥ c

2�d−l�
n

2d−l

)
≥ P

(
d∏

r=l+1
T
�r�
n �cn� ≥

c
2�d−l�
n

2d−l

)
≥
(
1
8

)d−l
and

P

(
d∏
r=1
T
�r�
n ≥ 2l−dγ22k

)
≥
(
1
8

)d−l
P

(
l∏
r=1
T
�r�
n ≥

γ22k

c
2�d−l�
2k

)



Thus, condition (14) yields

∞∑
k=1
P

(
max

i1	


	il≤2k

l∏
r=1
�X�r�ir �2 >

γ22k

c
2�d−l�
2k

)
<∞
(15)

Now, here is the main point.

Step 4. At this point, we need to replace the max inside the probabil-
ity with 2kl outside the probability. To do this, we use the section lemma
(Corollary 1).

To get small sections, there are a variety of choices. To obtain Zhang’s
result, we reduce the probabilities even further by intersecting the sets in the
following manner:

∞∑
k=1
P

(
max

i1	


	il≤2k

l∏
r=1

(
X
�r�
ir

)2
I��X�r�ir �2>c22k


>
γ22k

c
2�d−l�
2k

)
<∞


To see why we have small sections, just note that

P�X2 > c22k� ≤
E
(
X2 ∧ c22k

)
c22k

= 1
2k



Now we just use the section lemma to get

∞∑
k=1

2klP

(
l∏
r=1
X2
rI�X2

r>c
2
2k

 >

γ22k

c
2�d−l�
2k

)
<∞


Or, equivalently,

∞∑
k=1

2klP

(
l∏
r=1
X2
r >

γ22k

c
2�d−l�
2k

	 min
1≤r≤l

X2
r > c

2
2k

)
<∞	

which yields (12). ✷
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In Theorem 2 we reduce the SLLN for symmetric or nonnegative kernels
to an SLLN for “modified maxima.” To see what this means, consider the case
d = 2. Then

Ak	2 =
{
�x	y� ∈ E2 � h2�x	y� ≤ γ22k	2kEYh2I�h2≤γ2k
�x	Y� ≤ γ

2
2k	

2kEXh
2I�h2≤γ2k
�X	y� ≤ γ

2
2k

}



So that

�∃i ∈ C2k	 X̃i �∈ Ak	2
 =
{
max
i∈C2k

ϕ�X̃i� > γ22k
}
	

where

ϕ�x	y� = h2�x	y� ∨ 2kEYh2I�h2≤γ2k
�x	Y� ∨ 2
kEXh

2I�h2≤γ2k
�X	y�

In [13] Zhang, using different methods, also reduced the probem to “modified

maxima.” We continue in Theorem 3 to find necessary and sufficient conditions
for the SLLN for the maximum, which, hence, could also be used to complete
Zhang’s program.

For a measurable function h on Ed, which is symmetric with respect to
permutations of the variables, we define, for k = 1	2	 
 
 
,

Ak	1 =
{
x ∈ Ed � h2�x� ≤ γ22k

}
and, for l = 1	 
 
 
 	 d− 1,

Ak	 l+1 =
{
x ∈ Ak	 l � 2klEIh2IAk	 l�x� ≤ γ22k
for all I ⊂ �1	2	 
 
 
 d
	Card�I� = l}


Theorem 2. Suppose that assumptions �8�–�10� are satisfied and the sets
Ak	 l are defined as above. Then the following conditions are equivalent:

1
γn

∑
i∈In
εih�Xi� → 0 a.s.	(16)

1
γn

∑
i∈Cn

ε̃ih�X̃i� → 0 a.s.	(17)

1
γ2n

∑
i∈In
h2�Xi� → 0 a.s.	(18)

1
γ2n

∑
i∈Cn

h2�X̃i� → 0 a.s.	(19)

∞∑
k=1
P�∃i∈I2kXi �∈ Ak	d� <∞	(20)

∞∑
k=1
P�∃i∈C2k

X̃i �∈ Ak	d� <∞
(21)
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Proof. (16) ⇒ (18) and (17) ⇒ (19). Proofs of these implications are the
same as in Proposition 4.7 in [2] (see also Step 1 in the proof of Theorem 1).

(18) ⇒ (19). Let l be such that 2l ≥ d. By the regularity of γn (8), (9) and
the Borel–Cantelli lemma, (18) and (19) are equivalent, respectively, to

∞∑
k=1
P

( ∑
i∈I2k

h2�Xi� ≥ εγ22k
)
<∞ for all ε > 0(22)

and

∞∑
k=l+1

P

( ∑
i∈C2k−l

h2�X̃i� ≥ εγ22k
)
<∞ for all ε > 0
(23)

Let

Dk =
{
i � �m− 1�2k−l < im ≤m2k−l for m = 1	 
 
 
 	 d

}



Then for k ≥ l we get

P

( ∑
i∈I2k

h2�Xi� ≥ εγ22k
)
≥ P

( ∑
i∈Dk

h2�Xi� ≥ εγ22k
)
= P

( ∑
i∈C2k−l

h2�X̃i� ≥ εγ22k
)

and (22) implies (23).
(18)⇒ (20). We will prove by induction that, for l ≤ d,

∞∑
k=1
P�∃i∈I2kXi �∈ Ak	 l� <∞
(24)

For l = 1 (24) is
∑∞
k=1P�∃i∈I2k h2�Xi� > γ22k� < ∞ and follows easily by the

Borel–Cantelli lemma. Assume that (24) holds for l ≤ d − 1. To show it for
l+ 1, it is enough to prove that, for any I with Card�I� = l,

∞∑
k=1
P
(
∃i
I
′ ∈I2k2

klEIh
2IAk	 l�Xi� > γ22k

)
<∞
(25)

By the symmetry of the kernel h, we may and will assume that I = �1	 
 
 
 	 l
.
From (18) it follows that

1

γ22k

∑
i∈I2k

h2IAk	 l�Xi� → 0 a.s.

By the regularity of γ2k , (9) and the Borel–Cantelli lemma, we get that

∞∑
k=1
P

( ∑
i∈I2k+1

h2IAk	 l�Xi� ≥
1
2
γ22k

)
<∞
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But

PI

( ∑
i∈I2k+1

h2IAk	 l�Xi� ≥ 1
2γ

2
2k

)
≥ PI

(
max
i
I
′ ∈J2k

∑
iI∈I2k

h2IAk	 l�Xi� ≥ 1
2γ

2
2k

)

≥ max
i
I
′ ∈J2k

PI

( ∑
iI∈I2k

h2IAk	 l�Xi� ≥ 1
2γ

2
2k

)
	

where

J2k =
{�i1	 
 
 
 	 id−l� � 2k < i1 < i2 < · · · < id−l ≤ 2k+1

}



Let us notice that by the definition of Ak	 l we have, for any J ⊂ I with
Card�J� =m < l,

2kmEJh
2IAk	l�Xi� ≤ γ22k 


Therefore, by Lemma 2 we get that

max
i
I
′ ∈J2k

PI

( ∑
iI∈I2k

h2IAk	 l�Xi� ≥ 1
2γ

2
2k

)
≥ 2−l−2

if maxi
I
′ ∈J2k

EI
∑
iI∈I2k h

2IAk	 l�Xi� > γ22k . Hence,

P

( ∑
i∈I2k

h2IAk	 l�Xi� ≥ 1
2γ

2
2k

)
≥ 2−l−2P

(
∃i
I
′ ∈J2k

2klEIh
2IAk	 l�X̃i� > γ22k

)
and (25) follows.

(19)⇒ (21). This is the same as above, except we use Lemma 1 instead of
Lemma 2.

(20) ⇒ (16). By the regularity assumptions (8), (9) and the Borel–Cantelli
lemma, it is enough to prove that, for any t > 0,

∞∑
k=1
P

(
1
γ2k

max
n≤2k

∣∣∣∣∑
i∈In
εih�Xi�

∣∣∣∣ ≥ t) <∞

By our assumption (20) it is enough to show that

∞∑
k=1
P

(
1
γ2k

max
n≤2k

∣∣∣∣∑
i∈In
εihIAk	d�Xi�

∣∣∣∣ ≥ t) <∞

Since dn =

∑
i∈In εihIAk	d�Xi� is a martingale, by Doob’s maximal inequality

we get

P

(
1
γ2k

max
n≤2k

∣∣∣∣∑
i∈In
εihIAk	d�Xi�

∣∣∣∣ ≥ t) ≤ 1

t2γ22k
E

( ∑
i∈I2k

εihIAk	d�Xi�
)2

≤ 2dk

t2γ22k
Eh2IAk	d�X̃�
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Thus, it is enough to show that
∞∑
k=1

2dk

γ22k
Eh2IAk	d�X̃� <∞
(26)

Let τ = inf�k � X̃ ∈ Ak	d
. Then (if we additionally define A0	 d = !) X̃ ∈
Aτ	d\Aτ−1	 d so by (10) we get

∞∑
k=1

2dk

γ22k
Eh2IAk	d�X̃� ≤ E

∞∑
k=τ

2dk

γ22k
h2�X̃�

≤ CE2dτ

γ22τ
h2�X̃�

≤ C
∞∑
k=1
E
2dk

γ22k
h2IAk	d\Ak−1	 d�X̃�


Let us notice that by the definition of Ak	d we have h2�X̃�IAk	d\Ak−1	 d�X̃� ≤ γ22k
and EI2klh2IAk	d\Ak−1	 d�X̃� ≤ γ22k for any I ⊂ �1	 
 
 
 	 d
 with 0 < Card�I� =
l < d. Thus, by Lemma 2,

2−d−2 min

((
2k−1

d

)
1

γ22k
Eh2IAk	d\Ak−1	 d�X̃�	1

)

≤ P
( ∑
i∈I2k−1

h2IAk	d\Ak−1	 d�Xi� > 0

)
≤ P�∃i∈I2k−1Xi ∈ Ak	d\Ak−1	 d�
≤ P�∃i∈I2k−1Xi �∈ Ak−1	 d�


So condition (20) implies that
∞∑
k=1

min
(
2dk

γ22k
Eh2IAk	d\Ak−1	 d�X̃�	1

)
<∞

and (26) easily follows.
(21) ⇒ (16) and (21) ⇒ (17). In the same way as above we show that (21)

implies (26) and that (26) implies (17). ✷

The next theorem will show how to deal with condition (20). Suppose that
the setsAk are given and let us define the sets Ck	 l and Bk	I for I ⊂ �1	 
 
 
 	 d

with Card�I� = l by induction over d− l:

Ck	d = Ak	

Bk	I =
{
xI ∈ El � 2k�d−l�µd−l�CxIk	 l+1� ≥ 1 for Card�I� = l

}
	

Ck	 l =
{
x ∈ Ck	 l+1 � xI �∈ Bk	I for all I with Card�I� = l

}
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Theorem 3.

∞∑
k=1
P�∃i∈I2kXi ∈ Ak� <∞(27)

if and only if the following conditions are satisfied:

∀l=1	


	d−1∀I⊂�1	


	d
	Card�I�=l
∞∑
k=1
P
(
∃j∈Il

2k
Xj ∈ Bk	I

)
<∞	(28)

∞∑
k=1

2kdµd�Ck	1� <∞
(29)

Proof. Let us notice that (29) immediately implies that

∞∑
k=1
P
(
∃i∈I2kXi ∈ Ck	1

)
<∞


Since, by the definition of the sets Ck	 l,

�∃i∈I2kXi ∈ Ak
 ⊂ �∃i∈I2kXi ∈ Ck	1


∪
d−1⋃
l=1

⋃
I⊂�1	


	d
	 Card�I�=l

�∃iI∈Il2kXiI ∈ Bk	I
	

(28) and (29) imply (27).
To prove the second implication, let us first notice that by the definition of

Ck	 l we have

2k�d−m�µd−m�CxIk	 l� < 1 for any I with Card�I� =m ≥ l
(30)

Hence, by Corollary 1,

P
(
∃i∈I2kXi ∈ Ak

)
≥ P

(
∃i∈I2kXi ∈ Ck	1

)
≥ cd2kdµd�Ck	1�

so (27) implies (29).
By Corollary 1 and (30) we also get that for any I ⊂ �1	 
 
 
 	m
 with

Card�I� = l = 1	 
 
 
 	 d− 1 we have, for J = Ic and any xI ∈ El,

P
(
∃iJ∈Id−l2k

XiJ ∈ C
xI
k	 l+1

)
≥ cd−l2k�d−l�µd−l�CxIk	 l+1�


Thus,

P
(
∃i∈I2kXi ∈ Ak

)
≥ P

(
∃i∈I2kXi ∈ Ck	 l+1

)
≥ cd−lP

(
∃iI∈Il2kXiI ∈ Bk	I

)
and (27) implies (28). ✷
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3.1. Two-dimensional case. In the two-dimensional case let us define, for
k = 1	2	 
 
 
 	

fk�x� = 2kEY
(
h2�x	Y� ∧ γ22k

)

(31)

Theorem 4. In the case of d = 2 each of the equivalent conditions �16�–�21�
is equivalent to the following condition:

∞∑
k=1

2kP
(
fk�X� ≥ γ22k

)
<∞(32a)

and
∞∑
k=1

22kP
(
h2�X	Y� ≥ γ22k	 fk�X� < γ22k	 fk�Y� < γ22k

)
<∞
(32b)

Proof. Again, we concentrate on the necessity, since the sufficiency can
be proved as in Theorem 2. To obtain (32a), first reduce to the decoupled sum
of squares as in Theorem 2 (19). One then has

P

( ∑
i	 j≤2k

h2�Xi	Yj� ∧ γ22k > 1
2γ

2
2k

)

≥ EYmax
j≤2k

PX

(∑
i≤2k
h2�Xi	Yj� ∧ γ22k > 1

2γ
2
2k

)



Applying Lemma 1 (the case d = 1) to the probability appearing in the last
expectation, we see that

PX

(∑
i≤2k
h2�Xi	Yj� ∧ γ22k > 1

2γ
2
2k

)
≥ 1

8I�2kEX�h2∧γ22k �>γ
2
2k




Hence,

EYmax
j≤2k

PX

(∑
i≤2k
h2�Xi	Yj� ∧ γ22k > 1

2γ
2
2k

)

≥ 1
8PY

(
max
i≤2k

2kEX�h2 ∧ γ22k� > γ22k
)

≥ 1
16 min

(
1	2kPY

(
2kEX�h2 ∧ γ22k� > γ22k

))
	

which implies (32a). But we also have

P

( ∑
i	 j≤2k

h2�Xi	 Yj� ∧ γ22k ≥ γ22k
)

≥ P
(
max
i	 j≤2k

h2�Xi	Yj� ∧ γ22kI�fk�Xi�	fk�Yj�≤γ22k
 ≥ γ
2
2k

)
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Now, using the section lemma (Corollary 1), we have that the last quantity
is greater than or equal to

2−4 min
(
1	22kP

(
h2 ∧ γ22k ≥ γ22k	 fk�X�	 fk�Y� < γ22k

))



And this implies (32b). ✷

4. Convergence of series. In this section we will present the multidi-
mensional generalizations of the symmetric case of Kolmogorov’s three series
theorem, which states that for independent random variablesXi the following
conditions are equivalent:

∞∑
i=1
εiXi is a.s. convergent	

∞∑
i=1
X2
i <∞ a.s.

and
∞∑
i=1
E�X2

i ∧ 1� <∞


Let us first consider the two-dimensional case and define

ci�xi� =
∞∑
j=1
EY

(
h2i	 j�xi	Yj� ∧ 1

)
	

dj�yj� =
∞∑
i=1
EX

(
h2i	j�Xi	yj� ∧ 1

)



Theorem 5. Suppose that the functions ci	 dj are defined as above. Then
the following conditions are equivalent:

lim
n→∞

n∑
i	 j=1

ε
�1�
i ε

�2�
j hi	 j�Xi	Yj� is a.s. convergent	(33)

∞∑
i	 j=1

h2i	 j�Xi	Yj� <∞ a.s.(34)

and

ci�Xi� <∞ a.s. for all i and dj�Yj� <∞ a.s. for all j,(35a)

∞∑
i=1
P
(
ci�Xi� > 1

)
<∞ and

∞∑
j=1
P
(
dj�Yj� > 1

)
<∞	(35b)

∞∑
i	 j=1

E
(
h2i	j�Xi	Yj� ∧ 1

)
I�ci�Xi�≤1	dj�Yj�≤1
 <∞
(35c)
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Proof. (33) ⇔ (34). Let us first notice that (33) and (34) are equivalent,
respectively, to the following two conditions:

∀ε>0∃nP
(
sup
k≥n

∣∣∣∣∣ ∑
n≤i∨j≤k

ε
�1�
i ε

�2�
j hi	 j�Xi	Yj�

∣∣∣∣∣ > ε
)
< ε(36)

and

∀ε>0∃nP
( ∑
n≤i∨j

h2i	 j�Xi	Yj� > ε
)
< ε
(37)

By the hypercontractivity of the Walshes (i.e., for sums of products of
Rademacher r.v.’s [1] or [7], Section 3.4.) and the Paley–Zygmund inequality,
we have

P

(( ∑
n≤i∨j

ε
�1�
i ε

�2�
j hi	 j�Xi	Yj�

)2

≥ t ∑
n≤i∨j

h2i	 j�Xi	Yj�
)
≥ �1− t�

2

81



Hence, (36) implies (37). On the other hand, since dk =
∑
n≤i∨j≤k ε

�1�
i ε

�2�
j ×

h�Xi	Yj� is a martingale, we get by Doob’s inequality

P

(
sup
k≥n

∣∣∣∣∣ ∑
n≤i∨j≤k

ε
�1�
i ε

�2�
j hi	 j�Xi	Yj�

∣∣∣∣∣ ≥ t
( ∑
n≤i∨j

h2i	j�Xi	Yj�
)1/2

)
≤ t−2

and (37) implies (36).
(35) ⇒ (34). By condition (35a) we get that

∑∞
j=1 h

2
i	 j�Xi	Yj� < ∞ a.s. for

any i and
∑∞
i=1 h

2
i	 j�Xi	Yj� <∞ a.s. for any j. Hence, by condition (35b) it is

enough to prove that

Z =
∞∑

i	 j=1

(
h2i	 j�Xi	Yj� ∧ 1

)
I�ci�Xi�≤1	dj�Yj�≤1
 <∞ a.s.(38)

However, by Chebyshev’s inequality

P�Z ≥ t� ≤ t−2
∞∑

i	 j=1
E
(
h2i	 j�Xi	Yj� ∧ 1

)
I�ci�Xi�≤1	dj�Yj�≤1


and (38) follows by (35c).
(34) ⇒ (35). The condition ci�Xi� < ∞ a.s. is equivalent to

∑∞
j=1 h

2
i	 j

�Xi, Yj� <∞ a.s. Thus (35a) immediately follows by (34).
To prove condition (35b), let us notice that for sufficiently large n we have

P

( ∞∑
i=n	j=1

h2i	 j�Xi	Yj� ≥ 1
2

)
≤ 2−4


Let us notice that by Lemma 1 (case d = 1) we have, for any k ≥ n,

PY

( ∞∑
i=n	j=1

h2i	 j�Xi	Yj� ≥ 1
2ck�Xk�

)
≥ PY

( ∞∑
j=1
h2k	 j�Xk	Yj� ∧ 1 ≥ 1

2ck�Xk�
)

≥ 2−3 min
(
ck�Xk�	1

)
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Thus,

P

( ∞∑
i=n	j=1

h2i	 j�Xi	Yj� ≥
1
2

)
≥ 2−3P

(
max
i≥n

ci�Xi� > 1
)
	

so P�maxi≥nci�Xi� > 1� ≤ 1/2, which implies that
∑∞
i=1P�ci�Xi� > 1� < ∞.

In an analogous way we prove that
∑∞
j=1P�dj�Yj� > 1� <∞.

Finally, let

m =
∞∑

i	 j=1
E
(
h2i	j�Xi	Yj� ∧ 1

)
I�ci�Xi�≤1	 dj�Yj�≤1



We have

EX

∞∑
i=1
h2i	 j�Xi	Yj� ∧ 1I�ci�Xi�≤1	 dj�Yj�≤1


≤
(
EX

∞∑
i=1
h2i	 j�Xi	Yj� ∧ 1

)
I�dj�Yj�≤1
 ≤ 1

and by a similar argument

EY

∞∑
j=1

(
h2i	 j�Xi	Yj� ∧ 1

)
I�ci�Xi�≤1	dj�Yj�≤1
 ≤ 1


Hence, by Lemma 1 we get

P

( ∞∑
i	 j=1

(
h2i	j�Xi	Yj� ∧ 1

)
I�ci�Xi�≤1	dj�Yj�
 ≥

1
2
m

)
≥ 2−4 min�m	1�	

which implies that m <∞. ✷

Before formulating the result in the d-dimensional case, we will need a few
more definitions. Let us define in this case A0	 i = Ed and then inductively,
for l = 1	 
 
 
 	 d− 1	 I ⊂ �1	2	 
 
 
 	 d
 with Card�I� = l,

ciI�xiI� =
∑
i
I
′
E
′
I

(
h2�iI	 iI′ �IAl−1	 �iI	iI′ �

�xiI 	 X̃i
I
′ � ∧ 1

)
	

Al	 i =
{
xi ∈ Al−1	 i � ciI�xiI� ≤ 1 for all I with Card�I� = l}


Theorem 6. Suppose that ciI and Al	 i are defined as above. Then the fol-
lowing conditions are equivalent:∑

i∈Zd+
εihi�X̃i� is a.s. convergent,(39)

∑
i∈Zd+

h2i �X̃i� <∞ a.s.(40)
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and ∑
iI∈Zd−1+

h2i �X̃i� <∞ a.s. for all I with Card�I� = d− 1	(41a)

∑
iI∈Zl+

I�ciI �X̃iI �>1

<∞ a.s. for all I with(41b)

l = Card�I� = 1	2 
 
 
 	 d− 1	∑
i∈Zd+

E
(
h2i �X̃i� ∧ 1

)
IAd−1	 i�X̃i� <∞
(41c)

Proof. As above. ✷
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