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THE LIL FOR CANONICAL U -STATISTICS

BY RADOSŁAW ADAMCZAK1 AND RAFAŁ LATAŁA2

Polish Academy of Sciences and Warsaw University

We give necessary and sufficient conditions for the (bounded) law of
the iterated logarithm for canonical U -statistics of arbitrary order d, extend-
ing the previously known results for d = 2. The nasc’s are expressed as
growth conditions on a parameterized family of norms associated with the
U -statistics kernel.

1. Introduction. U -statistics [i.e. statistics being averages of a measurable
kernel h(x1, . . . , xd) over an i.i.d. sample X1,X2, . . . ,Xn] were introduced by
Hoeffding [11] and Halmos [9] in the 1940s and since then have become an im-
portant tool in asymptotic statistics, appearing for instance as unbiased estimators
or higher-order terms in expansions of smooth statistics. Their relevance stems
mainly from the fact that they share many basic properties with sums of i.i.d. ran-
dom variables. Already in the 1960s Hoeffding proved that E|h| < ∞ is a sufficient
condition for a U -statistic to satisfy the SLLN [12], the CLT under the finiteness
of the second moment of the kernel (and complete degeneracy—a technical as-
sumption which will be explained in the sequel) was obtained by Rubin and Vitale
in 1980 [18], finally the LIL (under the same hypothesis) was proved by Arcones
and Giné in 1995 [2]. All the abovementioned results are occurrences of a general
phenomenon, manifesting itself in the fact that the necessary and sufficient condi-
tions for the classical triple of limit theorems for sums of i.i.d. random variables
(SLLN, CLT or LIL) are sufficient for analogous limit theorems for U -statistics.
It may be, therefore, somewhat surprising (and as a matter of fact remained for
some time unnoticed) that with the exception of the CLT, these conditions fail to
be necessary.

Recently we have witnessed a rapid development in the asymptotic theory of
U -statistics, following the discovery of the so-called decoupling technique (see
[3] and the references therein), which allows one to treat U -statistics as sums of
conditionally independent random variables. In particular, the sufficient conditions
for the CLT given by Rubin and Vitale were proven to be also necessary (Giné and
Zinn [7]). Also the necessary and sufficient conditions for the SLLN were found
([19] for d = 2, [15] for general d). In 1999 Giné et al. [8] obtained necessary
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and sufficient conditions for the law of the iterated logarithm for U -statistics of
order 2. The conditions they gave turned out to be less restrictive and more subtle
than just the square integrability of the kernel (as indicated already by Giné and
Zhang [5]). Completing the picture requires finding the nasc’s for the LIL in the
general case and identifying the limit set in the LIL (which in general is unknown
even for d = 2).

In this paper, we address the first of these questions, namely we give the nasc’s
on a kernel h(x1, . . . , xd) to satisfy the (bounded) law of the iterated logarithm. In
particular we prove that a conjecture stated in [8] is false.

2. Notation. For an integer d , let (Xi)i∈N, (X
(k)
i )i∈N,1≤k≤d be i.i.d. random

variables with values in a Polish space �, equipped with the Borel σ -field F .
Consider moreover a measurable function h :�d → R.

To shorten the notation, we will use the following convention. For i =
(i1, . . . , id) ∈ {1, . . . , n}d we will write Xi (resp. Xdec

i ) for (Xi1, . . . ,Xid ) (resp.

(X
(1)
i1

, . . . ,X
(d)
id

)) and εi (resp. εdec
i ) for the product εi1 · . . . ·εid (resp. ε(1)

i1
· . . . ·ε(d)

id
),

the notation being thus slightly inconsistent, which however should not lead to a
misunderstanding. The U -statistics will, therefore, be denoted∑

i∈Id
n

h(Xi) (an undecoupled U -statistic)

∑
|i|≤n

h(Xdec
i ) (a decoupled U -statistic)

∑
i∈Id

n

εih(Xi) (an undecoupled randomized U -statistic)

∑
|i|≤n

εdec
i h(Xdec

i ) (a decoupled randomized U -statistic),

where

|i| = max
k=1,...,d

ik,

I d
n = {i : |i| ≤ n, ij �= ik for j �= k}.

Since in this notation {1, . . . , d} = I 1
d we will write

Id = {1,2, . . . , d}.
We will also occasionally write X for (X1, . . . ,Xd) and for I ⊆ Id , XI =

(Xi)i∈I . Sometimes we will write simply h instead of h(X).
Throughout the article we will write K,Ld,L to denote constants depending

only on the function h, only on d and universal constants, respectively. In all those
cases the values of a constant may differ at each occurrence.
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To avoid technical problems with small values of h let us also define LLx =
log log(x ∨ ee).

Let us also introduce some notation for conditional expectation. For j ∈ Id ,
by Ej we will denote expectation with respect to (X

(j)
i )i , ((ε

(j)
i ,X

(j)
i ))i or Xj

(depending on the context). Similarly, for I ⊆ Id , we will denote by EI , integration
with respect to (X

(j)
i )j∈I,i , ((ε

(j)
i ,X

(j)
i ))j∈I,i or (Xi)i∈I . Although at first this

notation may seem slightly ambiguous, it turns out to be quite natural at specific
instances and should not lead to misunderstanding.

In the article we will consider mainly canonical (or completely degenerate) ker-
nels, that is kernels h, such that for all j ∈ Id ,

Ejh(X1, . . . ,Xd) = 0 a.s.

3. The main result. Let us now introduce the quantities, that the necessary
and sufficient conditions for the LIL will be expressed in.

DEFINITION 1. For a finite set I , let PI denote the family of all partitions of
I into disjoint, nonempty sets and for a partition J ∈ PI let degJ be the number
of elements of J. For a kernel h :�d → R, a partition J = {J1, . . . , Jk} ∈ PId

and
a nonnegative number u, define

‖h‖J,u = ‖h(X)‖J,u

= sup

{
E

[
h(X)

k∏
i=1

fi(XJi
)

]
:‖fi(XJi

)‖2 ≤ 1,

‖fi(XJi
)‖∞ ≤ u, i = 1, . . . , k

}
.

EXAMPLE. For d = 3, the above definition gives

‖h(X1,X2,X3)‖{1,2,3},u = sup{Eh(X1,X2,X3)f (X1,X2,X3) :

Ef (X1,X2,X3)
2 ≤ 1,‖f ‖∞ ≤ u},

‖h(X1,X2,X3)‖{1,2}{3},u = sup{Eh(X1,X2,X3)f (X1,X2)g(X3) :

Ef (X1,X2)
2,Eg(X3)

2 ≤ 1,

‖f ‖∞,‖g‖∞ ≤ u},
‖h(X1,X2,X3)‖{1}{2}{3},u = sup{Eh(X1,X2,X3)f (X1)g(X2)k(X3) :

Ef (X1)
2,Eg(X2)

2,Ek(X3)
2 ≤ 1,

‖f ‖∞,‖g‖∞,‖k‖∞ ≤ u}.
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Although at first approach the ‖ · ‖J,u norms may seem quite unusual, they
resemble both the quantities appearing in tail estimates for canonical U -statistics
and in tail estimates for Rademacher chaoses (see Sections 4.2 and 4.3 below) and
they indeed play an important role in necessary and sufficient conditions for the
LIL, as can be seen in our main result, which is

THEOREM 1. For any symmetric h :�d → R, the law of the iterated logarithm

lim sup
n→∞

1

(n log logn)d/2

∣∣∣∣∣∑
i∈Id

n

h(Xi)

∣∣∣∣∣< ∞ a.s.

holds if and only if h is completely degenerate for the law of X1 and for all J ∈ PId
,

lim sup
u→∞

1

(log logu)(d−degJ)/2 ‖h‖J,u < ∞.

(Recall that according to Definition 1, degJ denotes the number of elements of J.)

REMARK. Obviously, although formally in the above theorem one consid-
ers all the partitions J, due to symmetry of the kernel and equidistribution of the
variables X1, . . . ,Xd , many of them give the same value of ‖h‖J,u. For instance
for d = 3 we have ‖h‖{1}{2,3},u = ‖h‖{2}{1,3},u = ‖h‖{3}{1,2},u (note that we sup-
pressed the outer brackets in the lower index and wrote e.g. ‖h‖{2}{1,3},u instead
of ‖h‖{{2}{1,3}},u. We will do so whenever there is no risk of confusion also with
similar norms, which will be introduced in Sections 4.2 and 4.3).

4. Preliminaries. Basic definitions and tools.

4.1. Hoeffding’s decomposition. We will now describe a decomposition of a
U -statistic with mean zero kernel into a sum of completely degenerate U -statistics,
introduced in [11], which is one of the basic tools in the analysis of U -statistics.
Recall that we are working with a fixed sequence (Xi)i∈N of i.i.d. �-valued ran-
dom variables. Then the classical definition of Hoeffding’s projections is as fol-
lows.

DEFINITION 2. For an integrable kernel h :�d → R and k = 0,1, . . . , d , de-
fine πkh :�k → R with the formula

πkh(x1, . . . , xk) = (δx1 − P) × (δx2 − P) × · · · × (δxk
− P) × Pd−kh,

where P is the law of X1.
In particular π0h = Eh,π1h(x1) = E{2,...,d}h(x1,X2, . . . ,Xd) − Eh.

We will however need to extend this definition (for k = d) to U -statistics based
not necessarily on an i.i.d. sequence. Let us thus introduce the following definition
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DEFINITION 3. Let h :�1 × · · · × �d → R be a measurable function. Con-
sider independent sequences (X

(1)
j )j , . . . , (X

(d)
j )j of i.i.d. random variables with

values in �1, . . . ,�d respectively, such that E|h(X
(1)
1 , . . . ,X

(d)
1 )| < ∞. Define

πdh :�1 × · · · × �d → R with the formula

πdh(x1, . . . , xd) = (
δx1 − P

X
(1)
1

)× · · · × (
δxd

− P
X

(d)
1

)
h,

where P
X

(i)
1

is the law of X
(i)
1 .

Obviously for �1 = · · · = �d and (X
(j)
i )i∈N—independent copies of (Xi)i∈N,

the above definitions of πdh are equivalent.
It is easy to check that for k ≥ 1, πkh is canonical for the law of X1 (note also

that π0h = Eh).
In the sequel we will need the following comparison of moments for U -

statistics:

LEMMA 1. Consider an arbitrary family of integrable kernels hi :�1 × · · · ×
�d → R, |i| ≤ n. For any p ≥ 1 we have∥∥∥∥∥∑|i|≤n

πdhi(Xdec
i )

∥∥∥∥∥
p

≤ 2d

∥∥∥∥∥∑|i|≤n

εdec
i hi(Xdec

i )

∥∥∥∥∥
p

.

PROOF. For d = 1, the statement of the lemma is the classical symmetrization
inequality for sums of independent random variables. Now, we use induction with
respect to d . To simplify the notation let π̄d−1hi denote the proper Hoeffding’s
projection of hi treated as a function of x2, . . . , xd , with the first coordinate fixed,
that is

π̄d−1hi(x) = δx1 × (
δx2 − P

X
(2)
1

)× · · · × (
δxd

− P
X

(d)
1

)
hi.

Assume now that the lemma is true for all kernels of degree smaller than d . Con-
sider (X̃

(k)
i )i∈N,k≤d , an independent copy of (X

(k)
i )i∈N,k≤d and denote by Ẽ1 inte-

gration with respect to X̃(1). Then, the complete degeneracy of πdhi and Jensen’s
inequality yield

E1

∣∣∣∣∣∑|i|≤n

πdhi(Xdec
i )

∣∣∣∣∣
p

= E1

∣∣∣∣∣∑|i|≤n

(
πdhi

(
X

(1)
i1

, . . . ,X
(d)
id

)− Ẽ1πdhi
(
X̃

(1)
i1

,X
(2)
i2

, . . . ,X
(d)
id

))∣∣∣∣∣
p

≤ E1Ẽ1

∣∣∣∣∣∑|i|≤n

(
πdhi

(
X

(1)
i1

, . . . ,X
(d)
id

)− πdhi
(
X̃

(1)
i1

,X
(2)
i2

, . . . ,X
(d)
id

))∣∣∣∣∣
p
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= E1Ẽ1

∣∣∣∣∣∑|i|≤n

ε
(1)
i1

(
πdhi

(
X

(1)
i1

, . . . ,X
(d)
id

)− πdhi
(
X̃

(1)
i1

,X
(2)
i2

, . . . ,X
(d)
id

))∣∣∣∣∣
p

= E1Ẽ1

∣∣∣∣∣∑|i|≤n

ε
(1)
i1

(
π̄d−1hi

(
X

(1)
i1

, . . . ,X
(d)
id

)

− π̄d−1hi
(
X̃

(1)
i1

,X
(2)
i2

, . . . ,X
(d)
id

))∣∣∣∣∣
p

,

so, using the triangle inequality, we obtain∥∥∥∥∥∑|i|≤n

πdhi(Xdec
i )

∥∥∥∥∥
p

≤ 2

∥∥∥∥∥∑|i|≤n

ε
(1)
i1

π̄d−1hi(Xdec
i )

∥∥∥∥∥
p

.

Now, the Fubini theorem, together with the induction assumption applied to the
family of kernels h̃(i2,...,id )(x2, . . . , xd) = ∑

i1≤n ε
(1)
i1

hi(X
(1)
i1

, x2, . . . , xd) for fixed

values of X(1), ε(1), proves the lemma. �

We will also use the classical theorem due to Hoeffding, giving a decomposition
of a U -statistic into sum of uncorrelated, canonical U -statistics of different orders,
mentioned at the beginning of this paragraph.

LEMMA 2 (Hoeffding’s decomposition; see, e.g. [3], page 137). For h :�d →
R, symmetric in its entries denote

Un(h) = (n − d)!
n!

∑
i∈Id

n

h(Xi).

Then

Un(h) =
d∑

k=0

(
d

k

)
Un(πkh).

4.2. Moment and tail estimates for canonical U -statistics. We will now
present a version of sharp moment estimates for canonical U -statistics, proved in
[1] (actually as we will not need these results in the whole generality, we will state
only a simplified corollary, adapted to our purposes, which follows immediately
from Theorem 6 there).

First let us introduce some quantities, which will appear in the moment esti-
mates.

DEFINITION 4. For any canonical kernel h :�d → R and each J =
{J1, . . . , Jk} ∈ PId

define the norm

‖h‖J := ‖h‖J,∞ = sup

{
E

[
h(X)

k∏
i=1

fi(XJi
)

]
: Efi(XJi

)2 ≤ 1, i = 1, . . . , k

}
.
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Thus ‖h‖J is the norm of h viewed as a k-linear functional acting on the space
L2(XJ1) × · · · × L2(XJk

), where L2(XJi
) is the space of all square integrable

random variables, measurable with respect to σ(XJi
), the σ -field generated by

XJi
. In particular ‖h‖Id

= (Eh2)1/2 and ‖h‖{1}...{d} is the norm of h seen as a
kernel of a d-linear functional.

We have the following (cf. [1], Theorem 6)

THEOREM 2. There exist constants Ld , such that for all canonical kernels
h :�d → R and p ≥ 2,

E

∣∣∣∣∣∑|i|≤n

h(Xdec
i )

∣∣∣∣∣
p

≤ L
p
d

[
ndp/2

∑
J∈PId

pp deg (J )/2‖h‖p
J

+ ∑
I�Id

np#I/2pp(d+#I c)/2EI c max
iIc

(EI h(Xdec
i )2)p/2

]
.

REMARK. Note that (EI h(Xdec
i )2)p/2 depends only on XiIc , so the expression

maxiIc (EI h(Xdec
i )2)p/2 in the above inequality is well defined.

Theorem 2 implies the following theorem.

THEOREM 3. There exist constants Ld , such that for all bounded, canonical
kernels h :�d → R and t ≥ 0,

P

(∣∣∣∣∣∑|i|≤n

h(Xdec
i )

∣∣∣∣∣≥ t

)

≤ Ld exp
[
− 1

Ld

(
min

J∈PId

(
t

nd/2‖h‖J

)2/deg(J)

∧ min
I�Id

(
t

n#I/2‖(EI h2)1/2‖∞

)2/(d+#I c))]
.

REMARK. We would like to stress that Theorem 3 has been obtained from
Theorem 2 by means of the Chebyshev inequality only. Therefore, the same tail
estimates hold for random variables whose moments are dominated by moments
of corresponding U -statistics, which together with Lemma 1 yields the following.

THEOREM 4. There exist constants Ld , such that for all bounded kernels
h :�d → R and all t ≥ 0,

P

(∣∣∣∣∣∑|i|≤n

πdh(Xdec
i )

∣∣∣∣∣≥ t

)
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≤ Ld exp
[
− 1

Ld

(
min

J∈PId

(
t

nd/2‖h‖J

)2/deg(J)

∧ min
I�Id

(
t

n#I/2‖(EI h2)1/2‖∞

)2/(d+#I c))]
.

4.3. Moment and tail estimates for Rademacher chaoses.

LEMMA 3. Let (ai)i∈Id
n

be a d-indexed array of real numbers. Let us consider
a random variable

S :=
∣∣∣∣∣∑|i|≤n

ai

d∏
k=1

ε
(k)
ik

∣∣∣∣∣=
∣∣∣∣∣∑|i|≤n

aiε
dec
i

∣∣∣∣∣.
Moreover, for any partition J = {J1, . . . , Jm} ∈ PId

let us define

‖(ai)‖∗
J,p := sup

{∣∣∣∣∣∑|i|≤n

ai

m∏
k=1

α
(k)
iJk

∣∣∣∣∣ :∑
iJk

(
α

(k)
iJk

)2 ≤ p,

∀imaxJk
∈In

∑
i�Jk

(
α

(k)
iJk

)2 ≤ 1, k = 1, . . . ,m

}
,

where �Jk = Jk\{maxJk} (here
∑

i∅ ai = ai). Then, for all p ≥ 1,

‖S‖p ≥ 1

Ld

∑
J∈PId

‖(ai)‖∗
J,p.

In particular for some constant cd ,

P

(
S ≥ cd

∑
J∈PId

‖(ai)‖∗
J,p

)
≥ cd ∧ e−p.

PROOF. We will use induction with respect to d . For d = 1 the inequalities of
the lemma have been proved in [10], for d = 2 in [14] (as a part of much sharper
two-sided inequalities). Let us thus assume that the moment estimate holds for
chaoses of order smaller than d ≥ 3.

First, consider the partition J = {Id}. We have

ESp = EdEId−1

∣∣∣∣∣∑
id

ε
(d)
id

∣∣∣∣∣∑
iId−1

ai

d−1∏
k=1

ε
(k)
ik

∣∣∣∣∣
∣∣∣∣∣
p

≥ Ed

∣∣∣∣∣∑
id

ε
(d)
id

EId−1

∣∣∣∣∣∑
iId−1

ai

d−1∏
k=1

ε
(k)
ik

∣∣∣∣∣
∣∣∣∣∣
p
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≥ 1

L̃
p
d

Ed

∣∣∣∣∣∑
id

ε
(d)
id

(∑
iId−1

a2
i

)1/2∣∣∣∣∣
p

≥ 1

L̃
p
d L

p
1

sup

{∑
id

αid

(∑
iId−1

a2
i

)1/2

:
∑
id

α2
id

≤ p, |αi | ≤ 1

}p

,

where the first inequality follows from Jensen’s inequality, the second one from
hypercontractivity of Rademacher chaos (see [3], Theorem 3.2.5, page 115) and
the contraction principle for Rademacher averages (see, for instance, [16], Theo-
rem 4.4, page 95), whereas the third one follows from the induction assumption.

It remains to show that

sup

{∑
id

αid

(∑
iId−1

a2
i

)1/2

:
∑
id

α2
id

≤ p, |αi | ≤ 1

}
≥ ‖(ai)‖∗{Id },p.

Let thus (γi) be a d-indexed matrix, such that
∑

i γ
2
i ≤ p,

∑
iId−1

γ 2
i ≤ 1 for all id .

Then ∣∣∣∣∣∑
i

γiai

∣∣∣∣∣≤∑
i

|γi||ai| ≤
∑
id

(∑
iId−1

γ 2
i

)1/2(∑
iId−1

a2
i

)1/2

≤ sup

{∑
id

αid

(∑
iId−1

a2
i

)1/2

:
∑
id

α2
id

≤ p, |αi | ≤ 1

}
.

Let now J = {J1, . . . , Jm}, m ≥ 2. We have

‖S‖p ≥ 1

Ld−#J1

(
EJ1

(∥∥∥∥∥
(∑

iJ1

ai
∏
k∈J1

ε
(k)
ik

)
iId \J1

∥∥∥∥∥
∗

J\{J1},p

)p)1/p

≥ 1

Ld−#J1L#J1

‖(ai)‖∗
J,p,

by the induction assumption and Jensen’s inequality. �

4.4. Basic consequences of the integrability condition. Now we would like to
present some basic facts, following from the integrability condition E(h2 ∧ u) =
O((log logu)d−1), which is necessary for the LIL for U -statistics of order d , as
proved by Giné and Zhang [5]; cf. Lemma 7 below.

LEMMA 4. If E(h2 ∧ u) = O((log logu)d−1) then for I ⊆ Id , I �= ∅,Id and
a > 0,

∞∑
l=0

∞∑
n=3

2l+#I cnPI c

(
EI (h

2 ∧ 2an) ≥ 22l+#I cn logd n
)
< ∞.
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As a consequence, for k ≥ 0,∑
n

2#I cn(logn)−kPI c

(
EI (h

2 ∧ 22nd) ≥ 2#I cn(logn)d−k)< ∞.

PROOF. For fixed l and k we have∑
2k<logn≤2k+1

2l+#I cnPI c

(
EI (h

2 ∧ 2an) ≥ 22l+#I cn logd n
)

≤ ∑
2k<logn≤2k+1

2l+#I cnPI c

(
EI (h

2 ∧ 2ae2k+1

) ≥ 22l+#I cn+dk)

≤ 2lEI c

∑
n

2#I cn1{EI (h2∧2ae2k+1
)≥22l+#Icn+dk}

≤ 2lEI c

[
2

EI (h
2 ∧ 2ae2k+1

)

22l+dk

]
≤ 2−lK

(logae2k+1
)d−1

2dk

≤ 2−lK̃

(
logd−1 a

2dk
+ 2−k

)
,

with K̃ depending only on h (recall the convention explained in Section 2), which
proves the first part of the lemma. To obtain the other inequality, it is enough
to make an approximate change of variable 2#I cm(logm)−k � 2#I cn and use the
convergence of the inner sum for l = 0 in the first inequality, for a > 2d . �

LEMMA 5. If E(h2 ∧ u) = O((log logu)β) then

E|h|1{|h|≥s} = O

(
(log log s)β

s

)
.

PROOF. Indeed, since P(|h| ≥ u) ≤ K
(log logu)β

u2 , we have for sufficiently
large s,

E|h|1{|h|≥s} =
∞∑

k=0

E|h|1{2ks≤|h|<2k+1s} ≤ K

∞∑
k=0

2k+1s
(log log 2ks)β

22ks2

= 2K

∞∑
k=0

(log log 2ks)β

2ks
= O

(
(log log s)β

s

)
.

�

LEMMA 6. If E(h2 ∧ u) = O((log logu)β) then

E
|h|2

(LL |h|)β+ε
< ∞

for each ε > 0.
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PROOF. For large n,

E
|h|2

(log log |h|)β+ε
1{222n ≤|h|<222n+1 } ≤ K

E(|h|2 ∧ 222n+1

)

2n(β+ε)
≤ K̃

2(n+1)β

2n(β+ε)

= K̃2β2−nε. �

5. The equivalence of several LIL statements. We will now state general
results on the correspondence of the LIL for various kinds of U -statistics (as de-
fined in Section 2) based on the same kernel, that we will use extensively in the
sequel. Let us start with the following lemma, proved in [5].

LEMMA 7. Let h :�d → R be a symmetric function. There exist constants Ld ,
such that if

lim sup
n→∞

1

(n log logn)d/2

∣∣∣∣∣∑
i∈Id

n

h(Xi)

∣∣∣∣∣≤ C a.s.,(1)

then
∞∑

n=1

P

(∣∣∣∣∣ ∑|i|≤2n

εdec
i h(Xdec

i )

∣∣∣∣∣> D2nd/2 logd/2 n

)
< ∞(2)

for D = LdC. Moreover (2) implies

lim sup
u→∞

E(h2(X) ∧ u)

(log logu)d−1 ≤ LdD2.(3)

LEMMA 8. For a symmetric function h :�d → R, the LIL (1) is equivalent to
the decoupled LIL

lim sup
n→∞

1

(n log logn)d/2

∣∣∣∣∣∑
i∈Id

n

h(Xdec
i )

∣∣∣∣∣≤ D a.s.,(4)

meaning that (1) implies (4) with D = LdC, and conversely (4) implies (1) with
C = LdD.

PROOF. We can equivalently write (1) as

lim
k→∞P

(
sup
n≥k

1

(n log logn)d/2

∣∣∣∣∣∑
i∈Id

n

h(Xi)

∣∣∣∣∣≥ C + ε

)
= 0,

for all ε > 0, which can be rewritten as

lim
k→∞P

(∥∥∥∥∥ ∑
|i|<∞

l �=j⇒il �=ij

h|i|,k(Xi)

∥∥∥∥∥∞
≥ C + ε

)
= 0,(5)
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where for i, k ∈ N, hi,k is an l∞-valued kernel defined as

hi,k =
(

h

(k log log k)d/2 ,
h

((k + 1) log log(k + 1))d/2 , . . . ,
h

(n log logn)d/2 , . . .

)
for i ≤ k and

hi,k =
(

0, . . . ,0︸ ︷︷ ︸
i−k

,
h

(i log log i)d/2 ,

h

((i + 1) log log(i + 1))d/2 , . . . ,
h

(n log logn)d/2 , . . .

)
otherwise. Now the decoupling inequalities by de la Peña and Montgomery–Smith
(see [4]) show that (5) is up to constant equivalent to its decoupled version, which
is equivalent to (4). �

LEMMA 9. There exists a universal constant L < ∞, such that for any kernel
h :�1 × · · · × �d → R and variables (X

(j)
i )i,j like in Definition 3, we have

P

(
max|j|≤n

∣∣∣∣∣ ∑
i : ik≤jk,k=1,...,d

h(Xdec
i )

∣∣∣∣∣≥ t

)
≤ LdP

(∣∣∣∣∣∑|i|≤n

h(Xdec
i )

∣∣∣∣∣≥ t/Ld

)
.

PROOF. We will prove by induction with respect to d a stronger statement,
namely the inequality in question for Banach space valued U -statistics, with the
absolute value replaced by the norm. For d = 1, it is a result by Montgomery–
Smith [17]. Assume therefore that the statement holds for kernels of degree
smaller than d and consider a kernel h :�d → B , for some Banach space B .
Then, conditioning on X(d), applying the induction assumption to ln∞(B) and
g(x1, . . . , xd−1) = (

∑
id≤l h(x1, . . . , xd−1,X

(d)
id

) : l ≤ n) and finally using the Fu-
bini theorem, we obtain

P

(
max|j|≤n

∥∥∥∥∥ ∑
i : ik≤jk,k=1,...,d

h(Xdec
i )

∥∥∥∥∥
B

≥ t

)

≤ Ld−1P

(
max
j≤n

∥∥∥∥∥ ∑
|i|≤n : id≤j

h(Xdec
i )

∥∥∥∥∥
B

≥ t/Ld−1

)
.

Now it is enough to apply the result by Montgomery–Smith, conditionally on
(X(1), . . . ,X(d−1)). �

COROLLARY 1. Consider a kernel h :�1 × · · · × �d → R, an array of vari-
ables (X

(j)
i )i,j like in Definition 3 and α > 0. If

∞∑
n=1

P

(∣∣∣∣∣ ∑|i|≤2n

h(Xdec
i )

∣∣∣∣∣≥ C2nα logα n

)
< ∞,
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then

lim sup
n→∞

1

(n log logn)α

∣∣∣∣∣∑|i|≤n

h(Xdec
i )

∣∣∣∣∣≤ Ld,αC a.s.

PROOF. We have for 0 < D < ∞

P

(
sup
n≥N

1

(n log logn)α

∣∣∣∣∣∑|i|≤n

h(Xdec
i )

∣∣∣∣∣> D

)

≤ P

(
sup

k>�logN/ log 2�
max

2k−1≤n≤2k

Lα

(2k logk)α

∣∣∣∣∣∑|i|≤n

h(Xdec
i )

∣∣∣∣∣> D

)

≤ ∑
k>�logN/ log 2�

P

(
max

2k−1≤n≤2k

Lα

(2k logk)α

∣∣∣∣∣∑|i|≤n

h(Xdec
i )

∣∣∣∣∣> D

)
,

so the result follows from Lemma 9. �

To prove further statements concerning the equivalence of various types of the
LIL, we will have to show that the contribution to a decoupled U -statistics from
the “diagonal,” that is from the sum over multiindices i /∈ I d

n is negligible. One of
our tools will be the following.

LEMMA 10. If h :�d → R is canonical and satisfies

E(h2 ∧ u) = O((log logu)β),

for some β , then

lim sup
n→∞

1

(n log logn)d/2

∣∣∣∣∣ ∑
|i|≤n

∃j �=kij=ik

h(Xdec
i )

∣∣∣∣∣= 0 a.s.(6)

PROOF. We will decompose the diagonal into several sums, depending on the
“level sets” of the multiindex i. For J ∈ PId

let AJ(n) be the set of all |i| ≤ n such
that the index i is constant on all J ∈ J. Let us notice that the contribution to the
sum in (6) from i ∈ AJ(n) that is

UJ(n) := ∑
i∈AJ(n)

h(Xdec
i ),

can be treated as a canonical decoupled U -statistic of order degJ if we only treat
the variables Xdec

iJ
as one variable for any J ∈ J.
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Let us now denote for j < k, j, k ∈ Id , Ajk = {i : |i| ≤ n, ij = ik} and � =
{(j, k) ⊆ I 2

d : j < k}. From the inclusion–exclusion formula we get for every
|i| ≤ n,

1{∃j �=kij=ik} = 1⋃
(j,k)∈� Ajk

=
(d

2)∑
l=1

∑
(j1,k1),...,(jl ,kl)∈�

∀r �=s (jr ,kr ) �=(js ,ks)

(−1)l−11Aj1k1∩···∩Ajlkl
.

Hence we have ∑
|i|≤n

∃j �=kij=ik

h(Xdec
i ) = ∑

J∈PId

degJ<d

aJUJ(n),

for some numbers aJ , whose absolute values are bounded by a constant, depending
only on d . Since the number of summands on the right-hand side does not depend
on n either, it is enough to prove that

lim sup
n→∞

|UJ(n)|
(n log logn)d/2 = 0

for all J such that degJ < d .
Therefore, by Corollary 1, it is enough to prove that for degJ < d ,

∞∑
n=1

P

(∣∣∣∣∣ ∑
i∈AJ(2n)

πdegJh(Xdec
i )

∣∣∣∣∣≥ C2nd/2 logd/2 n

)
< ∞(7)

for any C > 0. (Here πdegJ denotes the Hoeffding projection of the kernel h con-
sidered a U -statistics of order degJ, as mentioned above. We have thus actually
πdegJh = h.) It is relatively easy to prove (7), as the number of summands is of
much smaller order than 2nd . Obviously #AJ(2n) = 2ndegJ ≤ 2n(d−1). Let I be
any subset of Id , such that for any J ∈ J, #(I ∩ J ) = 1. For hn = h1{|h|>2nd } we
have by Lemma 5

E

∣∣∣∣∣ ∑
i∈AJ(2n)

εdec
iI hn(Xdec

i )

∣∣∣∣∣≤ 2n(d−1)E|hn| ≤ K2n(d−1) logβ n

2nd
= K

logβ n

2n
,

and the convergence of (7) with h replaced by hn follows easily from Lemma 1
and the Chebyshev inequality. On the other hand, for h̃n = h1{|h|≤2nd } we have

E|∑i∈AJ(2n) ε
dec
iI

h̃n(Xdec
i )|2

C22nd logd n
≤ #AJ(2n)Eh̃2

n

C22nd logd n
≤ 2n(d−1)Eh̃2

n

C22nd logd n

≤ KC−22−n logβ−d n,

which (again via Lemma 1 and the Chebyshev inequality) allows us to finish the
proof. �
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COROLLARY 2. The randomized decoupled LIL

lim sup
n→∞

1

(n log logn)d/2

∣∣∣∣∣∑|i|≤n

εdec
i h(Xdec

i )

∣∣∣∣∣≤ C(8)

is equivalent to (2), meaning that if (8) holds then so does (2) with D = LdC and
(2) implies (8) with C = LdD.

PROOF. Implication (2) ⇒ (8) follows from Corollary 1. To get (2) from (8),
it is enough to show that E(h2 ∧u) = O((log logu)d), since then by Lemma 10 we
can skip the diagonal and by Lemma 8 undecouple to obtain

lim sup
n→∞

1

(n log logn)d/2

∣∣∣∣∣∑
i∈Id

n

εih(Xi)

∣∣∣∣∣< ∞,

which gives (2) by Lemma 7 [note that if (εi)i, (ε
(j)
i )i , j = 1, . . . , d , are inde-

pendent Rademacher sequences, then so are (εiε
(j)
i )i]. This is, however, easy by a

simple modification of arguments from [7], which we will present here for the sake
of completeness. Notice that by the Paley–Zygmund inequality and hypercontrac-
tivity of Rademacher chaos, we have

Pε

(∣∣∣∣∣∑|i|≤n

εdec
i h(Xdec

i )

∣∣∣∣∣≥ L−1
d

(∑
|i|≤n

h(Xdec
i )2

)1/2)
≥ 1

Ld

.(9)

Moreover if E(h2 ∧ n) ≥ 1, then

E

(∑
|i|≤n

(
h(Xdec

i )2 ∧ n
))2

= ∑
I⊆Id

∑
|i|≤n

∑
|j|≤n

{k : ik=jk}=I

E[h(Xdec
i )2 ∧ n][h(Xdec

j )2 ∧ n]

≤ n2d [E(h2 ∧ n)]2 + ∑
I⊆Id ,I �=∅

nd+#I c

nE(h2 ∧ n)

≤ n2d [E(h2 ∧ n)]2 + (2d − 1)n2dE(h2 ∧ n)

≤ 2dn2d [E(h2 ∧ n)]2 = 2d

(
E
∑
|i|≤n

(
h(Xdec

i )2 ∧ n
))2

.

Thus again by Paley–Zygmund, we have

P

(∑
|i|≤n

h(Xdec
i )2 ≥ 1

2
ndE(h2 ∧ n)

)
≥ 1

Ld

,
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which together with (9) yields

P

(∣∣∣∣∣∑|i|≤n

εdec
i h(Xdec

i )

∣∣∣∣∣≥ L̃−1
d nd/2

√
E(h2 ∧ n)

)
≥ 1

L̃d

,

which gives E(h2 ∧ n) = O((log logn)d), since by assumption the sequence

1

(n log logn)d/2

∣∣∣∣∣∑|i|≤n

εdec
i h(Xdec

i )

∣∣∣∣∣
is stochastically bounded. �

COROLLARY 3. For a symmetric, canonical kernel h :�d → R, the LIL (1) is
equivalent to the decoupled LIL “with diagonal”

lim sup
n→∞

1

(n log logn)d/2

∣∣∣∣∣∑|i|≤n

h(Xdec
i )

∣∣∣∣∣≤ D a.s.(10)

again meaning that there are constants Ld such that if (1) holds for some D then
so does (10) for D = LdC, and conversely, (10) implies (1) for C = LdD.

PROOF. To show that (1) implies (10) it is enough to use Lemma 8 and then
Lemma 10 to add the diagonal (the integrability condition on h follows from
Lemma 7).

To obtain the converse implication, it is enough to prove E(h(X)2 ∧ u) =
O((log logu)d) since then we are allowed to delete the diagonal by means of
Lemma 10 and use Lemma 8 to undecouple the LIL.

From the assumption it follows that for every ε > 0 and sufficiently large n,

P

(∣∣∣∣∣∑|i|≤n

h(Xdec
i )

∣∣∣∣∣> (D + 1)nd/2 log logd/2 n

)
< ε.

Now, by Lemma 9, for arbitrary subsets A1, . . . ,Ad ⊆ In,

P

(∣∣∣∣∣ ∑
i∈A1×···×Ad

h(Xdec
i )

∣∣∣∣∣> Ld(D + 1)nd/2 log logd/2 n

)
≤ Ldε.

Moreover, for fixed values of (ε
(j)
i ), the expression

∑
|i|≤n εdec

i h(Xdec
i ) is a sum of

2d expressions of the form ±∑
i∈A1×···×Ad

h(Xdec
i ), where Ak = {i : ε(k)

i = ±1}.
Thus, using the above estimate conditionally, together with the Fubini theorem,
we get for sufficiently large n,

P

(∣∣∣∣∣∑|i|≤n

εdec
i h(Xdec

i )

∣∣∣∣∣> 2dLd(D + 1)nd/2 log logd/2 n

)
≤ 2dLdε.

Now we can finish just like in Corollary 2 by applying the Paley–Zygmund in-
equality and hypercontractive estimates for chaoses. �
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6. The canonical decoupled case. Before we state the necessary and suffi-
cient conditions for the LIL, let us notice that the integrability condition E(h2 ∧
u) = O((log logu)d−1) can be equivalently expressed in the language of the ‖·‖J,u

norms (see Section 3 for the definition). More precisely, we have the following.

LEMMA 11. For any function h we have

lim sup
u→∞

(E(h2 ∧ u))1/2

(log logu)(d−1)/2 = lim sup
u→∞

‖h‖{Id },u
(log logu)(d−1)/2 .

PROOF. Let us denote the lim sup on the right-hand side by a, and the other
one by b. Let us also assume without loss of generality that h ≥ 0. We will first
prove that a ≤ b. Indeed, either E(h2 ∧ u) ≤ 1 or we can use

f := h ∧ √
u(

E(h2 ∧ u)
)1/2

as a test function in the definition of ‖h‖{Id },u, thus obtaining for u ≥ 1

‖h‖{Id },u ≥ Ehf = E(h2 ∧ √
uh)

(E(h2 ∧ u))1/2 ≥ (
E(h2 ∧ u)

)1/2
,

so we have (E(h2 ∧ u))1/2 ≤ 1 + ‖h‖{Id },u, which immediately yields a ≤ b. To
prove the other inequality, let us notice that if a < ∞, then for u large enough and
any f with ‖f ‖2 ≤ 1,‖f ‖∞ ≤ u Lemma 5 gives

Ehf ≤
√

Eh21{h≤u2} + uE|h|1{h≥u2}

≤ (
E(h2 ∧ u4)

)1/2 + u
K(log logu2)d−1

u2 ,

which gives b ≤ a since

lim
u→∞

log logu4

log logu
= 1. �

THEOREM 5. Let h be a canonical symmetric kernel in d variables. Then the
decoupled LIL

lim sup
n→∞

1

nd/2(log logn)d/2

∣∣∣∣∣∑|i|≤n

h(Xdec
i )

∣∣∣∣∣≤ C a.s.(11)

holds if and only if for all J ∈ PId
,

lim sup
u→∞

1

(log logu)(d−degJ)/2 ‖h‖J,u ≤ D,(12)

that is, if (11) holds for some C then (12) is satisfied for D = LdC and conversely,
(12) implies (11) with C = LdD.
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PROOF.

Necessity. Let us first prove the following.

LEMMA 12. Let g :�d → R be a square integrable function. Then

Var

(∑
|i|≤n

g(Xdec
i )

)
≤ (2d − 1)n2d−1Eg(X)2.

PROOF. We have

Var

(∑
|i|≤n

g(Xdec
i )

)

= E

(∑
|i|≤n

(
g(Xdec

i ) − Eg(Xdec
i )

))2

= ∑
I⊆Id

∑
|i|≤n

∑
|j|≤n :

{k : ik=jk}=I

E
[(

g(Xdec
i ) − Eg(Xdec

i )
)(

g(Xdec
j ) − Eg(Xdec

j )
)]

= ∑
I⊆Id ,I �=∅

∑
|i|≤n

∑
|j|≤n :

{k : ik=jk}=I

E
[(

g(Xdec
i ) − Eg(Xdec

i )
)(

g(Xdec
j ) − Eg(Xdec

j )
)]

≤ ∑
I⊆Id ,I �=∅

ndnd−#I Var(g(X)) ≤ (2d − 1)n2d−1Eg(X)2.
�

Moving to the proof of (12), let us first note that from Corollary 3 and Lemma 7,
the series (2) is convergent and (3) holds. Since limn→∞

∑2n
k=n

1
k

= log 2, there
exists N0, such that for all N > N0, there exists N ≤ n ≤ 2N , satisfying

P

(∣∣∣∣∣ ∑|i|≤2n

εdec
i h(Xdec

i )

∣∣∣∣∣> LdC2nd/2 logd/2 n

)
<

1

10n
.(13)

Let us thus fix N > N0 and consider n as above. Let J = {J1, . . . , Jk} ∈ PId
.

Let us also fix functions fj :�#Jj → R, j = 1, . . . , k, such that

‖fj (XJj
)‖2 ≤ 1,

‖fj (XJj
)‖∞ ≤ 2n/(2k+1).

The Chebyshev inequality gives

P

( ∑
|iJj

|≤2n

fj (Xdec
iJj

)2 logn ≤ 10 · 2d2#Jj n logn

)
≥ 1 − 1

10 · 2d
.(14)
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Moreover, for sufficiently large N ,

∑
|i�Jj

|≤2n

1

2n#Jj
fj (Xdec

iJj
)2 · logn ≤ 2n#�Jj 22n/(2k+1) logn

2n#Jj

≤ 22n/(2k+1) logn

2n
≤ 1.

Without loss of generality we may assume that the sequences (X
(j)
i )i,j and

(ε
(j)
i )i,j are defined as coordinates of a product probability space. If for each

j = 1, . . . , k we denote the set from (14) by Ak , we have P(
⋂k

j=1 Ak) ≥ 0.9. Re-

call now Lemma 3. On
⋂k

j=1 Ak we can estimate the ‖·‖∗
J,logn norms of the matrix

(h(Xdec
i ))|i|≤2n by using the test sequences

αiJj
=

fj (Xdec
iJj

)
√

logn

101/22d/22n#Jj /2 .

Therefore, with probability at least 0.9, we have

∥∥(h(Xdec
i ))|i|≤2n

∥∥∗
J,logn

≥ (logn)k/2

2dk/210k/22(
∑

j #Jj )n/2

∣∣∣∣∣ ∑|i|≤2n

h(Xdec
i )

k∏
j=1

fj (Xdec
iJj

)

∣∣∣∣∣(15)

= (logn)k/2

2dk/210k/22dn/2

∣∣∣∣∣ ∑|i|≤2n

h(Xdec
i )

k∏
j=1

fj (Xdec
iJj

)

∣∣∣∣∣.
Our aim is now to further bound from below the right-hand side of the above

inequality, to have, via Lemma 3, control from below on the conditional tail prob-
ability of

∑
|i|≤2n εdec

i h(Xdec
i ), given the sample (X

(j)
i ).

From now on let us assume that∣∣∣∣∣Eh(X)

k∏
j=1

fj (XJj
)

∣∣∣∣∣> 1.(16)

By Corollary 3 and Lemma 7 we have E(h2 ∧ u) = O((log logu)d−1). Thus, the
Markov inequality and Lemma 5 give

P

(∣∣∣∣∣ ∑|i|≤2n

h(Xdec
i )1{|h(Xdec

i )|>2n}
k∏

j=1

fj (Xdec
iJj

)

∣∣∣∣∣≥ 2nd |Eh
∏k

j=1 fj |
4

)

≤ 4
2nd(

∏k
j=1 ‖fj‖∞) · E|h|1{|h|>2n}

2nd |Eh
∏k

j=1 fj |
(17)
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≤ 4
2nk/(2k+1)E|h|1{|h|>2n}

|Eh
∏k

j=1 fj |

≤ 4K
(logn)d−1

2n(k+1)/(2k+1)
.

Let now hn = h1{|h|≤2n}. By the Chebyshev inequality, Lemma 12 and (3),

P

(∣∣∣∣∣ ∑|i|≤2n

hn(Xdec
i )

k∏
j=1

fj (Xdec
iJj

) − 2ndEhn

k∏
j=1

fj

∣∣∣∣∣≥ 2nd

5

∣∣∣∣∣Ehn

k∏
j=1

fj

∣∣∣∣∣
)

≤ 25
Var(

∑
|i|≤2n hn(Xdec

i )
∏k

j=1 fj (Xdec
iJj

))

22nd |Ehn

∏k
j=1 fj |2

≤ 25
(2d − 1)2n(2d−1)

22nd |Ehn

∏k
j=1 fj |2

E

∣∣∣∣∣hn

k∏
j=1

fj

∣∣∣∣∣
2

(18)

≤ 25(2d − 1)
22nk/(2k+1)Eh2

n

2n|Ehn

∏k
j=1 fj |2

≤ 25K(2d − 1)
logd−1 n

2n/(2k+1)|Ehn

∏k
j=1 fj |2

.

Let us also notice that for large n, by (3), Lemma 5 and (16),∣∣∣∣∣Ehn

k∏
j=1

fj

∣∣∣∣∣≥
∣∣∣∣∣Eh

k∏
j=1

fj

∣∣∣∣∣−
∣∣∣∣∣Eh1{|h|>2n}

k∏
j=1

fj

∣∣∣∣∣
≥
∣∣∣∣∣Eh

k∏
j=1

fj

∣∣∣∣∣− 2nk/(2k+1)K
(logn)d−1

2n
(19)

≥ 5

8

∣∣∣∣∣Eh

k∏
j=1

fj

∣∣∣∣∣≥ 5

8
.

Inequalities (17), (18) and (19) imply, that for large n with probability at least
0.9 we have∣∣∣∣∣ ∑|i|≤2n

h(Xdec
i )

k∏
j=1

fj (Xdec
iJj

)

∣∣∣∣∣
≥
∣∣∣∣∣ ∑|i|≤2n

hn(Xdec
i )

k∏
j=1

fj (Xdec
iJj

)

∣∣∣∣∣
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−
∣∣∣∣∣ ∑|i|≤2n

h(Xdec
i )1{|h(Xdec

i )|>2n}
k∏

j=1

fj (Xdec
iJj

)

∣∣∣∣∣
≥ 2nd

(
4

5

∣∣∣∣∣Ehn

n∏
j=1

fj

∣∣∣∣∣− 1

4

∣∣∣∣∣Eh

k∏
j=1

fj

∣∣∣∣∣
)

≥ 2nd

(
4

5
· 5

8

∣∣∣∣∣Eh

n∏
j=1

fj

∣∣∣∣∣− 1

4

∣∣∣∣∣Eh

k∏
j=1

fj

∣∣∣∣∣
)

≥ 2nd

4

∣∣∣∣∣Eh

k∏
j=1

fj

∣∣∣∣∣.
Together with (15) this yields that for large n with probability at least 0.8,

∥∥(hi)|i|≤2n

∥∥∗
J,logn ≥ 2nd/2 logk/2 n

4 · 2dk/210k/2

∣∣∣∣∣Eh

k∏
j=1

fj

∣∣∣∣∣.
Thus, by Lemma 3, for large n

P

(∣∣∣∣∣ ∑|i|≤2n

εdec
i h(Xdec

i )

∣∣∣∣∣≥ cd

2nd/2 logk/2 n

4 · 2dk/210k/2

∣∣∣∣∣Eh

k∏
j=1

fj

∣∣∣∣∣
)

≥ 8

10n
,

which together with (13) gives∣∣∣∣∣Eh

k∏
j=1

fj

∣∣∣∣∣≤ LdC
4 · 2dk/210k/2

cd

log(d−k)/2 n.

In particular for sufficiently large N , for arbitrary functions fj :�#Jj → R, j =
1, . . . , k, such that

‖fj (XJj
)‖2 ≤ 1, ‖fj (XJj

)‖∞ ≤ 2N/(2k+1)

we have∣∣∣∣∣Eh

k∏
j=1

fj

∣∣∣∣∣≤ LdC
4 · 2dk/210k/2

cd

log(d−k)/2 n ≤ L̃dC log(d−k)/2 N.

Thus, for large u (u ≥ u0),

sup

{∣∣∣∣∣Eh(X)

k∏
j=1

fj (XJj
)

∣∣∣∣∣ :‖fj (XJj
)‖2 ≤ 1,‖fj (XJj

)‖∞ ≤ u1/(2k+1)

}

≤ L̄d(log logu)(d−k)/2,

and so

sup

{∣∣∣∣∣Eh(X)

k∏
j=1

fj (XJj
)

∣∣∣∣∣ :‖fj (XJj
)‖2 ≤ 1,‖fj (XJj

)‖∞ ≤ u

}

≤ L̂d(log logu)(d−k)/2,

for all u ≥ u
1/(2k+1)
0 , which proves the necessity part of the theorem.
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Sufficiency. The proof consists of several truncation arguments. In the first
part, until the ‖ · ‖J,u norms come into play, we follow the lines of the proof of the
special case d = 2, presented in [8], with some modifications. At each step we will
show that

∞∑
n=1

P

(∣∣∣∣∣ ∑|i|≤2n

πdhn(Xdec
i )

∣∣∣∣∣≥ C2nd/2 logd/2 n

)
< ∞,(20)

with hn = h1An for some sequence of sets An.

Step 1. Inequality (20) holds for any C > 0 if

An ⊆ {x :h2(x) ≥ 2nd logd n}.
We have, by the Chebyshev inequality and the inequality E|πdhn| ≤ 2dE|hn|

(which follows directly from the definition of πd or may be considered a trivial
case of Lemma 1),

∑
n

P

(∣∣∣∣∣ ∑|i|≤2n

πdhn(Xdec
i )

∣∣∣∣∣≥ C2nd/2 logd/2 n

)

≤∑
n

E|∑|i|≤2n πdhn(Xdec
i )|

C2nd/2 logd/2 n

≤ 2d
∑
n

2ndE|h|1{|h|≥2nd/2 logd/2 n}
C2nd/2 logd/2 n

= 2dC−1E|h|∑
n

2nd/2

logd/2 n
1{|h|≥2nd/2 logd/2 n}

≤ LdC−1E
|h|2

(LL |h|)d < ∞,

where the last inequality follows from Lemma 6, Lemma 11 and condition (12) for
J = {Id}.

Step 2. Inequality (20) holds for any C > 0 if

An ⊆ {
x ∈ �d :h2(x) ≤ 22nd, ∃I �=∅,Id

EI (h
2 ∧ 22nd) ≥ 2#I cn logd n

}
.

By Lemma 1 and the Chebyshev inequality, it is enough to prove that

∑
n

E|∑|i|≤2n εdec
i hn(Xdec

i )|
2nd/2 logd/2 n

< ∞.
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The set An can be written as ⋃
I⊆Id ,I �=Id ,∅

An(I),

where the sets An(I) are pairwise disjoint and

An(I) ⊆ {x :h2(x) ≤ 22nd,EI (h
2 ∧ 22nd) ≥ 2#I cn logd n}.

Therefore, it suffices to prove that

∑
n

E|∑|i|≤2n εdec
i h(Xdec

i )1An(I)(Xdec
i )|

2nd/2 logd/2 n
< ∞.(21)

Let for l ∈ N,

An,l(I ) := {x :h2(x) ≤ 22nd,

22l+2+#I cn logd n > EI (h
2 ∧ 22nd) ≥ 22l+#I cn logd n} ∩ An(I).

Then hn1An(I) =∑∞
l=0 hn,l , where hn,l := hn1An,l(I ).

We have

E

∣∣∣∣∣ ∑|i|≤2n

εdec
i hn,l(Xdec

i )

∣∣∣∣∣
≤ ∑

|iIc |≤2n

EI cEI

∣∣∣∣∣ ∑|iI |≤2n

εdec
iI hn,l(Xdec

i )

∣∣∣∣∣
≤ ∑

|iIc |≤2n

EI c

(
EI

∣∣∣∣∣ ∑|iI |≤2n

εdec
iI hn,l(Xdec

i )

∣∣∣∣∣
2)1/2

≤ 2(#I c+#I/2)nEI c (EI |hn,l|2)1/2

≤ 2(#I c+d/2)n+l+1 logd/2 nPI c

(
EI (h

2 ∧ 22nd) ≥ 22l+#I cn logd n
)
.

Therefore, to get (21), it is enough to show that

∞∑
l=0

∑
n

2l+#I cnPI c

(
EI (h

2 ∧ 22nd) ≥ 22l+#I cn logd n
)
< ∞.

But this is just the statement of Lemma 4 for a = 2d .

Step 3. Inequality (20) holds for any C > 0 if

An ⊆ {x : 2ndn−2d < h2(x) ≤ 2nd logd n

and ∀I �=∅,Id
EI (h

2 ∧ 22nd) ≤ 2#I cn logd n}.
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By Lemma 1 and the Chebyshev inequality, it is enough to show that

∑
n

E|∑|i|≤2n εdec
i hn(Xdec

i )|4
22nd log2d n

< ∞.

The Khintchine inequality for Rademacher chaoses gives

L−1
d E

∣∣∣∣∣ ∑|i|≤2n

εdec
i hn(Xdec

i )

∣∣∣∣∣
4

≤ E

( ∑
|i|≤2n

hn(Xdec
i )2

)2

= ∑
I⊆Id

∑
|i|≤2n

∑
|j|≤2n :

{k : ik=jk}=I

Ehn(Xdec
i )2hn(Xj

dec)2

≤ ∑
I⊆Id

2nd2n(d−#I )E[hn(X)2 · hn(X̃(I ))2],

where X = (X1, . . . ,Xd) and X̃(I ) = ((Xi)i∈I , (X
(1)
i )i∈I c ).

To prove the statement of this step it thus suffices to show that for I ⊆ Id we
have

∑
n

2−n#I

log2d n
E[hn(X)2hn(X̃(I ))2] < ∞.

(a) I = Id . Then

∑
n

Eh4
n

2nd log2d n
≤ Eh4

∑
n

1

2nd log2d n
1{h2≤2nd logd n}

≤ LdEh4 1

h2(LL |h|)d < ∞

by Lemma 6.
(b) I �= Id,∅. Let us denote by EI ,EI c , ẼI c respectively the expectation with

respect to (Xi)i∈I , (Xi)i∈I c and (X
(1)
i )i∈I c . Let also h̃, h̃n stand respectively for

h(X̃(I )), hn(X̃(I )). Then

∑
n

E(h2
n · h̃2

n)

2n#I log2d n

≤ 2
∑
n

E(h2
n · h̃2

n1{|h|≤|h̃|})
2n#I log2d n

≤ 2Eh2h̃21{|h|≤|h̃|}
∑
n

1

2n#I log2d n
1{EIc (h2∧22nd )≤2#In logd n,h̃2≤22nd }
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≤ 2Eh2h̃21{|h|≤|h̃|}
∑
n

1

2n#I log2d n
1{EIc (h2∧h̃2)≤2#In logd n,h̃2≤22nd }

≤ LdEh2h̃21{|h|≤|h̃|}
1

(EI c (h2 ∧ h̃2))(LL|h̃|)d

= LdEI ẼI c h̃2EI ch21{|h|≤|h̃|}
1

(EI c (h2 ∧ h̃2))(LL|h̃|)d

≤ LdE
h̃2

(LL|h̃|)d < ∞

by Lemma 6.
(c) I = ∅. We have,

∑
n

(Eh2
n)

2

log2d n
≤ K

∑
n

Eh2
n

logd+1 n
(22)

≤ KEh2
∑
n

1

logd+1 n
1{2ndn−2d<h2≤2nd logd n}.

For M > 0 let us now estimate #{n : 2ndn−2d ≤ M ≤ 2nd(logn)d}. Let
nmax, nmin denote the greatest and the smallest element of this set. Then

nmin log 2 + log lognmin ≥ logM

d
,

nmax log 2 − 2 lognmax ≤ logM

d
,

hence

(nmax − nmin) log 2 ≤ 2 lognmax + log lognmin ≤ 3 lognmax

≤ L log logM.

The right-hand side of (22) is thus bounded by

KE
|h|2LL|h|
(LL|h|)d+1 = KE

h2

(LL|h|)d < ∞

by Lemma 6.

Step 4. Inequality (20) holds for any C > 0 if

An ⊆
{
x :h2 ≤ 2ndn−2d,∀I �=∅,Id

EI (h
2 ∧ 22nd) ≤ 2#I cn logd n,

∃I �=∅,Id

2#I cn

log#I c
n

≤ EI (h
2 ∧ 22nd)

}
.
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The only difference between this step and the previous one is the proof of con-
vergence in the case (c), as in the two other cases we were using only bounds from
above on h2 and EI (h

2 ∧ 22nd), which are still valid.
Let us notice, that

Eh2
n ≤ ∑

I⊆Id ,I �=∅,Id

E(h2 ∧ 22nd)1{(logn)−#Ic≤2−#IcnEI (h
2∧22nd )≤(logn)d }

≤ ∑
I⊆Id ,I �=∅,Id

d+#I c∑
k=1

EI cEI (h
2 ∧ 22nd)1{(logn)d−k≤2−#IcnEI (h

2∧22nd )≤(logn)d+1−k}

≤ ∑
I⊆Id ,I �=∅,Id

d+#I c∑
k=1

2#I cn(logn)d+1−kPI c

(
EI (h

2 ∧ 22nd) ≥ 2#I cn(logn)d−k).
Thus

∑
n

22nd(Eh2
n)

2

22nd(logn)2d

≤ K̃
∑
n

Eh2
n

(logn)d+1

≤ K
∑

I⊆Id ,I �=∅,Id

d+#I c∑
k=1

∑
n

2#I cn

(logn)k
PI c

(
EI (h

2 ∧ 22nd) ≥ 2#I cn(logn)d−k)
< ∞

by Lemma 4.

Step 5. Inequality (20) holds for some C ≤ LdD if

An =
{
x :h2 ≤ 2ndn−2d,∀I �=∅,Id

EI (h
2 ∧ 22nd) ≤ 2#I cn

log#I c
n

}
.

This is the only part of the proof in which we use the assumptions on the ‖ · ‖J,u

norms of h for degJ > 1. Our aim is to estimate ‖hn‖J and then use Theorem 4.
Let us note that we can assume that

D = 1(23)

[if D �= 0 then we simply scale the function, otherwise (12) for J = {{1}, . . . , {d}}
gives h = 0].

Let us thus consider J = {J1, . . . , Jk} ∈ PId
and denote as usual X =
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(X1, . . . ,Xd), XI = (Xi)i∈I . Recall that

‖hn‖J = sup

{
E

[
hn(X)

k∏
i=1

fi(XJi
)

]
: Ef 2

i (XJi
) ≤ 1

}
.

In what follows, to simplify the already quite complicated notation, let us sup-
press the arguments of all the functions and write just h instead of h(X) and fi

instead of fi(XJi
).

Let us notice that if Ef 2
i ≤ 1, i = 1, . . . , k, then for each j = 1, . . . , k and J �

Jj by the Schwarz inequality applied conditionally to XJj \J ,

E

∣∣∣∣∣hn

k∏
i=1

fi1{EJ f 2
j >a2}

∣∣∣∣∣≤ EJj \J
[(

E(Jj\J )c

k∏
i=1

f 2
i

)1/2

1{EJ f 2
j ≥a2}

(
E(Jj\J )ch

2
n

)1/2
]

≤ EJj \J
[
(EJ f 2

j )1/21{EJ f 2
j ≥a2}

(
E(Jj\J )ch

2
n

)1/2]
≤ 2n#(Jj \J )/2EJj \J

[
(EJ f 2

j )1/21{EJ f 2
j ≥a2}

]
≤ 2n#(Jj \J )/2a−1.

This way we obtain

‖hn‖J ≤ sup

{
E

[
hn

k∏
i=1

fi

]
:‖fi‖2 ≤ 1,

‖(EJ f 2
i )1/2‖∞ ≤ 2n#(Ji\J )/2 for J � Ji

}

+
k∑

i=1

(2#Ji − 1)(24)

≤ Ld + sup

{
E

[
hn

k∏
i=1

fi

]
:‖fi‖2 ≤ 1,

‖(EJ f 2
i )1/2‖∞ ≤ 2n#(Ji\J )/2 for J � Ji

}
.

Let us thus consider arbitrary fi , i = 1, . . . , k, such that ‖fi‖2 ≤ 1,
‖(EJ f 2

i )1/2‖∞ ≤ 2n#(Ji\J )/2 for J � Ji (note that the latter condition means in
particular that ‖fi‖∞ ≤ 2n#Ji/2).

We have, by assumptions (12) and (23) for large n,∣∣∣∣∣E
[
h

k∏
i=1

fi

]∣∣∣∣∣≤ ‖h‖J,2nd/2 ≤ Ld log(d−degJ)/2 n.(25)
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For sufficiently large n,

E

∣∣∣∣∣h1{|h|≥2nd/2nd }
k∏

i=1

fi

∣∣∣∣∣≤ E|h|1{|h|≥2nd/2nd }
k∏

i=1

‖fi‖∞ ≤ K2nd/2 logd−1 n

2nd/2nd
≤ 1,

where the second inequality follows from Lemma 5.
Moreover, if we denote h̃n = |h| ∧ 2d·exp (�logn�), we get for I ⊆ Id, I �= ∅, Id ,

E

∣∣∣∣∣h̃n

k∏
i=1

fi1{EI h̃2
n≥2n#Ic

n}

∣∣∣∣∣≤ EI c

[
(EI h̃

2
n)

1/21{EI h̃2
n≥2n#Ic

n}
k∏

i=1

(EJi∩I f
2
i )1/2

]

≤
k∏

i=1

2n#(Ji∩I c)/2EI c

[
(EI h̃

2
n)

1/21{EI h̃2
n≥2n#Ic

n}
]

≤ 2n#I c/2 Eh̃2
n

2n#I c/2
√

n
≤ K

logd−1 n√
n

≤ 1

for large n.
By the last three inequalities we obtain∣∣∣∣∣E

[
hn

k∏
i=1

fi

]∣∣∣∣∣
≤
∣∣∣∣∣Eh

k∏
i=1

fi

∣∣∣∣∣+
∣∣∣∣∣Eh1Ac

n

k∏
i=1

fi

∣∣∣∣∣
≤ Ld log(d−degJ)/2 n + E

∣∣∣∣∣h
k∏

i=1

fi1{|h|≥2nd/2n−d }

∣∣∣∣∣
+ ∑

I⊆Id ,I �=∅,Id

E

∣∣∣∣∣h1{|h|<2nd/2n−d }
k∏

i=1

fi1{EI (h2∧22nd )≥2n#Ic
(logn)−#Ic }

∣∣∣∣∣
≤ Ld log(d−degJ)/2 n + 1 + (

E|h|21{2nd/2n−d≤|h|≤2nd/2nd }
)1/2

+ ∑
I⊆Id ,I �=∅,Id

E

∣∣∣∣∣h̃n

k∏
i=1

fi1{EI h̃2
n≥2n#Ic

(logn)−#Ic }

∣∣∣∣∣
≤ Ld log(d−degJ)/2 n + 2d + ∑

I�Id

dn(I ),

where

dn(I )2 = Eh̃2
n1{2n#Ic

n−1≤EI h̃
2
n≤2n#Ic

n} for I �= ∅, Id,

dn(∅)2 = Eh21{2nd/2n−d≤|h|≤2nd/2nd }.
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Using (24) we eventually obtain

‖hn‖J ≤ Ld log(d−degJ)/2 n + Dn,(26)

where Dn =∑
I�Id

dn(I ).
This estimate will allow us to finish the proof by means of the following

LEMMA 13. For sufficiently large C = LdA and all J ∈ PId
,

∑
n

exp
(
−
(

C logd/2 n

A(log(d−degJ)/2 n + Dn)

)2/degJ)
< ∞.

PROOF. Let us notice that for k = 1,2, . . .∑
k<logn≤k+1

h21{2nd/2n−d≤|h|≤2nd/2nd } ≤ Ld(k + 1)21{|h|≤2nek+1/2ed(k+1)}

and ∑
k<logn≤k+1

EI h̃
2
n1{2n#Ic

n−1≤EI h̃2
n≤2n#Ic

n}

= ∑
k<logn≤k+1

EI h̃
2
ek+11{2n#Ic

n−1≤EI h̃2
ek+1≤2n#Ic

n}

≤ LdEI h̃
2
ek+1(k + 1) = Ld(k + 1)EI (h

2 ∧ 22dek+1
),

since for any numbers 1 ≤ a, b ≤ d and x ≥ 0, the number of intervals of the form
[2nan−b,2nanb] with k < logn ≤ k + 1, containing x is smaller than Ld(k + 1).

Integrating the above inequalities and using Lemma 11, assumption (12) for
J = {Id}, assumption (23) and the Cauchy–Schwarz inequality we get∑

k<logn≤k+1

D2
n ≤ (2d − 1)

∑
k<logn≤k+1

∑
I�Id

dn(I )2 ≤ Ld(k + 1)d .

Thus

#{n :k < logn ≤ k + 1,Dn ≥ 1} ≤ Ld(k + 1)d

and therefore for C large enough (since Dn ≤ Ld log(d−1)/2 n)

∑
n

exp
(
−
(

C logd/2 n

A(log(d−degJ)/2 n + Dn)

)2/degJ)

≤∑
n

exp
(−(C/2A)2/deg J logn

)

+ ∑
Dn≥1

exp
((

− C logd/2 n

A(1 + Ld) log(d−1)/2 n

)2/degJ)
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≤∑
n

exp
(−(C/2A)2/degJ logn

)
+ Ld

∑
k

(k + 1)d exp
(−(

C/A(1 + Ld)
)2/degJ

k1/deg J)< ∞

for C = L̃dA. �

Going back to the proof of Step 5, let us notice that by Theorem 4 and (26), we
have

P

(∣∣∣∣∣ ∑|i|≤2n

πdhn(Xdec
i )

∣∣∣∣∣≥ C2nd/2 logd/2 n

)

≤ Ld

∑
J∈PId

exp
(
L−1

d

(
C2nd/2 logd/2 n

2nd/2‖hn‖J

)2/degJ)

+ Ld

∑
I�Id

exp
(
L−1

d

(
C2nd/2 logd/2 n

2n#I/2‖(EI h2
n)

1/2‖∞

)2/(d+#I c))

≤ Ld

∑
J∈PId

exp
(
L−1

d

(
C logd/2 n

Ld log(d−degJ)/2 n + Dn

)2/degJ)

+ Ld

∑
I�Id

exp
(
L−1

d

(
C2nd/2 logd/2 n

2n#I/22n#I c/2 log−#I c/2 n

)2/(d+#I c))

≤ Ld

∑
J∈PId

exp
(
L−1

d

(
C logd/2 n

Ld log(d−degJ)/2 n + Dn

)2/degJ)

+ Ld

∑
I�Id

exp
(
L−1

d C2/(d+#I c) logn
)
,

so convergence of the series in (20) for C large enough (C = L̃d = L̃dD) follows
from Lemma 13. This completes the proof of Step 5.

To prove sufficiency of (12), by Corollary 1 it is enough to show convergence
of the series

∑
n

P

(∣∣∣∣∣ ∑|i|≤2n

h(Xdec
i )

∣∣∣∣∣≥ C2nd/2 logd/2 n

)
(27)

for C = LdD. To this end for each n we simply decompose � into five disjoint
sets Ai

n, i = 1, . . . ,5, with Ai
n being a set of the form defined at the ith step above

(which clearly can be done as the union of the sets from Steps 1–5 is the whole �).
For C = LdD, from the triangle inequality and Steps 1–5, we get the convergence
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of the series ∑
n

P

(∣∣∣∣∣ ∑|i|≤2n

πdh(Xdec
i )

∣∣∣∣∣≥ C2nd/2 logd/2 n

)
,

which is exactly (27), since by the complete degeneracy πdh = h. �

7. The undecoupled case. We are now ready to prove our main result.

PROOF OF THEOREM 1. Sufficiency follows from Corollary 3 and Theorem 5.
To prove the necessity assume that (1) holds and observe that from Lemma 7 and
Corollary 2, h satisfies the randomized decoupled LIL (8) and thus, by Theorem 5,
the growth conditions on functions ‖h‖J,u are also satisfied [note that the ‖ · ‖J,u

norms of the kernel h(X1, . . . ,Xd) and ε1 · · · εdh(X1, . . . ,Xd) are equal]. Thus,
the only thing that remains to be proved is the complete degeneracy of h. The in-
tegrability condition (3) implies that E|πdh|p < ∞ for all p < 2 and thus from the
Marcinkiewicz type laws of large numbers for completely degenerate U -statistics
by Giné and Zinn [6] it follows that

1

nd/p

∑
i∈Id

n

πdh(Xi) → 0 a.s.

as n → ∞. Moreover, from the LIL, we have also
1

nd/p

∑
i∈Id

n

h(Xi) → 0 a.s.

Let us notice that by Hoeffding’s decomposition (Lemma 2),∑
i∈Id

n

(
h(Xi) − πdh(Xi)

)

=
d−1∑
k=0

(
d

k

)
· (n − k)!

n! · n!
(n − d)!

∑
i1,...,ik≤n

ij �=il for j �=l

πkh(Xi1, . . . ,Xik )(28)

= (n − d + 1)
∑

i1,...,id−1≤n

ij �=il for j �=l

g(Xi1, . . . ,Xid−1),

where

g(x1, . . . , xd−1) = 1

(d − 1)!
∑
σ

g̃
(
xσ(1), . . . , xσ(d−1)

)
,

where the sum is over all permutations of Id−1 and

g̃(x1, . . . , xd−1) =
d−1∑
k=0

(
d

k

)
πkh(x1, . . . , xk).
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We thus obtain

n − d + 1

nd/p

∣∣∣∣∣ ∑
i1,...,id−1≤n

ij �=il for j �=l

g(Xi1, . . . ,Xid−1)

∣∣∣∣∣→ 0 a.s.

Therefore

1

nd/p−1

∣∣∣∣∣ ∑
i1,...,id−1≤n

ij �=il for j �=l

g(Xi)

∣∣∣∣∣
is stochastically bounded. Putting p = 2d/(d + 1) we obtain the CLT normaliza-
tion for U -statistics of order d − 1 (see for instance [3], Theorem 4.2.4) and from
the results by Giné and Zinn ([7], Theorem 1, or [3], Theorem 4.2.6) we get that g

is canonical and Eg2 < ∞. Now the CLT for canonical U -statistics yields that

g(X1, . . . ,Xd−1) = 0 a.s.

and (28) for n = d gives h = πdh, which proves the complete degeneracy of h.
�

8. Final remarks.

REMARK. In Theorem 5 the necessary and sufficient conditions for the decou-
pled LIL were found, under an additional assumption that the kernel is canonical.
We would like to remark that the canonicity actually follows from the decoupled
LIL, similarly as in the proof of Theorem 5. The proof would however require de-
veloping “a decoupled counterpart” of all the limit theorems for U -statistics (like
CLT and Marcinkiewicz LLN), which would make it quite lengthy and would not
involve genuinely new ideas.

The cluster set. When Eh2 < ∞, the limit set in the LIL (1) is almost surely
equal to

{Eh(X1, . . . ,Xd)f (X1) · · ·f (Xd) : Ef 2(X1) ≤ 1}
as is proven in [2]. In general this is not the case. For d = 2 it is known that the
cluster set is an interval [8], whose end-points are known in some special cases
[13]. In these special cases, the lim sup turns out to be a relatively complicated
function of the “deterministic” lim sup’s appearing in the nasc’s conditions. It is
natural to conjecture that in general the lim sup is also a function of these quanti-
ties.

Now we would like to state the following.

THEOREM 6. The cluster set in the LIL (1) is an interval.
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PROOF. It is enough to show that

lim sup
n→∞

∣∣∣∣∣
∑

i∈Id
n
h(Xi)

nd/2 log logd/2 n
−

∑
i∈Id

n−1
h(Xi)

(n − 1)d/2 log logd/2(n − 1)

∣∣∣∣∣= 0 a.s.,

which will follow if we prove that

lim sup
n→∞

1

nd/2 log logd/2 n

∣∣∣∣∣ ∑
i∈Id

n ,id=n

h(Xi)

∣∣∣∣∣= 0 a.s.

We can reduce the last statement to

∑
n

∑
2n−1<k≤2n

P

(∣∣∣∣∣ ∑
i∈Id

k ,id=k

h(Xi)

∣∣∣∣∣> δ2nd/2 logd/2 n

)
< ∞(29)

for all δ > 0. Let π̄d−1 stand for the Hoeffding projection with respect to the first
d − 1 variables only. Then, the complete degeneracy of h, gives π̄d−1h = h, thus
to get (29) it suffices to prove that

∑
n

∑
2n−1<k≤2n

P

(∣∣∣∣∣ ∑
i∈Id

k ,id=k

π̄d−1h(Xi)

∣∣∣∣∣> δ2nd/2 logd/2 n

)
< ∞.

We will now proceed similarly as in the first steps of the proof of Theorem 5,
that is we will prove the above convergence with h replaced by hn = h1An for
suitable sets An.

Step 1.

An ⊆ {x ∈ �d :h2(x) ≥ 2nd logd n}.
Since for 2n−1 < k ≤ 2n, #{i ∈ I d

k : id = k} ≤ 2n(d−1) we can use the Chebyshev
inequality, exactly as in the first step of the proof of Theorem 5.

Step 2.

An ⊆ {x :h2(x) ≤ 2nd logd n,∃I⊆Id−1,I �=∅ EI (h
2 ∧ 22nd) ≥ 2#I cn logd n}.

Note that by the decoupling inequalities for the moments of U -statistics (see, e.g.,
[3], Theorem 3.1.1) and Lemma 1 applied conditionally on Xk , we have

E

∣∣∣∣∣ ∑
i∈Id

k ,id=k

π̄d−1h(Xi)

∣∣∣∣∣≤ LdE

∣∣∣∣∣ ∑
i∈Id

k ,id=k

π̄d−1h(Xdec
i )

∣∣∣∣∣
≤ 2d−1LdE

∣∣∣∣∣ ∑
i∈Id

k ,id=k

εdec
i h(Xdec

i )

∣∣∣∣∣.
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Therefore if we define the sets An(I) and An,l(I ) (for I ⊆ Id−1, I �= ∅) like in
Step 2 of the proof of Theorem 5, it is enough to prove

∑
n

∑
2n−1<k≤2n

1

2nd/2 logd/2 n

∞∑
l=0

E

∣∣∣∣∣ ∑
i∈Id

k ,id=k

εdec
i hn,l(Xi)

∣∣∣∣∣< ∞,

where for fixed I the function hn,l are defined as in the proof of Theo-
rem 5. But for each 2n−1 < k ≤ 2n, l we have by a similar computation as
there

E

∣∣∣∣∣ ∑
i∈Id

k ,id=k

εdec
i hn,l(Xi)

∣∣∣∣∣≤ [
2(#I c+d/2−1)n+l+1 logd/2 n

]

× PI c

(
EI (h

2 ∧ 22nd) ≥ 22l+#I cn logd n
)
.

Thus

∑
2n−1<k≤2n

E

∣∣∣∣∣ ∑
i∈Id

k ,id=k

εdec
i hn,l(Xi)

∣∣∣∣∣
≤ [

2(#I c+d/2)n+l+1 logd/2 n
]

× PI c

(
EI (h

2 ∧ 22nd) ≥ 22l+#I cn logd n
)

and we can finish this step just as Step 2 in the proof of Theorem 5.

Step 3.

An ⊆ {x :h2(x) ≤ 2nd logd n,∀I⊆Id−1,I �=∅ EI (h
2 ∧ 22nd) ≤ 2#I cn logd n}.

Using the same arguments as above and the Khintchine inequality for Rademacher
chaoses we obtain

E

∣∣∣∣∣ ∑
i∈Id

k ,id=k

π̄d−1h(Xi)

∣∣∣∣∣
4

≤ LdE

∣∣∣∣∣ ∑
i∈Id

k ,id=k

π̄d−1h(Xdec
i )

∣∣∣∣∣
4

≤ 24(d−1)LdE

∣∣∣∣∣ ∑
i∈Id

k ,id=k

εdec
i h(Xdec

i )

∣∣∣∣∣
4

≤ L̃dE

( ∑
|i|≤k,id=k

h2(Xdec
i )

)2

,

where in the last inequality we have added the diagonal summands just to make
the proof more similar to the analogous step (Step 3) in the proof of Theorem 5.
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Therefore, it suffices to prove

∑
n

2nE(
∑

|i|≤2n,id=2n h2
n(X

dec
i ))2

22nd log2d n
< ∞.

But again this can be done just as in Step 3 in the proof of Theorem 5, by consider-
ing just the cases (a), (b) there. The case (c) (which made all the consequent work
in the proof of Theorem 5 necessary) cannot appear here because the index id is
fixed. The proof of the theorem may be thus complete just as for Theorem 5, by
splitting �d into 3 parts (for each n), corresponding to Steps 1–3 above. �
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