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ESTIMATES OF MOMENTS AND TAILS OF
GAUSSIAN CHAOSES1

BY RAFAŁ LATAŁA

Warsaw University

We derive two-sided estimates on moments and tails of Gaussian
chaoses, that is, random variables of the form

∑
ai1,...,id gi1 · · ·gid , where gi

are i.i.d. N (0,1) r.v.’s. Estimates are exact up to constants depending on d

only.

1. Introduction. The purpose of this paper is to give precise bounds on mo-
ments and tails of Gaussian chaoses of order d , that is, random variables of
the form S = ∑

i1<i2<···<id
ai1,...,id gi1 · · ·gid . In the sequel, we will only con-

sider decoupled chaoses S̃ = ∑
i aig

(1)
i1

· · ·g(d)
id

, where g
(k)
i are independent stan-

dard N (0,1) normal random variables and (ai) = (ai1,...,id )1≤i1,...,id≤N is a finite
multi-indexed matrix—under natural symmetry assumptions, moments and tails of
S and S̃ are comparable with constants depending only on d (cf. [5]).

For d = 1, we obviously have for p ≥ 2,∥∥∥∥∥∑
i

aigi

∥∥∥∥∥
p

=
(∑

i

a2
i

)1/2

‖g‖p ∼ √
p

(∑
i

a2
i

)1/2

.(1)

For the chaoses of order 2, we have for any finite rectangular matrix (aij ) and
p ≥ 2, ∥∥∥∥∥∑

ij

aij g
(1)
i g

(2)
j

∥∥∥∥∥
p

∼ √
p‖(aij )‖{1,2} + p‖(aij )‖{1}{2},(2)

where ‖(aij )‖{1,2} := ‖(aij )‖HS = (
∑

ij a2
ij )

1/2 and

‖(aij )‖{1}{2} := sup

{∑
ij

aij xiyj :‖x‖2 ≤ 1,‖y‖2 ≤ 1

}
.

The upper part of the estimate (2) was obtained in [6]; the lower one is much easier
(cf. [7]). One of the reasons why the case where d = 2 turned out to be relatively
simple is that every square matrix is orthogonally equivalent to the diagonal matrix.
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For d ≥ 3, Borell [4] and Arcones and Giné [3] showed that

‖S‖p
d∼

d∑
k=1

pk/2E sup

{∑
i

ai

k∏
l=1

x
(k)
ik

d∏
l=k+1

g
(l)
il

:
∥∥x(l)

∥∥
2 ≤ 1,1 ≤ l ≤ k

}
.(3)

The above formula gives the precise dependence on p, but unfortunately involves
suprema of empirical processes that are, in general, not easy to estimate. (For gen-
eralizations of the above formula to the non-Gaussian case, cf. [1] and [10].) In
this paper, we present bounds on moments and tails that involve only deterministic
quantities.

The paper is organized as follows. In the next section, we present notation and
definitions that will be used in the rest of the paper and formulate main results.
In Section 3 we obtain bounds on entropy numbers for distances on products of
Euclidean balls. This will provide a crucial tool to estimate suprema of certain
Gaussian processes that naturally appear in the study of Gaussian chaoses. Finally,
in the last section, we present proofs of main results.

2. Notation and main results. We use the letter C to denote universal posi-
tive constants that may change from occurrence to occurrence and C(d) to denote
positive constants depending only on d . [C(d) may also differ at each occurrence.]
We write f ∼ g if 1

C
f ≤ g ≤ Cf and f ∼d g if 1

C(d)
f ≤ g ≤ C(d)f . The canoni-

cal Euclidean norm of a vector x is denoted by ‖x‖2. Recall that the pth norm of
a real random variable X is defined as ‖X‖p := (E|X|p)1/p .

Let d ≥ 1 and A = (ai)1≤i1,...,id≤n be a finite multi-indexed matrix of order d .
If i ∈ {1, . . . , n}d and I ⊂ {1, . . . , d}, then we define iI := (ij )j∈I . For disjoint
nonempty subsets I1, . . . , Ik of {1, . . . , d}, we put

‖A‖I1,...,Ik
:= sup

{∑
i

aix
(1)
iI1

· · ·x(k)
iIk

:
∑
iI1

(
x

(1)
iI1

)2 ≤ 1, . . . ,
∑
iIk

(
x

(k)
iIk

)2 ≤ 1

}
.

Thus, for example,

‖A‖{1,...,d} =
(∑

i

a2
i

)1/2

and

‖(aijk)‖{1}{2,3} = sup

{(∑
jk

(∑
i

aijkxi

)2)1/2

:
∑
i

x2
i ≤ 1

}

= sup

{(∑
i

(∑
jk

aijkxjk

)2)1/2

:
∑
jk

x2
jk ≤ 1

}
.
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By S(k, d), we denote a set of all partitions of {1, . . . , d} into k nonempty dis-
joint sets I1, . . . , Ik . For p ≥ 1, we put

mp(A) :=
d∑

k=1

pk/2
∑

(I1,...,Ik)∈S(k,d)

‖A‖I1,...,Ik
.

Our main result is the following:

THEOREM 1. For any multi-indexed finite matrix A = (ai)1≤i1,...,id≤n and
p ≥ 2, we have

1

C(d)
mp(A) ≤

∥∥∥∥∥∑
i

ai

d∏
j=1

g
(j)
ij

∥∥∥∥∥
p

≤ C(d)mp(A).(4)

Theorem 1 may be easily translated into the following two-sided estimate for
tails:

COROLLARY 1. For any t > 0 and d ≥ 2, we have

1

C(d)
exp

[
− C(d) min

1≤k≤d
min

(I1,...,Ik)∈S(k,d)

(
t

‖A‖I1,...,Ik

)2/k]

≤ P

(∣∣∣∣∣∑
i

ai

d∏
j=1

g
(j)
ij

∣∣∣∣∣ ≥ t

)

≤ C(d) exp
[

− 1

C(d)
min

1≤k≤d
min

(I1,...,Ik)∈S(k,d)

(
t

‖A‖I1,...,Ik

)2/k]
.

In view of (3), it is clear that the proof of (4) should be based on the estimation
of norms of some random Gaussian matrices. The next theorem is, in our opinion,
of independent interest and has recently been applied in [2] to obtain moment
estimates for canonical U -statistics.

THEOREM 2. For any d ≥ 2 and any finite matrix A, we have for p ≥ 2,

E

∥∥∥∥∥
(∑

id

aigid

)∥∥∥∥∥{1}...{d−1}
≤ C(d)p(1−d)/2mp(A).(5)

REMARK. We suspect that a stronger estimate may actually hold, namely

E

∥∥∥∥∥
(∑

id

aigid

)∥∥∥∥∥{1}...{d−1}

≤ C(d) inf
p≥1

(
sd−1(A) + p1/2‖A‖{1}...{d} + p(2−d)/2‖A‖{1,...,d}

)
≤ C(d)

(
sd−1(A) + ‖A‖(d−2)/(d−1)

{1}...{d} ‖A‖1/(d−1)
{1,...,d}

)
,
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where

sd−1(A) := ∑
1≤j≤d−1

‖A‖{j,d},{{l} : 1≤l≤d−1,l �=j}.

However, we are not able to show this result for d > 3.

3. Entropy estimates and Gaussian processes. By γn,t , we will denote
the distribution of tGn, where Gn = (g1, . . . , gn) is a canonical n-dimensional
Gaussian vector. We also put G

(i)
n := (g

(i)
1 , . . . , g

(i)
n ) for i.i.d. copies of Gn.

If ρ is a metric on a set T , N(T ,ρ, t) is the minimal number of closed balls
of radius t that are necessary to cover T . The closed unit Euclidean ball in Rn is
denoted by Bn

2 .

LEMMA 1. For any norms α1, α2 on Rn, y ∈ S ⊂ Bn
2 and t > 0,

γn,t

(
x :α1(x − y) ≤ 4tEα1(Gn),α2(x) ≤ 4tEα2(Gn) + α2(y)

) ≥ 1
2e−t−2/2.

PROOF. Let

K := {x ∈ Rn :α1(x) ≤ 4tEα1(Gn),α2(x) ≤ 4tEα2(Gn)}.
By Chebyshev’s inequality,

1 − γn,t (K) ≤ P
(
α1(tGn) > 4Eα1(tGn)

) + P
(
α2(tGn) > 4Eα2(tGn)

) ≤ 1/2.

By the symmetry of K , we obtain for any y ∈ Bn
2 ,

γn,t (y + K) = e−|y|2/(2t2)
∫
K

e〈y,x〉/t2
dγn,t (x)

= e−|y|2/(2t2)
∫
K

1
2

(
e〈y,x〉/t2 + e−〈y,x〉/t2)

dγn,t (x)

≥ exp(−t−2/2)γn,t (K) ≥ 1
2 exp(−t−2/2).

Finally, note that if x ∈ y + K , then α1(x − y) ≤ 4tEα1(Gn) and α2(x) ≤ α2(x −
y) + α2(y) ≤ 4tEα2(Gn) + α2(y). �

Let α be a norm on Rn1···nd and the distance ρα on Rn1 × · · · × Rnd be defined
by

ρα(x,y) := α

(
d⊗

i=1

xi −
d⊗

i=1

yi

)
for x = (x1, . . . , xd),y = (y1, . . . , yd),

where
⊗ d

i=1x
i := (

∏d
k=1 xk

ik
)i1≤n1,...,id≤nd

. For t > 0, T ⊂ Rn1 × · · · × Rnd , we
put

WT
d (α, t) :=

d∑
k=1

tk
∑

I⊂{1,...,d} : #I=k

WT
I (α),
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where

WT
I (α) := sup

x∈T

Eα

((∏
k /∈I

xk
ik

∏
k∈I

g
(k)
ik

)
i1,...,id

)
.

To simplify the notation, we will write Wd and WI instead of WT
d and WT

I if
T = B

n1
2 × · · · × B

nd

2 .

LEMMA 2. For any t > 0 and x ∈ B
n1
2 × · · · × B

nd

2 , we have

γn1+···+nd,t

(
Bα

(
x,W

{x}
d (α,4t)

)) ≥ 2−d exp(−dt−2/2).(6)

PROOF. We will proceed by induction on d . For d = 1, we have

Bα

(
x,W

{x}
d (α,4t)

) = {y ∈ Rn1 :α(x − y) ≤ 4tEα(Gn1)}
and (6) then follows by Lemma 1.

Now, suppose that (6) holds for d −1. We will show that it is also satisfied for d .
Let us first observe that

α

(
d⊗

i=1

xi −
d⊗

i=1

yi

)
≤ α1(xd − yd) + αyd

(
d−1⊗
i=1

xi −
d−1⊗
i=1

yi

)
,(7)

where α1 and αy are norms on Rnd and Rn1···nd−1 , respectively, defined by

α1(z) := α

(
d−1⊗
i=1

xi ⊗ z

)
and αy(z) := α(z ⊗ y).

Then, obviously,

Eα1(
Gnd

) = W
{x}
{d} (α).(8)

Moreover, if we put π(x) = (x1, . . . , xd−1) and define a norm α2
t on Rnd by the

formula

α2
t (y) := W

{π(x)}
d−1 (αy, t),

then

tEα2
t

(
Gnd

) + α2
t (x

d) = ∑
I⊂{1,...,d} : I �=∅,{d}

t#IW
{x}
I (α, t).(9)

Observe also that by the induction assumption, we have for any z ∈ Rnd ,

γn1+···+nd−1,t

(
y ∈ Rn1+···+nd−1 :αz

(
d−1⊗
i=1

xi −
d−1⊗
i=1

yi

)
≤ α2

4t (z)

)
(10)

≥ 21−d exp
(−(d − 1)t−2/2

)
.
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Finally, let

A(x) :=
{

y ∈ Rn1+···+nd :α1(xd − yd) ≤ 4tEα1(
Gnd

)
,

α2
4t (y

d) ≤ 4tEα2
4t

(
Gnd

) + α2
4t (x

d),

αyd

(
d−1⊗
i=1

xi −
d−1⊗
i=1

yi

)
≤ α2

4t (y
d)

}
.

By (7)–(9), we get A(x) ⊂ Bα(x,W
{x}
d (α,4t)) and, therefore, by (10), Lemma 1

and Fubini’s theorem, we get

γn1+···+nd,t

(
Bα

(
x,W

{x}
d (α,4t)

)) ≥ γn1+···+nd,t (A(x)) ≥ 2−d exp(−dt−2/2). �

COROLLARY 2. For any T ⊂ B
n1
2 × · · · × B

nd

2 and t ∈ (0,1],
N

(
T ,ρα,WT

d (α, t)
) ≤ exp(Cdt−2).

In particular,

N
(
B

n1
2 × · · · × B

nd

2 , ρα,Wd(α, t)
) ≤ exp(Cdt−2).

PROOF. Obviously, WT
d (α, t) ≥ supx∈T W

{x}
d (α, t). Therefore, by Lemma 2,

we have for any x ∈ T ,

γn1+···+nd,t

(
Bα

(
x,WT

d (α,4t)
)) ≥ 2−d exp(−dt−2/2).(11)

Suppose that there exist x1, . . . ,xN ∈ T such that ρα(xi ,xj ) > WT
d (α, t) ≥

2WT
d (α, t/2) for i �= j . Then the sets Bα(xi ,W

T
d (α, t/2)) are disjoint, so by (11),

we obtain N ≤ 2d exp(32dt−2). Hence,

N
(
T ,ρα,WT

d (α, t)
) ≤ 2d exp(32dt−2) ≤ exp(33dt−2). �

To finish this section, let us recall standard estimates for Gaussian processes.

LEMMA 3. Let (Xt)t∈T be a centered Gaussian process and T = ⋃m
l=1 Tl .

Then

E sup
t∈T

Xt ≤ max
l

E sup
t∈Tl

Xt + C
√

logm sup
t,s∈T

(
E(Xt − Xs)

2)1/2
.

PROOF. Obviously, E supt∈T Xt = E maxl supt∈Tl
(Xt − Xt0) for any t0 ∈ T .

The lemma follows by integration by parts and the classical estimate (cf. [8], The-
orem 7.1)

P
(

sup
t∈Tl

(
Xt − Xt0

) ≥ E sup
t∈Tl

Xt + u sup
t∈Tl

(
E

(
Xt − Xt0

)2)1/2
)

≤ exp(−u2/2)

for u > 0. �
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LEMMA 4. Let (Xt)t∈T be a centered Gaussian process. Then for any p ≥ 2,

1

C

(∥∥∥∥sup
t∈T

Xt

∥∥∥∥
1
+ √

pσ

)
≤

∥∥∥∥sup
t∈T

Xt

∥∥∥∥
p

≤
∥∥∥∥sup

t∈T

Xt

∥∥∥∥
1
+ C

√
pσ,(12)

where σ := supt∈T (EX2
t )

1/2.

PROOF. The lower bound follows from the easy estimates∥∥∥∥sup
t∈T

Xt

∥∥∥∥
p

≥
∥∥∥∥sup

t∈T

max(Xt ,0)

∥∥∥∥
p

≥ sup
t∈T

‖max(Xt ,0)‖p ≥ sup
t∈T

‖Xt‖p/2

and the upper one by the concentration of suprema of Gaussian processes (cf. [8],
Theorem 7.1) and integration by parts. �

4. Proofs. Let us start with some additional notation. For a matrix A =
(ai)1≤i1,...,id≤n of order d ≥ 2, we set

sd−1(A) := ∑
1≤j≤d−1

‖A‖{j,d},{{l} : 1≤l≤d−1,l �=j}

and for 1 ≤ k ≤ d − 2,

sk(A) := ∑
(I1,...,Ik)∈S(k,d)

‖A‖I1,...,Ik
.

On R(d−1)n = (Rn)d−1, we introduce the distance ρA by the formula

ρA(x,y) :=
(∑

id

( ∑
i1,...,id−1

ai

(
d−1∏
k=1

xk
ik

−
d−1∏
k=1

yk
ik

))2)1/2

,

where x = (x1, . . . , xd−1) and y = (y1, . . . , yd−1). We have

ρA(x,y) = (
E(Xx − Xy)

2)1/2
,(13)

where Xx := ∑
i1,...,id

ai
∏d−1

k=1 xk
ik
gid .

For T ⊂ R(d−1)n, we put

�A(T ) := sup{ρA(x,y) : x,y ∈ T }.
Let us note that in particular, we have

�A((Bn
2 )d−1) ≤ 2 sup{ρA(x,0) : x ∈ (Bn

2 )d−1} = 2‖A‖{1}...{d}.(14)

For a set T ⊂ R(d−1)n and I ⊂ {1, . . . , d − 1}, we put

WT
I (A) := sup

x∈T

( ∑
iI∪{d}

( ∑
i{1,...,d−1}\I

ai
∏

k∈{1,...,d−1}\I
xk
ik

)2)1/2
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and for 1 ≤ k ≤ d − 1,

WT
k (A) := ∑

I⊂{1,...,d−1},#I=k

WT
I (A).

The next lemma shows how the results of the previous section may be adapted
to the case of the particular metric ρA.

LEMMA 5. For any 0 < t ≤ 1 and T ⊂ (Bn
2 )d−1, we have

N

(
T ,ρA,

d−1∑
k=1

tkWT
k (A)

)
≤ exp(Cdt−2).(15)

In particular,

N

(
T ,ρA, tWT

1 (A) +
d−1∑
k=2

tksd−k(A)

)
≤ exp(Cdt−2).(16)

PROOF. Note that ρA = ρα , where for z ∈ Rnd−1
,

α(z) :=
(∑

id

( ∑
i1,...,id−1

aizi1,...,id−1

)2)1/2

.

We have for any x ∈ (Rn)d−1 and I ⊂ {1, . . . , d − 1},

Eα

( ∏
k∈{1,...,d−1}\I

xk
ik

∏
k∈I

g
(k)
ik

)
≤

(
Eα2

( ∏
k∈{1,...,d−1}\I

xk
ik

∏
k∈I

g
(k)
ik

))1/2

=
( ∑

iI∪{d}

( ∑
i{1,...,d−1}\I

ai
∏

k∈{1,...,d−1}\I
xk
ik

)2)1/2

.

Hence,

WT
I (α) ≤ WT

I (A)

and (15) immediately follows by Corollary 2.
Inequality (15) implies (16), since

WT
I (A) ≤ W

(Bn
2 )d−1

I (A) = ‖A‖I∪{d},{{l} : l∈{1,...,d−1}\I }. �

We are now ready to present a stronger version of Theorem 2. To formulate it,
let us define for T ⊂ (Rn)d−1,

FA(T ) := E sup
x∈T

(∑
i

ai

d−1∏
k=1

xk
ik
gid

)
.
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THEOREM 3. For any T ⊂ (Bn
2 )d−1 and p ≥ 1,

FA(T ) ≤ C(d)

(√
p�A(T ) +

d−1∑
k=1

p(1−k)/2sd−k(A)

)
.(17)

Let us observe that E‖(∑id
aigid )‖{1}...{d−1} = FA((Bn

2 )d−1) and, therefore,
Theorem 3 implies Theorem 2 since by (14), �A((Bn

2 )d−1) ≤ 2‖A‖{1}...{d}.
We will prove (17) by induction on d , but first we will show several conse-

quences of the theorem. In the next three lemmas, we shall assume that Theorem 3
(and thus also Theorem 2) holds for all matrices of order smaller than d .

For x,y ∈ (Rn)d−1, we set

α̃A(x) = ∑
1≤j �=k≤d−1

∥∥∥∥∥∑
ij

aix
j
ij

∥∥∥∥∥{k,d}{{l} : 1≤l≤d−1,l �=k,j}
,

ρ̃A(x,y) := α̃A(x − y) = ∑
1≤j �=k≤d−1

∥∥∥∥∥∑
ij

ai
(
x

j
ij

− y
j
ij

)∥∥∥∥∥{k,d}{{l} : 1≤l≤d−1,l �=k,j}

and for T ⊂ (Rn)d−1,

α̃A(T ) := sup{α̃A(x) : x ∈ T }.

LEMMA 6. For any p ≥ 1 and l ≥ 0,

N

(
(Bn

2 )d−1, ρ̃A,2−l
d−1∑
k=1

p(1−k)/2sd−k(A)

)
≤ exp(C(d)22lp).

PROOF. Note that α̃A is a norm on (Rn)d−1 = R(d−1)n and that

Eα̃
(
G(d−1)n

) = ∑
1≤j �=k≤d−1

E

∥∥∥∥∥∑
ij

aigij

∥∥∥∥∥{k,d}{{l} : 1≤l≤d−1,l �=k,j}
.

Let us fix 1 ≤ j �= k ≤ d − 1 and observe that∥∥∥∥∥∑
ij

aigij

∥∥∥∥∥{k,d}{{l} : 1≤l≤d−1,l �=k,j}
=

∥∥∥∥∥∑
id−1

bi1,...,id−1gid−1

∥∥∥∥∥{1}...{d−2}
for an appropriately chosen matrix B = (bi1,...,id−1) (we treat a pair of indices k, d

as a single index and renumerate indices in such a way that j would become d −1).
Moreover, for any 1 ≤ l ≤ d − 1,∑

(I1,...,Il )∈S(l,d−1)

‖B‖I1,...,Il
= ∑

(I1,...,Il )∈S(l,d)

{k,d}∈I1

‖A‖I1,...,Il
≤ sl(A).
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Thus, by (5) (applied to the matrix B of order d − 1),

E

∥∥∥∥∥∑
ij

aigij

∥∥∥∥∥{k,d}{{l} : 1≤l≤d−1,l �=k,j}

= E

∥∥∥∥∥∑
id−1

bigid−1

∥∥∥∥∥{1}...{d−2}

≤ C(d)

d−1∑
l=1

p(2−d+l)/2
∑

(I1,...,Il )∈S(l,d−1)

‖B‖I1,...,Il

≤ C(d)

d−1∑
s=1

p(2−s)/2sd−s(A).

Hence, by Corollary 2 (with d = 1), we have for t ∈ (0,1],

N

(
(Bn

2 )d−1, ρ̃A,C(d)t

d−1∑
k=1

p(2−k)/2sd−k(A)

)
≤ exp(Ct−2)

and it suffices to make the substitution t = (C(d)2l√p )−1. �

LEMMA 7. Suppose that d ≥ 3, y ∈ (Bn
2 )d−1 and T ⊂ (Bn

2 )d−1. Then for any
p ≥ 1 and l ≥ 0, we can find a decomposition

T =
N⋃

j=1

Tj , N ≤ exp(C(d)22lp)

such that for each j ≤ N ,

FA(y + Tj ) ≤ FA(Tj )
(18)

+ C(d)

(
α̃A(y) + α̃A(T ) + 2−l

d−1∑
k=2

p(1−k)/2sd−k(A)

)
and

�A(Tj ) ≤ 2−lp−1/2α̃A(T ) + 2−2l
d−1∑
k=2

p−k/2sd−k(A).(19)

PROOF. For I � {1, . . . , d −1}, x, x̃ ∈ (Rn)d−1 and S ⊂ (Rn)d−1, let us define

ρ
y,I
A (x, x̃) :=

(∑
id

( ∑
i1,...,id−1

ai
∏
k∈I

yk
ik

( ∏
j≤d−1,j /∈I

x
j
ij

− ∏
j≤d−1,j /∈I

x̃
j
ij

))2)1/2

,

�
y,I
A (S) := sup{ρy,I

A (x, x̃) : x, x̃ ∈ S}
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and

F
y,I
A (S) := E sup

x∈S

∑
i

ai
∏
k∈I

yk
ik

∏
j≤d−1,j /∈I

x
j
ij
gid .

Note that if I �= ∅, then (17) applied to the matrix

A(y, I ) :=
(∑

iI

ai
∏
k∈I

yk
ik

)

of order d − #I < d gives for any S ⊂ (Bn
2 )d−1 and q ≥ 1,

F
y,I
A (S) ≤ C(d − #I )

(
q1/2�

y,I
A (S) +

d−#I−1∑
k=1

q(1−k)/2sd−#I−k

(
A(y, I )

))
.

But, sd−#I−k(A(y, I )) ≤ sd−k(A) for k ≥ 2 and sd−#I−1(A(y, I )) ≤ α̃A(y), hence,

F
y,I
A (S) ≤ C(d)

(
q1/2�

y,I
A (S) + α̃A(y) +

d−1∑
k=2

q(1−k)/2sd−k(A)

)
.(20)

Since E
∑

i ai
∏

k≤d−1 yk
ik
gid = 0, we get

FA(y + S) − FA(S) ≤ ∑
∅ �=I�{1,...,d−1}

F
y,I
A (S).(21)

Observe also that for any I ⊂ {1, . . . , d − 1}, 0 ≤ #I ≤ d − 3, we have

WT
1

(
A(y, I )

) ≤ sup{α̃A(x) : x ∈ T } = α̃A(T ).

Thus, we may apply 2d−1 − d times (16) with t = 2−lp−1/2 and find a de-
composition T = ⋃N

j=1 Tj , N ≤ exp(C(d)22lp), such that for each j and I ⊂
{1, . . . , d − 1}, 0 ≤ #I ≤ d − 3,

�
y,I
A (Tj ) ≤ 2−lp−1/2α̃A(T ) + 2−2l

d−1∑
k=2

p−k/2sd−k(A).(22)

Moreover, if I ⊂ {1, . . . , d −1} with #I = d −2, then A(y, I ) is a matrix of order 2
and for S ⊂ (Bn

2 )d−1,

F
y,I
A (S) ≤ ‖A(y, I )‖HS ≤ α̃A(y).(23)

Estimate (22) reduces to (19) for I = ∅ and (18) follows by (20) with q = 22lp

and (21)–(23). �

LEMMA 8. Suppose that S is a finite subset of (Bn
2 )d−1, with #S ≥ 2, such

that S − S ⊂ (Bn
2 )d−1. Then there exist finite sets Si ⊂ (Bn

2 )d−1 and yi ∈ S, i =
1, . . . ,N , such that:
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(i) 2 ≤ N ≤ exp(C(d)22lp),
(ii) S = ⋃N

i=1(yi + Si), Si − Si ⊂ S − S, #Si ≤ #S − 1,
(iii) �A(Si) ≤ 2−2l ∑d−1

k=1 p−k/2sd−k(A),
(iv) α̃A(Si) ≤ 2−l ∑d−1

k=1 p(1−k)/2sd−k(A)

and
(v) FA(yi + Si) ≤ FA(Si) + C(d)(α̃A(S) + 2−l ∑d−1

k=1 p(1−k)/2sd−k(A)).

PROOF. By Lemma 6, we get

S =
N1⋃
i=1

(yi + Ti), N1 ≤ exp(C(d)22lp),

yi ∈ S, 0 ∈ Ti and

α̃A(Ti) ≤ 2−l
d−1∑
k=1

p(1−k)/2sd−k(A).

Note that Ti ⊂ S − yi ⊂ S − S ⊂ (Bn
2 )d−1. Hence, by Lemma 7 (with l + 1 instead

of l), we get

Ti =
N2⋃
j=1

Ti,j , N2 ≤ exp(C(d)22lp),

where

FA(yi + Ti,j ) ≤ FA(Ti,j ) + C(d)

(
α̃A(yi ) + α̃A(Ti) + 2−l

d−1∑
k=2

p(1−k)/2sd−k(A)

)

≤ FA(Ti,j ) + C(d)

(
α̃A(S) + 2−l

d−1∑
k=2

p(1−k)/2sd−k(A)

)

and

�A(Ti,j ) ≤ 2−l−1p−1/2α̃A(Ti) + 2−2l−2
d−1∑
k=2

p−k/2sd−k(A)

≤ 2−2l
d−1∑
k=1

p−k/2sd−k(A).

Therefore,

S = ⋃
i,j

(yi + Ti,j ).
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We have N = N1N2 ≤ exp(C(d)22lp). Moreover, we may obviously assume that
N ≥ 2, and by making the sets Ti,j disjoint, we may assume that #Ti,j ≤ #S − 1.
Obviously, Ti,j −Ti,j ⊂ S−S and α̃A(Ti,j ) ≤ α̃A(Ti) ≤ 2−l ∑d−1

k=1 p(1−k)/2sd−k(A).
�

PROOF OF THEOREM 3. We proceed by induction on d . For d = 2 and A =
(aij ), we have

FA(T ) ≤ FA(Bn
2 ) = E

(∑
i

(∑
j

aij gj

)2)1/2

≤ ‖A‖HS = s1(A).

Suppose that d ≥ 3 and that (17) holds for matrices of order smaller than d . Let us
put �0 := �A(T ), �̃0 := α̃A((Bn

2 )d−1) ≤ C(d)sd−1(A) and

�l := 22−2l
d−1∑
k=1

p−k/2sd−k(A),

�̃l := 21−l
d−1∑
k=1

p(1−k)/2sd−k(A) for l ≥ 1.

Suppose first that T ⊂ 1
2(Bn

2 )d−1 and define

cT (r, l) := sup{FA(S) :S ⊂ (Bn
2 )d−1, S − S ⊂ T − T ,

#S ≤ r,�A(S) ≤ �l, α̃A(S) ≤ �̃l}.
Note that any subset S ⊂ T satisfies �A(S) ≤ �0 and α̃A(S) ≤ �̃0, therefore,

cT (r,0) ≥ sup{FA(S) :S ⊂ T ,#S ≤ r}.(24)

Obviously, cT (1, l) = 0. We will now show that for r ≥ 2,

cT (r, l) ≤ cT (r − 1, l + 1)
(25)

+ C(d)

(
�̃l + 2l√p�l + 2−l

d−1∑
k=1

p(1−k)/2sd−k(A)

)
.

Indeed, let us take S ⊂ (Bn
2 )d−1 as in the definition of cT (r, l). Then by Lemma 8,

we may find a decomposition S = ⋃N
i=1(yi + Si) satisfying (i)–(v). Hence, by

Lemma 3 and (13), we have

FA(S) ≤ C
√

logN�A(S) + max
i

FA(yi + Si)

≤ C(d)

(
α̃A(S) + 2l√p�l + 2−l

d−1∑
k=1

p(1−k)/2sd−k(A)

)
(26)

+ max
i

FA(Si).
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We have �A(Si) ≤ �l+1, α̃A(Si) ≤ �̃l+1, Si − Si ⊂ S − S ⊂ T − T and #Si ≤
#S − 1 ≤ r − 1, thus maxi FA(Si) ≤ cT (r − 1, l + 1) and (26) yields (25).

By (25), we immediately obtain

cT (r,0) ≤ cT (1, r − 1) + C(d)

∞∑
l=0

(
�̃l + 2l√p�l + 2−l

d−1∑
k=1

p(1−k)/2sd−k(A)

)

≤ C(d)

(√
p�A(T ) +

d−1∑
k=1

p(1−k)/2sd−k(A)

)
.

For T ⊂ 1
2(Bn

2 )d−1, we have by (24),

FA(T ) = sup{FA(S) :S ⊂ T ,#S < ∞} ≤ sup
r

cT (r,0)

≤ C(d)

(√
p�A(T ) +

d−1∑
k=1

p(1−k)/2sd−k(A)

)
.

Finally, if T ⊂ (Bn
2 )d−1, then 1

2T ⊂ 1
2(Bn

2 )d−1 and �A(1
2T ) = 21−d�A(T ),

hence,

FA(T ) = 2d−1FA

(1
2T

)
≤ C(d)

(√
p�A(T ) +

d−1∑
k=1

p(1−k)/2sd−k(A)

)
.

�

PROOF OF THEOREM 1. First, we prove by induction on d the estimate from
below. For d = 1, it follows by (1). Suppose that the lower estimate holds for
matrices of order smaller than d . Then by the induction assumption, we have for
any matrix B = (bi)i1,...,id−1 ,

∥∥∥∥∥∑
i

bi

d−1∏
j=1

g
(j)
ij

∥∥∥∥∥
p

≥ C(d − 1)−1√p

(∑
i

b2
i

)1/2

≥ C(d)−1

∥∥∥∥∥∑
i

bigi1,...,id−1

∥∥∥∥∥
p

,

where (gi1,...,id−1) is a sequence of i.i.d. N (0,1) r.v.’s independent of (g
(d)
id

). There-
fore, by (2), ∥∥∥∥∥∑

i

ai

d∏
j=1

g
(j)
ij

∥∥∥∥∥
p

≥ C(d)−1

∥∥∥∥∥∑
i

aigi1,...,id−1g
(d)
id

∥∥∥∥∥
p

(27)
≥ C(d)−1√p‖A‖{1,...,d}.
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Let (I1, . . . , Ik) ∈ S(k, d) with k ≥ 2 and
∑

iIl
(x

(l)
Il

)2 ≤ 1 for l = 1, . . . , k. Then by

the induction assumption applied twice [first conditionally on (g
(j)
ij

)j∈I1 ], we have∥∥∥∥∥∑
i

ai

d∏
j=1

g
(j)
ij

∥∥∥∥∥
p

≥ C(d − #I1)
−1p(k−1)/2

∥∥∥∥∥∑
i

ai
∏
j∈I1

g
(j)
ij

k∏
l=2

x
(l)
Il

∥∥∥∥∥
p

≥ (
C(d − #I1)C(#I1)

)−1
pk/2

∑
i

ai

k∏
l=1

x
(l)
Il

and, hence, ∥∥∥∥∥∑
i

ai

d∏
j=1

g
(j)
ij

∥∥∥∥∥
p

≥ C(d)−1pk/2‖A‖I1,...,Ik
.(28)

Inequalities (27) and (28) imply the lower part of estimate (4).
Now (again by induction on d), we prove the estimate from above. For d ≤ 2,

the estimate follows by (1) and (2). Suppose that d ≥ 3 and the estimate holds for
chaoses of order smaller than d . By the induction assumption, we have∥∥∥∥∥∑

i

ai

d∏
j=1

g
(j)
ij

∥∥∥∥∥
p

(29)

≤ C(d − 1)

d−1∑
k=1

pk/2
∑

(I1,...,Ik)∈S(k,d−1)

(
E

∥∥∥∥∥
(∑

id

aig
(d)
id

)∥∥∥∥∥
p

I1,...,Ik

)1/p

.

However, for (I1, . . . , Ik) ∈ S(k, d − 1), we have by (12),(
E

∥∥∥∥∥
(∑

id

aig
(d)
id

)∥∥∥∥∥
p

I1,...,Ik

)1/p

(30)

≤ C
√

p‖A‖I1,...,Ik{d} + E

∥∥∥∥∥
(∑

id

aig
(d)
id

)∥∥∥∥∥
I1,...,Ik

.

Theorem 2 gives

E

∥∥∥∥∥
(∑

id

aig
(d)
id

)∥∥∥∥∥
I1,...,Ik

≤ C(k + 1)p−k/2mp(A).(31)

Inequalities (29)–(31) then yield the upper estimate in (4). �

PROOF OF COROLLARY 1. Let S := ∑
i ai

∏d
j=1 g

(j)
ij

. By Chebyshev’s in-
equality and (4), one gets for p ≥ 2,

P
(|S| ≥ eC(d)mp(A)

) ≤ P(|S| ≥ e‖S‖p) ≤ e−p.(32)
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Since ‖S‖2p ≤ C1(d)‖S‖p (cf. [9], Section 3.2, or use (4) and m2p(A) ≤
2d/2mp(A)), we get by the Paley–Zygmund inequality for q ≥ 2,

P(S ≥ 2−1‖S‖q) = P(|S|q ≥ 2−qE|S|q)

≥ (1 − 2−q)2 (E|S|q)2

E|S|2q
≥ (2C1(d))−2q .

Fix p > 0 and take q := p/(2 ln(2C1(d))). Then q ≥ 2 for p ≥ p0(d) and ‖S‖q ≥
C(d)−1mq(A) ≥ C(d)−1(max(2 ln(2C1(d)),1))−d/2mp(A) = 2C2(d)−1mp(A).
Thus, for p ≥ p0(d),

P
(|S| ≥ C2(d)−1mp(A)

) ≥ P(S ≥ 2−1‖S‖q) ≥ (2C1(d))−2q = e−p

and, therefore, for any p > 0,

P
(|S| ≥ C2(d)−1mp(A)

) ≥ min
(
e−p0(d), e−p)

.(33)

Finally, note that if mp(A) = s ≥ m2(A), then p is comparable (with constants
depending only on d) with

min
{(

s/‖A‖I1,...,Ik

)2/k : 1 ≤ k ≤ d, (I1, . . . , Ik) ∈ S(k, d)
}

and, therefore, Corollary 1 follows by (32) and (33). �
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