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Abstract

We consider rectangular N×n Toeplitz matrices generated by sequences of centered inde-
pendent random variables and provide bounds on their operator norm under the assumption
of �niteness of p-th moments (p > 2). We also show that if N � n log n then with high
probability such matrices preserve the Euclidean norm up to an arbitrarily small error.

1 Introduction

Generalities on random Toeplitz matrices In recent years, following a question raised
in [3] certain amount of work has been devoted to the study of random Toeplitz matrices, i.e.
Toeplitz matrices determined by sequences of independent random variables. In particular in
[7, 9] the convergence of the spectral measure for random symmetric Toeplitz matrices has been
established while [5] provides a corresponding result for the spectral measure of XXT , where
X is a nonsymmetric random Toeplitz matrix. In both cases the limiting spectral distribution
has unbounded support, which raises the question of the behaviour of the spectral norm of the
matrix. In [14] it has been shown that if the underlying random variables are subgaussian and
of mean zero, then the operator norm of an n × n matrix is of the order

√
n log n. This result

has been extended to matrices with bounded variance coe�cients in [1], where also a strong
law of large numbers with the normalization by expectation has been established. Although
both papers consider symmetric matrices, their methods easily generalize to the non-symmetric
square ones. Recently in [16], precise asymptotics of the operator norm have been found in the
symmetric case. It turns out that if Tn is an n×n random symmetric Toeplitz matrix with mean
zero, variance one coe�cients with bounded p-th moments (p > 2), then

‖Tn‖`n2→`n2√
2n log n

Lp→ ‖S(x, y)‖22→4,

where S(x, y) = sin(π(x−y))
π(x−y) is the sine kernel and ‖S(x, y)‖2→4 denotes the norm of the integral

operator associated with it, acting from L2(R) to L4(R).
In this article we present results on the behaviour of the operator norm of a rectangular

N × n random Toeplitz matrix with independent coe�cients in terms of the matrix size. When
n and N are of the same order of magnitude, this question can be easily reduced to the square

∗Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland. E-mail:

radamcz@mimuw.edu.pl. Research partially supported by MNiSW Grant no. N N201 397437.

1



case, however for general matrices there seems to be no corresponding estimates in the literature.
We remark that some results can be obtained from Theorem III.4 in [15], where a more general
problem of estimating singular values of submatrices of a square random Toeplitz matrix is
considered. This estimate however, when specialized to our problem is not optimal in the whole
range of parameters (we discuss it brie�y in the sequel).

Our main result gives estimates on the operator norm with optimal dependence on n and N .
Additionally, in the case of tall matrices we provide conditions under which a properly scaled
Toeplitz matrix preserves the Euclidean norm up to a small error.

Notation and the main result Throughout the article we will consider a random Toeplitz
N × n matrix

T = [Tij ]1≤i≤N,1≤j≤n = [Xi−j ]1≤i≤N,1≤j≤n,

where X1−n, X2−n, . . . , XN−1 is a sequence of independent random variables.
We will denote absolute constants by C, and constants depending on some parameters (say

a) by Ca. In both cases the value of a constant may di�er between distinct occurrences.
We write `k2 for Rk equipped with the standard Euclidean structure (the corresponding inner

product will be denoted by 〈·, ·〉). For an N × n matrix A, by ‖A‖`n2→`N2 we denote the operator

norm of A acting between the spaces `n2 and `N2 , i.e. ‖A‖`n2→`N2 = supx∈Sn−1 supy∈SN−1〈Ax, y〉.

Having desribed the notation, we are now ready to state our main result which is

Theorem 1.1. Let (Xi)1−n≤i≤N−1 be independent random variables with EXi = 0, EX2
i = 1

and ‖Xi‖p ≤ L for some p > 2. Then

E‖T‖`n2→`N2 ≤ CpL(
√
N ∨ n+

√
(N ∧ n) log(N ∧ n)). (1)

Moreover for any δ, ε ∈ (0, 1) if N > CL,p,δ,εn log n, then with probability at least 1 − δ, for all
x ∈ Rn,

(1− ε)|x| ≤ | 1√
N
Tnx| ≤ (1 + ε)|x|. (2)

We postpone the proof of the above theorem to Section 2.

A brief discussion of optimality One can easily see that the estimates of Theorem 1.1
are of the right order. Indeed, if Xi are independent Rademacher variables then the Euclidean
length of the �rst column of the matrix is

√
N , while the Euclidean length of the �rst row is

√
n,

which gives ‖T‖`n2→`N2 ≥
√
N ∨ n. Moreover the matrix T contains a square Toeplitz submatrix

with independent coe�cients of size (N ∧ n) × (N ∧ n). By a straightforward modi�cation of
the argument presented in [14] for the symmetric case (see Theorem 3 therein), one can see
that the operator norm of this submatrix is bounded from below by c

√
(N ∧ n) log(N ∧ n) for

some absolute constant c (in fact instead of mimicking the proof one can also easily reduce
the problem to the symmetric case). Standard symmetrization arguments allow to extend such
estimates to other sequences of independent random variables satisfying a uniform lower bound
on the absolute �rst moment (cf. the proof of Theorem 6 in [1]).
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Further remarks The constants Cp in Theorem 1.1 explode when p→ 2, contrary to known
inequalities on the operator norm of symmetric Toeplitz matrices. We present here a simple
proposition, whose proof is based on general methods of probability in Banach spaces, which
gives an estimate weaker than that of Theorem 1.1, but under the assumption of �niteness of
the second moment of Xi's only. It's proof is deferred to Section 3.

Proposition 1.2. Let (Xi)1−n≤i≤N−1 be independent random variables with EXi = 0 and EX2
i =

1. Then
E‖T‖`n2→`N2 ≤ C(

√
N ∨ n+ 4

√
(N ∧ n)(N ∨ n)

√
log(N ∧ n)).

Restricting our attention to the case N ≥ n, we see that the above proposition gives an
estimate of the same order as Theorem 1.1 (up to constants independent of n and N) if N ≤ Cn
or N ≥ cn log2 n. In the former case the operator norm behaves like in the square case i.e. is of
the order

√
n log n, whereas in the latter one it is of the order

√
N , the same as the Euclidean

length of a single column of the matrix. In the intermediate regime, i.e when n� N � n log2 n
one looses a logarithmic factor. It is natural to conjecture that the operator norm is of the
order

√
N +

√
n log n for all N ≥ n, however we do not know how to prove it without additional

assumptions on higher moments of Xi's. As for the property (2), clearly it cannot hold just under
the assumptions of the above proposition without some stronger integrability assumptions, since
assuming just EXi = 0,EX2

i = 1 still does not exclude the possibility that with probability close
to oneXi = 0 for all i. Let us also remark that an estimate of the same order as in Proposition 1.2
can be obtained for matrices generated by Rademacher or Gaussian sequences using inequalities
presented in [15] (as already mentioned in the introduction). In fact it can be also obtained by a
modi�cation of the proof of Theorem 1.1, however the argument presented in Section 3 is more
concise.

2 Proof of Theorem 1.1

Without loss of generality we may assume that N ≥ n ≥ 2. In the main part of the proof we
will not work with the original Toeplitz matrix, but with its modi�cation, which will be more
convenient for the calculations. Consider thus the matrix

Γ = [Γij ]1≤i≤N,1≤j≤n, (3)

where Γij = Tij = Xi−j if j ≤ i ≤ N − n + j and Γij = 0 otherwise. Let us note that T and
Γ di�er just by two �corners� of Toeplitz type and thus E‖T − Γ‖`n2→`N2 can be estimated by
means of results for square Toeplitz matrices. More precisely, by using Proposition 4.1 from the
Appendix, we obtain

E‖T − Γ‖`n2→`N2 ≤ C
( ∑
i≤−1 or i≥N−n+2

EX2
i

)1/2√
log n ≤ C

√
n log n.

Therefore for both assertions made in Theorem 1.1, the contribution from the corners is negligible
(for the �rst part it is a direct consequence of the above inequality, whereas for the second part
it follows easily by the above estimate and Chebyshev's inequality).
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Denote the standard basis of `n2 and `N2 by (ej)
n
j=1 and (Ej)

N
j=1 respectively and let Ai : `

n
2 →

`N2 , i = 0, . . . , N − n be the linear operator such that for all 1 ≤ j ≤ n, Aiej = Ei+j (in the

sequel we will identify operators with their matrices in standard basis). Then Γ =
∑N−n

i=0 XiAi
and so

ΓTΓ =
∑

0≤i,j≤N−n
XiXjA

T
i Aj . (4)

Note that ATi Ek = 0 if k < i+ 1 or k > i+ n and ATi Ek = ek−i if i+ 1 ≤ k ≤ n+ i. Therefore

〈ΓTΓel, ek〉 =

(N−n−(k−l))∧(N−n)∑
i=0∨(l−k)

XiXk−l+i. (5)

In particular ΓTΓ is a symmetric Toeplitz matrix.
We will now state the main technical proposition of the paper, which will allow us to use

standard symmetrization techniques in the proof of Theorem 1.1.

Proposition 2.1. Let N ≥ n be two positive integers, a0, . . . , aN−n be real numbers and g0, . . .,
gN−n be independent standard Gaussian variables. De�ne a symmetric n × n Toeplitz matrix

M = [Mkl]k,l≤n, where Mkk = 0 and for k 6= l,

Mkl = Y|k−l| :=

(N−n−(k−l))∧(N−n)∑
i=0∨(l−k)

aiak−l+igigk−l+i.

Then

E‖M‖`n2→`n2 ≤C
( ∑

0≤i,j≤N−n
a2
i a

2
j1{1≤|i−j|≤n−1}

)1/2√
log n

+ C max
0≤k≤d(N−n+1)/ne−1

( ∑
i 6=j

kn≤i,j≤((k+2)n−1)∧(N−n)

a2
i a

2
j

)1/2
log n.

Proof of Proposition 2.1. Note �rst that without loss of generality we can assume thatN−n+1 ≥
2n and N − n+ 1 is divisible by n (we may simply enlarge N and put zeros as the new ai's).

SinceM is a symmetric Toeplitz matrix, to estimate the operator norm we may use the same
strategy as in [14], i.e. relate the operator norm ofM to the supremum of a random trigonometric
polynomial for which we will use the entropy method. The main di�erence between our case
and [14] is the fact that the coe�cients of the polynomial will not be independent and the
related supremum will be a chaos of degree 2, which will result in additional terms appearing
in the entropy integral. Similarly as in [14] by extending M to an in�nite Laurent matrix
[Y|k−l|1{1≤|k−l|≤n−1}]k,l∈Z and then noting that it corresponds to a multiplier on the circle we
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obtain that

‖M‖`n2→`n2 ≤ 2 sup
0≤x≤1

∣∣∣ n−1∑
j=1

Yj cos(2πjx)
∣∣∣ = 2 sup

0≤x≤1

∣∣∣N−n−1∑
i=0

(N−n−i)∧(n−1)∑
j=1

aiai+jgigi+j cos(2πjx)
∣∣∣

= sup
0≤x≤1

∣∣∣ ∑
0≤i,j≤N−n

Bx
ijgigj

∣∣∣ =: sup
0≤x≤1

|Sx|,

where for x ∈ [0, 1], the matrix Bx = [Bx
ij ]
N−n
i,j=0 is de�ned by

Bx
ij = aiaj cos(2π|i− j|x)1{1≤|i−j|≤n−1}.

By Proposition 4.2 in the Appendix we obtain that

P(|Sx − Sy| ≥ t) ≤ 2 exp
(
− 1

C
min

( t2

‖Bx −By‖2HS
,

t

‖Bx −By‖`N−n+1
2 →`N−n+1

2

))
and so, by Proposition 4.3 we get

‖M‖`n2→`n2 ≤ C
(
E|S0|+

∫ ∞
0

√
log([0, 1], d1, ε)dε+

∫ ∞
0

logN([0, 1], d2, ε)dε
)
, (6)

where d1(x, y) = ‖Bx − By‖HS , d2(x, y) = ‖Bx − By‖`N−n+1
2 →`N−n+1

2
and for a metric space

(X , d), N(X , d, ε) denotes the minimum number of closed balls with radius ε covering X .
Note that diam([0, 1], d1) ≤ 2

√∑
0≤i,j≤N−n a

2
i a

2
j1{1≤|i−j|≤n−1} =: D1. Also, using the Lips-

chitz property of the cosine function, we get that

d1(x, y)2 ≤ 4π2
∑

0≤i,j≤N−n
a2
i a

2
j (i− j)21{1≤|i−j|≤n−1}|x− y|2,

which gives N([0, 1], d1, ε) ≤ C∆1/ε for ε ≤ D1, where

∆2
1 =

∑
0≤i,j≤N−n

a2
i a

2
j (i− j)21{1≤|i−j|≤n−1}.

We thus obtain ∫ ∞
0

√
log([0, 1], d1, ε)dε ≤

∫ D1

0

√
log
(C∆1

ε

)
dε

=
C∆1√

2

∫ ∞
√

2 log(C∆1/D1)
t2e−t

2/2dt

≤ D1

√
log(C∆1/D1) +

√
πD1

≤ CD1

√
log n, (7)

where in the last inequality we used the estimate ∆1 ≤ nD1.
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Let us now estimate the other integral on the right-hand side of (6). Note that Bx's are band
matrices and they may be decomposed as Bx = Bx

1 +Bx
2 +Bx

3 , where B
x
1 is the block diagonal

part of Bx with blocks of size n× n, whereas Bx
2 and Bx

3 correspond respectively to the part of
Bx below and above the block diagonal. More formally,

Bx
1 = [Bx

ij1{bi/nc=bj/nc}]
N−n
i,j=0, B

x
2 = [Bx

ij1{bi/nc=bj/nc+1}]
N−n
i,j=0, B

x
3 = [Bx

ij1{bi/nc+1=bj/nc}]
N−n
i,j=0.

The matrix Bx
1 −B

y
1 consists of (N − n+ 1)/n blocks and the Hilbert-Schmidt norm of the k-th

block (k = 1, . . . , (N − n+ 1)/n) is bounded by

( kn−1∑
i,j=(k−1)n

a2
i a

2
j (cos(2π|i− j|x)− cos(2π|i− j|y))21{1≤|i−j|≤n−1}

)1/2

≤ 2π
( ∑

i 6=j

(k−1)n≤i,j≤kn−1

a2
i a

2
j (i− j)2

)1/2
|x− y|.

Thus for x, y ∈ [0, 1],

‖Bx
1 −B

y
1‖`N−n+1

2 →`N−n+1
2

≤ 2π|x− y| max
1≤k≤(N−n+1)/n

( ∑
i6=j

(k−1)n≤i,j≤kn−1

a2
i a

2
j (i− j)2

)1/2
.

By a similar estimate for all x ∈ [0, 1],

‖Bx
1 −B

y
1‖`N−n+1

2 →`N−n+1
2

≤ 2 max
1≤k≤(N−n+1)/n

( ∑
i6=j

(k−1)n≤i,j≤kn−1

a2
i a

2
j

)1/2
.

Bounds on Bx
2 and Bx

3 can be obtained in an analogous way, by exploring their block-diagonal
structure (the blocks are not on the main diagonal, but still the operator norm of the whole
matrix is the maximum of operator norms of individual blocks). Therefore we obtain

diam([0, 1], d2) ≤ max
1≤k≤(N−n+1)/n

( ∑
i 6=j

(k−1)n≤i,j≤kn−1

a2
i a

2
j

)1/2

+ max
1≤k≤(N−n+1)/n−1

( ∑
(k−1)n≤j≤kn−1

kn≤i≤(k+1)n−1

a2
i a

2
j

)1/2

+ max
1≤k≤(N−n+1)/n−1

( ∑
kn≤i≤(k+1)n−1

(k−1)n≤j≤kn−1

a2
i a

2
j

)1/2

≤ 3 max
0≤k≤((N−n+1)/n)−2

( ∑
i 6=j

kn≤i,j≤(k+2)n−1

a2
i a

2
j

)1/2
=: D2
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and

d2(x, y) ≤ C max
0≤k≤((N−n+1)/n)−2

( ∑
i 6=j

kn≤i,j≤(k+2)n−1

a2
i a

2
j (i− j)2

)1/2
|x− y| =: ∆2|x− y|,

which allows us to write

N([0, 1], d2, ε) ≤
∆2

ε
for ε ≤ D2. Thus∫ ∞

0
logN([0, 1], d2, ε)dε ≤

∫ D2

0
log(∆2ε

−1)dε = D2 log(∆2)−D2 logD2 +D2 ≤ CD2 log n,

(8)

where in the last inequality we used the estimate ∆2 ≤ CnD2.
Let us now note that S0 =

∑
0≤i,j≤N−n aiajgigj1{1≤|i−j|≤n−1} and so by independence of

gi's,

E|S0| ≤
√
E|S0|2 =

√
2

∑
0≤i,j≤N−n

a2
i a

2
j1{1≤|i−j|≤n−1},

which together with (6), (7) and (8) ends the proof of the proposition.

Conclusion of the proof of Theorem 1.1. As explained at the beginning of this section, it su�ces
to prove the corresponding statements for N ≥ n and the matrix Γ de�ned by (3) instead of T .

We have

ΓTΓ =
(

ΓTΓ−
(N−n∑

i=0

X2
i

)
Idn

)
+
(N−n∑

i=0

X2
i

)
Idn. (9)

Denote the �rst term on the right hand side above by M̃ = [M̃kl]l,l≤n. From (5) it follows that
M̃kk = 0 and for k 6= l,

M̃kl =

(N−n−(k−l))∧(N−n)∑
i=0∨(l−k)

XiXk−l+i,

thus M̃ is a tetrahedral chaos of order two (with matrix coe�cients). Let g0, . . . , gN−n be i.i.d.
standard Gaussian variables independent of the sequence (Xi). By Proposition 4.4 from the
Appendix we obtain

E‖M̃‖`n2→`n2 ≤ π
2E‖M‖`n2→`n2 ,

where the matrix M is de�ned as in Proposition 2.1 with ai = Xi. Therefore, applying this
proposition conditionally on (Xi) we get

E‖M̃‖`n2→`n2 ≤CE
( ∑

0≤i,j≤N−n
X2
iX

2
j 1{1≤|i−j|≤n−1}

)1/2√
log n

+ CE max
0≤k≤d(N−n+1)/ne−1

( ∑
kn≤i≤((k+2)n−1)∧(N−n)

X2
i

)
log n (10)
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(note that we have enlarged the second summand of the estimate given in Proposition 2.1 by
adding the diagonal terms).

Bounding the �rst summand on the right hand side of the above inequality is easy. By
Jensen's inequality, independence and the assumption EX2

i = 1 we get

E
( ∑

0≤i,j≤N−n
X2
iX

2
j 1{1≤|i−j|≤n−1}

)1/2√
log n ≤

√
2Nn log n. (11)

Let us now take care of the second term. Denote

Zk =
∑

kn≤i≤((k+2)n−1)∧(N−n)

X2
i , Z̄k = Zk − EZk,

k = 0, 1, . . . , d(N − n+ 1)/ne − 1.
Set q = (p/2)∧ 2 ≤ 2. Let also ε0, . . . , εN−n be independent Rademacher variables, indepen-

dent of the sequence (Xi). By standard symmetrization techniques and the Khintchine inequality
we have

E|Z̄k|q ≤ 2qE|
∑

kn≤i≤((k+2)n−1)∧(N−n)

εiX
2
i |q ≤ CE(

∑
kn≤i≤((k+2)n−1)∧(N−n)

X4
i )q/2

≤ CE(
∑

kn≤i≤((k+2)n−1)∧(N−n)

X2q
i ) ≤ C(

∑
kn≤i≤((k+2)n−1)∧(N−n)

L2q) ≤ CnL2q,

where in the 3-rd inequality we used the fact q ≤ 2 and in the fourth one, 2q ≤ p and the
de�nition of L. We thus get

E max
0≤k≤d(N−n+1)/ne−1

( ∑
kn≤i≤((k+2)n−1)∧(N−n)

X2
i

)
≤ max

0≤k≤d(N−n+1)/ne−1

( ∑
kn≤i≤((k+2)n−1)∧(N−n)

EX2
i

)
+ E max

0≤k≤d(N−n+1)/ne−1
|Z̄k|

≤ 2n+ (
∑

0≤k≤d(N−n+1)/ne−1

E|Z̄k|q)1/q ≤ 2n+ (C
N

n
nL2q)1/q ≤ 2n+ CL2N1/q,

which together with (10) and (11) gives

E‖M̃‖`n2→`n2 ≤ C(
√
Nn log n+ n log n+ L2N1/q log n) ≤ CpL2(N + n log n), (12)

where we used that q > 1. Going back to (9), we see that it remains to estimate the second
term on the right hand side. Clearly E

∑N−n
i=0 X2

i = N − n, which together with (12) gives
E‖Γ‖2

`n2→`N2
= E‖ΓTΓ‖`n2→`n2 ≤ CpL

2(N + n log n) (recall that L ≥ 1) and proves the �rst

assertion of the theorem.
To prove the second part, note that in the same way as for Z̄k above, we get

E|
N−n∑
i=0

(X2
i − 1)| ≤ CN1/qL2.
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Thus by the �rst inequality of (12), one obtains

E‖ΓTΓ− (N − n+ 1)Idn‖`n2→`n2 ≤ C(
√
N log n+ n log n+ L2N1/q log n),

which gives

E‖ 1

N
ΓTΓ− Idn‖`n2→`n2 ≤ εδ

for N ≥ CL,p,δ,εn log n. By Markov's inequality this yields

‖ 1

N
ΓTΓ− Idn‖`n2→`n2 ≤ ε,

with probability at least 1− δ, which (after a suitable change of ε) easily implies the second part
of the theorem.

Remark In the proof above we did not try to obtain explicit dependence of the constant CL,p,δ,ε
on the parameters. Certain suboptimal estimates can be clearly read from the proof. Moreover,
once the expectations of the variables involved are estimated, one can use general concentration
inequalities for sums of independent random variables and suprema of polynomial chaoses to
get a better estimate on the constants (depending on integrability properties of the underlying
sequence of random variables). We do not pursue this direction here.

3 Proof of Proposition 1.2

We can again assume that N ≥ n ≥ 2 and prove the corresponding estimate for the matrix Γ.
Going back to the equality (4) we obtain

E‖ΓTΓ‖`n2→`n2 ≤ E‖
∑

0≤i≤N−n
X2
i A

T
i Ai‖`n2→`n2 + E‖

∑
0≤i 6=j≤N−n

XiXjA
T
i Aj‖`n2→`n2 .

Since ATi Ai = Idn and EX2
i = 1, the �rst term on the right hand side equals N −n+ 1 ≤ N .

To bound the second term we use the fact that the space of n × n matrices equipped with the
operator norm has type 2 constant bounded by C

√
log n (see Proposition 4.6 in the Appendix).

Thus we can use Proposition 4.5 from the Appendix and get

(E‖
∑

0≤i 6=j≤N−n
XiXjA

T
i Aj‖`n2→`n2 )2 ≤ C

( ∑
0≤i 6=j≤N−n

‖ATi Aj‖2`n2→`n2
)

log2 n.

Note that if |i− j| ≥ n then AiA
T
j = 0, moreover for all i, j, ‖AiATj ‖`n2→`n2 ≤ 1, which together

with the above inequality gives

E‖
∑

0≤i 6=j≤N−n
XiXjA

T
i Aj‖`n2→`n2 ≤ C

√
Nn log n

Combining this with the previous estimates we get E‖Γ‖2
`n2→`N2

= E‖ΓTΓ‖`n2→`n2 ≤ C(N +
√
nN log n, which ends the proof.
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4 Appendix

For reader's convenience we gather here several by now standard results which have been used
in the proofs above. For most of them we provide detailed references, however in some cases we
haven't been able to �nd the formulation we need in the literature, so we brie�y describe how
they follow from available references.

The �rst proposition gives estimates on the operator norm of a square random Toeplitz
matrix. It was proved in [1] for symmetric random Toeplitz matrices. A simple modi�cation of
the proof gives the result in the non-symmetric case, however it can be also easily obtained by
exploring the type 2 property of the space of symmetric matrices (see Proposition 4.6 below) or
e.g. by noncommutative Bernstein inequalities, since a random square Toeplitz matrix can be
written as a linear combination with random coe�cients of norm one matrices.

Proposition 4.1. If N = n and (Xi)i≤1−n≤n−1 are independent, centered random variables,

then

E‖T‖`n2→`n2 ≤ C
( n∑
i=1

EX2
i

)1/2√
log n.

We will now state concentration results on Gaussian chaoses of order 2. In a weaker form they
can be traced to [10]. The present formulation can be deduced from results on a Banach space
valued case in [4, 2] and appears explicitly in [11] and [12] (where a generalization to chaoses of
higher degree has been obtained).

Proposition 4.2. Let g1, g2, . . . , gn be independent standard Gaussian random variables and let

A = (aij)1≤i,j≤n be an array of real numbers such that for all 1 ≤ i ≤ n, aii = 0. Then for any

t ≥ 0,

P
(∣∣∣ ∑

1≤i,j≤n
aijgigj

∣∣∣ ≥ t) ≤ 2 exp
(
− 1

C
min

( t2

‖A‖2HS
,

t

‖A‖`n2→`n2

))
.

The next proposition is a consequence of the previous one, Theorem 1.2.7 in [17] and a
standard comparison between γp functionals and entropy integrals.

Proposition 4.3. Consider a set T provided with two distances d1 and d2 and a stochastic

process (Xt)t∈T such that EXt = 0 for all t ∈ T and for all s, t ∈ T and u > 0,

P(|Xs −Xt| ≥ u) ≤ 2 exp
(
−min

( u2

d1(s, t)2
,

u

d2(s, t)

))
.

Then

E sup
s,t∈T

|Xs −Xt| ≤ C
(∫ ∞

0

√
logN(T, d1, ε)dε+

∫ ∞
0

logN(T, d2, ε)dε
)
.

Let us now state a simple proposition which combines standard symmetrization techniques
with comparison between Gaussian and Rademacher averages.
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Proposition 4.4. Let X1, . . . , Xn be independent centered random variables and let (aij)1≤i 6=j≤n
be coe�cients from a normed space (F, ‖·‖). Finally let g1, . . . , gn be standard Gaussian variables

independent of the sequence X1, . . . , Xn. Then

E
∥∥∥ ∑

1≤i 6=j≤n
aijXiXj

∥∥∥ ≤ π2E
∥∥∥ ∑

1≤i 6=j≤n
aijgigjXiXj

∥∥∥
Proof. Let ε1, . . . , εn be independent Rademacher variables, independent of the sequences (Xi),
(gi). Using repetitively (and conditionally) the fact that for any convex function ϕ : R → R we
have Eϕ(Xi) ≤ Eϕ(2εiXi), we get

E
∥∥∥ ∑

1≤i 6=j≤n
aijXiXj

∥∥∥ ≤ 4E
∥∥∥ ∑

1≤i 6=j≤n
aijεiεjXiXj

∥∥∥.
Now, by symmetry of gi and Jensen's inequality,

4

π2
E
∥∥∥ ∑

1≤i 6=j≤n
aijεiεjXiXj

∥∥∥ = E
∥∥∥ ∑

1≤i 6=j≤n
aijεiεjEg|gigj |XiXj

∥∥∥
≤ E

∥∥∥ ∑
1≤i 6=j≤n

aijεigiεjgjXiXj

∥∥∥
= E

∥∥∥ ∑
1≤i 6=j≤n

aijgigjXiXj

∥∥∥,
which ends the proof.

Recall that a Banach space (F, ‖ · ‖) is of type 2 if there exists a �nite constant TF , such that
for all a1, . . . , an ∈ F and independent Rademacher variables ε1, . . . , εn, we have

E‖ε1a1 + . . .+ εnan‖2 ≤ T 2
F

n∑
i=1

‖ai‖2. (13)

The next proposition concerns basic properties of polynomial chaoses in spaces of type 2. It is
very well known, so we skip the proof and remark only that it consists of the three following steps:
1) decoupling inequalities for chaoses (see e.g. Theorem 3.1.1. in [8]), 2) an iterative application
of symmetrization inequalities, 3) iterative application of (13) conditionally on (Xi)

n
i=1.

Proposition 4.5. Let X1, . . . , Xn be independent centered, variance one random variables and

let (aij)1≤i 6=j≤n be coe�cients from a normed space (F, ‖ · ‖) with type 2 constant TF . Then

E‖
∑

1≤i 6=j≤n
aijXiXj‖2 ≤ CT 4

F

∑
1≤i 6=j≤n

‖aij‖2.

Finally, the last proposition gives the type constant for the space of symmetric n×n matrices
equipped with the operator norm.

Proposition 4.6. The space F = Sn∞ of n × n symmetric matrices equipped with the operator

norm has type 2 with constant TF ≤ C
√

log n.
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This proposition follows easily from estimates of type 2 constants for Schatten classes Snp
given in [18] (T2(Snp ) ≤ C√p) and the fact that the Banach-Mazur distance between Sn∞ and Snp
is equal to n1/p (it is enough to take p = log n). We refer the reader e.g. to [19] for details on
the Banach-Mazur distance and geometry of Banach spaces.
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