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Abstract

We study the smallest singular value of a square random matrix with
i.i.d. columns drawn from an isotropic log-concave distribution. An im-
portant example is obtained by sampling vectors uniformly distributed in
an isotropic convex body. We deduce that the condition number of such
matrices is of the order of the size of the matrix and give an estimate on
its tail behaviour.
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1 Introduction

The quantitative behaviour of the smallest singular value of random matrices
with i.i.d. random entries has attracted a lot of attention over the years. For
Gaussian entries the problem has been investigated in [6] and [16], whereas
for more general models of random matrices with i.i.d. entries, major results
were recently obtained in [9, 13, 14, 17]. In asymptotic geometric analysis one
is interested in sampling vectors uniformly distributed over a convex body. In
particular the entries of corresponding matrices are not necessarily independent.
We develop this direction in the present paper, and we study an even more
general case when the columns of random matrices are i.i.d. random vectors with
an isotropic log-concave distribution. Our main result is a deviation inequality
for the smallest singular value.
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ment of Mathematical and Statistical Sciences, University of Alberta in Edmonton, Alberta.
The position was sponsored by the Pacific Institute for the Mathematical Sciences. Research
partially supported by MNiSW Grant no. N N201 397437 and the Foundation for Polish
Science.
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The first results concerning the smallest singular value of large random ma-
trices were obtained in [6] and [16]. The authors considered matrices with in-
dependent standard Gaussian entries and proved the following theorem (below
| · | denotes the Euclidean norm on Rn).

Theorem 1.1 ([6, 16]) Let n ≥ 1 and let Γ be an n × n random matrix with
i.i.d. N (0, 1) entries. Then, for any ε ≥ 0,

P( inf
x∈Sn−1

|Γx| ≤ εn−1/2) ≤ Cε,

where C is an absolute constant.

Recently a lot of effort has been devoted to proving counterparts of the
above theorem for matrices with general i.i.d. entries. Going in a geometrically
motivated direction we consider in this paper Ensembles (in the sense of Ran-
dom Matrix Theory) of matrices with i.i.d. columns distributed according to
a log-concave isotropic probability measure. An important example of such an
Ensemble is obtained by sampling vectors uniformly distributed in an isotropic
convex body. The formal definition of this Ensemble is presented in Section 2.1.
The main result of our paper is

Theorem 1.2 Let n ≥ 1 and let Γ be an n×n matrix with independent columns
drawn from an isotropic log-concave probability µ. For every ε ∈ (0, 1),

P
(

inf
x∈Sn−1

|Γx| ≤ cεn−1/2
)
≤ C min

{
nε, ε+ e−c

√
n
}
≤ C0ε

(
log

2
ε

)2

, (1)

where c, C, and C0 are absolute positive constants.

We would like to emphasize the difference between two terms under the
minimum in formula (1). Contrary to the case e.g. of matrices with i.i.d.
Bernoulli random entries, the left hand side of (1) tends to 0 as ε → 0, due to
the absolute continuity of log-concave distributions. This is not the case for the
second term ε + exp(−c

√
n) under the minimum, but it has been achieved in

the first term εn as well as in the right hand side of formula (1). In fact we
conjecture that

P
(

inf
x∈Sn−1

|Γx| ≤ cεn−1/2
)
≤ Cε.

In the setting of the log-concave Ensemble, the study of the limiting empirical
distribution of the singular values has been done in [10]. Weaker quantitative
results in the direction of Theorem 1.2 were first obtained in [1]. Similarly as in
[9, 13, 14], the proof is based on the splitting of the sphere Sn−1 into two regions:
the set of vectors whose norm is concentrated on a small number of coordinates,
and the set of other vectors. The main difficulty lies in the fact that we assume
only independence of the column vectors of the matrix and not of all the entries.
Therefore we develop several strategies to study different kind of small ball
probability estimates. One of crucial new ingredients is Proposition 2.7, which
will be essential in the setting of the log-concave Ensemble.
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When combined with estimates for the operator norm of the matrix Γ, ob-
tained recently in [2], the above theorem also yields a corollary about the tail
behaviour of the so called condition number of the matrix Γ (denoted by κ(Γ)).
The question about its behaviour for random matrices was raised by Smale [15]
in connection with stability of numerical algorithms for solving large systems
of linear equations. Theorem 1.2 implies that for random matrices Γ with in-
dependent log-concave isotropic columns, κ(Γ) ≤ Cn, similarly as for matrices
with independent Gaussian entries ([6, 16]).

We also investigate the isotropic constant of isotropic log-concave measures
(defined below in (5)), a quantity of major importance in convex geometry.
Although our estimates do not appear in the present proof of Theorem 1.2,
they can be used for related problems, see [1]. In particular Lemma 3.3 is a
general result of probabilistic nature and is of independent interest.

In Section 2, after presenting some preliminary facts (Subsection 2.2) we
prove Theorem 1.2 (Subsection 2.3). We conclude the Section with a tail in-
equality for the condition number of Γ (Corollary 2.9). In Section 3 we present
an estimate of the isotropic constant of the convolution of isotropic log-concave
measures.

Acknowledgment. The work on this paper was completed when all the au-
thors were attending the Thematic Program in Asymptotic Geometric Analysis
in the Fields Institute in Toronto.

2 Smallest singular value

2.1 Basic definitions and notation

Throughout the paper | · | denotes the Euclidean norm and 〈·, ·〉 the standard
inner product on Rn.

For an n × n matrix Γ, let s1(Γ) ≥ s2(Γ) ≥ . . . ≥ sn(Γ) be the singular
values of Γ, i.e. the eigenvalues of the matrix

√
ΓΓ∗. In particular

s1(Γ) = ‖Γ‖ = sup
x∈Sn−1

|Γx|

and if the matrix is invertible

sn(Γ) =
1

‖Γ−1‖
= inf
x∈Sn−1

|Γx|.

The condition number of a square matrix Γ is defined as

κ(Γ) = ‖Γ‖‖Γ−1‖ =
s1(Γ)
sn(Γ)

.

Let us now describe the model of random matrices we are interested in.
Recall that a non-negative function f : Rn → R is called log-concave if for all
x, y ∈ Rn and all θ ∈ (0, 1), f((1 − θ)x + θy) ≥ f(x)1−θf(y)θ. In this paper, a
probability measure µ on Rn is said to be log-concave if it has density f , which
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is log-concave. It is called isotropic if it has mean zero and its covariance matrix
is the identity, that is, for any y ∈ Rn,∫

Rn
〈x, y〉2f(x)dx = |y|2.

A random vector X in Rn is called log-concave (resp. isotropic) if its distribution
is log-concave (resp. isotropic).

The log-concave Ensemble is defined to be the set of square n× n matrices
Γ, whose columns X1, . . . , Xn are independent copies of a log-concave isotropic
random vector X in Rn.

2.2 Preliminary facts

In this section we collect some basic facts concerning general log-concave proba-
bility measures and random matrices, which will be used in the proof of Theorem
1.2.

It is well known that log-concave vectors are stable under projections which
means that any orthogonal projection of an isotropic log-concave vector is an
isotropic log-concave vector on the image of the projection. In particular, for
any isotropic log-concave vector X ∈ Rn and any vector u of Euclidean norm 1,
〈X,u〉 is a log-concave isotropic random variable on R. Moreover, there exists
an absolute constant C such that any log-concave isotropic random variable on
R has density bounded by C.

It is also well known ([4]) that the convolution of log-concave functions is
a log-concave function, which in probabilistic language means that the sum of
log-concave vectors in Rn is a log-concave vector in Rn.

We also recall some recent results concerning the behavior of the Euclidean
norm of an isotropic log-concave random vector. The following two inequalities,
which yield a concentration in a shell, are two different results from [11] and
[12] that we put together for convenience.

Theorem 2.1 ([11],[12]) Let N,n ≥ 1 be integers and let X1, . . . , XN ∈ Rn be
isotropic random vectors with log-concave densities. Then there exist absolute
positive constants c0, C0 such that whenever N ≤ exp(

√
n) then one has

c0
√
n ≤ min

i≤N
|Xi| ≤ max

i≤N
|Xi| ≤ C0

√
n

with probability at least 1− exp(−
√
n).

Actually the above theorems were originally stated not for maxima and minima
but just for a single log-concave vector. However the versions presented above
follow easily by a union bound.

Since the proof of Theorem 1.2 involves approximation of arbitrary vectors
in Sn−1 by vectors from ε-nets, we need to control the operator norm of a matrix
Γ from the log-concave Ensemble. To this end we will use the following result
from [2] (it is an immediate consequence of Corollary 3.8 there).
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Theorem 2.2 There exist positive constants C1 and c1 such that for any n ≥ 1
and K ≥ 1

P(‖Γ‖ ≥ C1K
√
n) ≤ exp

(
−c1K

√
n
)
.

2.3 Proof of Theorem 1.2

Throughout this section Γ denotes a matrix from the log-concave Ensemble (in
fact Lemmas 2.3 and 2.5 hold for every random matrix).

With the notation of Theorem 1.2, we first prove the estimate

P
(

inf
x∈Sn−1

|Γx| ≤ cεn−1/2
)
≤ Cε+ C exp(−c

√
n). (2)

The proof of this inequality relies on splitting the sphere Sn−1 into several
regions (following [9, 13, 14], where an analogous construction was carried on in
the case of matrices with independent entries). We use the following notation.

Sparse = Sparse(δ) = {x ∈ Sn−1 : |supp(x)| ≤ δn},
Comp = Comp(δ, ρ) = {x ∈ Sn−1 : dist(x, Sparse(δ)) ≤ ρ},

Incomp = Incomp(δ, ρ) = Sn−1\Comp(δ, ρ).

To control the behaviour of |Γx| for x ∈ Incomp(δ, ρ) we will use the follow-
ing lemma.

Lemma 2.3 ([14]) Let X1, X2, . . . , Xn denote the column vectors of Γ and let
Hk denote the span of all column vectors, except the k-th. Then for every
ρ, δ ∈ (0, 1) and every ε > 0 one has

P( inf
x∈Incomp(δ,ρ)

|Γx| < ερn−1/2) ≤ 1
δn

n∑
k=1

P(dist(Xk, Hk) < ε).

Proposition 2.4 For all ρ, δ, ε ∈ (0, 1) we have

P( inf
x∈Incomp(δ,ρ)

|Γx| ≤ ρεn−1/2) ≤ C ε

δ
, (3)

where C is an absolute constant.

Proof The column vectors of Γ are the vectors X1, . . . , Xn. With probability
1, they form a family of linearly independent vectors. For fixed k, let Hk be the
hyperplane spanned by {Xi : i 6= k} and let X∗k be a vector of Euclidean norm
1 such that the space orthogonal to Hk is generated by X∗k . Then X∗k and Xk

are independent. Using Fubini’s theorem we obtain

P(dist(Xk, Hk) < ε) = P(|〈X∗k , Xk〉| < ε) = EX∗kPXk(|〈X∗k , Xk〉| < ε).
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From the basic facts recalled in Section 2.2, for each fixed value of X∗k , 〈X∗k , Xk〉
is a one-dimensional isotropic log-concave random variable, therefore its density
g is bounded by a universal constant C. This implies

PXk(|〈X∗k , Xk〉| < ε) =
∫ ε

−ε
g(t)dt ≤ 2Cε.

Thus P(dist(Xk, Hk) < ε) ≤ 2Cε. By Lemma 2.3,

P( inf
x∈Incomp(δ,ρ)

|Γx| < ερn−1/2) ≤ 1
δn

n∑
k=1

P(dist(Xk, Hk) < ε) ≤ 2C
ε

δ

and the proof of (3) is completed. 2

The case of compressible vectors requires different tools. The following
lemma is standard and restricts our study to the case of sparse vectors.

Lemma 2.5 Let ρ, δ ∈ (0, 1) and M ≥ 1. If

inf
x∈Comp(δ,ρ/M)

|Γx| ≤ ρ
√
n and ‖Γ‖ ≤M

√
n

then
inf

y∈Sparse(δ)
|Γy| ≤ 2ρ

√
n.

Proof Assume that there exists x ∈ Comp(δ, ρ/M), such that |Γx| ≤ ρ
√
n

and ‖Γ‖ ≤M
√
n. Then by the definition of “compressible vectors”, there exists

y ∈ Sparse(δ), such that |x− y| ≤ ρ/M . Thus

|Γy| ≤ |Γx|+ |Γ(y − x)| ≤ ρ
√
n+ ‖Γ‖ρ/M ≤ 2ρ

√
n.

2

To handle the case of sparse vectors, we will need the following version of
Theorem 5.1 from [3] in the log-concave setting (applied with N = n, m = δn,
θ =
√
δ/4, K = 1).

Theorem 2.6 Let n be a positive integer and let δ ∈ (0, 1). Let X1, . . . , Xn ∈
Rn be independent random vectors with log-concave densities. Then

sup
x∈Sparse(δ)

∣∣∣∣∣∣∣∣
n∑
i=1

xiXi

∣∣∣2 − n∑
i=1

|xi|2|Xi|2
∣∣∣∣∣ ≤ Cn√δ log

(
2
δ

)
holds with probability larger than

1− exp
(
−
√
δn log

(
2
δ

))
− P

(
max
i≤n
|Xi| ≥ C0

√
n

)
,

where C is a positive universal constant and C0 is the constant from Theo-
rem 2.1.
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Proposition 2.7 There exists a universal positive constant c such that for any
δ ∈ (0, c],

P( inf
x∈Sparse(δ)

|Γx| < c
√
n) ≤ 3 exp

(
−
√
δn
)
.

Proof Applying Theorems 2.6 and 2.1 we obtain that

inf
x∈Sparse(δ)

|Γx|2 ≥ inf
x∈Sparse(δ)

n∑
i=1

|xi|2|Xi|2− sup
x∈Sparse(δ)

∣∣∣∣∣∣∣∣
n∑
i=1

xiXi

∣∣∣2 − n∑
i=1

|xi|2|Xi|2
∣∣∣∣∣

≥
(
c20 − C

√
δ log(2/δ)

)
n

with probability at least

1− exp
(
−
√
δn log(2/δ)

)
− P

(
max
i≤n
|Xi| ≥ C0

√
n

)
− P

(
min
i≤n
|Xi| ≤ c0

√
n

)
≥ 1− 3 exp

(
−
√
δn
)
.

This implies the result with appropriately chosen constant c. 2

Proposition 2.7 and Lemma 2.5 immediately yield the following statement,
describing the case of compressible vectors.

Proposition 2.8 There exists an absolute constant c2 ∈ (0, 1) such that for
any M > 1 and δ ∈ (0, c2]

P( inf
x∈Comp(δ,c2/M)

|Γx| ≤ c2
√
n & ‖Γ‖ ≤M

√
n) ≤ 3 exp(−

√
δn).

Proof of inequality (2). We apply Proposition 2.8 with δ = c2 and M = C1,
where C1 is the constant from Theorem 2.2, to obtain

P
(

inf
x∈Comp(c2,c2/C1)

|Γx| ≤ c2
√
n ‖Γ‖ ≤ C1

√
n

)
≤ 3 exp(−

√
c2n).

Thus, by Theorem 2.2 with K = 1, we get for some positive universal constants
C and c,

P
(

inf
x∈Comp(c2,c2/C1)

|Γx| ≤ c2
√
n

)
≤ 3 exp (−

√
c2n) + exp

(
−c1
√
n
)
≤ Ce−c

√
n.

On the other hand, Proposition 2.4 with δ = c2 and ρ = c2/C1 gives for any
ε ∈ (0, 1),

P( inf
x∈Incomp(c2,c2/C1)

|Γx| ≤ c2C−1
1 εn−1/2) ≤ C8

c2
ε.

Since Sn−1 = Incomp(c2, c2/C1) ∪ Comp(c2, c2/C1) and εn−1/2 ≤ n1/2, the
above inequalities imply (2). 2
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To conclude the proof of Theorem 1.2 it remains to show

P( inf
x∈Sn−1

|Γx| ≤ εn−1/2) ≤ Cnε. (4)

Proof of inequality (4). Recall the notation from the proof of Lemma 2.3
and Proposition 2.4, namely that Hk is the linear span of all the column vectors
of Γ except for Xk and X∗k is a unit normal vector to Hk. It is elementary that

inf
x∈Sn−1

|Γx| ≥ min
k≤n

n−1/2dist(Xk, Hk) = min
k≤n

n−1/2|〈X∗k , Xk〉|

(one simply uses the fact that any unit vector has at least one coordinate with
absolute value not smaller than n−1/2). Thus

P( inf
x∈Sn−1

|Γx| ≤ εn−1/2) ≤ P(min
k≤n
|〈X∗k , Xk〉| ≤ ε)

≤ nmax
k≤n

P(|〈X∗k , Xk〉| ≤ ε) ≤ Cnε,

since (as was already mentioned in the proof of Proposition 2.4) 〈X∗k , Xk〉 have
densities bounded by a universal constant. 2

Finally we provide an estimate for the tail decay of the condition number of
Γ.

Corollary 2.9 There are absolute positive constants c and C such that
if 1 ≤ t ≤ exp(c

√
n) then

P(κ(Γ) ≥ nt) ≤ C 1
t
;

if exp(c
√
n) < t ≤ n exp(c

√
n) then

P(κ(Γ) ≥ nt) ≤ C exp
(
−c
√
n
)
≤ C log2 t

t
;

if t > exp(c
√
n) then

P(κ(Γ) ≥ nt) ≤ C
√
n log t
t

≤ C log2 t

t
.

Proof. We are going to apply Theorems 1.2 and 2.2. Let c, c1, C, and C1 be
constants from these theorems. Set c3 = min{1, c, c1} and C3 = max{1, C, C1}.
Note that for any K ≥ 1

P (κ(Γ) ≥ nt) ≤ P
(

inf
x∈Sn−1

|Γx| ≤ c3εn−1/2

)
+ P

(
‖Γ‖ ≥ C3K

√
n
)

where ε = C3K/(c3t).
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Now for t ≤ n exp(c3
√
n) we choose K = 1, so by Theorems 1.2 and 2.2

P (κ(Γ) ≥ nt) ≤ C3

(
ε+ 2 exp(−c3

√
n)
)
≤ C2

3

c3

1
t

+ 2 exp(−c3
√
n),

which shows the first two cases.
For t > exp(c3

√
n) we choose K = log t

c3
√
n

, so by Theorems 1.2 and 2.2

P (κ(Γ) ≥ nt) ≤ C3

(
εn+ exp(−c3K

√
n)
)

= C3
1
t

(
C3

c3

√
n log t+ 1

)
,

which completes the proof. 2

3 Isotropic constant of a sum of i.i.d. random
vectors in Rn

Let µ be an isotropic log-concave probability measure on Rn with log-concave
density f . We define the isotropic constant of the measure µ by

Lµ = f(0)1/n. (5)

For a log-concave isotropic random vector by LX we denote the isotropic con-
stant of its distribution. Furthermore, if µ is an isotropic probability measure
uniformly distributed on a convex body K then Lµ is the so-called isotropic
constant of K. The question whether Lµ is bounded by a universal constant is
one of the most important open problems of convex geometry.

The first version of Theorem 1.2 (as announced in [1]) involved the isotropic
constant of column vectors of the matrix Γ. The argument was different than
the one presented in this paper. Its proof required the control of the isotropic
constant of the convolution of isotropic log-concave measures. Since a theorem
providing such control is of independent interest, we present it now together
with the proof.

Theorem 3.1 Let X1, . . . , Xn be i.i.d. random vectors in Rn distributed ac-
cording to a symmetric isotropic log-concave probability µ, let x ∈ Sn−1 and
Z = x1X1 + . . .+ xnXn. Then LZ ≤ CLµ, where C is a universal constant.

Note that in [1] we have deduced from this Theorem another type of a small
ball probability estimate than the one presented in Proposition 2.8 in the case
of compressible vectors. Namely, we have proved the following proposition.

Proposition 3.2 Let Γ be an n× n random matrix with independent columns
X1, . . . , Xn distributed according to a symmetric isotropic log-concave probability
µ. For every M > 1 and δ, ρ ∈ (0, 1), satisfying

ρ ≤
( C

M δLµ

) 1
1−δ
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we have

P( inf
x∈Comp(δ,ρ/(2M))

|Γx| ≤ ρ
√
n & ‖Γ‖ ≤M

√
n) ≤ e−cn

where c and C are positive absolute constants.

The proof of Theorem 3.1 is based on Lemma 3.3 below, which is a slightly
modified version of a result of Gluskin and Milman [7], giving an `2 lower bound
for the norm defined on Rn by

‖(λ1, . . . , λn)‖ =

(∫
Rn
. . .

∫
Rn

∥∥∥ m∑
i=1

λixi

∥∥∥2

K

m∏
i=1

fi(xi)dxi

)1/2

,

where f1, . . . , fn are probability densities on Rn, and on a result of Junge ([8]),
which relates the isotropy constant of convolved log-concave probability mea-
sures with the norm ‖ · ‖.

Let X1, . . . , Xn be independent isotropic log-concave symmetric random vec-
tors in Rn. Let x ∈ Sn−1 and set

Z = x1X1 + . . .+ xnXn.

Then it is well known ([4]) that Z is also an isotropic log-concave symmetric
random vector in Rn.

Recall that K is called a star body whenever tK ⊂ K for all 0 ≤ t ≤ 1,
and in such a case ‖ · ‖K denotes its Minkowski functional, i.e. ‖x‖K = inf{t >
0: x ∈ tK}.

Lemma 3.3 Let f1, . . . , fm be densities of probability measures on Rn and let
K ⊂ Rn be a star body containing the origin in its interior. Then for all
λ1, . . . , λm we have∫

Rn
. . .

∫
Rn

∥∥∥ m∑
i=1

λixi

∥∥∥2

K

m∏
i=1

fi(xi)dxi ≥
n

n+ 2
|K|−2/n

m∑
i=1

λ2
i r

2
i , (6)

where r2i =
∫∞
0
|{x : fi(x) ≥ t}|1+2/n

dt ≥ ‖fi‖−2/n
∞ .

Proof. Let us recall that the symmetric decreasing rearrangement of a function
f : Rn → R+ is a function f∗ : Rn → R, which is equidistributed with f (i.e. for
all t ∈ R+, |{x : f∗(x) ≥ t}| = |({x : f(x) ≥ t}|) and for x, y ∈ Rn, if |x| ≤ |y|
then f∗(x) ≥ f∗(y).

If f is just the characteristic function of a set then f∗ is the characteristic
function of the ball of the same volume centered at the origin. In general one
has the following “layer cake representation”

f∗(x) =
∫ ∞

0

[1{y∈Rn : f(y)≥t}]∗(x)dt. (7)
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Let now D be the Euclidean ball of the same volume as K, centered at the
origin. We will first prove that for all t ∈ R+ one has∫

Rn
. . .

∫
Rn

1{(xi)mi=1 : ‖
∑m
i=1 λixi‖2K≤t}

m∏
i=1

fi(xi)dx1 . . . dxm

≥
∫

Rn
. . .

∫
Rn

1{(xi)mi=1 : ‖
∑m
i=1 λixi‖2D≤t}

m∏
i=1

f∗i (xi)dx1 . . . dxm. (8)

It is a corollary from the Brascamb-Lieb-Luttinger inequality ([5]), which asserts
that for any functions g0, . . . , gm : Rn → R+ and any (m+ 1)× k matrix (aij),
we have ∫

Rn
. . .

∫
Rn︸ ︷︷ ︸

k

m∏
i=0

gi

 k∑
j=1

aijxj

 dx1 . . . dxk ≤

≤
∫

Rn
. . .

∫
Rn︸ ︷︷ ︸

k

k∏
i=0

g∗i

 k∑
j=1

aijxj

 dx1 . . . dxk.

Inequality (8) will follow if we substitute g0 = 1√tK and gi = fi for i ≥ 1 (notice
that g∗0 = 1√tD) with the appropriate choice of the matrix (aij).

Since
‖x‖2K =

∫ ∞
0

2t(1− 1{‖x‖K≤t})dt,

we conclude from (8) and from the symmetry of the f∗i that∫
Rn
. . .

∫
Rn

∥∥∥ m∑
i=1

λixi

∥∥∥2

K

m∏
i=1

fi(xi)dxi

≥
∫

Rn
. . .

∫
Rn

∥∥∥ m∑
i=1

λixi

∥∥∥2

D

m∏
i=1

f∗i (xi)dxi

=
m∑
i=1

λ2
i

∫
Rn
. . .

∫
Rn
‖xi‖2D

m∏
i=1

f∗i (xi)dxi.

Since |D|1/n = |K|1/n, we have

‖x‖D =
(
|Bn2 |
|K|

)1/n

|x|.

Now we can use (7), to get∫
Rn
‖x‖2Df∗i (x)dx =

(
|Bn2 |
|K|

)2/n ∫
Rn
|x|2f∗i (x)dx

=
(
|Bn2 |
|K|

)2/n ∫ ∞
0

∫
Rn
|x|2(1{y : fi(y)≥t})

∗(x)dxdt.
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The function (1{y : fi(y)≥t})
∗ is the indicator of the ball, centered at the origin

and having the volume equal to |{y : fi(y) ≥ t}|. Therefore, integrating in polar
coordinates,∫

Rn
|x|2

(
1{y : fi(y)≥t}

)∗ (x)dx =
(
|{y : f(y) ≥ t}|

|Bn2 |

)1+2/n ∫
Bn2

|x|22dx

=
n

n+ 2
|{y : f(y) ≥ t}|1+2/n

|Bn2 |2/n
.

Thus ∫
Rn
‖x‖2Df∗i (x)dx ≥ n

n+ 2
|K|−2/nr2i ,

where r2i =
∫∞
0
|{x : fi(x) ≥ t}|1+2/n

dt. This concludes the proof of (6).
It remains to show that r2i ≥ ‖fi‖

−2/n
∞ . We know that∫ ∞

0

|{y : fi(y) ≥ t}| dt =
∫ ‖fi‖∞

0

|{y : fi(y) ≥ t}| dt = 1.

Hence by Hölder inequality,

1 ≤

(∫ ‖fi‖∞
0

|{y : fi(y) ≥ t}|1+2/n
dt

)n/(n+2)

‖fi‖2/(n+2)
∞ .

Since r2i =
∫∞
0
|{x : fi(x) ≥ t}|1+2/n

dt =
∫ ‖fi‖∞
0

|{x : fi(x) ≥ t}|1+2/n
dt, we get

the desired inequality. 2

Proof of Theorem 3.1. Let f be the density of µ and let g be the density
of Z. By Lemma 2 in [8] there exists a star-shaped body K ⊂ Rn, with 0 in its
interior such that

g(0)1/n|K|1/n
(∫

Rn
‖x‖2Kg(x)dx

)1/2

≤ C,

for a certain universal constant C. On the other hand, by Lemma 3.3 we have(∫
Rn
‖x‖2Kg(x)dx

)1/2

=
(
E‖Z‖2K

)1/2
=
(
E‖x1X1 + . . .+ xnXn‖2K

)1/2
≥ c

|K|1/nf(0)1/n

( n∑
i=1

x2
i

)1/2

=
c

|K|1/nf(0)1/n
.

Putting these two inequalities together concludes the proof. 2
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Olivier Guédon, and Alain Pajor
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