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Abstract. We design and analyse an iterative method, which uses a
specific block smoother for the multigrid cycle. Among many possibilities
we choose a few multigrid iterations as the smoother’s blocks. The result
is a multilevel procedure that works for regular saddle point problems and
features all good properties of the classical multigrid for elliptic problems,
such as the optimal complexity and convergence rate independent of the
number of levels.

1 Introduction

In many applications, one needs to solve an ill-conditioned, large discrete saddle
point problem with a block matrix

(

A BT

B 0

)

, (1)

which is non-symmetric, indefinite and ill-conditioned. For example, after a lin-
earization of the Navier–Stokes system one ends up with a huge linear system
with such a nonsymmetric block matrix, which ill-conditioned with respect to
the mesh size h. We propose and analyse a new multilevel method for solving
the linear system, based on inner and outer multigrid iteration.

Multigrid schemes for saddle point problems have been considered by many
authors before, see for example [2], [14], [13], [10], [15]. These methods have
usually been designed with a very specific equation in mind. Some of these
works, e.g. [2], stressed the necessity of using sufficiently strong smoothers in
order to achieve satisfactory performance of the multigrid. On the other hand,
the block nature of (1) promotes the development of preconditioners exploiting
this structure of the problem. Block preconditioning has also attained a lot of
attention from many authors, see e.g. [6], [3], [11], [7], [12].
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We propose a method that combines these two approaches: the multigrid
and the block preconditioning. Similar combination has been used in e.g. [2],
however our approach looks a bit more flexible and makes the choice of concrete
preconditioner broader. We design and analyse an iterative method, which may
choose from a variety of blocked approximate solvers. An interesting option is
to use an inner multigrid cycle as a smoother inside the outer multigrid cycle,
which results in a multilevel procedure that resembles to some extent the W-cycle
method but has better properties. We treat each variable separately, following
the block approach used for preconditioning. Our method works for saddle point
problems such as the Stokes problem, and it features all good properties of the
classical multigrid for elliptic problems, such as the optimal complexity and
convergence in “natural” norms.

In this paper, we describe the blocked smoother and derive from it a spe-
cific inner-outer multigrid iteration which uses two inner multigrid iterations to
apply the smoother. We discuss the performance of these methods, including
convergence theorems and numerical results. The details of the theoretical anal-
ysis, which is based on a combination of the multigrid and block preconditioners
theory, will be given elsewhere.

2 Blocked multigrid framework for saddle point problems

Let V̄ , W̄ be real Hilbert spaces with scalar products denoted by ((·, ·)) and (·, ·),
respectively. The corresponding induced norms are ‖·‖ and |·|. Let us consider
two continuous bilinear forms, a(·, ·) : V̄ × V̄ → R and b(·, ·) : V̄ × W̄ → R and
assume that a(·, ·) satisfies

∃α > 0 a(u, u) ≥ α‖u‖2 ∀u ∈ V 0 = {v ∈ V̄ : b(v, q) = 0 ∀q ∈ W̄}, (2)

and there holds the inf-sup condition:

∃β > 0 sup
v∈V̄ ,v 6=0

b(v, q)

‖v‖
≥ β|q| ∀q ∈ W̄ . (3)

We consider a family of nested finite element spaces V0 × W0 ⊂ V1 × W1 ⊂
. . . ⊂ VK × WK ⊂ V̄ × W̄ , where every Vk+1 × Wk+1 is obtained from Vk ×
Wk through mesh refinement procedure, hk+1 = 1

2hk. These spaces inherit
their norms from V̄ × W̄ , but in practice, one additionally uses another (mesh-
dependent) inner products and norms, denoted by ((·, ·))k and ‖·‖k in Vk and
analogously in Wk. Later on, we shall use these auxiliary inner products to
define certain linear operators in Vk and Wk. We shall also denote for short
Xk = Vk × Wk; for x = (u, p)T ∈ Xk and y = (v, q)T ∈ Xk, we define the
natural inner product in Xk by 〈x, y〉 = ((u, v)) + (p, q) , and the discrete one
〈(u, p)T , (v, q)T 〉k = ((u, v))k + (p, q)k , with corresponding norms denoted by
|||·||| and |||·|||k.
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Additionally, we assume that a uniform discrete inf-sup condition holds for
all levels k:

∃β > 0 ∀k = 1, . . . , K sup
v∈Vk ,v 6=0

b(v, q)

‖v‖
≥ β|q| ∀q ∈ Wk. (4)

In what follows, for nonnegative scalars x, y, we shall write x . y if there exits
a positive constant C, independent of x, y and the level k, such that x ≤ Cy.
Similarly, y & x is equivalent to x . y. Finally, x ' y means x . y and y . x
simultaneously.

On the kth level, we consider the following saddle point problem:

Problem 1. Find (uk, pk) ∈ Vk × Wk such that

Mk

(

uk

pk

)

≡

(

Ak B∗
k

Bk 0

) (

uk

pk

)

=

(

Fk

Gk

)

. (5)

The finite dimensional space operators in (5) are discretizations on the kth
level mesh of the corresponding differential operators, that is,

Ak : Vk → Vk, ((Aku, v))k = a(u, v) ∀u, v ∈ Vk ,

Bk : Vk → Wk , (Bku, p)k = b(u, p) ∀u ∈ Vk, p ∈ Wk ,

B∗
k denotes the formal adjoint operator to Bk, i.e. (Bku, p)k = ((u, B∗

kp))
k

for
all u ∈ Vk , p ∈ Wk.

We introduce four more operators. Lk : Vk → Vk and Mk : Wk → Wk define
the correspondence between the original and auxiliary inner products in Vk and
Wk,

((Lku, v))k = ((u, v)) ∀u, v ∈ Vk,

(Mkp, q)k = (p, q) ∀p, q ∈ Wk.
(6)

Usually, systems with Lk and Mk are not easy to solve. Therefore, we will
need two more operators, spectrally equivalent to Lk and Mk: L0k : Vk → Vk

and M0k : Wk → Wk . We assume that they are self-adjoint, their inverses are
easier to apply than those of Lk and Mk, and that

((L0ku, u))k ' ((Lku, u))k ∀u ∈ Vk , (7)

(M0kp, p)k ' (Mkp, p)k ∀p ∈ Wk . (8)

In other words, we shall always assume that L0k and M0k define good pre-
conditioners for Lk and Mk. Later, it will be important to choose these precon-
ditioners as multigrid cycles.
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3 Examples

We consider two problems in the CFD that lead to saddle point problem formu-
lation as in Problem 1. Let Ω be a bounded, open polygon in R2.

Example 1. Linearized Navier-Stokes equation
A reasonable model for a linearization of the Navier-Stokes equations is the

Oseen equation,

{

−ν∆u + (ω · ∇)u + ∇p = f in Ω,

div u = 0 in Ω.

This problem may be expressed as a saddle point problem for (u, p) ∈
H1

0 (Ω) × L2
0(Ω), [8]. Choosing inf-sup stable finite element functions, it follows

that Lk is the discrete Laplacian matrix, Mk is the discrete mass matrix. Ak cor-
responds to a finite element approximation of a convection-diffusion operator,
while Bk approximates the divergence operator. Note that Ak is nonsymmetric
and the condition number of the saddle point problem grows proportionally to
h−2, making the finite element Oseen equations ill-conditioned.

Example 2. Biharmonic equation
The Ciarlet-Raviart method for a first Dirichlet biharmonic problem [5] reads:

(σ, v)L2(Ω) − (∇v,∇u)L2(Ω) = 0 ∀v ∈ H1(Ω),

−(∇σ,∇w)L2(Ω) = −(f, v)L2(Ω) ∀w ∈ H1
0 (Ω).

(9)

Then, in our notation, Ak corresponds to the usual mass matrix, while Lk

is a matrix corresponding to Helmholtz operator −∆ + I discretization, and
Mk is the Laplacian −∆ (with boundary constraints) representation. Note that
Ak is uniformly elliptic only on kerBk, while its global ellipticity constant de-
cays proportionally to h. The condition of the saddle point problem matrix is
proportional to h−4.

4 Block smoothed multigrid method for Problem 1

In order to solve the k-th level problem,

Mkxk = gk

where xk, gk ∈ Xk = Vk × Wk , we use classical W-cycle multigrid scheme
MGk(x0

k, gk) with m pre- and post-smoothing iterations using smoother Sk,
see e.g. [9] or [1] for details. Here, x0

k denotes the initial approximation to xk.
We recall the MG scheme briefly mainly for the notational purposes.

On the zeroth level, k = 0, we define MG0(x
0
0, g0) = M−1

0 g0 (direct solve).
For k > 0 we define MGk recursively. First we apply m smoother iterations in
the pre-smoothing step
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for i = 1, . . . , m

xj
k = xj−1

k − Sk(Mkxj−1
k − gk),

and then follow with the coarse grid correction: for gk−1 ∈ Xk−1 defined by the
identity

〈gk−1, y〉k − 1 = 〈gk −Mkxj−1
k , y〉k ∀y ∈ Xk−1,

and we compute x̃k−1 by applying two iterations of (k − 1) level method (with
zero initial guess) to problem

Mk−1x̃k−1 = gk−1,

so that x̃k−1 = MGk−1(MGk−1(0, gk−1), gk−1). Finally, we set

MGk(x0
k, gk) = xm

k + x̃k−1.

The key ingredient of the above procedure is of course the smoother. It should
be easy to apply to a vector, and it should remove effectively high frequency
components of the error. The simplest choice used in practice is the Richardson
iteration; however, it turns out that sometimes more efficient smoothers are
necessary, [2]. Therefore, in what follows we shall consider smoothers based on
block preconditioned Richardson iteration.

We focus here on the W-cycle iteration, note however, that it is also possible
to use other variants of the multigrid (see e.g. [1]), making use of such concepts as
the V-cycle, the post-smoothing, or using smoothers other than the Richardson
method.

We shall consider a block preconditioned Richardson smoother, that is,

Sk =
1

ωk

M−1
0k M

∗
kM

−1
0k , (10)

where ωk > 0 is a prescribed parameter and

M0k =

(

L0k

M0k

)

. (11)

Theorem 1. Let xk be the accurate solution of Problem 1 and let x̃k = MG(x0
k , gk)

be its approximation after one iteration of the kth level W-cycle method with m
inner smoother iterations defined by (10) and with initial guess x0

k. Then, for

any 0 < δ < 1, there exists m large enough such that the multigrid iteration is

convergent linearly with rate δ. The convergence rate is independent of k.

5 Smoother based on inner multigrid

In order to solve Problem 1 on the kth level in O(Nk) floating point operations,
where Nk = dim Xk, we use the multigrid procedure MGk described above, but
with specific choice of the smoothing preconditioners L0k, M0k.
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For Fk ∈ Vk we define
L−1

0k Fk = Uk, (12)

where Uk is a result of one classical V-cycle multigrid applied to solve LkUk = Fk.
Similarly, for Gk ∈ Wk,

M−1
0k Gk = Pk, (13)

where Pk is derived from one V-cycle multigrid for MkPk = Gk. In other words,
the smoother Sk defined by (10) amounts to applying two kth level multigrid
cycles to each variable separately, interlaced with multiplication by the transpose
of M.

The resulting procedure uses an inner multigrid cycle in an outer multigrid
iteration. It also applies the outer multigrid to a squared preconditioned system,
so that in one outer iteration, two inner multigrid cycles are performed, see
Figure 1.

Multigrid W−cycle

Multigrid squared V−cycle

Fig. 1. The new scheme using a V-cycle inner and outer iteration (top), versus the
usual W-cycle multigrid.

Theorem 2. Under the above additional assumptions, and for sufficiently large

number m of smoother iterations, the kth level MG iteration, consisting of the

W-cycle multigrid for Example 2 with a smoother defined by (10) and with block

solvers as above, is convergent. The convergence rate is independent of the level

k and the arithmetic complexity of one iteration is O(Nk).

6 Numerical experiments

Let us consider a saddle point problem which is an ad hoc modification of the
Ciarlet-Raviart saddle point formulation of the first biharmonic equation. Since
in its original form, the A matrix (the mass matrix in this case) is not uniformly
H1-elliptic with respect to the mesh size h [4], we replace this matrix with a
matrix that corresponds to the discretization of the H1 inner product. It is clear
that after such a modification the uniform inf-sup condition remains to hold.
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We report on the convergence factors of our block smoothed multigrid method
in the following configuration: the outer iteration uses a 2-level multigrid V-cycle,
with m = 1, . . . , 4 pre- and postsmoothings. The inner (that is, the smoothing
iteration) is either a direct solve or again a two-grid V-cycle, with k smoothings.
The convergence factor is calculated as the mean value of ||ri+1||/||ri|| in three
consecutive iterations. The || · || norm is the usual Euclidean norm.

Table 1. Left: A block smoothed multigrid with a directly solved preconditioner; Right:
A block smoothed multigrid with inner multigrid which is a 2-grid V-cycle.

m
N 1 2 3 4

9 0.76 0.58 0.44 0.34
17 0.76 0.58 0.44 0.33
33 0.76 0.58 0.44 0.34

m
N 1 2 3 4

9 0.91 0.85 0.79 0.73
17 0.89 0.79 0.71 0.65
33 0.87 0.77 0.68 0.60

An interesting observation, see Table 2, is that the method still works very
well for the original Ciarlet-Raviart method with a compatible right hand side,
despite the global ellipticity constant is proportional to h. Here we report on
a two grid outer iteration, F = [0,rand(f)], with exactly solved block precon-
ditioner. This suggests that it is only the V 0–ellipticity which controls the be-
haviour of the method under consideration.

Table 2. A block smoothed inner-outer V-cycle multigrid for the original Ciarlet-
Raviart problem with random right hand side f . Exactly solved block preconditioner.
Instead of the average, we report on the convergence factor on the 4-th iteration (as
we obtained extremely good convergence factors in 3 previous iterations).

m
N 1 2 3 4

9 0.47 0.29 0.36 0.34
17 0.46 0.32 0.35 0.29
33 0.45 0.36 0.34 0.26

7 Conclusions

The new flexible multilevel scheme for saddle point problems makes efficient use
of a block smoother. The method has optimal complexity O(Nk), where Nk is
the kth level problem size, and the smoother error reduction is proportional to
1
m

.
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The method can be applied to several saddle point problems encountered in
the CFD, including Stokes, Oseen equations or the Ciarlet-Raviart method for
the biharmonic problem and reuses simple multigrid schemes for elliptic problems
in the saddle point problem context.

A potential drawback of the proposed scheme is its sensitivity to the ellipticity
constant in the nonsymmetric case.
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