
ON INVARIANT CCC σ-IDEALS ON 2N

PIOTR ZAKRZEWSKI

Abstract. We study structural properties of the collection of all
σ-ideals in the σ-algebra of Borel subsets of the Cantor group 2N,
especially those which satisfy the countable chain condition (ccc)
and are translation invariant. We prove that the latter collection
contains an uncountable family of pairwise orthogonal members
and, as a consequence, a strictly decreasing sequence of length ω1.

We also make some observations related to the σ-ideal Iccc on
2N, consisting of all Borel sets which belong to every translation
invariant ccc σ-ideal on 2N. In particular, improving earlier results
of Recław, Kraszewski and Komjáth, we show that:
• every subset of 2N of cardinality less than ℵ0-‘ can be covered

by a set from Iccc,
• there exists a set C ∈ Iccc such that every countable subset
Y of 2N is contained in a translate of C.

1. Introduction

Given an uncountable Polish space X by a σ-ideal in the σ-algebra
B(X) of Borel subsets of X (shortly: a σ-ideal on X) we mean a
nonempty family I ⊆ B(X) which is closed under taking Borel subsets
and countable unions. Throughout the paper we assume that I contains
all singletons. Note, however, that we do not assume that I 6= B(X).
If the latter is the case, then I is referred to as a proper σ-ideal.

We say that a σ-ideal I on X is ccc if there is no uncountable family
of pairwise disjoint Borel subsets of X outside I. In particular, B(X)
is the largest ccc σ-ideal in B(X).

The aim of this note is to point out that looking at structural prop-
erties of the collection of all ccc σ-ideals on X leads to either gener-
alisations or at least new and easier proofs of some known results of
Recław [14], Kraszewski [10] and Komjáth [8].

The collection of all σ-ideals in B(X) equipped with the ordering
of inclusion is a lattice with the operations of join and meet given by
I0 ∧ I1 = I0 ∩ I1 and I0 ∨ I1 = {A0 ∪ A1 : A0 ∈ I0, A1 ∈ I1}.

We say that the σ-ideals I0 and I1 on X are orthogonal (or singular
to each other, cf. [4]), in symbols: I0 ⊥ I1, if I0 ∨ I1 = B(X) or,
equivalently, if X = A0 ∪ A1 where A0 ∈ I0, A1 ∈ I1 (and with no loss
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of generality A0 ∩ A1 = ∅). In particular, B(X) ⊥ I for every σ-ideal
I on X.

Given a σ-ideal J in B(X) and A ∈ B(X) we let

J |A = {C ∈ B(X) : C ∩ A ∈ J}.
Clearly, J |A is also a σ-ideal on X, J ⊆ J |A and J |A 6= B(X) if and
only if A 6∈ J .

Finally, we let J∗ = {X \ A : A ∈ J} and J+ = B(X) \ J .

In Section 2 we either recall or prove some of the basic structural
properties of the collection of all σ-ideals on an arbitrary uncountable
Polish space X, related to the notions above. In particular, we recall an
ideal version of the Lebesgue decomposition theorem (see Theorem 2.4),
due to Capek [1] and derive two consequences from it (see Theorems 2.5
and 2.7). We also prove (see Theorem 2.8) that given an uncountable
collection of pairwise orthogonal proper σ-ideals on X every ccc σ-ideal
is orthogonal to at least one of them; in particular, their intersection
is not ccc.

In Section 3 we shift our attention to invariant σ-ideals on 2N (where
2N is considered with the coordinatewise addition modulo 2 and referred
to as the Cantor group). In general, a σ-ideal I on a Polish abelian
group (G,+) is translation invariant (shortly: invariant), if

∀x ∈ G ∀A ⊆ G (A ∈ I ⇒ x+ A ∈ I).
We prove (see Theorem 3.1) that there exists an uncountable collection
of pairwise orthogonal ccc invariant σ-ideals on 2N and derive some
consequences from this fact. In particular, together with Theorem 2.8
mentioned above, it immediately implies that the intersection of all
invariant ccc σ-ideals on 2N, denoted by Iccc, is not itself ccc, the result
proved earlier in [17].

We observe (see Proposition 3.6) that sets of the form [f ] = {x ∈
2N : f ⊆ x}, where f is a function from an infinite subset of N to {0, 1},
belong to Iccc. This observation, combined with a result of Cichoń
and Kraszewski [3], emposes a lower bound on the cardinal invariant
non(Iccc), the smallest cardinality of a subset of 2N not covered by a
set from Iccc, improving an earlier result of Kraszewski [10]. We also
prove that there exists a set C ∈ Iccc such that every countable subset
Y of 2N is contained in a translate of C improving an earlier result of
Komjáth [8].

2. Preliminaries

Throughout this section X is an uncountable Polish space.

The following fact was observed by several people (see [1] and [4]).

Proposition 2.1. Let I and J be σ-ideals in B(X) and assume that
J is ccc. Then the following are equivalent:
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(1) J ⊆ I,
(2) There is a set A ∈ I∗ such that I = J |A.

Remark 2.2. Apparently, the usefulness of Proposition 2.1 has not
been fully recognized. To see it in action, let us give a simple proof of
the following fact, particular cases of which were earlier showed using
different methods (Woodin for the meager σ-ideal, Kechris-Miller for
the null σ-ideal (see [9, Remark 10.3]); a related result for a broader
class of σ-ideals is proved in [7, Claim 4.2.3] by forcing methods):

Given a ccc σ-ideal I in B(X) and a countable group G of Borel
automorphisms of X, there is a Borel set A ∈ I∗ such that if B ⊆ A,
gB ⊆ A and B ∈ I, then gB ∈ I (we may additionally require that⋃
g∈G gA = X).
To prove it, just let J = {B ∈ B(X) : ∀g ∈ G gB ∈ I}. Then since

J ⊆ I and J is clearly ccc, there is a set A ∈ I∗ such that I = J |A. It
is easy to see that A is a desired set (to make A satisfy the additional
condition, replace it by A ∪ (X \

⋃
g∈G gA)).

As a corollary of Proposition 2.1 we get a useful characterization of
orthogonality of σ-ideals.

Proposition 2.3. Let I0 and I1 be σ-ideals in B(X) and additionally
assume that I1 is ccc. Then the following are equivalent:

(1) I0 ⊥ I1,
(2) I0 ⊆ I1|C for no C ∈ I+1 ,
(3) If, moreover, I0 is ccc, then I0|A = I1|A for no A ∈ I+0 ∩ I+1 .

Proof. The implication (1)⇒ (2) is clear.
To see that (1) ⇒ (3), assume ¬(3) and let I = I0|A = I1|A for a

certain A ∈ I+0 ∩ I+1 . But then I0, I1 ⊆ I 6= B(X), contradicting (1).
To show that (2) ⇒ (1), assume ¬(1) and let I = I0 ∨ I1 6= B(X).

Then, by Proposition 2.1, there is C ∈ I+1 such that I = I1|C hence
I0 ⊆ I1|C, contradicting (2).

Finally, to prove that (3) ⇒ (1), assume ¬(1) and let I = I0 ∨ I1.
Then I 6= B(X), so by Proposition 2.1, there are sets A0, A1 ∈ I∗

such that I = I0|A0 = I1|A1. Letting A = A0 ∩ A1 we have A ∈ I∗

(hence, since I 6= B(X), A ∈ I+0 ∩ I+1 ) and I0|A = I|A = I1|A, which
contradicts (3). �

The following ideal version of the Lebesgue decomposition theorem
is a consequence (at least as far as the existence of decompositions is
concerned) of a more general result due to Capek [1] (see also [4]).
For the sake of completeness, we present a sketch of its proof in our
framework.

Theorem 2.4. Let I0 and I1 be σ-ideals in B(X).
If I1 is ccc, then there is a partition of X = A∪B into disjoint Borel

subsets A and B such that I0 ⊆ I1|A and I0 ⊥ I1|B. Moreover, such
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a partition is unique mod I1 in the following sense: if X = A1 ∪ B1 is
another such a partition, then A4 A1 ∈ I1 (hence also B 4B1 ∈ I1).

Proof. In order to prove the existence of a desired partition, consider
three cases:
Case 1. The σ-ideals I0 and I1 are comparable. First assume that

I0 ⊆ I1. Then A = X and B = ∅ satisfy the requirements. Next
assume that I1 ⊆ I0. Then, by Proposition 2.1, there is a set A ∈ I∗0
such that I0 = I1|A. Taking B = X \A we have B ∈ I0, A ∈ I1|B and
X = B ∪ A which shows that I0 ⊥ I1|B. Hence A and B satisfy the
requirements.
Case 2. The σ-ideals I0 and I1 are orthogonal. Then I0 ⊆ B(X) =

I1|∅ and I0 ⊥ I1 = I1|X so A = ∅ and B = X clearly work.
Case 3. The σ-ideals I0 and I1 are neither comparable nor orthog-

onal. Consider a maximal collection R of pairwise disjoint Borel sets
C ∈ I+1 such that I0 ⊆ I1|C. By Proposition 2.3 and the assumption
that I0 6⊥ I1, the family R is nonempty. By the ccc property of I1, it
is countable.

Let A =
⋃
R and B = X \ A. Then, by the countability of R,

we have A, B ∈ B(X) and I0 ⊆ I1|A. On the other hand, by the
maximality of R, I0 ⊆ I1|C for no C ⊆ B, C ∈ I+1 . By Proposition
2.3, this implies that I0 ⊥ I1|B.

Thus the existence of a desired partition is ensured.
To prove its essential uniqueness, let X = A ∪ B = A1 ∪ B1 be two

partitions of X into disjoint Borel subsets such that I0 ⊆ I1|A∩ I1|A1,
I0 ⊥ I1|B and I0 ⊥ I1|B1. Then we have

I0 ⊆ I1|A1 ⊆ I1|(B ∩ A1) and I1|B ⊆ I1|(B ∩ A1)

which implies that A1 \ A = B ∩ A1 ∈ I1 since otherwise I0 ∨ I1|B 6=
B(X) – a contradiction with I0 ⊥ I1|B. Analogically, A \ A1 ∈ I1.

�

When both σ-ideals are ccc Theorem 2.4 admits the following strength-
ening (cf. Remark 2.6).

Theorem 2.5. If I0 and I1 are ccc σ-ideals in B(X), then there is a
partition of X = A ∪ B into disjoint Borel subsets A and B such that
I0|A = I1|A and I0|B ⊥ I1|B. Moreover, such a partition is unique
mod I = I0 ∩ I1 in the following sense: if X = A1 ∪B1 is another such
a partition, then A4 A1 ∈ I (hence also B 4B1 ∈ I).

Proof. Since I1 is ccc, there is, by Theorem 2.4, a partition X = A′∪B′
into Borel sets such that I0 ⊆ I1|A′ and I0 ⊥ I1|B′.

Let J = I0 and I = I1|A′. Since I0 is ccc, there is, by Proposition
2.1, a set E ∈ I∗ such that I = J |E.

Let A = A′ ∩E and B = X \A. We claim that A and B satisfy the
requirements.
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As I1|A′ = I = J |E = I0|E we have I0|A = I1|A.
Since I0 ⊥ I1|B′, there is a partition X = C ∪D into Borel sets such

that C ∈ I0 and D ∩ B′ ∈ I1. Since obviously, C ∩ B ∈ I0, to prove
that I0|B ⊥ I1|B, it suffices to show that D∩B ∈ I1. To that end note
that B = B′ ∪ (A′ \ E) hence

D ∩B ⊆ (D ∩B′) ∪ (A′ \ E)
and we are done since E ∈ I∗ just means that A′ \ E ∈ I1.

This completes the proof of the existence of a desired partition.
To prove its essential uniqueness, let X = A ∪ B = A1 ∪ B1 be

two partitions of X into disjoint Borel subsets such that I0|A = I1|A,
I0|A1 = I1|A1, I0|B ⊥ I1|B and I0|B1 ⊥ I1|B1.

Then I0 ⊆ I1|A ∩ I1|A1. It is also easy to see that I0 ⊥ I1|B and
I0 ⊥ I1|B1 (see Remark 2.6). Consequently, by the uniqueness part of
Theorem 2.4, A4 A1 ∈ I1. Likewise, by symmetry, A4 A1 ∈ I0.

�

Remark 2.6. To see that Theorem 2.5 is indeed a strengthening of
Theorem 2.4, note that I0|A = I1|A clearly implies I0 ⊆ I1|A, whereas
I0|B ⊥ I1|B is in fact equivalent to I0 ⊥ I1|B for arbitrary (i.e., not
necessary ccc) σ-ideals I0 and I1 on X. For assuming that I0|B ⊥ I1|B
let X = M ∪ N where M, N ∈ B(X) are such that M ∩ B ∈ I0 and
N ∩B ∈ I1. Then

X = (M ∩B) ∪
(
(N ∩B) ∪ (X \B)

)
(∗)

where M ∩B ∈ I0 and
(
(N ∩B)∪ (X \B)

)
∈ I1|B. Consequently, (∗)

implies that I0 ⊥ I1|B. The other direction is obvious.

Theorems 2.4 and 2.5 have the following interesting consequence in
the case when the σ-ideals are invariant (cf. Remark 3.7).

Theorem 2.7. Let I0 and I1 be invariant σ-ideals on a Polish group
G.

(1) If I1 is ccc, then there exists a (unique mod I1) partition of
G into disjoint Borel subsets A and B such that I0 ⊆ I1|A,
I0 ⊥ I1|B and the sets A and B are I1-almost invariant in
the following sense: if g ∈ G, then gA 4 A ∈ I1 (hence also
gB 4B ∈ I1).

(2) If I0 and I1 are ccc, then there exists a (unique mod I0 ∩ I1)
partition of X into disjoint Borel subsets A and B such that
I0|A = I1|A, I0|B ⊥ I1|B and the sets A and B are (I0 ∩ I1)-
almost invariant.

Proof. To prove part (1), let G = A∪B be a partition whose existence
is guaranteed by Theorem 2.4, i.e., I0 ⊆ I1|A and I0 ⊥ I1|B. Fix
g ∈ G, let A1 = gA, B1 = gB and note that, due to invariance of I0
and I1, G = A1 ∪ B1 is another partition of G such that I0 ⊆ I1|A1
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and I0 ⊥ I1|B1. The uniqueness property of such partitions gives the
desired conclusion.

Part (2) is proved analogically with the help of Theorem 2.5.
�

The last result of this section will turn out to be especially important
in the sequel.

Theorem 2.8. Let 〈Iα : α < ω1〉 be a sequence of pairwise orthogonal
proper σ-ideals on X.

Then for every ccc σ-ideal J on X there is α < ω1 such that J ⊥ Iα.
Consequently, the σ-ideal I =

⋂
α<ω1

Iα is not ccc.

Proof. Suppose that J is not orthogonal to any of the Iα’s. Using
Proposition 2.3, for each α < ω1 find Aα ∈ J+ such that Iα ⊆ J |Aα.
J being ccc, there are α 6= β with Aα ∩ Aβ ∈ J+; let A = Aα ∩ Aβ.
Then Iα ∨ Iβ ⊆ J |A 6= B(X) and we obtain a contradiction with the
assumption that Iα ⊥ Iβ. �

3. Invariant ccc σ-ideals on 2N

Let N and M denote as usual the σ-ideals of null and, respectively,
of meager Borel subsets of 2N. More generally, if Y is a nonempty
subset of N and G = (2N)Y is a product of countably many copies
of the group 2N, then N (G) and M (G) are the σ-ideals consisting of
those Borel subsets of G which are, respectively, null (with respect
to the product of ordinary measures on 2N) and meager (with respect
to the product topology on G). Note that if we identify G with 2N

using the canonical topological group isomorphism then, up to this
identification, N (G) = N and M (G) = M .

Recall that N ⊗M , the Fubini product of N and M , is the σ-ideal
on 2N × 2N consisting of Borel sets B ⊆ 2N × 2N with {x ∈ 2N : Bx 6∈
M } ∈ N . By a theorem of Gavalec [6] (see also [5] for a more general
result), the σ-ideal N ⊗M is ccc.

Theorem 3.1. There is a collection 〈Iα : α < c〉 of continuum many
ccc pairwise orthogonal invariant proper σ-ideals on 2N. Moreover, each
σ-ideal Iα is essentially equal to N ⊗M . More precisely, for every α
there is a topological group isomorphism φα between 2N and 2N × 2N

such that for every B ∈ B(2N)

B ∈ Iα ⇐⇒ φα[B] ∈ N ⊗M .

Proof. We closely follow the proof of Theorem 2.1 from [17] based on
ideas of Solecki [16]. For every non-constant sequence y ∈ 2N let Zy

0 =
{n ∈ N : y(n) = 0} and Zy

1 = {n ∈ N : y(n) = 1}. The idea is to
identify 2N with the product group G = Gy

0 × G
y
1 where Gy

i = (2N)Z
y
i

for i ∈ {0, 1} and to let Iy = N (Gy
0)⊗M (Gy

1).
More precisely, we fix canonical topological group isomorphisms:
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(1) ψ between 2N and (2N)
N defined by

x 7→
〈
〈x(p(n,m) : m ∈ N〉 : n ∈ N

〉
,

where p is a fixed bijection between N× N and N,
(2) ψy between (2N)

N and Gy
0 ×G

y
1 defined by

x 7→ 〈x|Zy
0 , x|Z

y
1 〉.

Then let φy = ψy ◦ ψ and define

Iy = {B ∈ B(2N) : φy[B] ∈ N (Gy
0)⊗M (Gy

1)}.
Clearly, each σ-ideal Iy is essentially equal to N ⊗M . It remains to

be proved that the σ-ideals Iy are pairwise orthogonal.
To that end we fix a partition of 2N into a meager Fσ-set M of

measure 1 and a dense Gδ-set N of measure 0.
Now let y and y′ be two different non-constant elements of 2N. Let

n ∈ N be such that y(n) 6= y′(n), say y(n) = 0 and y′(n) = 1. Let
B0 = {x ∈ (2N)

N
: x(n) ∈ N} and B1 = {x ∈ (2N)

N
: x(n) ∈ M}.

Clearly, B0∪B1 = (2N)
N hence ψy[B0∪B1] = Gy

0×G
y
1 and ψy′ [B0∪B1] =

Gy′

0 ×G
y′

1 . Moreover,

ψy[B0] = {z ∈ Gy
0 : z(n) ∈ N} ×G

y
1 ∈ N (Gy

0)⊗M (Gy
1)

and

ψy′ [B1] = Gy′

0 × {z ∈ G
y′

1 : z(n) ∈M} ∈ N (Gy′

0 )⊗M (Gy′

1 ).

Finally, letting A0 = ψ−1[B0] and A1 = ψ−1[B1] we have A0 ∈ Iy,
A1 ∈ Iy′ and A0 ∪ A1 = 2N which proves that Iy ⊥ Iy′ .

�

Corollary 3.2.
(1) There exists a strictly decreasing sequence of length ω1 consist-

ing of invariant ccc σ-ideals on 2N.
(2) If 〈Jα : α < ω1〉 is a strictly decreasing sequence of invariant ccc

σ-ideals on 2N, then its intersection is not ccc. Consequently,
there is no strictly decreasing sequence of any length α > ω1

consisting of invariant ccc σ-ideals on 2N.

Proof. To prove part (1), let 〈Iα : α < ω1〉 be a sequence of ccc pairwise
orthogonal invariant proper σ-ideals on 2N whose existence is guaran-
teed by Theorem 3.1. We define a sequence 〈Jα : α < ω1〉 by letting

Jα =
⋂
β<α

Iβ, for α < ω1.

Clearly, each σ-ideal Jα is ccc as the intersection of countably many
ccc σ-ideals. But, by Theorem 2.8, the σ-ideal

⋂
β<ω1

Iβ is not ccc. It

follows that the sequence 〈Jα : α < ω1〉 contains a strictly decreasing
subsequence of length ω1, completing the proof of part (1) (as a matter
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of fact, it is not difficult to prove directly that the sequence 〈Jα : α <
ω1〉 is strictly decreasing itself).

To prove part (2), let

I =
⋂
α<ω1

Jα

and suppose that I is ccc.
Using Proposition 2.1, for each α < ω1 find Aα ∈ J∗α such that

Jα = I|Aα. Note that β < α < ω1 implies that Aβ \ Aα ∈ I. Indeed,
otherwise, letting B = Aβ \Aα we have B ∈ I|Aα \ I|Aβ contradicting
the fact that Jα ⊆ Jβ. Now, I being ccc, there must be α < ω1 such
that Aα 4 Aα+1 ∈ I. But then Jα = Jα+1 and we have reached a
contradiction. �

Let Iccc be the σ-ideal on 2N consisting of Borel sets which belong
to every invariant ccc σ-ideal on 2N (see [17], where this σ-ideal was
introduced and studied).

Theorems 3.1 and 2.8 immediately imply the following two corollar-
ies, first of which was proved in a stronger form in [17].

Corollary 3.3. Iccc is not ccc.

Corollary 3.4. If J is an arbitrary invariant ccc σ-ideal on 2N, then
there is an invariant ccc σ-ideal I on 2N, essentially equal (cf. Theorem
3.1) to N ⊗M , such that J ⊥ I.

Recall that if I is a proper σ-ideal on 2N then non(I) is the smallest
cardinality of a subset of 2N not covered by a set from I and cov∗(I) is
the smallest number of translates of a fixed set from I required to cover
2N (consistently, cov∗(M ) might be bigger than the minimal cardinality
of a covering of 2N by sets from M , see [13]).

The following corollary was earlier proved (in an even stronger form)
by Recław [14] using a different method.

Corollary 3.5. If J is an arbitrary proper invariant ccc σ-ideal on 2N,
then

non(J) ≥ min(cov∗(M ), cov∗(N )).

Proof. Observe that

cov∗(N ⊗M ) = min(cov∗(M ), cov∗(N ))

and recall a result due to Rothberger [15] stating that if J and I are
invariant σ-ideals on 2N, J ⊥ I and J is proper, then non(J) ≥ cov∗(I).
It is now enough to appeal to Corollary 3.5. �

Let S2 be the σ-ideal on 2N, generated by sets of the form

[f ] = {x ∈ 2N : f ⊆ x},
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where f is a function from an infinite subset of N to {0, 1} (see Cichoń
and Kraszewski [3], where this σ-ideal was introduced and studied).

Kraszewski [10] realised that Recław’s argument from [14] actually
establishes the inequality non(J) ≥ min(non(I), cov∗(I)) for arbitrary
proper invariant σ-ideals J and I on 2N provided J is ccc. Applying
this to I = S2, Kraszewski noted that if J is as above then non(J) ≥
ℵ0-‘, the countably splitting number, i.e., the minimal cardinality of a
collection S ⊆ [N]ℵ0 such that (see [12])

∀A ∈ [[N]ℵ0 ]ℵ0 ∃S ∈ S ∀A ∈ A
(
|A ∩ S| = |A \ S| = ℵ0

)
.

The point is that, by the results of Cichoń and Kraszewski (see [3]
and [11])

non(S2) = ℵ0-‘ ≤ cov∗(S2) = c.

Taking this into account we may obtain a strengthening of Kraszewski’s
result quoted above by the following simple reasoning which avoids the
use of Recław’s argument from [14].

Proposition 3.6.
S2 ⊆ Iccc.

Consequently, non(Iccc) ≥ ℵ0-‘, so MA implies that non(Iccc) = c

Proof. Let f be a function from an infinite subset A of N to {0, 1}.
It suffices to show that [f ] ∈ Iccc. This, however, follows immediately
from the fact that there are c many pairwise disjoint translations of [f ]
of the form t+ [f ] where t ∈ 2N is such that t(n) = 0 for every n 6∈ A.

�

Remark 3.7. The above quoted result of Kraszewski [10] stating that
the inequality

(1) non(J) ≥ min(non(I), cov∗(I))
holds for arbitrary proper invariant σ-ideals J and I on 2N, provided
J is ccc, follows easily from Theorem 2.7.

Indeed, let 2N = A ∪ B be a partition into disjoint Borel subsets A
and B such that:

(2) I ⊆ J |A,
(3) I ⊥ J |B,
(4) t ∈ 2N implies (t+B)4B ∈ J (cf. Theorem 2.7).

In order to prove (1), take Z ⊆ 2N with |Z| < min(non(I), cov∗(I)).
Our aim is to show that Z is contained in a set from J or, equivalently,
covered by countably many sets from J .

Since |Z| < non(I), Z is contained in a set E ∈ I. Then by (2),
(5) Z ∩ A ⊆ E ∩ A ∈ J .

Next by (3), there is a partition 2N = C ∪ D into disjoint Borel
subsets C and D such that C ∈ I and D ∈ J |B.

It follows that
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(6) Z ∩B ∩D ⊆ E ∩B ∩D ∈ J ,
so by (5) and (6), it remains to be proved that Z ∩B ∩C is contained
in a set from J .

To see the latter, note that since |Z| < cov∗(I) and D ∈ I∗, there is
t ∈ 2N such that t+ Z ⊆ D. Consequently,

(6) t+ (Z ∩B ∩ C) ⊆
(
(t+B) \B

)
∪ (D ∩B).

Then by (4), (t + B) \ B ∈ J and D ∈ J |B means that D ∩ B ∈ J .
Hence t+(Z∩B∩C) is covered by a set from J , so due to the invariance
of J , the same is true for Z ∩B ∩ C, completing the proof.

Recall (cf. [2]) that for a cardinal κ a subset C of a group G (2N

or R) is a κ-covering if every subset Y of G of size κ is contained
in a translate of C. Marczewski proved that there exists a measure
zero first category ω-covering. An example of such a set is given by
Komjáth in [8]). Komjáth also proved there that under MA for every
κ < c there exists a measure zero first category κ-covering in R. As
another immediate corollary of Theorem 3.1 we obtain the following
strengthening of these results in the case of 2N.

Corollary 3.8.
(1) If J is an arbitrary invariant ccc σ-ideal on 2N, then there exists

an ω-covering in 2N which belongs to J .
(2) Under MA if J is an arbitrary invariant ccc σ-ideal on 2N, then

for every κ < c there exists a κ-covering in 2N which belongs to
J .

Proof. Note that a set C ⊆ 2N is a κ-covering if and only if 2N cannot
be covered by κ-many translates of its complement. It follows that
there exists an ω-covering in a σ-ideal J if and only if J is orthogonal
to a proper invariant σ-ideal. By Corollary 3.4, the latter condition is
true for every invariant ccc σ-ideal J on 2N which proves (1).

Analogically, there exist a κ-covering in a σ-ideal J if and only if J
is orthogonal to a proper invariant σ-ideal I with cov∗(I) > κ. But
under MA we have cov∗(N ⊗M ) = c hence again by Corollary 3.4, (2)
follows. �

In fact, the existence of an ω-covering in every invariant ccc σ-ideal
may be further strengthened as follows.

Corollary 3.9. There exist an ω-covering in 2N which belongs to Iccc.

Proof. We closely follow the idea behind the example of an ω-covering
presented by Komjáth in [8]). Partition N into infinitely many pairwise
disjoint infinite sets Hn and for every n ∈ N let fn be the function with
the domain Hn and of constant value 0. Let A =

⋃
n∈N

[fn].

Then the fact that A is an ω-covering is proved exactly as in [8]. But
A ∈ S2, so by Proposition 3.6, A ∈ Iccc. �
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