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Abstract. On the Cantor cube {0, 1}N with the standard product topology we con-
struct a finite Choquet capacity with respect to the family of all compact sets such that
every compact set of positive capacity contains continuum many pairwise disjoint compact
subsets of positive capacity.

Let E be any set and E be any lattice (a family closed under finite unions and finite
intersections) of subsets of E containing the empty set. A Choquet E-capacity on E is any
function c : P (E)→ [−∞,∞] (P (E) denotes here the family of all subsets of E) such that
the following three conditions hold (cf. [1]):

(i) A ⊆ B ⊆ E implies c(A) ≤ c(B);
(ii) if A1 ⊆ A2 ⊆ . . . is any ascending sequence of subsets of E, then

limn→∞ c(An) = c(
⋃∞
n=1An);

(iii) if E1 ⊇ E2 ⊇ . . . is any descending sequence of subsets from E , then limn→∞ c(En) =
c(
⋂∞
n=1 En).

Capacities play an important role in the theory of general stochastic processes and the
main tool for their applications is celebrated Choquet’s capacitability theorem that says
that for any set B from the σ-δ-lattice Ê (a σ-δ-lattice is a family closed under countable
unions and countable intersections) generated by the family E the capacity of B can be
approximated from below by capacities of subsets of B which are elements of E (see [1],
Theorem 31, Chap. 1).

An element B of the σ-δ-lattice Ê generated by E is called thick (with respect to a

capacity c) if it contains uncountably many pairwise disjoint elements from Ê of positive
capacity c (cf. [1], Definition D9, Chap. 2).

The above definition of a capacity is quite general, and such generality is not always
required. Capacities considered on a topological space X are usually non-negative K(X)-
capacities, where K(X) is the family of all compact subsets of X (cf. [3], [2]). For example,
this is the case in Kechris-Louveau-Woodin’s paper [4] where, moreover, capacities are

considered on compact metrizable spaces (then Ê = B(X) is the family of all Borel subsets
of X). In this setup the authors mention the property (and call it a strange one) that every
compact set of positive capacity is thick (cf. [4], the remarks following Corollary 8).
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In this note we construct an example of a K(X)-capacity, where X is the Cantor cube

such that all Borel sets of positive capacity are thick (Here E = K(X), and Ê = B(X) is
the family of all Borel subsets of X).

Let X be the Cantor cube, i.e. X = {0, 1}N. Let η denote the measure defined on {0, 1}
by η({0}) = η({1}) = 1

2
. Let Λ1,Λ2, . . . be a sequence of pairwise disjoint infinite subsets

of N. Let Λi = {ni,j : j ∈ N}, where j < k implies ni,j < ni,k. We will now define a family
of perfect subsets of X, {C(ξ(1), . . . , ξ(n)) : ξ(1), . . . , ξ(n) ∈ {0, 1}N, n ∈ N}. Let C(∅) = X.
For ξ(1), . . . , ξ(n) ∈ {0, 1}N we define C(ξ(1), . . . , ξ(n)) as

C(ξ(1), . . . , ξ(n)) =
∏
k∈N

Dk,

where Dk = {ξ(i)
j } if k = ni,j ∈ Λi, i ≤ n, and Dk = {0, 1} if k /∈

⋃
i≤n Λi. Let

νn =
∏

k/∈
⋃

i≤n Λi

η.

Let A ⊆ C(ξ(1), . . . , ξ(n)). Then A may be identified with the set

A =

( ∏
i≤n,j∈N

{ξ(i)
j }

)
× πXn(A),

where

Xn =
∏

k/∈
⋃

i≤n Λi

{0, 1} and πXn : X → Xn is the projection of X onto Xn.

For A ⊆ X, let

(1) c(A) = sup

{
1

n
ν∗n(πXn(A ∩ C(ξ(1), . . . , ξ(n)))) : ξ(1), . . . , ξ(n) ∈ {0, 1}N, n ∈ N

}
,

where ν∗n denotes the outer measure related to νn.
Recall that K(X) denotes the family of all compact subsets of X.

Theorem 1. The function c : P (X) → [0, 1] is a non-negative Choquet K(X)-capacity
and if B is a Borel subset of X with c(B) > 0, then B contains continuum many pairwise
disjoint Borel subsets of positive capacity.

Proof. First, we show that c is a K(X)-Choquet capacity.
It is obvious that A ⊆ B ⊆ X implies c(A) ≤ c(B).
Let us now assume that K1 ⊇ K2 ⊇ . . . is a sequence of compact subsets of X. As the

function c is monotone we have

c

(
∞⋂
n=1

Kn

)
≤ lim

n→∞
c(Kn).
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If limn→∞ c(Kn) = 0 we have c(
⋂∞
n=1Kn) = limn→∞ c(Kn).

If limn→∞ c(Kn) > 0, then there exists m ∈ N such that

(2) lim
n→∞

1

m
νm(πXm(Kn ∩ C(ξ(1,n), . . . , ξ(m,n)))) = lim

n→∞
c(Kn),

for some ξ(1,n), . . . , ξ(m,n) ∈ {0, 1}N. Passing, if necessary, to a subsequence, we can assume
that

(3) lim
n→∞

(ξ(1,n), . . . , ξ(m,n)) = (ξ(1), . . . , ξ(m)).

By (3) and the compactness of the setsKn, C(ξ(1), . . . , ξ(m)) and the sets C(ξ(1,n), . . . , ξ(m,n)),
n ∈ N, we have

lim sup
n→∞

πXm(Kn ∩ C(ξ(1,n), . . . , ξ(m,n))) ⊆ πXm

(
∞⋂
n=1

Kn ∩ C(ξ(1), . . . , ξ(m))

)
.

By the Fatou Lemma and the above inclusion

lim
n→∞

νm(πXm(Kn ∩ C(ξ(1,n), . . . , ξ(m,n)))) =

= lim
n→∞

∫
Xm

1πXm (Kn∩C(ξ(1,n),...,ξ(m,n)))dνm ≤

≤
∫
Xm

lim sup
n→∞

1πXm (Kn∩C(ξ(1,n),...,ξ(m,n)))dνm =

= νm(lim sup
n→∞

πXm(Kn ∩ C(ξ(1,n), . . . , ξ(m,n)))) ≤

≤ νm

(
πXm

(
∞⋂
n=1

Kn ∩ C(ξ(1), . . . , ξ(m))

))
.

This, taking into account (1) and (2), gives

lim
n→∞

c(Kn) ≤ c

(
∞⋂
n=1

Kn

)
.

Thus finally,

lim
n→∞

c(Kn) = c

(
∞⋂
n=1

Kn

)
.

Now let A1 ⊆ A2 ⊆ . . . be any subsets of X. We will prove that

(4) lim
n→∞

c(An) = c

(
∞⋃
n=1

An

)
.
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If the right-hand side of (4) is equal to zero, then (4) holds by monotonicity of c. Assume
that c(

⋃∞
n=1An) = a > 0. Fix ε > 0. Then

1

m
ν∗m

(
πXm

(
∞⋃
n=1

An ∩ C(ξ(1), . . . , ξ(m))

))
> a− ε

for some ξ(1), . . . , ξ(m) ∈ {0, 1}N, and m ∈ N. By the continuity of the outer measure ν∗m
under ascending limits we have

lim
n→∞

ν∗m(πXm(An ∩ C(ξ(1), . . . , ξ(m)))) =

= ν∗m

(
∞⋃
n=1

πXm(An ∩ C(ξ(1), . . . , ξ(m)))

)
=

= ν∗m

(
πXm

(
∞⋃
n=1

An ∩ C(ξ(1), . . . , ξ(m))

))
.

But this shows that

lim
n→∞

c(An) > a− ε,

and (4) follows.
Now let B be any Borel subset of X such that c(B) > 0. Hence

νn(πXn(B ∩ C(ξ(1), . . . , ξ(n)))) > 0,

where

Xn =
∏

k/∈
⋃

i≤n Λi

{0, 1},

for some ξ(1), . . . , ξ(n) ∈ {0, 1}N and n ∈ N. We have

νn = νn+1 ×
∏

k∈Λn+1

η

and

νn(πXn(B ∩ C(ξ(1), . . . , ξ(n)))) =

=

∫
∏

k∈Λn+1
{0,1}

νn+1(πXn+1(B ∩ C(ξ(1), . . . , ξ(n), ξ)))d

 ∏
k∈Λn+1

η

 (ξ).

Thus the set of those ξ ∈
∏

k∈Λn+1
{0, 1} for which

νn+1(πXn+1(B ∩ C(ξ(1), . . . , ξ(n), ξ))) > 0

has positive measure. Hence, also the set of those ξ ∈
∏

k∈Λn+1
{0, 1} for which

c(B ∩ C(ξ(1), . . . , ξ(n), ξ)) > 0,

must have positive measure and thus it must have cardinality c. �
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Using similar methods we can construct the following more general example.

Assume now that X1, X2, . . . are compact metrizable perfect spaces and, for each n ∈ N,
µn is a probability Borel measure on Xn which vanishes on points.

Let X =
∏n

i=1 Xi. Given a set A ⊆ X and a finite sequence (x1, . . . , xn) ∈
∏n

i=1Xi, we
set

Ax1,...,xn =

{
(zn+1, zn+2, . . .) ∈

∞∏
i=n+1

Xi : (x1, . . . , xn, zn+1, zn+2, . . .) ∈ A

}
.

Let B(n) denote the σ-algebra of Borel sets in
∏∞

i=n+1Xi and let νn be the product of the

measures µn+1, µn+2, . . .. Then νn is a Borel probability measure defined on B(n) and we
may identify νn with the product of µn+1 and νn+1. Let ν∗n be the outer measure associated
with νn.

Theorem 2. The function c : P (X)→ [0, 1] defined by letting

c(A) = sup

{
1

n
ν∗n(Ax1,...,xn) : ∀i ≤ n xi ∈ Xi, n = 1, 2, . . .

}
is a non-negative Choquet K(X)-capacity and if B is a Borel subset of X with c(B) > 0,
then B contains continuum many pairwise disjoint Borel subsets of positive capacity.

Sketch of the proof. First, we show that c is a K(X)-Choquet capacity.
It is obvious that A ⊆ B ⊆ X implies c(A) ≤ c(B).
Let us now assume that K1 ⊇ K2 ⊇ . . . are compact subsets of X and limn→∞ c(Kn) > 0.

Passing to a subsequence, if necessary, we can assume that there exist m ∈ N and for each
k ≤ m sequences (xk,n)∞n=1 of elements of Xk such that

lim
n→∞

1

m
νm((Kn)x1,n,...,xm,n) = lim

n→∞
c(Kn),

where, moreover, by compactness of Xk, every sequence (xk,n)∞n=1 can be assumed to be
convergent:

lim
n→∞

xk,n = xk for each k ≤ m.

One can easily verify that
∞⋂
k=1

⋃
i≥k

(Ki)x1,i,...,xm,i
⊆
∞⋂
n=1

(Kn)x1,...,xm .

The rest of the proof is very similar to the proof of the previous theorem. �

Quite often capacities are two-valued. Let us notice that such a capacity can be easily
constructed on the space X = ω1 × [0, 1], where ω1 is equipped with the discrete topology
(clearly, the space X is metrizable but not separable). Indeed, it is enough to set c(A) = 1
if {α : A ∩ ({α} × [0, 1]) 6= ∅} is uncountable and c(A) = 0 otherwise. Notice that each
compact set has capacity zero but there are many Borel sets of capacity 1. Moreover, each
of them can be partitioned into continuum many Borel sets of capacity 1.
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On the other hand, if X is a compact (or even just σ-compact) metrizable space, then
no K(X)-capacity with the property that each compact set of positive capacity is thick
is two-valued. Indeed, with the help of such a capacity one could construct a transfinite
strictly descending sequence of compact sets of length ω1, contradicting the separability of
X.
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