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Abstract. We give a classical proof of the theorem stating that
the σ-ideal of meager sets is the unique σ-ideal on a Polish group,
generated by closed sets which is invariant under translations and
ergodic.

1. Introduction

The σ-ideal M of meager subsets of R has the following remarkable
properties:

• M is generated by closed sets,
• M satisfies the countable chain condition (ccc),
• M is invariant under translations,
• M is Q-ergodic, i.e., every Q-invariant Borel subset of R is

either meager or comeager.

These properties are interrelated and conjunctions of some of them
characterize M .

Balcerzak and Rogowska [1] and, independently (using a different
method), Rec law and Zakrzewski [4] proved that if a σ-ideal I on a
Polish space X is generated by closed sets and ccc, then it is Borel
isomorphic to M . Both proofs are based on a deep theorem by Kechris
and Solecki [3, Theorem 3] which provides a characterization of those
σ-ideals on Polish spaces which are generated by closed sets and fulfil
ccc. As a corollary, Kechris and Solecki [3] also showed that the σ-
ideal of meager sets on a Polish group is the unique σ-ideal generated
by closed sets which is invariant under translations and ccc.

Zapletal (see [7]) in turn proved that if a σ-ideal on R (respectively,
on a Polish space X) is generated by closed sets and Q-ergodic (re-
spectively, ergodic; see Section 2 for a general definition of ergodicity),
then it is ccc.

Combining the last two statements we arrive at the following char-
acterization of the σ-ideal of meager sets on Polish groups.

Theorem 1.1. The σ-ideal of meager sets on a Polish group G is the
unique σ-ideal on G which is generated by closed sets, invariant under
translations by elements of G and ergodic.
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The original Zapletal’s proof of the fact that ergodicity of a σ-ideal
which is generated by closed sets implies countable chain condition
used forcing (see [5, Lemma 1.3] or [6, Lemma 5.4.2]). The aim of this
note is to give a “classical” proof of this result.

2. Preliminaries

Throughout the paper X (more precisely: (X, τ)) is an uncountable
Polish (i.e., a separable, completely metrizable) topological space. The
σ-algebra of Borel subsets of X is denoted by B(X).

By a σ-ideal I on X we understand a collection of subsets of X,
closed under countable unions and such that for any A ∈ I, all subsets
of A are in I. Throughout the paper we assume that X 6∈ I and I
contains all singletons.

We say that a σ-ideal I on X is generated by closed sets if there is a
family F ⊆ I consisting of sets closed in X such that each element of
I can be covered by countably many elements of F .

Given a σ-ideal I on X we shall use the following notation and
terminology:

• I∗ = {X \ A : A ∈ I},
• A1, A2 ∈ B(X) \ I are almost disjoint if A1 ∩ A2 ∈ I,
• A family A ⊆ B(X) \ I is almost disjoint if it consists of pair-

wise almost disjoint sets.

A σ-ideal I on X is:

• ccc if it satisfies the countable chain condition, i.e., if there is
no uncountable almost disjoint family A ⊆ B(X) \ I,
• ergodic if there is a countable Borel equivalence relation R on
X such every set B ∈ B(X) which is the union of a family of
R-equivalence classes is either in I or in I∗,
• invariant (under translations) if (X, ·) is a Polish group and
x · A ∈ I whenever A ∈ I and x ∈ X.

3. Classical proofs of Zapletal’s results

We start with the following lemma which in the forcing terminology
is closely related to the fact that “forcing with a σ-ideal generated by
closed sets does not collapse ℵ1” (cf. [5] and [7]).

Lemma 3.1 (Main Lemma). Assume that I is a σ-ideal on X gener-
ated by closed sets. Let 〈An : n ∈ N〉 be a sequence of maximal almost
disjoint subfamilies of B(X)\I. Then there exists a set E ∈ B(X)\I
such that for every n ∈ N we have

|{A ∈ An : E ∩ A 6∈ I}| ≤ ℵ0.
Proof. For each n ∈ N, using the maximality of An, fix a function
ψn : B(X)−→B(X) such that

B ∈ B(X) \ I ⇒
(
ψn(B) ∈ An ∧B ∩ ψn(B) 6∈ I

)
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and let ϕn : B(X)−→B(X) be the function defined by

ϕn(B) = B ∩ ψn(B) for B ∈ B(X).

Note that if B ∈ B(X) \ I, then ϕn(B) 6∈ I and ψn(B) is the only
A ∈ An such that ϕn(B) ∩ A 6∈ I.

Recall that τ is the topology of X and let (Un) be a countable basis
of (X, τ).

Sublemma 3.2. There exist a field C of subsets of X, a Polish topol-
ogy τ̄ extending τ and a countable base V of τ̄ satisfying the following
conditions:

(1) C ⊆ B(X),
(2) C is countable,
(3) ϕn(B) ∈ C for every B ∈ C and n ∈ N,
(4) C ⊆ τ̄ ,
(5) V ⊆ C .

Proof of Sublemma 3.2. We construct inductively fields Cn of subsets
of X and Polish topologies τn on X with associated countable bases
Vn, n ∈ N, so that:

• n > 0 implies τn is zero-dimensional,
• Vn ⊆ Cn,
• Cn ⊆ clop(X, τn), the field of clopen subsets of (X, τn),
• n < m implies Cn ⊆ Cm,
• n < m implies τn ⊆ τm,
• Cn is countable,
• B ∈ Cn and m ∈ N implies ϕm(B) ∈ Cn+1,

Let C0 be the field of subsets of X generated by {Uk : k ∈ N} and
V0 = {Uk : k ∈ N}.

If Cn, τn and Vn have been defined, let

Rn+1 = Cn ∪
⋃
m∈N

ϕm[Cn]

and extend τn to a Polish zero-dimensional topology τn+1 on X such
that Rn+1 ⊆ clop(X, τn+1). Then let Vn+1 be a countable base of τn+1

consisting of sets clopen in τn+1. Finally, let Cn+1 be the field of subsets
of X generated by Rn+1 ∪ Vn+1. This completes the construction.

Now let C =
⋃
n∈N Cn and let τ̄ be the topology generated by⋃

n∈N τn.
The topology τ̄ is Polish and finite intersections of elements of

⋃
n∈N Vn

form a countable base V of τ̄ (cf. [2, Lemma 13.3]). C being closed
under finite intersections, we have V ⊆ C .

It is easy to see that C , τ̄ and V satisfy conditions (1)–(5) above
which completes the proof of Sublemma 3.2.

�
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Continuing the proof of Main Lemma enumerate V as {Vk : k ∈ N}
and let

D = X \
⋃
{Vk : k ∈ N and Vk ∈ I}.

Note that

• D ∈ I∗,
• D is closed in τ̄ , so uncountable Polish in the relative topology;
in the rest of the proof all topological notions concerning subsets
of D will refer, unless stated otherwise, to this topology,
• no nonempty open subset of D is in I,
• if P is closed in D and P ∈ I, then P is nowhere dense in D.

For every n ∈ N let

On = D ∩
⋃
k∈N

ϕn(Vk).

We claim that each On is open and dense in D.

To see that On is open, use (5), (3) and (4).
To prove that On is dense in D, take a basic open subset od D of

the form Vk ∩D 6= ∅.
Then Vk ∈ C \ I hence ϕn(Vk) ∈ C \ I.
Consequently, ϕn(Vk) being a member of C is τ̄ -open and ϕn(Vk) ∩

D 6= ∅ since D ∈ I∗.
But ϕn(Vk) ⊆ Vk and D ∩ ϕn(Vk) ⊆ On which implies that

(Vk ∩D) ∩ On ⊇ Vk ∩ (D ∩ ϕn(Vk)) = ϕn(Vk) ∩D 6= ∅,
completing the proof that On is dense in D.

Finally, let

E =
⋂
n∈N

On.

To complete the proof of Main Lemma it suffices to prove the fol-
lowing

Claim

(6) E 6∈ I,
(7) ∀n {A ∈ An : E ∩ A 6∈ I} ⊆ {ψn(Vk) : k ∈ N}.

To prove (6), we shall use the fact that I is generated by closed sets.
So let (Dn) be a sequence of τ -closed sets from I. Our aim is to show
that

E 6⊆
⋃
n∈N

Dn.

Note that:

• E =
⋂
n∈NOn is a dense Gδ subset od D.

• Each Dn being τ -closed is also closed in τ̄ , so Dn ∩D is closed
nowhere dense in D.
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By the Baire category theorem, we are done.

To prove (7), recall that for each n:

• if B ∈ B(X) \ I, then ψn(B) is the only A ∈ An such that
ϕn(B) ∩ A 6∈ I.
• E =

⋂
m∈N
Om ⊆ On = D ∩

⋃
k∈N

ϕn(Vk) ⊆
⋃
k

ϕn(Vk).

Fix n and let A ∈ An be such that E ∩A 6∈ I. Then there is k with
ϕn(Vk)∩A 6∈ I. But the only A ∈ An with this property is A = ψn(Vk)
which shows (7) and completes the proof of Main Lemma.

�

With the help of Main Lemma we are now ready to finish our proof
of Zapletal’s theorem (cf. [5, Lemma 1.3] and [6, Lemma 5.4.2]).

Theorem 3.3 (Zapletal). If a σ-ideal I on X is generated by closed
sets and ergodic, then I is ccc.

Proof. Recall that ergodicity of I means that there is a countable Borel
equivalence relation R on X such that every set B ∈ B(X) which is
the union of a family of R-equivalence classes is either in I or in I∗.

By the Feldman–Moore theorem, R is the orbit equivalence relation
for a certain countable group G = {gn : n ∈ N} of Borel automorphisms
of X.

So, ergodicity of I means that

B ∈ B(X) \ I ⇒
⋃
n

gnB ∈ I∗.

Suppose that I is not ccc and let {Aα : α < ω1} be a disjoint family
of sets in B(X) \ I.

For each n let

An = {gnAα : α < ω1} \ I.
An is a disjoint (perhaps empty) collection of sets in B(X)\I hence

by Main Lemma, there is E ∈ B(X) \ I such that

∀n |{α < ω1 : E ∩ gnAα 6∈ I}| ≤ ℵ0. (∗)

On the other hand, by ergodicity, for every α < ω1 there is n ∈ N
such that

E ∩ gnAα 6∈ I,
so there is a single n ∈ N with

|{α < ω1 : E ∩ gnAα 6∈ I}| = ℵ1,

contradicting (∗).
�
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