
Computational complexity

Lecture notes

Damian Niwi«ski

June 5, 2012

Contents

1 Introduction 2

2 Turing machine 4

2.1 Understand computation . 4
2.2 Machine at work . 5
2.3 Universal machine . 8
2.4 Bounding resources . 9
2.5 Exercises . 12

2.5.1 Coding objects as words and problems as languages 12
2.5.2 Turing machines as computation models . 13
2.5.3 Computability . 14
2.5.4 Turing machines � basic complexity . 14
2.5.5 One-tape Turing machines . 15

3 Non-uniform computation models 15

3.1 Turing machines with advice . 15
3.2 Boolean circuits . 16
3.3 Simulating machine by circuits . 21
3.4 Simulating circuits by machines with advice . 24
3.5 Exercises . 24

3.5.1 Circuits � basics . 24
3.5.2 Size of circuits . 26

4 Polynomial time 26

4.1 Problems vs. languages . 26
4.2 Uniform case: P . 27

4.2.1 Functions . 27
4.3 Non-uniform case: P/poly . 27
4.4 Time vs. space . 28
4.5 Alternation . 31
4.6 Non-deterministic case: NP . 34

4.6.1 Existential decision problems and search problems . 34
4.6.2 Polynomial relations and their projections . 36

4.7 Exercises . 37
4.7.1 P . 37
4.7.2 P/poly . 37
4.7.3 Easy cases of SAT . 37

1

4.7.4 Logarithmic space . 38
4.7.5 Alternation . 39

5 Reduction between problems 39

5.1 Case study � last bit of RSA . 39
5.2 Turing reduction . 41
5.3 Karp reduction . 41
5.4 Levin reduction . 42
5.5 NP -completeness . 42

5.5.1 Search algorithms for NP -complete problems . 45

6 Randomization and interaction 46

6.1 Bounded-error probabilistic polynomial time . 46
6.2 Interactive proofs . 48
6.3 Exercises . 49

7 Polynomial space 49

8 Approximation algorithms 50

Credits and acknowledgments

These notes accompany a course actually held by Damian Niwi«ski at the University of Warsaw. In bibli-
ography, we credit the textbooks on which we rely but, especially for the exercises, the source is sometimes
hard to identify. The author thanks his collaborators chairing the tutorial sessions: Vince Bárány, Marcin
Benke, Bartek Klin, Tomasz Kazana, Henryk Michalewski, Filip Murlak and Paweª Parys for contributing
exercises, hints and comments. Last but not least, thanks go to the students following the course for a
valuable feedback, with hope for more !

1 Introduction

The terms complex, complexity are used in natural sciences, art, politics, as well as in everyday life. They
sometimes hide our ignorance, e.g., when we say: the situation is complex. . .

Interestingly, when qualifying something as complex, we often have in mind one of the following opposite
features:

• the thing is too chaotic to �nd a structure in it (e.g., atmospheric turbulence, �nancial market in crisis),
or

• it exhibits a particularly �ne structure or behaviour (e.g., a cell in a live organism, a masterpiece of
polyphonic music, or a mathematical theory).

We will encounter these features and much more when studying computational complexity.

Overview of basic ideas

Universal machine Computation can be viewed as a process of decision making. In Turing's model,
a single agent makes its decisions sequentially, each time choosing one of �nitely many possibilities. This
extremely simple setting leads to the concept of an universal Turing machine which comprises the whole
computational power possible in ideal world. According to the Church-Turing Thesis, any partial function
f : N→ N computable in some �intuitive sense� can be also computed by the universal machine if we provide
the code (�program�) of the function f .

2

In real world however, when we are interested in getting the values of f for some concrete arguments, we
have to take into account the physical parameters like the time of computation and the amount of memory
needed.

Other parameters may be also of importance like, e.g., the salary of programmers. The last will not be
covered by our theory, although it is certainly related to it. Indeed, complexity theory helps us to identify
problems for which �routine� algorithms supposedly fail, and hence creativity of programmers is needed in
order to handle at least some special cases.

Polynomial time It is believed that a computation which performs nO(1) steps for an input of length n
is still practically feasible (polynomial time). An analogous restriction on the memory (polynomial space) is
apparently weaker (why ?) but we don't know whether it is really the case. Indeed, a great deal of the
theory tries to understand what happens between these two restrictions (P vs. PSPACE).

The source of di�culty In spite of an apparent diversity of computational problems, we realize that the
di�culty is usually the same. The bottleneck occurs when we need to �nd an object in a huge search space
and we have no better method than brute-force (exhaustive) search.

This idea leads to formal concepts of reduction between problems and a problem complete in a class.
Replacing exhaustive search by an oracle which �nds an answer in one step gives rise to the complexity class

NP. The question P
?= NP is perhaps the most famous open problem of computer science.

The reader may wonder what does it mean that �we have no better method than brute-force�. Maybe
we are just not intelligent enough to �nd a better method ? How to prove that such a method does not
exist whatsoever ? Is this related to the chaotic nature of the problem ? These are the questions beyond the

P
?= NP problem.

Randomness Using a random choice instead of exhaustive search may sometimes speed up the computa-
tion considerably. This is often (but not always) related to some weakening of the computation paradigm:
we tolerate errors if they are rare. A recent development leads however to the conjecture that randomness,
perhaps surprisingly, can be always eliminated (derandomization).

Approximation We can also tolerate errors if they are not too big. For example, while searching for
an optimal traversal over a weighted graph, we might be satis�ed with a solution which is 10% worse than
the optimal one. A related idea is that of parametrized complexity: we try to optimize the time w.r.t. one
parameter, and disregard another one. It turns out that, in spite of a common �source of di�culty�, the
problems behave quite di�erently in this respect.

Interaction Rather than a solitary run of a single agent, we can design computation as interaction of
multiple agents. Various scenarios are possible. The agents may compete (game), or cooperate (interactive
proof). Competing with an agent that behaves randomly is known as game against nature.

Interaction may speed up computation considerably, but it gives rise to new complexity parameters like,
e.g., the number of messages to be exchanged.

Positive use of computational di�culty Computational complexity is at the basis of modern cryptog-
raphy. The crucial fact is that some functions are easy to compute, but hard to invert. An eminent example
is multiplication of integers. This phenomenon allows us to construct systems where encryption is easy while
decryption is hard.

Computational hardness is also exploited in construction of pseudo-random generators, which can be
used to derandomize random algorithms. Here, like in mechanics, the �energy� concentrated in one problem
is used to solve another problem.

3

The last examples suggest a yet another feature of complexity, in addition to chaos and structure men-
tioned at the beginning. This is a kind of one-wayness of some mathematical functions, which can be
compared with one-way phenomena in physical world and everyday life.

2 Turing machine

In this lecture we review the concept of the Turing machine which you may remember from the course on
Automata, languages, and computations. This mathematical concept introduced by Alan Turing in the 1930s
has several important consequences: (1) gives rise to the modern programmable computer, (2) reveals the
absolute limits of computablility, (3) allows for de�nition of the basic measures of complexity: computation
time and space.

2.1 Understand computation

The story of Turing machine shows how an abstract question on the border of mathematics and philosophy
can give rise to a new branch of technology. The question, asked by David Hilbert was:

Is there an algorithm to decide any mathematical conjecture ?

Hilbert expected a positive answer to this question (known as Entscheidungsproblem), but the answer given
by Alonzo Church (1936) and, independently Alan Turing (1937), revealed that this is not possible.

To this end, Turing gave the �rst mathematical de�nition of computation; he just formalized the actions
performed by a person performing computation. Note that the concept of Turing machine, today learned by
computer science students all over the world, was not conceived as a model of a computer ! The other way
around: a modern computer came out of it. Nevertheless, it we think of a simplest model of how information
is processed on elementary level, we realize that Turing's machine is in fact the model of computation.

Before proceeding further, we give an example to illustrate how a (relatively simple) question may fail to
have algorithmic solution.

Digression � why computation sometimes fail

We jump to our time. Fix your preferred programming language and consider a program without input
dedicated to computing a natural number M . Of course any number can be computed by sort of write (M)

program, but some numbers may have much shorter programs (e.g., 101010
). For each M , let K(M) be the

length of a shortest program1 computing M . Suppose there is an algorithm to compute K(M). Then
we can implement it and use to construct a program P for a mapping

n 7→ least M, such that K(M) ≥ n; let us call it Mn.

If we �x n and build it into the program P , we obtain a program Pn dedicated to computing Mn. What
is the length of this new program ? The number n can be represented in binary, so its length is at most
blog2 nc + 1. The program P has had some length |P |, and possibly some constant ∆ should be added
responsible for building-in the input n into the program P ; this ∆ does not depend on n. We thus obtain

|Pn| ≤ blog2 nc+ |P |+ ∆ + 1 < n,

where the last inequality holds true for all su�ciently large n. But, by de�nition, the number Mn generated
by Pn can be only generated by programs of length ≥ n, a contradiction !

This shows that the hypothesis of computability of the function K was wrong.

The above argument uses an idea of the so-called Berry paradox : Let n be the least number that cannot
be de�ned in English with less than 1000 symbols. (But we just de�ned this n.)

1It is so-called Kolmogorov complexity of M , see [5] and, e.g., [4].

4

2.2 Machine at work

The basic model

The basic model can be viewed as a single right-in�nite tape divided into cells. A cell may contain one
symbol or be empty (blank). Initially, the tape contains an input word followed by blanks. At each moment,
the machine is in some state and scans one cell. It can then re-write the symbol in the cell, change the state,
and move one step to the left or to the right (or not at all).

We represent a machine M as a tuple

〈Σ,Σi/o, B,B, Q, qI , qA, qR, δ〉 (1)

Here Σ is a �nite alphabet with a special symbol Σ 3 B (blank) representing the empty cell, and a special
symbol Σ 3 B, marking the left-most cell.

We distinguish a subset Σi/o ⊆ Σ as an input/output alphabet.

Unless stated otherwise, we assume that Σi/o = {0, 1}.
Q a (�nite) set of states containing

� initial state qI
� accepting state qA
� rejecting state qR.

δ is a transition function δ : (Q− {qA, qR})× Σ→ Q× Σ× {L,R,Z}.
A transition δ(q, a) = (p, b,D) is usually written

q, a→ p, b,D.

Here D ∈ {L,R,Z} represents direction of a movement: left, right, or zero.

Note that δ(q, a) is unde�ned if q ∈ {qA, qR}; we call these two states �nal . We additionally assume that
the symbol B cannot be neither removed nor written in a cell where it was not present originally, and that
when scanning this symbol, the machine cannot move left. Formally, if q, a → p, b,D is a transition then
a = B i� b = B, and if it is the case then D ∈ {R,Z}.

To de�ne formally the process of computation, we need the concept of con�guration (sometimes called
instantaneous description). A con�guration gathers

� current state,
� content of the tape,
� location actually scanned.

For example, suppose the tape contains

B 1 [[0 B 1] 1 B B . . .

where �...� means prolongation by in�nite sequence of blanks. Suppose the machine scans the 6th cell (the
second 1) in state q. Then the con�guration can be represented by

(q, 6,B1[[0B 1]1BB) . (2)

Slightly more economically, we can omit the second component and replace the actually scanned symbol x
by a composed symbol (@x) (indicating that machine's head is at x):

(q,B1[[0B (@1)]1BB) . (3)

Formally, in this second representation, we view a con�guration C as a pair (q, α), where q ∈ Q, and
α ∈ Σ∗ ({@} × Σ) Σ∗.

5

For simplicity, we sometimes omit parentheses and write, e.g., a a@ b c instead of a a (@b) c.
We will identify con�gurations (q, α) and (q, α∆) if ∆ ∈ B∗. So, for example, (3) could be also written
(q,B1[[0B@1]1) or (q,B1[[0B@1]1BBB).

The relation C →M C ′ meaning that a con�guration C ′ follows from C in one step of computation is
de�ned depending on a transition applicable to C, if any. (Recall that we write q, y → p, ξ,D to mean
δ(q, y) = (p, ξ,D).)

(q, β x (@y) z γ) →M (p, β x ξ (@z) γ) if q, y → p, ξ, R
→M (p, β (@x) ξ z γ) if q, y → p, ξ, L
→M (p, β x (@ξ) z γ) if q, y → p, ξ, Z.

(4)

Note that if (q, α) →M (p, α′) then the state q and three consecutive symbols xi−1xixi+1 of α completely
determine the i-th symbol of α′. We leave the proof of the following as an exercise.

Lemma 1. Let C = (q, α) be a con�guration with α = α1α2 . . . αm. Let E = (q, β) be another con�guration
and suppose that αi−1αiαi+1 = βj−1βjβj+1, for some i and j. Suppose further that C →M (p, α′) and
E →M (s, β′). Then the i-th symbol in α′ and the j-th symbol in β′ are the same.

If additionally α1α2 = β1β2 then the �rst symbol in α′ and the �rst symbol in β′ are the same.

Computation and acceptance

An initial con�guration of a machine M (see (1)) on an input word w ∈ {0, 1}∗ is of the form (qI ,B@w).
Any con�guration of the form (qA, α) is accepting , and of the form (qR, α) is rejecting .
A computation of M on w is a sequence of con�gurations

C0 →M C1 →M C2 →M . . . (5)

starting from C0 = (qI ,B@w).
We say that M accepts w if the above computation is �nite and ends in an accepting con�guration. In other
words, (qI ,B@w)→∗M (qA, α), for some α. (Here →∗M denotes the transitive closure of →M .)

We say that M rejects w if (qI ,B@w)→∗M (qR, α), for some α.

We write M(w) ↓ if M accepts or rejects w.

The last possibility is that the computation (5) never ends; in this case we write M(w) ↑. We will see that
in general, we cannot eliminate this possibility.

The language recognized (or accepted) by M is the set

L(M) = {w ∈ {0, 1}∗ : M accepts w}.

We call a language L ⊆ {0, 1}∗ partially computable (or recursively enumerable) if L = L(M), for some
Turing machine M . We call L computable (or recursive) if additionally M(w) ↓, for any input word w.

Comments. Compared to a (deterministic) �nite automaton, Turing machine has three additional features:

1. head moves in both directions,

2. tape is in�nite,

3. the machine can write in a cell.

It is well-known that adding just (1) we accept only regular languages. An exercise shows that it remains the
same for (1) plus (2), although the situation changes if we allow more tapes (see next section). Clearly (2)
and (3) brings no new power to �nite automata. An interesting case is (1) plus (3), i.e., a Turing machine
restricted to the space of the input. This model de�nes the class of deterministic context-sensitive languages
that we will revisit later.

6

Question 1. In a deterministic �nite automaton we usually need more than one accepting state and cannot
assume that the accepting states are �nal. Explain why it is possible in Turing machine.

Computability of functions

Let f : dom f → {0, 1}∗ be a function, where dom f ⊆ {0, 1}∗. We refer to f as to a partial function from
{0, 1}∗ to {0, 1}∗. A Turing machine M computes the function f if L(M) = dom f and, for any w ∈ dom f ,
the accepting con�guration for the input w is (qA,B@f(w)).

We call a function f : dom f → {0, 1}∗ partial computable if it is computed by some Turing machine in
the above sense. We call a function computable if it is partial computable and total, i.e., de�ned for every
argument.

The multi-tape model

In this model we allow a Turing machine to use k right-in�nite tapes; this number is �xed for the machine.
Initially, the input word is placed in the leftmost segment of the �rst tape; all other tapes are empty, except
for the leftmost cell, which permanently holds marker B. We can think that the machine uses k heads which
operate similarly as the unique head in the previous case; however the state of the machine is global.

Formally, the di�erence with respect to (1) is only in the type of transition function which is now

δ : (Q− {qA, qR})× Σk → Q× Σk × {L,R,Z}k.

Con�guration of a k-tape machine is of the form (q, α1, . . . , αk), with αi ∈ Σ∗({@} × Σ)Σ∗. The next step
relation C →M C ′ is de�ned analogously to (4) in an obvious manner. The initial con�guration of M on a
word w is

(qI ,B@w,B@B, . . . ,B@B︸ ︷︷ ︸
k

).

The concept of acceptance is completely analogous.

The o�-line model

This model di�ers from the previous one only in that the tape containing the input word is �nite and read-
only . That is, the corresponding head can read symbols and move in both directions, but cannot write.
Additionally, we assume that an input word w ∈ {0, 1}∗ is placed between two symbols B, C, serving as
markers. We refer to such machine as a k-tape o�-line machine if additionally it has k working tapes. Hence,
an initial con�guration is of the form

(qI , B@wC, B@B, . . . ,B@B︸ ︷︷ ︸
k

).

The transition function is of the type

δ : (Q− {qA, qR})× (Σ ∪ {B,C})× Σk → Q× Σk × {L,R,Z}k+1.

The remaining de�nitions are updated accordingly.

Comments. Simulation of a k-tape machine or a k-tape o�-line machine by a single tape machine is
an easy exercise (see 2.5.2). In exercises we also consider the cost of this simulation in terms of the time
overhead.

7

2.3 Universal machine

An ingenious idea of Alan Turing was that a machine can �read� another machine (or itself !) and use it as
a program. To this end, we need some encoding of machines as words. This can be done in many ways; here
we follow closely the textbook [3].

The construction

We may identify states with numbers 1, 2, 3, . . ., and assume that
the initial state is 1
the accepting state is 2
the rejecting state is 3.

Without loss of generality, we may assume that the alphabet is {0, 1, B}.
We �rst �x an encoding of ingredients of the machine:

States Symbols Directions
1 0 0 0 L 0
2 00 1 00 R 00
3 000 B 000 Z 000
4 0000
.

A transition q, a → p, b,D is encoded as 5 blocks of 0's encoding q, a, p, b,D, respectively, separated by 1's.
For example

5 1 → 4 0 R
00000 1 00 1 0000 1 0 1 00

Finally, if the set of all transitions of M is δ = {tr1, . . . , trm}, and 〈tr〉 denotes the encoding of transition
tr , we let

〈M〉 = 111 tr1 11 tr2 11 . . . 11trm 111. (6)

To make the above de�nition unambiguous, we may require that the encodings of the transitions appear in
some order, e.g., lexicographic.

Note that a word w ∈ {0, 1}∗ may have at most one pre�x of form 〈M〉, for some M .

We de�ne an universal Turing machine U as a 2-tape o�-line machine. The machine �rst veri�es if an input
word is of the form 〈M〉w, for some M ; if it is not the case, U stops and rejects.

Otherwise, U copies w on the �rst working tape, and places the head at the leftmost cell; it also prints
one 0 on the second working tape�this is an encoding of the initial state of M .

The con�guration of U is now
(q,B〈M〉wC,B@w,B@0)

(for some q).
The computation of U can be now seen as a sequence of �big steps� simulating the subsequent steps of

the computation of M on w. At the beginning of each big step, the situation on the �rst working tape
corresponds exactly to the situation in some con�guration (i, α) of M : the content of the tape is the same
and the head is in the same place. The second working tape contains i zeros�the encoding of the state i.

Suppose, for concreteness, that i = 5 and the symbol scanned at the �rst working tape is 1.Then U
examines the encoding of 〈M〉 on the input tape in order to �nd the unique transition suitable for 5, 1.
Suppose M has a transition 5, 1 → 4, 0, R. Then U �nds its encoding 00000 1 00 1 0000 1 0 1 00, and realizes
the encoded transition. That is, U replaces the scanned symbol 1 on the �rst working tape by 0, and moves
the head to the right. Finally, it updates the (encoding of the) state of M on the second working tape; in
our case it replaces 00000 (state 5) by 0000 (state 4). This ends a big step.

8

If, at the end of a big step, the content of the second working tape is 00 or 000 (corresponding to the
�nal states of M) then U stops and accepts or rejects, respectively.

It follows easily from the above description that

L(U) = {〈M〉w : w ∈ L(M)} (7)

Hence, U acts as a computer capable to execute any program 〈M〉. It is believed that this model achieves
the maximal computation power, sometimes called Turing's power.

Church-Turing Thesis. Any set L ⊆ {0, 1}∗ recognized by some algorithm in intuitive sense, can be
recognized by some Turing machine M , consequently

L = {w : U accepts 〈M〉u}.

Note that the above is not a mathematical theorem, because the concept of intuitive sense is not de�ned
precisely. However, no evidence has been found against this thesis, and it is generally admitted to be a fact .

Undecidability of the halting problem

At �rst glance, the Church-Turing Thesis might appear as an evidence for a positive answer to the Hilbert
question mentioned in Section 2.1 (Entscheidungsproblem). If a universal machine can realize any algorithm,
then we can use it for searching mathematical proofs. Thus, why should it not resolve any mathematical
conjecture ? Unfortunately�or, maybe, fortunately�it is the case. This follows from the fact that we
cannot force a universal machine to halt for any input. More precisely, whenever a machine U satis�es (7),
it cannot, at the same time, satisfy (∀w)U(w) ↓.

Indeed, using U we can construct a (single tape) machine D (�diagonal�) such that

L(D) = {〈M〉 : M accepts 〈M〉}. (8)

The machine D �rst checks if its input x is of the form x = 〈M〉, for some M ; if so, it simulates U on
〈M〉 〈M〉. If U halted for every input then D would have this property as well, i.e., (∀w)D(w) ↓. Then we
could construct a machine D′ acting as a negative of D, i.e.,

(∀w)w ∈ L(D)⇐⇒ w 6∈ L(D′). (9)

Now a contradiction will arise when we try to decide if D′ accepts its own encoding 〈D′〉.
Suppose it does. Then, by (8), D should accept 〈D′〉, contradicting (9).

Suppose it doesn't. Then, by (8), D should not accept 〈D′〉, again contradicting (9).

This shows that the hypothesis that a universal Turing machine can be designed in such a way that it halts
for all inputs was wrong.

Let us sketch an idea of Turing's negative answer to Hilbert's question. Suppose there is an algorithm to
decide any mathematical conjecture. Then we could use it to decide the conjectures of the form �w ∈ L(U) ?�,
but we have just seen that it is not possible.

2.4 Bounding resources

Computation time

Let T : N→ N be any function. We say that a Turing machine M works in time T (n) if, for any input word
w of length n, M makes at most2 T (n) steps. In other words, the computation (5) has length at most T (n).

2We do not require that the bound T (n) is reached.

9

Note that the above de�nition does not depend on the number of tapes (transition of a multi-tape machine
counts as one step), and it applies to an o�-line machine in the same manner.

We say that a language L is recognized in time T (n) if L = L(M) for some multi-tape Turing machine
M working in time T (n). We let DTIME (T (n)) denote the class of all languages recognized in time T (n).

Comment. A mathematical model of a computer is an universal machine U rather than a particular
machine M . If we view M as a program for a universal machine U , our main concern should be how
much time U spends on simulating M for an input w. Roughly, this indicates how much we may loose
by using a universal computer rather than constructing M directly. If M works in time T (n) then the
time of the simulation described in subsection 2.3 is O(|〈M〉| · T (|w|)), which indicates that the overhead is
�only� linear. However, we simulate there a 1-tape machine by a 2-tape o�-line machine (or, more generally,
a k-tape machine by k + 1-tape o�-line machine). To make our estimation fair, we should compare a
machine M with a universal machine �of the same class�, i.e., with the same number of working tapes. The
straightforward construction of Exercise 2.5.4.1 yields the time of simulation O(T (n)2); however a better
bound O(T (n) log T (n)) can be achieved (see [1], sect. 1.7).

Computation space

Let S : N→ N be any function. We say that an o�-line Turing machine M works in space S(n) if, for any
input word w of length n, M visits at most S(n) cells on the working tapes. Here, we consider a cell as
visited if it is scanned at least once by the machine's head. Note that the cells of the input tape are not
counted.

We say that a language L is recognized in space S(n) if L = L(M) for some multi-tape o�-line Turing
machine M working in space S(n). We let DSPACE (S(n)) denote the class of all languages recognized in
space S(n).
(We occasionally estimate the space complexity of an ordinary machine, not o�-line; in this case the cells of
all tapes will be counted.)

Example 1. Consider the language of palindromes. It can be recognized by an o�-line machine with one
working tape which copies the input word on the working tape and then examines the agreement of the
corresponding symbols by moving the two heads in opposite directions. This machine uses the space n.
Alternatively, we can use the working tape as a counter holding a binary representation of a number i ≤ n.
We can use this counter to verify that the i-th symbols from the beginning and from the end are the same.
This machine uses only blog nc+ 1 space. (Although it is less e�cient as far as time is concerned.)

There is however an important di�erence between limiting computation time and space. It may happen
that a machine works in a bounded space, but the computation is in�nite. We may therefore wonder if a
language recognized by such a space-bounded is always computable. The above problem can be easily �xed
by controlling repetitions: the machine records all subsequent con�gurations on a supplementary working
tape and halts�rejects as soon as some con�guration is repeated. This solution however uses much bigger
space than the original machine.

A better solution is based on an idea of a clock . This is a �sub-routine� of a Turing machine that counts
to cK , for some c and K. It can be implemented by listing in lexicographic order all words of length K
over some alphabet of size c. Consider an o�-line machine M working in space S(n). The number of all
con�gurations thatM can reach from an initial con�guration on an input of length n is bounded by CS(n) ·n,
for some constant C. Note that the n factor is needed to account on the location of the head on the input
tape. However, if log n ≤ S(n), we can eliminate it by increasing the constant, thus obtaining the bound of
DS(n), for some D. Therefore it is enough to use a clock of length S(n) over an auxiliary alphabet of size
D. In this solution we do not increase the space (c.f. Exercise 4), but we need two assumptions about the
function S(n): that it is at least log n, and that it is space constructible (see Exercise 2.5.4.2). We leave the
details of this construction as Exercise 2.5.4.5.

A much more elegant and general solution is given by the following.

10

Theorem 1 (Sipser). Suppose an o�-line Turing machine M works in space S(n). Then we can construct
an o�-line machine M ′, such that

• L(M ′) = L(M),

• M ′ works in space S(n),

• M ′ halts for every input.

Proof. The machine M ′ will simulate computations of M , however not forward, but backward. We �rst
outline an algorithm informally, and then show that it can indeed by implemented by a machineM ′ satisfying
the requirements of the theorem. The following structure is useful.

Con�guration graph. We consider a directed graph Gm whose nodes are con�gurations of M , and edges
correspond to the relation →M de�ned in (4), i.e., there is an edge C → C ′ if C ′ follows from C in one step.
Note that the out-degree of each node in this graph is at most 1. Let →∗ stand for the re�exive-transitive
closure of →. For a con�guration D, let

Back(D) = {E : E →∗ D}.

We identify Back(D) with the induced subgraph of Gm.
For a given node D, we will be interested in a subgraph Back(D) induced by the backward search of the

con�guration graph, i.e., the set of nodes E, such that E →∗ D. Note that this set is either a tree with the
root D (where the edges go backward, i.e., from child to parent) or a cycle, each node on which is a root of
a tree (possibly trivial). Note however that these trees may have in�nite branches.

We �rst outline an algorithm to be implemented byM ′; the space requirement is expressed in the Claim,
which will be veri�ed later. For simplicity, we assume that M uses one working tape (in addition to the
input tape); the proof for k tapes is analogous. The machine M ′ will use an alphabet and a set of states
which extend the corresponding items of the machine M .

We say that a con�guration C = (q,BβC, α), is a K-con�guration if it uses no more than K cells on
the working tape, i.e., |α| ≤ K. We �rst de�ne a procedure Search(C,K,w) for a natural number K ≥ 2,
a K-con�guration C of the machine M , and an input word w. We assume that there is no K-con�guration
C ′, such that C → C ′. (That is, either C is �nal, or the next step should increase the space to K + 1.) The
procedure will verify if the con�guration C can be reached by M from the initial con�guration on input w,
going only through K-con�gurations. The idea of procedure Search is as follows.

Consider the subgraph BackK(C) of Back(C) obtained by restriction to K-con�gurations. That is, E is
a node in BackK(C) if there is a computation from E to C going through K-con�gurations. Note that, by
our assumption, C cannot lie on a cycle of K-con�gurations, therefore the subgraph in consideration is a
tree. Moreover, this tree cannot have in�nite branches, because the number of K-con�gurations is �nite (for
a �xed input word). The machine implementing procedure Search(C,K,w) will operate on a working tape
where K cells are marked . (Technically, a marked symbol x can be represented by a new symbol (♥, x).)
The machine performs the backward search in DFS manner; the search is restricted to K-con�gurations,
which is easy to ensure thanks to the marking. If the initial con�guration is found, the procedure answers
Yes; otherwise the DFS algorithms returns to C, and the procedure answers No.

Claim. Procedure Search(C,K,w) can be implemented by an o�-time Turing machine in space K.

We postpone veri�cation of the claim to the end of the proof, and describe now the algorithm for M ′.
We call a K-con�guration C augmenting if C → C ′, for some K + 1-con�guration C ′. Note that, in an
augmenting con�guration, the head of the working tape scans the rightmost symbol and the transition
requires move right. In particular, it is easy to verify if a given con�guration is augmenting.

Let w be an input word of length n. Note that, by de�nition, the initial con�guration (qI ,BwC,B(@B))
uses the space 2. We mark the cell scanned by the head in the initial con�guration. (The marker B will

11

be always considered as marked.) The algorithm will use an integer variable K initialized by K = 2. For a
given K, it performs the following steps. We assume that K cells of the working tape are already marked.

1. Check if some augmenting K-con�guration can be reached from the initial con�guration. If so than
let K := K + 1, mark a new cell, and go back to 1.

2. Otherwise, check if some accepting K-con�guration can be reached from the initial con�guration. If
so then stop and accept; otherwise stop and reject.

Note that the algorithm will necessarily stop for some K ≤ S(n). It accepts only if some accepting
con�guration is reached by M from the initial con�guration, i.e., M accepts the input w. It rejects if, for
some K, M does not accept w in space ≤ K, but, at the same time, M does not want to augment this space.
This means that M loops in the space K and hence w should be rejected.

To realize (1) and (2) we use the procedure Search de�ned above. We assume some pre-de�ned lex-
icographic order on all con�gurations. Hence, in (1), we can generate in space K all augmenting K-
con�gurations and, in (2), all accepting K-con�gurations. We leave to the reader to verify that the whole
algorithm can indeed be realized by a Turing machine in space S(n), modulo the Claim.

Proof of the Claim. A machineM ′ realizing Search(C,K,w) starts with the con�guration C ofM , where
K cells are marked on the working tape. As usual, the computation of M ′ can be viewed as a sequence
of big steps, which usually consists of several small steps. In big steps, M ′ performs the backward DFS
over the graph BackK(C). At the beginning of each big step, the con�guration of M ′ coincides with some
K-con�guration of M . Then M ′ has to simulate a step forward of M , or a step backward, according to
DFS. The actual mode is remembered in the state. Hence, when arriving in a node D, the machine knows
the direction from which it has come. A step forward consists of simulation of just one move of M , say
D → D′. In a step backward, we have to �nd a con�guration E, such that E → D. Note that there can be
several such con�gurations, or none. It follows however from Lemma 1 that each such con�guration E can
be obtained from D by modifying at most three symbols on the working tape, along with the locations of
the heads, and the state. Therefore the information needed to perform a step back can be encoded in the
states of M ′ along with some ordering on the predecessor con�gurations. This is enough to realize DFS in
the required space.

If no step backward is possible from con�guration D, the machine M ′ checks if this con�guration is
actually initial. Again, it is easy because of the marking. If it is the case, M ′ suspends the DFS procedure
and instead moves only forward until it reaches C; thus it follows the computation of M on input w as long
as it is restricted to K-con�gurations. (By assumption about C, it must stop there.) The answer is Yes in
this case. If an initial con�guration is not found, M ′ completes the DFS procedure and terminates in C as
well, but in this case the answer is No. This remark ends the proof.

�

Remark. Theorem 1 shows that if a Turing machine M cannot be improved to a machine that halts on
every input�we have seen examples of such machines in Section 2.3�then machine M must use in�nite
space for some inputs.

2.5 Exercises

2.5.1 Coding objects as words and problems as languages

1. Try to �nd an e�cient way to encode a pair of binary words as a single binary word.

Hint. Let C(a1a2 . . . ak) = a10a20 . . . ak011. The �rst approximation codes (u, v) by C(u)v, but it can
be improved to C(α)uv, where α is the binary representation of the length of u. Now this construction
can be iterated. . .

12

2. The incidence matrix of a directed graph with n vertices identi�ed with {1, . . . , n}, is a binary word
of length n2, which has 1 on position (i − 1)n + j if there is an arrow i → j, and 0 otherwise. Note
that no in�nite set of graphs is encoded by a context-free language (why ?).

But with some care we can �nd some (not completely trivial) graph-theoretic properties encoded by
complements of context-free languages. Give an example.

Hint. For example, graphs with only self-loops i→ i.

3. Propose an alternative encoding of symmetric graphs using the concept of adjacency list .

4. Show that if α : N → {0, 1}∗ is a 1:1 function then, for in�nitely many n's |α(n)| > blog2 nc. Show
that this bound is tight in the sense that there is a 1:1 function alpha : N − {0} → {0, 1}∗, satisfying
|α(n)| ≤ blog2 nc, for all argument.

Remark. This means in particular that no notation for natural numbers can be more e�cient than the
usual binary notation.

(It is the content of Corollary 1 in [4].)

2.5.2 Turing machines as computation models

1. Robustness. Show the equivalences between various models of Turing machines: two-way in�nite
tape vs one-way in�nite tape; k tapes vs 1 tape. Estimate the cost of simulation. Show that the
alphabet of auxiliary symbols can be reduced to {0, 1, B} (in fact, {1, B} would su�ce as well).

2. The transitions of Turing machine could be de�ned in a slightly di�erent way. Namely, we could require
that the machine �rst moves the head (left or right) and then writes a symbol in a �new� cell. Show
that this type of machines is equivalent to the original one.

3. Write�once Turing machine. A Turing which writes a symbol in a cell only if it is empty (i.e.,
contains a blank) can simulate an arbitrary Turing machine. We do not put restriction on the number
of tapes.

4. If we additionally require that a machine of (3) has only one tape then it can recognize (only) a
regular language.

5. ([3]) Each Turing machine can be simulated by a machine which, in addition to the �nal states qA, qR
uses only 2 working states (one of them initial).

Remark . That some �xed number of states su�ces, follows easily from the construction of a universal
machine. Note however that auxiliary symbols are needed to produce the encoding of the simulated
machine. The construction of a (universal) machine with 2 states was �rst given by Claude Shannon,
who also showed that 1 working state would not su�ce.

Hint . The states of an original machine can be encoded by auxiliary tape symbols which most con-
veniently can be viewed as sequences of bits. Moving of such a �symbol� from one cell to another is
performed in many steps, �bit by bit�.

6. Reversible computation. We call a con�guration c of a machine M reversible if there is at most
one con�guration d, such that c is reached from d in one step. The machine M is weakly reversible
if any con�guration reachable from some initial con�guration is reversible. Note that if it is the case
then we can trace the computation back.

For a given Turing machine M , construct a weakly reversible machine recognizing the same language;
estimate the time overhead in your construction.

Remark. A machine is (strongly) reversible if all its con�gurations are reversible. Note that this implies
that all maximal computation paths are disjoint. The analogous claim for reversible machines is prob-
lematic, see discussion on http://mathoverflow.net/questions/24083/reversible-turing-machines.

13

2.5.3 Computability

1. Recall that a language L ⊆ {0, 1}∗ is partially computable (or recursively enumerable) if L = L(M),
for some Turing machine M . It is computable (or recursive) if this machine halts for all inputs (see
Lecture notes). A partial function f : {0, 1}∗ ⊇ dom f → {0, 1}∗ is computable if there is a Turing
machine M which halts precisely for w ∈ dom with the value of f(w) on the tape.

Prove that the following conditions are equivalent:

(a) L is partially computable,

(b) L is the set of values of some computable partial function,

(c) L is empty or is the set of values of some computable total function.

2. Prove the so-called Turing-Post theorem: if a set and its complements are partially computable then
they are also computable.

3. (*) If a machine M computes a partial function f , we say that a machine M ′ friendly corrects M is
it computes a total function g such that g ⊇ f . Show that there is no computable transformation
M 7→M ′, such that M ′ friendly corrects M .

2.5.4 Turing machines � basic complexity

1. Reduction in number of tapes (2.5.2.1 revisited). Show that a Turing machine with k tapes working
in time T (n) and space S(n) can be simulated by a machine with one tape working in time O(T (n)2)
and (the same) space S(n).

Remark. A better bound for computation time can be showed for two tapes: a machine with k > 2
tapes can be simulated by a machine with two tapes working in time O(T (n) log T (n)) (see [3], Theorem
12.6).

2. Constructible functions. A function f : N → N is space constructible if there is an o�-line Turing
machine which, for an input of length n ≥ 1, writes in exactly f(n) cells of the auxiliary tapes. Show
that the following functions are space constructible: n, 2n, n2, n2 + n, 2n, dlog ne.
A function f is time constructible if there is a Turing machine which, for an input of length n ≥
1, makes exactly f(n) steps and halts. Show that the following functions are time constructible:
n+ 1, 2n, n2, 2n, 22n .

3. Linear speed-up. Let M be a k-tape Turing machine working in time T (n). Show that, for any
c > 0, there is an equivalent machine M ′ using k + b 1

k c tapes and working in time c · T (n) +O(n).

Hint. Use new symbols to represent the blocks of symbols of suitable length.

4. Linear space compression. Let M be an o�-line Turing machine with k working tapes working in
space S(n). Show that, for any c > 0, there is an equivalent o�-line machine M ′ using c · S(n) space.

5. Assuming that S(n) is a space constructible function satisfying log n ≤ S(n), show that an o�-line
machine working in space S(n) can be simulated by a machine that halts for every input, using the
clock construction described on page 10.

6. Arithmetic. Assuming that natural numbers k,m, n are given in binary representation, estimate
(from above) the time to compute m+ n, m mod n, m · n, mn mod k.

7. Estimate the computation time of the Euclid algorithm implemented on Turing machine.

8. Complexity vs. computability.

14

(a) For a Turing machine M , consider a mapping SM : {0, 1}∗ → N ∪ {∞}, where SM (w) is the
exact amount of space used by M for an input w (possibly in�nity). Show that this function
is, in general, not computable. On the other hand, if SM (w) never takes the value ∞ then it is
computable.

Hint. Use Theorem 1.

(b) If S : N→ N is any computable function then the set

{w : SM (w) ≤ S(w)}

is computable.

(c) Formulate and prove analogous properties for time complexity.

2.5.5 One-tape Turing machines

1. Construct a 1-tape DTM, which recognizes the language {0n1n : n ∈ N} in time O(n log n).

Hint. Implement a counter moving along with the head.

2. A one-tape Turing machine which operates in linear time can only recognize a regular language3.

Hint. Use a concept of a history of a cell similar to that of crossing sequence in two-way �nite automata.
A history gathers the information how many times the head has visited the cell, in which states, in what
direction it moved, etc. Note that the sum of the heights of all histories gives the time of computation
which, by assumption, is K · n, for some K. Show that there is a common bound K ′ on the height of
all histories. (From this it is routine to construct a �nite automaton.) To show the claim suppose that
there is an accepting computation with some history of a huge height ≥ M . Choose a shortest word
wM which witnesses this fact. As the �average� height is K,M must be balanced by a su�cient number
of histories shorter than K. But there is only a �nite number of them. Thus, with an appropriate
relation between K andM , we can �nd two identical histories in two di�erent points lying on the same
side of the huge history. Then, by anti-pumping we can make wM shorter, contradicting its minimality.

3. Show that a one-tape Turing machine recognizing the language {www : w ∈ {0, 1}∗} requires Ω(n2)
steps. More precisely, for each such machine M , there is some constant εM , such that M makes at
least εMn

2 steps, for some input of length n, if n is su�ciently large.

Hint. Fix n = 3m and consider a point in the middle third. Note that di�erent words w of length m
must have di�erent histories there, as otherwise we could cheat the machine. So, in each point, 2m

histories must occur. Find a constant ε, such that if we collect all words whose history goes below
ε ·m at some point in the middle third, then there will be less than 2m of them. Hence, some word
will require �long� histories in the whole middle third, and consequently the quadratic time.

4. Show that a one-tape Turing machine recognizing palindromes requires Ω(n2) steps.

Hint. Use a technique of the previous exercise. Alternatively, you may introduce and use Kolmogorov
complexity (see footnote 1 on page 4). See Exercise 2.8.5 in Papadimitriou [6] and the hint there.

3 Non-uniform computation models

3.1 Turing machines with advice

As we have noted in the previous lecture, a universal Turing machine U can be seen as a mathematical model
of a computer . A typical input for U has the form 〈M〉w, where 〈M〉 is an encoding of some Turing machine
M . Let L = L(M); we have

w ∈ L ⇐⇒ 〈M〉w ∈ L(U)
3I mean a deterministic machine here, although the proof should work for non-deterministic machines as well.

15

(see (7)). Hence we can view 〈M〉 as a program implementing an algorithm designed to solve the problem L.
Typically L is in�nite, but M has only a �nite number of states and transitions. It is not surprising, since
an algorithm usually does not depend on the size of data. In some situations, however, it is reasonable to
change this assumption.

For example, recent implementations of the cryptographic algorithm RSA have used the keys 1024−−2048
bits long. Since an attack to the 768 bit RSA was presented4 in 2010, it is now recommended to use keys of
length 2048 or longer. But it is thinkable that in few years another attack will be found, which will force us
to increase the security parameters further, and so on. Even if the computation power of an attacker is not
unlimited, we should not assume that she always uses the same algorithm. These considerations lead to the
following de�nitions.

For a language L ⊆ {0, 1}∗, let

Ln = L ∩ {0, 1}n = {w ∈ L : |w| = n}. (10)

Let, for n ∈ N, Kn be a Turing machine, such that L(Kn) = Ln. We now have

w ∈ L ⇐⇒ 〈K|w|〉w ∈ L(U).

How to evaluate the e�ciency of this new model ? Note that, since each Ln is �nite, we could make Kn a
�nite automaton, and thus recognize L(Kn) in time n + 1. Does it mean that L can be �locally� solved in
linear time ? Not quite so, because the time that our �computer� U will use on the input 〈K|w|〉|w| may also
depend on the size of K|w|. A priori however, it is possible that we can achieve a better computation time
by taking a sequence of machines Kn recognizing Ln rather than a single machine recognizing L.

We now de�ne the non-uniform mode of recognition generally, not exclusively for universal machines.

Let M be a Turing machine, and let (kn)n∈N be a sequence of words in {0, 1}∗. We assume that this
sequence is pre�x�free, i.e., no kn is a pre�x of km, unless m = n. Note that this implies that each word v
has at most one decomposition v = k|w|w. We say that the pair

(
M, (kn)n∈N

)
recognizes a language L if,

for all w ∈ {0, 1}∗,

w ∈ L ⇐⇒ k|w|w ∈ L(M). (11)

We then write

L = L
(
M, (kn)n∈N

)
. (12)

In this context, the sequence (kn)n∈N is called an advice.

We further say that
(
M, (kn)n∈N

)
recognizes L in time T (n) if, for each w ∈ {0, 1}∗, the computation of

M on k|w|w takes no more than T (|w|) steps. Note that we measure the computation time only with respect
to |w|, not to |k|w||. The concept of recognizing a language in space S(n) is de�ned similarly.

3.2 Boolean circuits

We now introduce a new model of computation, based on a di�erent architecture than Turing machine. A
close connection between the two models will appear later, maybe with a little surprise.

Motivating example. It is a common practice that to �nd the semantics of a formal expression: arith-
metical term, formula, program code, or even sentence of natural language, we represent it as a tree. Usually,
there are many ways of doing it.

For example a propositional formula

(¬y ∨ x) ∧ (x ∨ y ∨ z) ∧ (¬z) (13)

4See http://eprint.iacr.org/2010/006.

16

can be represented
∧

oooooooooo

PPPPPPPPPP

∧

UUUUUUUUUUUUUUU

~~~~~
¬

∨

~~~~~
@@@@@ ∨

~~~~~
@@@@@ z

¬ x ∨

�����
@@@@@ z

y x y

(14)

but also
∧

ooooooooooo

OOOOOOOOOO

∨

~~~~~~
∨

������
?????? ¬

¬ x x y z z

y

(15)

Note that (14) is just a graphical representation (parsing) of the formula (13) with implicitly added paren-
theses,

((¬y) ∨ x) ∧ (((x ∨ y) ∨ z) ∧ (¬z)) ,
the nodes labeled by ∨ or ∧ have always fan-in 2. In contrast, (15) treats disjunction and conjunction as
operations of unspeci�ed arity (thanks to their associativity), which allows us to reduce the depth of the
tree. We leave the precise explanation of the transformation (13) → (15) to the reader. In any case, given a
valuation of the variables x, y, z, we can easily evaluate the formula in a bottom-up manner. We use 0 and
1 also as logical values, with 0 = false and 1 = true. Then, a node labeled ∨ gets value 1 if at least one of
its children has value 1, and a node labeled ∧ gets value 1 if all its children have value 1. A node labeled
¬ changes the value of its (unique) child. For example, given an evaluation v(x) = v(y) = v(z) = 1, the
representation (15) yields

0

pppppppppp

NNNNNNNNNN

1

�����
1

�����
>>>>> 0

0 1 1 1 1 1

1

(16)

hence the formula is false in this case.

Note that the evaluation procedure will work equally well if we merge some nodes inducing the same
subtrees. We thus obtain a graph which is not necessarily a tree. (17) represents such a graph obtained from
(15). Although, in our previous �gures, we have omitted the orientation of arrows for simplicity, it is clear
that it has been implicitly assumed. We now make it explicit:

∧>>

~~~~~ OO gg

OOOOOOOOOO

∨??

~~~~~~ OO ∨??

~~~~~~ __

?????? ¬OO

¬OO x y z z

y

(17)

17



∨

∧

==zzzzz
∧

aaDDDDD

∨

66mmmmmmmmmmm ∨

44hhhhhhhhhhhhhhhhh ∨

==zzzzz
∨

hhQQQQQQQQQQQ

x1

OO =={{{{{
x2

aaCCCCC

66mmmmmmmmmmm x3

OO

x1

OO =={{{{{
x2

jjVVVVVVVVVVVVVVVVV

OO

x3

XX1111111111

Figure 1: A circuit with 3 input gates.

The above examples suggest a generalization of formulas to more compact expressions that we will now
introduce.

Basic de�nition. A Boolean circuit , also called logical circuit , or simply a circuit , is a directed acyclic
graph C with labels on the nodes, satisfying the requirements below. The nodes of a circuit are usually
called gates, and the edges are often called wires. We �x some countable set of symbols {x1, x2, . . .}.
The requirements of circuit follow.

1. There is a number n ∈ N, such that, for each i = 1, . . . , n, C has exactly one node labeled xi, and
exactly one node labeled xi. These gates have fan-in 0 (no predecessors). The gates labeled by xi's
are called input gates, and those labeled by xi's negated input gates.

2. The nodes labeled by ∨ (called Or-gates), and by ∧ (And-gates) have arbitrary fan-in and fan-out.

3. One gate is distinguished as an output gate; it has fan-out 0 (no successors).

4. There are no other labels.

We sometimes write C = C(x1, . . . , xn) to make explicit the number of input gates of C.

Semantics. Given a valuation of variables v : {x1, . . . xn} → {0, 1}, we de�ne the value of each gate by
induction on the structure of the graph. The gate labeled xi gets the value v(xi), and the gate labeled xi
gets the value ¬v(xi). The value of an Or-gate (And-gate) is obtained by taking disjunction (respectively,
conjunction) of the values of its children. Note that we allow that an Or-gate (And-gate) may have fan-in 0
(no children). In this case, the value of the gate is 0 (respectively, 1). Note that the above de�nition is correct,
because the graph is �nite and acyclic. Finally, the value of the circuit C under the valuation v is de�ned as
the value of the output gate; we denote it by C(v). We also write C(a1, . . . , an), if v(xi) = ai, for i = 1, . . . , n.
Therefore, a circuit C(x1, . . . , xn) de�nes a Boolean function {0, 1}n 3 (a1, . . . , an) 7→ C(a1, . . . , an) ∈ {0, 1}.

For example, the circuit of Figure 1 computes the function parity , which outputs 1 i� the number of the
input gates valued by 1 is even.

Negation. Note that in our de�nition we admit the negated input gates, but we do not allow gates labeled
by negation. In fact, we could extend circuits in this way, provided that the fan-in of a negation gate is
always 1. However, the negation gates could be easily eliminated by De Morgan laws without increase of the
size (Exercise 3.5.1.1).

18



p13

p11

<<xxxxx
p12

bbFFFFF

p7

66mmmmmmmmmm p8

33hhhhhhhhhhhhhhhhhh p9

<<xxxxx
p10

iiRRRRRRRRRRR

p1

OO ==|||||
p2

aaBBBBB

66llllllllllll p3

OO

p4

OO <<xxxxx
p5

kkVVVVVVVVVVVVVVVVVV

OO

p6

YY2222222222

Figure 2: Identi�ers of the gates of circuit from Figure 1.

Encoding. For further considerations, it is useful to represent circuits by words. We do not make it as
formal as we have done for Turing machines in Section 2.3; instead we propose an alternative �high-level�
representation of a circuit.

For each gate of a circuit C, we choose some identi�er p ∈ {0, 1}∗ (like a variable in a program). For
example, for the circuit of Figure 1, we �x some words p1, p2, p3, . . . , p13, and a correspondence between the
gates and identi�ers as in Figure 2.

Then, for each gate, we form an equation relating this gate with its children. In our example, the system
of equations will be

p1 = x1 p7 = Or {p1, p2} p11 = And {p3, p7, p10}
p2 = x2 p8 = Or {p1, p5} p12 = And {p6, p8, p9}
p3 = x3 p9 = Or {p2, p4} p13 = Or {p11, p12}
p4 = Not (x1) p10 = Or {x4, x5} Output = p13.
p5 = Not (x2)
p6 = Not (x3)

(18)

In general, if p is an identi�er of an Or-gate and q1, . . . , qk, are identi�ers of its children, we form an equation
p = Or {q1, . . . , qk}; similarly for And-gates. Additionally, an equation Output = p is formed if p identi�es
the output gate. It is routine to encode such a systems of equations as by a binary word (c.f. Exercise 2.5.1.1);
we examine the size of this encoding in the next paragraph.

The above representation yields an elegant characterization of the semantics of the circuit. Indeed, if we
substitute the value v(xi) for xi then there is a unique valuation of all the identi�ers which makes the system
true. The value of an identi�er p coincides with the value of the gate identi�ed by p. Then C(v) coincides
the value of the identi�er Output.

In accordance with the semantics, we will abbreviate

Or ∅ = false (19)

And ∅ = true. (20)

Complexity parameters. With a circuit C, we associate the following parameters:

• the number of input gates, n,

• the number of all gates, denoted Gate(C),

• the depth of C, denoted Depth(C), which is the length of a longest path from an input gate to the
output gate (equals 3 in our example),

• the number of all wires (i.e., edges), denoted Wire(C).

19



Note that if a circuit with k gates and m wires is represented by a system of equations as above, we have
k + 1 equations with k +m+ 2 occurrences of identi�ers. Therefore, we de�ne the size of a circuit by

Size(C) = (Gate(C) + Wire(C)) · log Gate(C). (21)

The logarithmic factor is considered because of the size of identi�ers. It is routine to de�ne an encoding of
circuits by binary words in which the encoding of a circuit C has length O(Size(C)).

Game. For a circuit C and a valuation v, we de�ne a game, Game(C, v), played by two players: Ms. Or,
and Mr. And. Intuitively, Or wants to show that the value C(v) is 1, while And wants to show that it is 0.
The players start in the output gate and then move the token down the circuit, i.e., in the direction opposite
to the wires. The move is selected by Or in Or-gates, and by And in And-gates. A player who cannot move,
looses. (It may happen if a node has no predecessors.) If the token arrives in an input gate labeled xi then
Or wins if v(xi) = 1, otherwise And is the winner. Similarly, in a gate labeled xi, Or wins if v(xi) = 0, and
And otherwise.

We leave the proof of the following characterization to the reader.

Proposition 1. The player who5 has a winning strategy in the game Game(C, v) is Ms. Or if C(v) = 1,
and Mr. And if C(v) = 0.

Circuits as acceptors of languages. If the value C(w1, . . . , wn) is 1, for a sequence of bits w1, . . . , wn,
we say that the circuit C(x1, . . . , xn) accepts the word w = w1 . . . wn. We abbreviate C(w1, . . . , wn) = C(w)
if the length of w is known from the context. Hence, a circuit C(x1, . . . , xn) can be viewed as an �automaton�
recognizing the (�nite6) language

L(C) = {w ∈ {0, 1}n : C(w) = 1}. (22)

To recognize in�nite sets, we use sequences of circuits.

Let (Cn)n∈N be a sequence of circuits, where Cn = Cn(x1, . . . , xn). The language recognized by this
sequence is

L
(
(Cn)n∈N

)
=

⋃
n∈N

L(Cn) (23)

= {w : C|w|(w) = 1}. (24)

At �rst sight, this mode of acceptance may appear too powerful. Indeed, it is well-known (and easy to
see) that any Boolean function {0, 1}n → {0, 1} can be represented by a propositional formula in disjunctive
normal form. Transforming formulas to circuits like in our motivating example, we easily obtain the following
(see Exercise 3.5.1.3).

Proposition 2. Any set L ⊆ {0, 1}∗ is recognized by some sequence of circuits (Cn)n∈N, where moreover
Depth(Cn) = 2, for all n ∈ N.

However, the model becomes interesting if we restrict the size of the circuits.

5As Game(C, v) is a �nite perfect information game, it is easy to see that one of the players has always a winning strategy.
(This fact was �rst formally proved for chess by E. Zermelo.) Note that some in�nite games with perfect information are
known, where a winning strategy fails to exist for any of the players.

6This de�nition makes sense also for n = 0. A circuit C() without input gates has a constant value 1 or 0, and hence accepts
or not the empty word ε. But we will not particularly care about this case.

20



3.3 Simulating machine by circuits

We show that a Turing machine working in time T (n) can be simulated by a sequence of circuits polynomially
related to T (n).

Theorem 2. Let M be a Turing machine working in time T (n). There is an algorithm which, for n ∈ N,
constructs a circuit Dn(x1, . . . , xn), such that the sequence (Dn)n∈N recognizes the language L(M). Moreover,
we can guarantee that

Gate(Dn) = O
(
T (n)2

)
Depth(Dn) = O (T (n)) .

Proof. Let M = 〈Σ,Σi/o, B,B, Q, qI , qA, qR, δ〉 be a Turing machine with Σi/o = {0, 1} (c.f. (1), page 5).
For simplicity, we consider a single-tape model here; the argument for other models is similar. It is convenient
to extend the concept of computation (5) so that it has length exactly T (n) if an input has length n. Note
that, according to our de�nition, the machine may stop only in a �nal state (qA or qR). If it happens for
some t < T (n), we let the last con�guration be repeated. That is, an extended computation of M on input
w with |w| = n is a sequence of con�gurations

(qI ,B@w) = C0 →M C1 →M C2 →M . . .→M Ct →M Ct+1 →M CT (n) (25)

for some t ≤ T (n), where C0 →M . . . →M Ct is a computation in the sense of (5), Ct is �nal, and
Ct = Ct+1 = . . . = CT (n). Note that each Ci can be presented in the form (q, α), for some q ∈ Q and
α ∈ Σ∗ ({@} × Σ) Σ∗, where moreover |α| ≤ T (n) + 1, because M cannot scan more cells in time is T (n).
For convenience, we will assume that |α| = T (n) + 1.

We now de�ne a ternary relation

H istw ⊆ {0, 1, . . . , T (n)} × {0, 1, . . . , T (n) + 2} × (Σ ∪ (Q× Σ))

with the intention to completely describe the history of computation ofM on w. That is, the relation H istw
will hold for a triplet (i, j, y) if a symbol y is in the location j at the moment i. If moreover the machine is
scanning this location in state q, H istw will hold for a triplet (i, j, (q, y)). More speci�cally:

1. If Ci = (p, αyβ), for some p, α, β with |α| = j, then H istw(i, j, y) holds.

2. If Ci = (q, α(@y)β), for some α, β, with |α| = j, then H istw(i, j, (q, y)) holds.

3. H istw(i, T (n) + 2, B) holds, for all i.

4. Otherwise, H istw does not hold.

An essential property is that the content of location j in moment i + 1 is determined by the content of at
most 3 neighbour locations in moment i. The following lemma re�nes Lemma 1; it can be proved by a careful
analysis of all the cases in the next-step relation (c.f. (4)). Like before, the leftmost cell requires a special
clause.

Lemma 2. For any z−1, z0, z1 ∈ Σ ∪ (Q × Σ), there is at most one y ∈ Σ ∪ (Q × Σ), such that, for any
w ∈ {0, 1}∗, whenever H istw(i, j − 1, z−1), H istw(i, j, z0), and H istw(i, j + 1, z1) hold for some i < T (|w|)
and 1 ≤ j ≤ T (|w|) + 1, then H istw(i+ 1, j, y) also holds. If it is the case, we write

z−1, z0, z1 `M y.

Moreover, for any z0 ∈ {B} ∪ (Q× {B}) and z1 ∈ Σ ∪ (Q× Σ), there is at most one y ∈ {B} ∪ (Q× {B}),
such that, whenever H istw(i, 0, z0), and H istw(i, 1, z1) hold then H istw(i + 1, 0, y) also holds. If it is the
case, we write z0z1 `M y.

21



Let n ∈ N. We will construct a circuit Dn satisfying the requirements of the theorem. We will use
expressions �H ist(i, j, y)� as identi�ers of the gates in the circuit. The intention is that, for an input word w ∈
{0, 1}n, the gate �H ist(i, j, y)� gets value true i� the relation H istw(i, j, y) holds. We will also use auxiliary
identi�ers of the form �S tory(i, j, z−1, z0, z1)� and �S tory(i, 0, z0, z1)�, with z−1, z0, z1 ∈ Σ ∪ (Q× Σ). Note
that all these identi�ers can be encoded as binary words of size O(log T (n)) if we use binary representation
of i and j.

We now give the equational presentation of our circuit (like in (18)).

OR-gates. For i ∈ {1, . . . , T (n)}, j ∈ {0, 1, . . . , T (n) + 1}, and y ∈ Σ∪ (Q×Σ), we have an OR-gate with
identi�er H ist(i, j, y). The equation of this gate is

H ist(i, j, y) = Or {S tory(i− 1, j, z−1, z0, z1) : z−1z0z1 `M y}, (26)

for j ≥ 1, and

H ist(i, 0, y) = Or {S tory(i− 1, 0, z0, z1) : z0z1 `M y}. (27)

Additionally, we have the output gate Win, with the equation

Win = Or {H ist(T (n), j, (qA, y)) : 0 ≤ j ≤ T (n) + 1, y ∈ Σ}. (28)

AND-gates. For i ∈ {0, 1, . . . , T (n)}, j ∈ {1, . . . , T (n) + 1}, and z−1, z0, z1 ∈ Σ ∪ (Q × Σ), we have an
AND-gate with identi�er S tory(i, j, z−1, z0, z1). The equation of this gate is

S tory(i, j, z−1, z0, z1) = And {H ist(i, j − 1, z−1), H ist(i, j, z0), H ist(i, j + 1, z1)}. (29)

Moreover, for i ∈ {0, 1, . . . , T (n)}, and z0, z1 ∈ Σ∪(Q×Σ), we have an AND-gate with identi�er S tory(i, 0, z0, z1).
The equation is

S tory(i, 0, z0, z1) = And {H ist(i, 0, z0), H ist(i, 1, z1)}. (30)

Input gates. We have the equations

H ist(0, 1, (qI , 1)) = x1 (31)

H ist(0, 1, (qI , 0)) = x1 (32)

and, for j = 2, . . . , n,

H ist(0, j, 1) = xj (33)

H ist(0, j, 0) = xj . (34)

Constant gates. We have the equations

H ist(0, 0,B) = true (35)

and, for j = n+ 1, . . . , T (n) + 2,

H ist(0, j, B) = true. (36)

For each σ other than in cases (31 � 36) above, and j ∈ {0, 1, . . . , T (n) + 2}, we have an equation

H ist(0, j, σ) = false. (37)

22



H ist(i, j, y)

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

S tory(i− 1, j, z−1, z0, z1)

hhhhhhhhhhhhhhh

VVVVVVVVVVVVVVV

H ist(i− 1, j − 1, z−1) H ist(i− 1, j, z0) H ist(i− 1, j + 1, z1)

Figure 3: Fragment of circuit Dn.

Finally, for i ∈ {0, 1, . . . , T (n)}, we have

H ist(i, T (n) + 2, B) = true (38)

and

H ist(i, T (n) + 2, σ) = false (39)

for σ 6= B.
This completes the description of the circuit Dn. Figure 3 represents the most important fragment of

the circuit.
The estimations for Gate(Dn) and Depth(Dn) follow directly from the construction. It remains to verify

that, for w ∈ {0, 1}n, the value Dn(w) is 1 if and only if M accepts w. Note that the last is equivalent to
the statement that the relation H istw holds for a triplet (T (n), j, (qA, y)), for some 0 ≤ j ≤ T (n) + 1 and
y ∈ Σ. By the equation for the gate Win, Dn(w) = 1 if and only if one of the gates H ist(T (n), j, (qA, y))
has value 1.

The argument stems from the following.

Claim. Let {0, 1}n 3 w = w1 . . . wn. For a gate identi�ed by p, let p(w) denote the value of this gate under
the valuation xk 7→ wk, for k = 1, . . . , n. Then H ist(i, j, σ)(w) = 1 if and only if the relation H istw(i, j, σ)
holds.

The proof is by induction on i = 0, 1, . . . , T (n).
For i = 0, let us consider 2 ≤ j ≤ n. If wj = 1 then the gate H ist(0, j, 1) receives value 1, and the gate
H ist(0, j, 0) receives value 0. Moreover, the constant gates H ist(0, j, σ) with σ 6= 0, 1 have also value 0 by
the clause (37).

Similarly, if wj = 0 then the gate H ist(0, j, 0) receives value 1, and all other gates H ist(0, j, σ) receives
value 0. The argument for i = 1 is similar, and the claim for the constant gates with i = 0 follows directly
from de�nition.

To show the induction step, suppose that the claim holds for some i < T (n). Let us consider 1 ≤ j ≤
T (n) + 1. If a gate H ist(i, j, y)(w) has value 1 (where y ∈ Σ∪ (Q×Σ)) then there must be some z−1, z0, z1,
such that z−1z0z1 `M y, and the gates H ist(i−1, j−1, z−1), H ist(i−1, j, z0), and H ist(i−1, j+1, z1), have
also value 1 (see Figure 3). By induction hypothesis, the relations H istw(i−1, j−1, z−1), H istw(i−1, j, z0),
and H istw(i− 1, j + 1, z1) hold. Since z−1z0z1 `M y, then H istw(i, j, y) holds as well.

Conversely, suppose H istw(i, j, y) holds. By de�nition of computation, there are some z−1, z0, z1, such
that the relations H istw(i− 1, j − 1, z−1), H istw(i− 1, j, z0), and H istw(i− 1, j + 1, z1) hold. By inductive
hypothesis, the corresponding gates have value 1. By Lemma 2 (uniqueness of y), z−1z0z1 `M y. Hence
H ist(i, j, σ)(w) = 1 (again, see Figure 3). The case of j = 0 can be treated similarly, and the case of
j = T (n) + 2 follows immediately from the equations (38-39). This completes the proof of the theorem. �

23



Remark. The construction described above has also a natural game interpretation. Ms. Or claims that
w is accepted by M , while Mr. And claims the opposite. To support her claim, Ms. Or makes it more
speci�c: in the last moment of computation, T (n), the machine is in the accepting state qA and scans the
cell j which contains symbol y. Mr. And challenges this claim and then Ms. Or provides z−1, z0, z1 such
that z−1z0z1 `M (qA, y), and claims that these (generalized) symbols have occupied the locations j − 1, j,
and j + 1 in the moment T (n) − 1. Then Mr. And wants to see the proof for one of these three cases, and
situation repeats. When eventually the players come back to the moment 0, i.e., the initial con�guration,
the truth of the claim of Ms. Or is veri�ed directly.

Now, if w is indeed accepted by M , Ms. Or has an obvious strategy: always tell the truth. In contrast,
if w is not accepted by M then the �rst claim of Ms. Or is false. Mr. And has then a strategy: maintain the
false. In this way, Ms. Or will loose in the �nal checking.

3.4 Simulating circuits by machines with advice

A natural question is whether Theorem 2 can be reversed, i.e., whether a sequence of circuits of bounded
size can be always simulated by a Turing machine. A simple example shows that this may not be true.

Example. Let A ⊆ N. Consider a sequence of circuits (Cn)n∈N, where Cn is given by an equation

Output =
{
x1 if n ∈ A
x1 otherwise .

That is, the only gates of Cn are input gates and negated input gates, and (consequently) there are no wires.
The Output gate is x1 or x1 depending on whether n ∈ A. Thus the size of the circuit C(x1, . . . , xn) is as
small as possible.

The language recognized by this sequence is

{1w : |w|+ 1 ∈ A} ∪ {0w : |w|+ 1 6∈ A}.

Clearly, by varying A, we can obtain uncountably many languages, hence also non-computable ones.

However, Theorem 2 can be reversed in terms of the non-uniform recognizability (12).

Theorem 3. Suppose L ⊆ {0, 1}∗ is recognized by a sequence of circuits (Cn)n∈N with

Size(Cn) = O(T (n)).

Then L can be recognized by a Turing machine with advice
(
M, (kn)n∈N

)
in time T (n)2.

Proof. We let kn be an encoding of the circuit Cn (c.f. (18)). The machine M evaluates the circuit Cn for
an input w ∈ {0, 1}n. The evaluation of a Boolean circuit is a well-known algorithmic problem. With the
equational representation, the problem boils down to solving a system of equations like (18) (without cycles).
We start by substituting the values w1, . . . , wn, for x1, . . . , xn, and w1, . . . , wn for x1, . . . , xn, respectively.
Then we run over the system several times, replacing identi�ers by their value, whenever possible. (For
example, if an equation is p7 = Or (p3, 1), we replace p7 by 1 throughout the system.) This naive algorithm
takes 2 ·Gate(Cn) · Size(Cn) steps, which already yields the bound required in the theorem.

Some better algorithms can be found (see Exercise 3.5.1.14). �

3.5 Exercises

3.5.1 Circuits � basics

1. Negation. Extend the de�nition of circuits by allowing gates with fan-in 1 labeled by ¬. The value of
such gate is negation of a value of its unique child. Show that an extended circuit can be transformed

24



to a semantically equivalent circuit in our form, such that the number of gates and the depth will not
increase.

How the rules of the game Game(C, v) should change in the extended case ?

2. Restricted fan-in. In a restricted circuit , the fan-in of the Or-gates and And-gates is at most 2.
Describe a transformation of a circuit into a semantically equivalent restricted circuit; estimate the
change of parameters.

3. Prove Proposition 2 by giving an explicit representation in terms of equation system (like in (18)) of
a circuit computing an arbitrary Boolean function f : {0, 1}n → {0, 1}.

4. Suppose there is an algorithm which, for each n ∈ N, computes a circuit Cn(x1, . . . , xn). Show that in
this case, the set recognized by the sequence Cn(x1, . . . , xn) is computable (in the sense of Section 2.2).

5. Describe all functions f : {0, 1}n → {0, 1} with the property that if α and β di�er precisely by one bit
then f(α) 6= f(β).

6. The parity function Pn : {0, 1}n → {0, 1} is de�ned as P (x0 . . . xn−1) =
∑n−1
i=0 xi mod 2. Construct a

circuit computing P3 and do the computation for the input 011.

7. Let An : {0, 1}2n → {0, 1}n+1 be the mapping which adds two binary sequences x0 . . . xn−1 and
xn . . . x2n−1. Construct a circuit of size O(n) with n outputs computing An.

8. De�ne Mn : {0, 1}n → {0, 1} as 1 if
∑n
i=1 xi ≥ n/2 and as 0 otherwise. Construct a circuit of size

O(n log n) computing Mn. Hint. One can apply Exercise 7.

9. Show that any regular language L ⊆ {0, 1}∗ can be recognized by a sequence of circuits of polynomial
size and depth O(log n), even if we require that fan-in of each gate is at most 2.

Hint. The proof is easiest if we apply the monoid recognizability of regular languages.

10. A regular language is star free if it can be represented by a star-free regular expression

R := a|∅|(¬R)|(RR)|(R+R)

Show that a star-free regular language can be recognized by a sequence of circuits of polynomial size
and constant depth. (Here we assume arbitrary fan-in of the gates.)

11. Consider circuits where, instead of Or and And gates, we use only one type of the gate, namelyMajority
gate, along with a constant gate false. The Majority gate with n inputs is like Mn from Exercise 8.
Show that a circuit with K gates can be transformed to an equivalent circuit of this new type with
O(K) gates.

12. Show that the functions Pn of Exercise 6 can be computed by circuits with Majority gate (Exercise 11)
of polynomial size and constant depth.

Remark. A di�cult result by Furst, Saxe, and Sipser says that it is not possible for And-Or circuits.

13. Prove that the function Mn is computable using a circuit of size O(n).

Remark. A circuit is monotone if it uses only OR and AND gates. The following strengthening of this
exercise was proved by Hoory, Magen and Pitassi: Mn is computable using a monotone circuit of size
O(n) and depth O(log(n)).

14. Try to optimize an algorithm in the proof of Theorem 3. Find a representation of a circuit, for which
a linear (in the sense of model RAM ) algorithm is possible.

Hint. The algorithm should propagate the value in bottom-up manner.

25



3.5.2 Size of circuits

1. Show that, for any ε < 1, for su�ciently large n, there is a Boolean function f : {0, 1}n → {0, 1} that
cannot be computed by a circuit with 2n

ε

gates.

Hint. Estimate the size of binary word encoding a circuit with 2n
ε

gates.

2. ([6]) Show that, for su�ciently large n, there is a Boolean function f : {0, 1}n → {0, 1} that cannot be
computed by a restricted circuit (see Exercise 3.5.1.2) with 2n

2n gates.

3. Show that any Boolean function f : {0, 1}n → {0, 1} can be computed by a (unrestricted) circuit with
2n+1

n + 4n gates.

Hint. Present f by

f(x1, . . . , xn) = Or {And {xak+1
k+1 , . . . , x

an
n , f(x1, . . . , xk, ak+1, . . . , an)} : (ak+1, . . . , an) ∈ {0, 1}n−k},

where xa = (x∧a)∨(x̄∧ā). Design a circuit which computes f using the functions f(x1, . . . , xk, ak+1, . . . , an)
as black boxes (bb). Then design a circuit (with variables x1, . . . , xk) computing the bb's. The �rst
level is common for all bb's, and consists of the gates And (xa1

1 ∧ . . . ∧ x
ak
k ). The actual function

f(x1, . . . , xk, ak+1, . . . , an) is computed by an Or-gate wired with an appropriate subset of the �rst
level.

4. Prove that any function f : {0, 1}n → {0, 1} is computable by a restricted circuit of size 1000 2n

n .

5. Improve the bound of Exercise 3 above, by showing that any Boolean function f : {0, 1}n → {0, 1} can
be computed by a (unrestricted) circuit with O(2

n
2 ) gates.

4 Polynomial time

4.1 Problems vs. languages

In complexity theory, like in algorithmics, we are interested in solving real problems, which may involve
various kind of data: natural numbers, graphs, �nite sets, formulas. It is usually straightforward to represent
these data as words over a �nite alphabet. Hence we can identify a decision problem with recognition of a
language.

For example, consider a problem of connectivity of graphs:

Given an undirected graph, is any path of vertices connected by a path ?

One possible representation of a graph (usually not most e�cient, but convenient) is by the incidence matrix .
We have introduced it in Exercise 2.5.1.2 for directed graphs, but an undirected graph can be identi�ed with
a directed symmetric graph (i.e., there is an edge from i to j i� there is an edge from j to i).

So, the problem above can be represented by the sets of words w ∈ {0, 1}∗, such that w is an incidence
matrix of some undirected (i.e., symmetric) connected graph. For example, the word 0100101101010110
is in the language, whereas 000001010, 010001100, 1111111, are not. Note that a machine recognizing this
language should in particular verify that the word is of length n2, for some n, and that it represents a
symmetric graph.

In most cases the properties related to the representation are easy to verify, and we may abstract from
them while discussing examples of problems on abstract level. So we may think that an algorithm takes
as an input, e.g., a graph, or a formula of propositional calculus. One important exception concerns the
number theoretic problems: it is essential if a natural number n is given in unary, or in binary representation
(in the latter case, the size of the representation is blog2 nc+ 1). The former representation is seldom used,
and we will clearly distinguish it by writing n in unary as 1n. On the other hand, the choice of a k-ary
representation, for k ≥ 2, is not essential for complexity (see Exercise 4.7.1.1).

26



Similar remarks apply to function problems. It should be noted, however, that we mean discrete problems
here, which use data with unambiguous �nite representation. Problems occurring in continuous mathematics
may require approximation, e.g., of real numbers. It is a subject of numerical analysis, which will not be
considered in this lecture, although several theories of complexity over reals have been also proposed.

4.2 Uniform case: P

If a language L ⊆ Σ∗ is recognized by a Turing machine working in time nk, for some k ≥ 1, we say that it
is recognized in polynomial time. We denote the class of all such languages by P . In other words,

P =
⋃
k∈N

DTIME (nk). (40)

Note that, because of the linear speed-up property of Turing machines (Exercise 2.5.4.3) we need not use
the O notation here. We sometimes write f(n) = nO(1) to mean that f(n) ≤ nk, for some k ≥ 1.

The de�nition of the polynomial time is very robust, it does not depend on whether we use a single tape,
multiple tape, or o�-line Turing machine. In fact, we could consider models closer to real computers (like
the Random Access Machine, RAM), and the class of languages recognized in polynomial time would remain
the same. Also, restriction to alphabet {0, 1} is not essential here, as a language over a larger alphabet Σ
can be always encoded over {0, 1} preserving the polynomial-time recognizability.

4.2.1 Functions

Any Turing machine can be viewed not only as accepting/rejecting, but also computing a (partial) function.
For complexity considerations, it will be convenient to extend the o�-line model (section 2.2) to an input-
output Turing machine. This machine, in addition to a read-only input tape, has also a write-only output
tape (initially empty). We assume that the head of the output tape can only move right or wait. We refer
to such a machine as a k-tape input-output machine if additionally it has k working tapes. Formally, we
present the input tape as the �rst, and the output tape as the last tape. Hence, an initial con�guration is of
the form

(qI , B@wC, B@B, . . . ,B@B︸ ︷︷ ︸
k

,@B).

The transition function is of the type

δ : (Q− {qA, qR})× (Σi/o ∪ {B,C})× Σk → Q× Σk × Σi/o{L,R,Z}k+1 × {R,Z}.

We say that a machine M as above computes a function f : dom f → Σ∗i/o, (where dom f ⊆ Σ∗i/o), if
L(M) = dom f and, for any input w ∈ dom f , the last component of the accepting con�guration, representing
the content of the output tape, is precisely f(w). If the machineM works in polynomial time, we say that the
function f is polynomial time computable (P-computable, for short). We denote the class of P-computable
functions by FP .

4.3 Non-uniform case: P/poly

We let P/poly denote the class of languages L recognized in polynomial time by a Turing machine with
advice

(
M, (kn)n∈N

)
(see Section 3.1), where moreover kn is of polynomial size, i.e., |kn| ≤ nc, for some

constant c ≥ 1.

27



Remark. The second assumption could be omitted as the assumption about polynomial time implies that
only polynomial-length advices are useful (Exercise 4.7.2.1).

The considerations of the previous section allows us to characterize this class in terms of circuits.

Theorem 4. For a language L ⊆ {0, 1}∗, the following conditions are equivalent.

1. L ∈ P/poly,

2. L is recognized by a sequence of circuits Cn of polynomial size, i.e.,

Size(Cn) ≤ a · nk,

for some constants c, k ∈ N.

Proof. (2) ⇒ (1) follows directly from Theorem 3.
To show (1) ⇒ (2), suppose L is recognized by a pair

(
M, (kn)n∈N

)
in time T (n). Without loss of

generality, we may assume that |kn| = p(n), where 1n 7→ 1p(n) is computable in polynomial time. We apply
the construction of Theorem 2 to the machine M . Consider the circuit Dp(n)+n constructed in the proof of
this theorem. By construction it satis�es, for w ∈ {0, 1}n,

Dn+p(n)(w) = 1 ⇔ knw ∈ L(M). (41)

Note that the size of this circuit is bounded by T 2(p(n)+n), hence polynomial. We obtain Cn fromDn+p(n) by
replacing the �rst p(n) input gates by constant gates representing the bits of kn. (Speci�cally, xi is replaced
by true or false depending on whether the i-th bit of kn is 1 or 0, respectively.) Next, we rename the (not
replaced) input gates xp(n)+1, . . . , xp(n)+n by x1, . . . , xn. By construction and (41), we have Cn(w) = 1 i�
knw ∈ L(M), and the size of Cn is polynomial in n.

A similar reasoning gives us a characterization of P .

Theorem 5. For a language L ⊆ {0, 1}∗, the following conditions are equivalent.

1. L ∈ P ,

2. L is recognized by a sequence of circuits (Cn)n∈N of polynomial size, and moreover the function that,
for an argument 1n outputs an encoding of circuit Cn is computed in polynomial time.

Proof. (2) ⇒ (1) Given w of length n, we compute the circuit Cn in polynomial time; hence Cn has
polynomial size. We have to evaluate Cn(w). Recall from the proof of Theorem 3 that evaluating a circuit
of size S(n) can be made in time S(n)2. Thus we obtain a polynomial-time algorithm for L.

(1) ⇒ (2) follows directly from Theorem 2 if we realize that the construction 1n 7→ Dn described in the
proof of this theorem works in time polynomial in T (n), hence in polynomial time in our case. �

4.4 Time vs. space

We let L denote the class of languages K recognized in logarithmic space, i.e., in space c · log n, for some c.
Note that, by Exercise 2.5.4.4, we can omit the constant factor c, so

L = DSPACE (log n). (42)

We let PSPACE denote the class of languages K recognized in polynomial space, i.e., in space nk, for
some k ≥ 1. In other words,

PSPACE =
⋃
k∈N

DSPACE (nk). (43)

28



Clearly, a k-tape Turing machine working in time T (n) can visit at most k · T (n) cells on the working
tapes. Hence a machine working in polynomial time, works in polynomial space as well.

On the other hand, if a machine works in space log n, we can assume by Theorem 1 that it does not loop,
i.e., no con�guration is repeated. As a con�guration is described by the content of the working tapes, the
location of a head on the input tape, and the state, there are no more than n · clogn ≤ d · nk con�gurations
(for some constants c, d, k).

Hence we have
L ⊆ P ⊆ PSPACE . (44)

We currently do not know if the inclusions L ⊆ P and P ⊆ PSPACE are proper. We are able, however,
to show that the outermost inclusion L ⊆ PSPACE is proper. This will be obtained as a corollary from a
more general fact. Recall that, for a function S : N→ N, DSPACE (S(n)) denoted the class of all languages
recognized by in space S(n) (c.f. Section 2.4).

Theorem 6 (Space hierarchy). Suppose that a function S2(n) is space constructible (Exercise 2.5.4.2) and
satis�es S2(n) ≥ log n, and a function S1(n) satis�es

lim sup
n→∞

S2(n)
S1(n)

= ∞.

Then there exists a language

L ∈ DSPACE (S2(n))−DSPACE (S1(n)).

Proof. For the sake of this proof, a standard machine is an o�-line machine with one working tape, over the
input/output alphabet {0, 1}, using as auxiliary symbols only B,B,C. We de�ne an encoding of standard
machines by words in {0, 1}∗ in a similar manner as we have done it for single-tape machines (Section 2.3);
we omit the details. Let 〈M〉 denote the encoding of a standard machine M .

Claim. There exists an o�-line Turing machine H (over input/output alphabet {0, 1}) which satis�es the
following properties, for an input word of the form 1k〈M〉 (with n = |1k〈M〉|):

1k〈M〉 ∈ L(H) ⇐⇒ 1k〈M〉 ∈ L(M) (45)

if M uses space f(n) then H uses space f(n) + 2 log n. (46)

We de�ne a machine H similarly to the universal machine (Section 2.3), with some necessary modi�ca-
tions. H has two working tapes in addition to the input tape. Suppose the input tape contains the word
1k〈M〉. The working tape 1 simulates the working tape of M in its computation for the input 1k〈M〉. The
working tape 2 keeps an information about the actual state of M , encoded in binary, and the actual location
of the input head of M , also encoded in binary. With these two new ingredients, the simulation of M by
H is very similar as in the case of an universal Turing machine, yielding the equivalence (45); we omit the
details. The space restriction (46) follows immediately from construction.

We will de�ne our language via a machine D similar to the diagonal machine considered in Section 2.3.
Like H, D is an o�-line machine with two working tapes. Its program can be described by the following
instructions.

1. If an input is not in the form 1k〈M〉, for some standard machine M and k ≥ 1 then stop reject.

2. Otherwise, mark S2(n) cells on the working tape 1. (It is possible, because the function S2(n) is
constructible.)

3. Then act in the same way as H for the input 1k〈M〉, but if H tries to leave the marked cells on the
tape 1 then stop reject.

29



4. If H terminates its computation then

(a) if H accepts then stop reject,

(b) if H rejects then stop accept.

Let L = L(D). We �rst verify that L ∈ DSPACE (S2(n)). By construction of H and D, the space used
by D, for an input of length n, is S2(n) + 2 log n. By the assumption that log n ≤ S2(n), this space can
be bounded by 3 · S2(n). By the linear space compression (Exercise 2.5.4.4), we can reduce it to S2(n), as
required.

To show that L 6∈ DSPACE (S1(n)), suppose to the contrary that L = L(M), for some machine M
working in space S1(n). Of course, M need not be standard: it may use a huge number of tapes, and a huge
auxiliary alphabet. However, it can be easily transformed to an equivalent standard machine MD, working
in space c · S1(n), for some constant c (c.f. Exercise 2.5.2.1). Moreover, by Theorem 1, we can assume that
MD halts for every input.

Now, by the assumption (45), we can �nd k, such that n = |1k〈MD〉| satis�es

c · S1(n) < S2(n).

Consider the computation of D for the input 1k〈MD〉. By the above inequality, the exception mentioned in
the point 3 will not happen: the space S2(n) is su�cient to carry on the simulation of H to the end. Now,
by the rule 4, we have

D accepts 1k〈MD〉 ⇔ H rejects 1k〈MD〉
⇔ MD rejects 1k〈MD〉 (by (45)).

This contradicts the assumption that MD is equivalent to D. Hence L cannot be recognized in space
S1(n), as required. �

Corollary 1. L 6= PSPACE .

Proof. It is enough to take S2(n) = n and S1(n) = dlog ne. �

We will note one more interesting consequence of the Hierarchy Theorem. We already know that the sum
in (43) is indeed in�nite, as any DSPACE (nk) is a proper subclass of DSPACE

(
nk+1

)
. How is P related

to these classes ? For example, is it possible that P ⊆ DSPACE (n), or DSPACE (n) ⊆ P ? At present, we
cannot exclude any of these two possibilities, but nevertheless we can show the following.

Corollary 2. P 6= DSPACE (n).

Proof. Suppose, to the contrary, that the equality holds. Let

L ∈ DSPACE (n2)−DSPACE (n). (47)

Such a language exists by Theorem 6, and we can assume L ⊆ {0, 1}∗. Let ⊥ be a fresh symbol, and let

L⊥ = {w⊥|w|
2−|w| : w ∈ L}.

Note that a word in L⊥ consists of a pre�x in L of some length n prolonged by a sequence of ⊥'s, so that
the whole word has the length n2. To recognize L⊥, we can use a DSPACE (n2) machine recognizing L. The
new machine �rst veri�es that the input is in {0, 1}∗⊥∗ and the sequence of ⊥'s has an appropriate length
(this is possible in DSPACE (log n)). Then it simulates the machine for L on the maximal {0, 1}∗ pre�x of
the input. Note that we calculate the complexity with respect to the length of the whole input (which is
n2). Hence we can conclude that

L⊥ ∈ DSPACE (n).

By assumption (DSPACE (n) ⊆ P ), there is a machine M recognizing L⊥ in time nk, for some k ≥ 1. Then
we can recognize L in the following way.

30



Given an input w ∈ {0, 1}∗ of length n, prolong it by ⊥n2−n and then apply M .

The new machine works in time O(n2k), hence L ∈ P . By assumption (P ⊆ DSPACE (n)), L ∈ DSPACE (n),
contradicting (47). �

Remark. It is easy to show an analogous result for any DSPACE (nk) instead of DSPACE (n) along the
same lines. Hence, we can conclude

(∀k) P 6= DSPACE (nk). (48)

4.5 Alternation

We will now consider a yet another model of computation, somewhat in between Turing machines and
Boolean circuits. It is organized as a machine, but allows for multiple computation paths, which may
co-exist simultaneously.

We present here a simple single-tape variant; an extension to multi-tape and o�-line variants is straight-
forward.

An alternating Turing machine can be presented as a tuple

M = 〈Σ,Σi/o, B,B, Q,Q∃, Q∀, qI , qA, qR, δ〉, (49)

where the items are as in the de�nition of deterministic Turing machine (1) with two modi�cations.

1. The set of states Q is partitioned into sets Q∃ and Q∀, i.e., Q∃ ∪Q∀ = Q, and Q∃ ∩Q∀ = ∅ (Q∃ or Q∀
can be empty). We call the states in Q∃ existential , and the states in Q∀, universal .

2. δ ⊆ (Q − {qA, qR}) × Σ × Q × Σ × {L,R,Z} is a relation, not necessarily a function. The notation
q, a → p, b,D means that (q, a, p, b,D) ∈ δ. We assume7 that, for each q ∈ Q − {qA, qR}, and a ∈ Σ,
there is always some triple p, b,D, such that q, a→ p, b,D.

The concept of (initial/accepting/rejecting) con�guration, and the next-step relation is de�ned in the same
way as for deterministic machine (c.f. (4)); the distinction between existential and universal states does not
matter here. Note however that there can be more than one con�guration C ′, such that C →M C ′; we call
any such con�guration a successor of C. We call a con�guration (q, α) existential (universal) if so is the
state q.

The acceptance is de�ned in terms of the con�gurations winning for M (or winning con�gurations, for
short).

• An accepting con�guration is winning.

• An existential con�guration is winning if at least one of its successors is winning.

• An universal con�guration is winning if all its successors are winning.

• No other con�guration is winning.

A word w ∈ Σ∗i/o is accepted if the initial con�guration (qI ,Bw) is winning. As usual, the language L(M)
recognized by an alternating Turing machine M is the set of words accepted by M .

7This is for simplicity only.

31



Remark. Alternatively, the acceptance by an alternating machine can be de�ned in terms of a game played
by Ms. Or, and Mr. And, similar to the game we have considered for circuits on the page 20. Ms. Or wants
to show that an input w is accepted, while Mr. And claims the opposite. The arena is the con�guration
graph of M de�ned as in the proof of Theorem 1. The players start in the initial con�guration for w and
then move the token down the graph. The move is selected by Or in the existential con�gurations and by
And in the universal ones. It is not di�cult to show that M accepts w if and only if Ms. Or has a winning
strategy in this game.

A computation path is any sequence

(qI ,B@w) = C0 →M C1 →M C2 →M . . .

We say that an alternating Turing machine M works in time T (n) if any computation path has length at
most T (n), for an input of length n. We let ATIME (T (n)) denote the class of all languages recognized by
an alternating Turing machine working in time T (n).

Similarly, we say that an alternating Turing machine M works in space S(n) if the number of cells of
the working tapes visited on a computation path is bounded by S(n), for an input of length n. We let
ASPACE (S(n)) denote the class of all languages recognized by an alternating Turing machine working in
space S(n).

We are not aware of an analogue of Theorem 1 for alternating Turing machines. However, if an alternating
machine M works in space bounded by a constructible function S(n) ≥ log n, we may assume without loss
of generality that M halts for every input (c.f. Exercise 2.5.4.5).

Now we de�ne the alternating analogues of the classes L and P .

AL =
⋃
c≥1

ASPACE (c · log n) (50)

AP =
⋃
k∈N

ATIME (nk). (51)

Theorem 7 (Chandra, Kozen, Stockmeyer).

AL = P (52)

AP = PSPACE . (53)

Proof. We �rst show a simulation of deterministic machines by alternating ones.

P ⊆ AL Let L = L(M), for some deterministic machine M working in time nk, for some k. The idea
is similar to simulation of machines by circuits presented in section 3.3, and we will refer to the notation
introduced there. In some sense, an alternating machine M ′ will play a game of Ms. Or and Mr. And
associated with the circuit constructed for the machine M in the proof of Theorem 2. We may assume that
M is a single-tape machine (like in (1)); our alternating machine M ′ will be an of�line machine with one
working tape. We describe the computation of M ′ in terms of �big� steps which usually consist of several
elementary transitions.

For an input w of length n, M ′ will have existential con�gurations containing (encoding of) expressions
H ist(i, j, y), where 0 ≤ i ≤ nk, 0 ≤ j ≤ nk + 2, and y ∈ Σ ∪ (Q× Σ) is a generalized symbol. Similarly, M ′

will have universal con�gurations containing (encoding of) expressions S tory(i, j, z−1, z0, z1), where i and j
are as above and z−1, z0, z1 are generalized symbols (see page 22). We will refer to them as to �con�gurations
of type H ist� or �con�gurations of type S tory�, respectively. Note that the length of expressions of both
kinds is O(k · log n).

From the initial con�guration, M ′ uses existential states to generate an expression H ist(i, j, (qA, σ)),
where 0 ≤ i ≤ nk, 0 ≤ j ≤ nk+1, qA is the accepting state ofM , and σ ∈ Σ. (The pair (qA, σ) is a generalized
symbol.) Intuitively, by choosing this expression, player Ms. Or �declares� that the input w is accepted by

32



M because, at the moment i, the machine enters the accepting state qA, while the head is scanning the
cell number j containing symbol σ. In other words, the con�guration containing H ist(i, j, (qA, σ)) will be
winning for M ′ i� the predicate H istw(i, j, (qA, σ)) holds true for M (see the proof of Theorem 2, page 22,
for de�nition of H istw). The construction of M ′ will guarantee that, in general, a con�guration of M ′ with
an expression H ist(i, j, y) will be winning i� the predicate H istw(i, j, y) holds true.

If i > 0 then, from a con�guration with expression H ist(i, j, y), M ′ goes in existential states to a
con�guration of type S tory, containing an expression S tory(i−1, j, z−1, z0, z1), for some generalized symbols
z−1, z0, z1, such that z−1z0z1 `M y. From this con�guration, M ′ goes in universal states to a con�guration
of type H ist with one of the expressions H ist(i, j− 1, z−1), H ist(i− 1, j, z0), or H ist(i− 1, j+ 1, z1). Recall
that the resulting con�guration is again existential.

Similarly as for the circuit, some extra rules apply to a con�guration H ist(i, j, y), for extremal values of
j. If j = 0 then the respective universal con�guration has the form S tory(i−1, j, z0, z1) (with z0z1 `M y). If
j = nk+2 then the machine does not generate the expression of type S tory, but stops and accepts whenever
y = B (blank) and rejects otherwise8.

Finally, for a con�guration of type H ist(i, j, y) with i = 0, the machine M ′ veri�es deterministically if
H istw(0, j, y) holds true. That is, the con�gurations containing

H ist(0, 0,B), H ist(0, j, B), for n+ 1 ≤ j ≤ nk + 2,
H ist(0, 1, (qI , w1)),
H ist(0, j, wj), for 2 ≤ j ≤ n

are winning, and all others are not.

The correctness of the construction stems from the following.

Claim. A con�guration of type H ist with an expression H ist(i, j, y) is winning for M ′ if and only if the
predicate H istw(i, j, y) holds true for M .

The proof goes by induction on i = 0, 1, . . . , nk, similarly as the proof of an analogous Claim in the proof of
Theorem 2; we leave the details to the reader.

Also, it is clear from the construction that the machine M ′ uses space O(k · log n).

PSPACE ⊆ AP Let L = L(M), for some deterministic Turing machine M working in space nk. Without
loss of generality, we can assume that M has only one tape. We also assume that M halts on all inputs
(Theorem 1). Let us call a con�guration of M n-admissible if it uses no more than nk cells9. Clearly

there is a constant d, such that the number of n-admissible con�gurations is bounded by 2n
dk

(for n ≥ 2).
Consequently, any computation for an input of length n takes at most 2n

dk

steps.

We now describe an alternating machine M ′ simulating M . Given an input w of length n, M ′ starts by
generating some n-admissible accepting con�guration Cacc . This is done in existential states. Intuitively,
Ms. Or declares that M can reach the con�guration Cacc from the initial con�guration Cinit . By remark

above, this should happen in no more than 2n
dk

steps. The checking of this claim can be best described as
a call of a procedure:

call procedure Reach(Cinit , Cacc , n
dk).

Here Reach(C1, C2,m) is a recursive procedure which takes as parameters two n-admissible con�gurations
C1 and C2, and a number m ≤ ndk, given in binary10. Its goal is to verify that M can reach C2 from C1 in
no more than 2m steps. To this end, the machine �rst checks deterministically if C1 = C2 or C1 →M C2 (i.e.,
if M can reach C2 from C1 in no more than one step); if it is the case, M ′ accepts. Otherwise, if m = 0 then
M ′ rejects. If m > 0 then M ′ generates in non-deterministic states an admissible con�guration C. Then,

8Because the cell number nk + 2 will never be reached in the computation of M on w.
9That is, it can be represented by (q,Bα), where |α| ≤ nk, c.f. (3).

10This assumption is not essential, as anyway m is polynomially related to |Ci|.

33



in universal state, it chooses one bit of information, say left or right . Then, according to the result, it calls
Reach(C1, C,m− 1) or Reach(C,C2,m− 1), respectively.

It can be easily shown by induction on m that whenever, in some con�guration, M ′ calls the procedure
Reach(C1, C2,m), then this con�guration is winning forM ′ if and only if there is a computation ofM , which
goes from C1 to C2 in no more than 2m steps. This proves the correctness of M ′.

To estimate the computation time, note that, along one computation path, Reach(C1, C2,m) is called
for strictly descendant values of m, so there are at most ndk calls. Execution of the body of Reach requires
reading of C1 and C2, and possibly generating C. As these con�gurations are n-admissible, this can be done
in O(nk) steps. Therefore, the length of any computation path can be estimated by O(n(d+1)k), i.e., by a
polynomial, as required.

We now move to a simulation of alternating machines by deterministic ones.

AL ⊆ P A deterministic machine M ′, simulating an alternating machine M for an input w, performs a
DFS through the graph of con�gurations of M reachable from the initial con�guration. At the same time,
M ′ �nds the quali�cation of a node (winning or loosing), and accepts if the initial con�guration turns out
to be winning11. As the size of the graph of reachable con�gurations is polynomial with respect to |w|, M ′
works in polynomial time, as required.

AP ⊆ PSPACE LetM be an alternating machine working in time nk. We cannot use the method from the
previous paragraph (simple DFS), because the graph of reachable con�gurations can be too big. Instead we
explore the fact that the depth of this graph is polynomial, because the length from an initial con�guration
to a terminal one is bounded by the computation time of M . A deterministic machine M ′ simulating M ,
given an input w of length n, performs a DFS algorithm in the tree of con�gurations of M reachable from
the initial con�guration (rather than the con�guration graph). That is, M ′ does not memorize the whole
con�guration graph at the expense of loosing track of which con�gurations have been already visited in
course of DFS.

In the simple version of the algorithm,M ′ remembers the whole computation path leading to the actually
visited con�guration of M . As this path has length at most nk, and each con�guration has size O(nk), this
gives the bound of O(n2k) for the space used by M ′, which is su�cient for our purpose.

In fact, we can obtain a better bound of O(nk) if, instead of the whole computation path, M ′ re-
members only three generalized symbols of each con�guration (plus the whole actual con�guration), see
Exercise 4.7.5.2. �

4.6 Non-deterministic case: NP

4.6.1 Existential decision problems and search problems

Many algorithmic problems have the pattern: �nd whenever exist . Let us see few examples.

Compositeness. Given a natural number n ≥ 2 (in binary), �nd a natural divisor k of n di�erent from 1
and n itself, or answer that n is prime.

Hamiltonicity. Given an undirected graph12, �nd a cycle which visits each node exactly once (Hamiltonian
cycle), or answer that the graph is not Hamiltonian.

11A similar algorithm has been used for evaluation of Boolean circuits in Theorem 3.
12We present problems informally, according the convention of Section 4.1.

34



Satis�ability. Given a formula of propositional calculus, �nd a valuation which makes the formula true,
or answer that the formula is unsatis�able.

In the above, divisor, cycle, or valuation can be viewed as a solution to the problem, or a witness that a
particular instance satis�es a required property. Sometimes, the mere existence of a witness is uninteresting,
but we search for a maximal or minimal one (in appropriate sense).

Max Clique. Given an undirected graph, �nd a largest set of vertices X, such that each pair of distinct
vertices in X is connected by an edge (i.e. a largest clique).

Min Vertex Cover. Given an undirected graph, �nd a set of vertices X of minimal size, such that each
edge is incident with at least one vertex in X.

Observe that the optimization problems above can be reduced to the search problems of the �rst kind.
For example, consider the problem

k Clique. Given an undirected graph with n vertices and a number k ≤ n, �nd a clique of size k, or answer
that there is no such clique13.

Now the Max Clique problem can be reduced to solving k Clique, for k = n, n − 1, . . ., and stopping at
the �rst k, where the answer is positive. The Min Vertex Cover problem can be solved similarly. We will
study reduction between problems more precisely in the next section.

An apparently more restricted kind of problems consists of the existential problems, where we only ask
if a solution (witness) exists. For example

Is a number composite ?
Is a graph Hamiltonian ?
Is a formula satis�able ?

The relation between existential and search problem is, in general, not completely understood. On positive
side, the Satis�ability problem can be reduced to its existential version in the following sense.

Lemma 3. Suppose an algorithm A decides in time T (n), whether a given formula ϕ is satis�able (where n
is the size of ϕ). Then there is an algorithm A′, which moreover �nds an evaluation satisfying ϕ whenever
it exists, acting in time O(n · T (n)).

Proof. We present A′ by a pseudo-code.

Given: ϕ(x1, . . . , xk)
If A(ϕ) = No then answer: unsatis�able
else ψ := ϕ
For i = 1, . . . , k do

If A (ψ[0/xi]) = Yes then ψ := ψ[0/xi]
xi := 0

else ψ := ψ[1/xi]
xi := 1

If A(ϕ) = Yes then the valuation of x1, . . . , xk computed by this algorithm satis�es the formula ϕ. �

The situation is quite di�erent for the Compositeness problem, where we do know a polynomial-time
algorithm for the existential problem: this is the celebrated Agrawal�Kayal�Saxena primality test (�rst
published in 2002). However, no e�cient algorithm is known to �nd a non-trivial divisor whenever it exists.
Indeed, a great deal of the public-key cryptography, including the RSA cryptosystem, is based on the
assumption that no such algorithm exists.

13In this problem, it is inessential if k is given in binary or unary, as its size is in any case dominated by the representation
of the graph.

35



Hence, we may verify that a number is composite without �nding a witness. But what exactly does it
mean: to be a witness ?

Indeed, much before the AKS test, it was known that there can be other witnesses of compositeness than
divisors. For example:

1. If there is a 6≡ ±1 mod n such that a2 ≡ 1 mod n then n is composite (a is a non-trivial square root of
1).

2. If there is a such that an 6≡ a mod n then n is composite (a is a Fermat witness).

There is however a di�erence between the two kind of witnesses. Given a non-trivial square root a of 1,
we can easily �nd a divisor as well. Indeed, if p is a prime factor of n, we have a2 ≡ 1 mod p, but then
a ≡ 1 mod p or a ≡ −1 mod p. Hence we can �nd p by the Euclid algorithm (c.f. Exercise 2.5.4.7) applied
to the pair (n, a− 1) or (n, a+ 1).

On the other hand, no polynomial-time algorithm is known to �nd a divisor from a Fermat witness.

We will now give a precise de�nition of the concept of witness.

4.6.2 Polynomial relations and their projections

Let Σ be an alphabet. For a relation R ⊆ Σ∗ × Σ∗, let ∃R be its projection to the �rst component, i.e.,

∃R = {x : (∃y)R(x, y)}. (54)

For simplicity, assume |Σ| ≥ 2; we can then �x an encoding of a pair of words (x, y) by a single word α(x, y),
such that |α(x, y)| ≤ 2|x|+ |y| (c.f. Exercise 2.5.1.1). We say that a relation R is in the class P if so is the
corresponding language {α(x, y) : R(x, y)}. We call a relation R polynomial if it satis�es the following two
conditions:

R is in P (55)

(∀x, y)R(x, y) ⇒ |y| ≤ pR(|x|), (56)

for some polynomial pR.

The class NP consists of those languages L, which can be presented as L = ∃R, for some polynomial
relation R.

In this context, we say that the relation R veri�es language L, and we call y a witness for x, whenever
R(x, y). Not that, by de�nition, a witness, if any, must be �short� (of the length polynomially related to |x|),
and the property of being a witness must be e�ciently checkable.

It is easy to see that the problems considered at the beginning of this section are in the class NP (when

encoded as languages). For example, let R consist of the pairs of words (x, y), such that x ∈ {0, 1}n2
is

an incidence matrix of a symmetric graph over the set of vertices {1, . . . , n}, and y is a word of the form
y = y1 . . . yn, satisfying the following conditions. Each yi is a binary word of length blog nc+ 1 representing
some number ai ∈ {1, . . . , n}, such that ai 6= aj , whenever i 6= j, and there is an edge from ai to ai+1, for
i = 1, . . . , n − 1, and from an to a1. Clearly, the relation R is polynomial and the language ∃R represents
the set of (undirected) graphs with Hamiltonian cycles.

Remark Both conditions in the de�nition of polynomial relation are essential; omitting any of them would
yield a trivial extension of NP . Indeed, for any computable language L = L(M) (c.f. Section 2.2), we can
view an accepting computation of M on x as a witness for x. This relation is computable in polynomial
time, but the witnesses are, in general, very long. On the other hand, any language L can be presented by
∃R, for R = {(x, ε) : x ∈ L}. Here, any witness has length 0, but clearly the complexity of R is the same as
that of L.

The last observation yields an easy inclusion of the complexity classes:

36



P ⊆ NP . (57)

The question whether this inclusion is strict (P
?= NP) is perhaps the most famous open question of computer

science.

An alternative characterization of the class NP can be given in terms of non-deterministic Turing ma-
chines.

A non-deterministic Turing machine is an alternating machine (c.f. (49)), where all states are existential,
i.e., Q = Q∃ and Q∀ = ∅. Thus, a non-deterministic machine accepts an input word if there is a path (at
least one) from the initial con�guration to an accepting one.

Proposition 3. A language L is in NP i� L = L(M), for some non-deterministic Turing machine working
in polynomial time.

Proof. (⇒) Let L = ∃R, for a polynomial relation R. A non-deterministic machine recognizing L acts as
follows. Given an input x, the machine uses existential states to generate a word y, |y| ≤ pR(|x|) (c.f. (56)).
Then it checks deterministically if R(x, y) holds and accepts if it is the case.

(⇐) Let L = L(M), for a non-deterministic machine M working in time p(n), for some polynomial p.
Let R consist of the pairs (x, y), where y encodes a sequence of ≤ p(|x|) transitions of M , such that if M
follows these transitions then it accepts x. By construction, R is polynomial and L = ∃R. �

4.7 Exercises

4.7.1 P

1. For k, n ∈ N, k ≥ 2, let repk(n) be a k-ary representation of n, i.e., a unique word amam−1 . . . a1a0

over alphabet {0, 1, . . . , k − 1}, such that n = amk
m + am−1k

m−1 + . . . + a1k + a0 and am 6= 0 or
n = m = 0. For a set A ⊆ N, let

repk(A) = {repk(n) : n ∈ A}.

Estimate the complexity of transformation

k, `, repk(n) 7→ rep`(n).

Deduce that, for any A ⊆ N, and k, ` ≥ 2, repk(A) is in P if and only if rep`(A) is in P .

4.7.2 P/poly

1. Suppose
(
M, (kn)n∈N

)
recognizes L in polynomial time without any restriction on the length of kn.

Show that L ∈ P/poly.

4.7.3 Easy cases of SAT

1. (Horn Clauses) Let X be a �nite set of variables and φ be a CNF Boolean expression with variables
from the set X such that each clause contains only one positive literal, that is all literals, except
possible for one, are negations of variables, e. g. φ = (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3). Prove, that
the SAT problem for these Boolean expressions is solvable in P . Hint. Consider a Boolean expression
φ such that each clause contains only one positive literal and notice, that clauses with at least one
non�negative variable one can re-write as implications. In order to �nd a truth assignment for φ start
from an empty set T (all assignments are false) and for every implication add one variable to T .

37



2. Let X be a �nite set of variables and φ be a CNF Boolean expression with variables from the set X
such that each clause involves two variables, e. g. φ = (x1 ∨ x2) ∧ (x3 ∨ ¬x1). Let G be a graph with
the set of vertices {x,¬x : x ∈ X} and an edge from x1 to x2 if there is a clause in φ of the form
¬x1∧x2 or x2∧¬x1. Prove that φ is unsatis�able if and only if there are paths from x to ¬x and from
¬x to x.

3. Prove that 2SAT problem, that is the problem whether a Boolean expression in the form described in
the previous exercise is satis�able, is in P .

4. Prove that the (CNF) SAT problem, where each variable occurs at most twice is in P .

5. (The Timetable Problem) Let H be a �nite set of hours, T1, . . . , Tn ⊂ H be the set of hours during
which ith teacher is available for teaching and C1, . . . , Cm ⊂ H be the set of hours during which jth
class is available for studying and Rij ∈ N (1 ≤ i ≤ n, 1 ≤ j ≤ m) be the number of hours ith teacher
is required to teach jth class. The TT problem is to determine whether there exists a meeting function
that is a mapping

f : {1, . . . , n} × {1, . . . ,m} ×H → {0, 1}
such that

(a) ∀1≤i≤n,1≤j≤m f(i, j, h) = 1→ h ∈ Ci ∩ Tj ,
(b) ∀1≤i≤n,1≤j≤m

∑
h∈H f(i, j, h) = Rij ,

(c) ∀1≤i≤n,h∈H
∑n
i=1 f(i, j, h) ≤ 1,

(d) ∀1≤j≤m,h∈H
∑m
j=1 f(i, j, h) ≤ 1.

Assume, that for every 1 ≤ i ≤ n we have |Ti| = 2 and show that this 2�TT problem is solvable in P .
Remark. This fact was noticed by S. Even, A. Itai and A. Shamir (1976) alongside a similar observation
that 2SAT problem is solvable in O(n) time.

4.7.4 Logarithmic space

1. Show that the set of well-formed bracket expressions is recognizable in L (logarithmic space).

2. Show that the evaluation of Boolean formulas (not circuits!) without variables can be done in L.

Remarks. You may assume that the parentheses are obligatory. You may �rst consider the case where
negation is applied only to variables.

3. Suppose we have to compute a term τ formed from constants and binary operations. We may use only
instructions of the form x := c, and x := f(y, z), where x, y, x are variables, c is constant and f a
binary operation. How many variables we need w.r.t. the size of τ ?

Hint. Think of the number of pebbles we need in a pebble game on a binary tree.

4. Let A be a �nite algebra over a set of binary operations; we view all elements of A as constants.
Considering A as �xed, show that evaluation of any term over A can be done in L. (This generalizes
Exercise 1.)

Hint. Show �rst that it can be done in DSPACE (log2 n), using Exercise 3. Reduction to the single
logarithm is quite tricky.

5. Suppose there is an algorithm which, for a number n (in unary) produces a circuit Cn of polynomial size
and logarithmic depth, with the fan-in of Or-gates and And-gates at most 2. Show that the language
M recognized by (Cn)n∈N is in the class L.

Hint. Note that you cannot store the circuit Cn in the memory of your machine. However, you can
call the algorithm generating Cn again and again, whenever needed. Therefore, you can evaluate the
circuit keeping in the memory only an identi�er of the actual gate (of size log n) and the path from
the output gate to the actual gate (as a binary string).

38



4.7.5 Alternation

1. De�ne alternating �nite automata over �nite words in one-way, and two-way versions.

(a) Show that the non-emptiness problem for these automata is decidable.

(b) Show that these automata recognize only regular languages.

2. Assuming that a function f(n) ≥ n is space constructible show

ATIME (f(n)) ⊆ DSPACE (f(n)).

5 Reduction between problems

We often speak about reduction of one problem to another. For example, analytic or Cartesian geometry en-
ables us to reduce problems of elementary geometry to questions of arithmetics and algebra. In section 4.6.1,
we have seen that the problem of �nding a satisfying assignment of propositional formula can be reduced to
the question whether a satisfying assignment exists. On the other hand, we have remarked that no reduction
is known of the problem of �nding a prime factorization of an integer to the question whether a number is
prime or composite.

Reductions between problems play a crucial role both in algorithmics and in complexity theory. Suppose
we are able to reduce problem A to problem B. Then, if we �nd an algorithm for B, we can use it to solve
A. On the other hand, if we don't know algorithm for B, we know at least that this problem is �as hard as
A�.

As usual, a precise de�nition of the intuitive concept of reduction presents some subtleties, and there are
several reasonable variants of this notion.

5.1 Case study � last bit of RSA

We show here one concrete example of a reduction between problems. The algorithm RSA14 is commonly
used in public�key cryptography. Let us recall the basic assumptions.

The public key is given by the numbers n and e, where n = p · q is a product of two odd primes p and q,
and e⊥ϕ(n). Here x⊥y means that x and y are coprime (relatively prime), and ϕ(n) is the Euler function
of n

ϕ(n) = |{a : a⊥n}|
= (p− 1) · (q − 1).

The plaintext ranges over {0, 1, . . . , n− 1}, and the encryption is given by a function

{0, 1, . . . , n− 1} 3 x 7→ xe mod n.

The (legal) decryption uses a private key d, where e · d ≡ 1 (mod ϕ(n)),

{0, 1, . . . , n− 1} 3 y 7→ yd mod n,

it explores the fact that xe·d mod n = x. An attacker wishes to compute the function

n, e, xe mod n 7→ x (58)

without knowing d. It is of course possible via factorization of n and then computing the inverse of e modulo
ϕ(n); but it is broadly believed that this problem is computationally hard and consequently an e�cient
attacker does not exist.

14From the names of Ron Rivest, Adi Shamir, and Leonard Adleman. See [7] for more background on RSA.

39



Now consider a weak attacker , who only wishes to �nd the last bit of the plaintext

n, e, xe mod n 7→ x mod 2. (59)

We will show that if a weak attacker succeeds then a (�strong�) attacker succeeds as well. More precisely,

Proposition 4. If an algoritm A computes the function (59) in time T (log n) then there is an algorithm
A′, which computes (58) in time polynomial of max(T (log n), log n).

Proof. We start with the following observation, which holds for x < n, whenever n is odd.

(2x mod n) mod 2 = 1 ⇐⇒ n

2
< x < n. (60)

Thus, knowledge of the last bit of 2x mod n helps us to locate x in the lower or upper �half� of the interval
{0, 1, . . . , n− 1}.

Similarly, it is easy to verify that

(4x mod n) mod 2 = 1 ⇐⇒
(

1
4
n < x <

1
2
n

)
∨
(

3
4
n < x < n

)
.

More generally, the following observation will be useful.

Claim. For n odd and i < n, the i-th bit of the binary expansion of xn equals
(
2ix mod n

)
mod 2.

For, we analyse the school algorithm of division x by n, which can be represented by a recursive system of
equations15

p1 = x

2pi = si · n+ pi+1, with pi+1 < n.

As a result,

x

n
= 0, s1s2 . . .

The claim follows from the observation that

pi = 2i−1x mod n
si =

(
2ix mod n

)
mod 2,

for i = 1, 2, . . ., which follows recursively from the identity, which holds for odd n and any α,

2 · (α mod n) = (2α mod n) mod 2 · n+ 2α mod n.

Now, clearly x is completely determined if we know the subsequent bits s1 s2 . . . si, for i ≤ dlog ne. By
Claim, these digits can be obtained by computing

(
2ix mod n

)
mod 2, for i = 1, . . . , dlog ne.

Suppose we are given n, e, xe mod n, as in (58) above, and we wish to compute x. The crucial fact is
that, even without knowing x, we can, for given i, compute e�ciently (2ix)e mod n, using the fact that

(2ix)e mod n =
(
2ie mod n

)
· (xe mod n) mod n.

By assumption, the algorithm A, given

n, e, (2ix)e mod n = (2ix mod n)e mod n

computes
(
2ix mod n

)
mod 2 in time T (log n). Hence, by calling it for i = 1, 2, . . . , dlog ne, we can retrieve

x as required. Considering the time O(log3 n) needed to compute (2ix)e mod n (c.f. Exercise 2.5.4.6), we
can estimate the time of the whole algoritm by O

(
log n · (log3 n+ T (log n))

)
.

15We can view this process as an in�nite run of a �nite automaton with states in {0, 1, . . . , n − 1} and transitions p
2p÷n→

2p mod n.

40



5.2 Turing reduction

The kind of reduction that we have seen in the example above has a natural interpretation in terms of
programming: we make a program to solve problem A, having at our disposal a program solving problem
B, although we may have no access to the source code of the latter. For Turing machines, this is realized in
the concept of machines with oracles.

An oracle Turing machine M� is de�ned similarly as a deterministic machine in Section 2.2 with one
modi�cation. We assume the machine has an additional tape, called question tape, and a special question
state q?. On the question tape, the machine can only write symbols16 0, 1, or B (blank). Originally, the
question tape is empty, i.e., contains the marker B followed by an in�nite sequence of blanks. The proper
content of the question tape is the {0, 1}-word which occupies the leftmost cells of the tape until the �rst
blank (we don't count B).

The machine M� per se does not recognize any language; it has meaning only together with a language
K ⊆ {0, 1}∗, called oracle. The pair (M�,K) is usually denoted by MK .

The computation of MK on an input w is de�ned similarly as for deterministic Turing machine (Sec-
tion 2.2) with one modi�cation. Suppose the machine enters the state q? and the proper content of the
question tape is v ∈ {0, 1}∗. Then, before the machine makes the next step of the computation, the �rst
blank cell of the question tape is rewritten by 1 if v ∈ K, and by 0 otherwise.

Note that is it reasonable (although formally not required) that the head of the question tape scans
the �rst blank cell while entering the state q?; then the machine can immediately read the �answer� to its
�question�.

The acceptance is de�ned similarly as for ordinary Turing machines; we let L(MK) denote the language
recognized by the machine M� with oracle K.

The concept of time and space used by a machine with oracle is de�ned similarly as for ordinary Turing
machines (the space of the question tape is counted as working space).

We say that a language A is Turing reducible to a language B, in symbols

A ≤T B, (61)

if there is an oracle Turing machine M�, such that MB works in polynomial time, and A = L(MB).

5.3 Karp reduction

Let A,B ⊆ Σ∗, and let f : Σ∗ → Σ∗ be a function computable in polynomial time (see Section 4.2.1). We
say that f reduces A to B in the sense of Karp if, for all w ∈ Σ∗

w ∈ A ⇔ f(w) ∈ B, (62)

or, in other words,

f−1(B) = A. (63)

In this context, we call f a polynomial (or Karp) reduction (of A to B).
We say that a language A is Karp reducible to a language B, in symbols

A ≤K B (64)

if there is a polynomial reduction of A to B.

If A ≤K B then also A ≤T B. Indeed, an oracle machine MB recognizing A computes the reduction
f(w) and then asks only one question, whether f(w) ∈ B. It immediately accepts or rejects, following the
answer received to the question.

16To be precise, it also has to re-write the symbol B, whenever visiting the leftmost cell.

41



Remark. Note that a polynomially computable function f : Σ∗ → Σ∗ may serve as reduction for many
pairs of sets. Indeed, it follows from (63) that, for any B ⊆ Σ∗, f−1(B) ≤K B. In particular, if A ≤K B
then also A ≤K B (where X is the complement of X), by the same reduction.

Note. In the literature, Turing reducibility A ≤T B is often understood as a reduction by a computable
function (page 7), without any complexity bound. In this context, a Turing reduction in polynomial time
is called Cook reduction, after Stephen Cook. (Karp reduction is called so after Richard M. Karp.) In
modern literature (e.g., [6]), often a more restricted complexity bounds are considered. For example, it is
required that a reduction f : Σ∗ → Σ∗ is computable in logarithmic space (thus a fortiori in polynomial
time, but a converse implication is not known). In this lecture, we usually present classical polynomial-time
(Karp) reductions, but in most cases they can be improved to logarithmic-space reductions. We leave this
improvement as an exercise.

The Turing and Karp reductions allow us to reduce one existential problem (does there exist ? . . . ) to
another. But in the case of NP -problems, we are usually interested in �nding a solution, or witness to a
question. Can a witness found for one problem be used to construct a witness for another problem ? This
idea is captured by the concept of Levin reduction (called so after Leonid Levin).

5.4 Levin reduction

It is de�ned for relations, rather than languages. Let R1, R2 ⊆ Σ∗ ×Σ∗. A Levin reduction consists of three
functions: f : Σ∗ → Σ∗ and g, h : Σ∗ × Σ∗ → Σ∗; each of them computable in polynomial time, satisfying
the following conditions17.

1. (∀x, y)R1(x, y)⇒ R2(f(x), g(x, y)),

2. (∀x, z)R2(f(x), z)⇒ R1(x, h(x, z)).

Note that the above conditions imply that

(∀x) (∃y)R1(x, y)⇔ (∃z)R2(f(x), z)

hence f is a Karp reduction of ∃R1 to ∃R2.

We write R1 ≤Le R2 if there exist f, g, h, satisfying the conditions above.

5.5 NP-completeness

A language L is NP-hard in the sense of Karp if, for any L′ in NP , L′ ≤K L. It is NP-complete in the
sense of Karp if it is NP-hard and moreover is itself in the class NP . When we simply say that a language
is NP -complete (NP -hard) we mean the completeness (or hardness) in the sense of Karp. The concept of
Levin reduction induces some extension of this notion.

We say that a language L is NP-complete in the sense of Levin if L is veri�ed by a polynomial relation18

R such that, for any polynomial relation R′, R′ ≤Le R. Note that if L is NP -complete in the sense of Levin
then it is also NP -complete in the sense of Karp.

We will now focus on the problem Boole-Sat of the satis�ability of Boolean circuits. More precisely, we
�x some encoding of Boolean circuits C 7→ Ĉ (see (18)), and let RBoole be the relation

RBoole = {(Ĉ, w) : C is a circuit with n variables, w ∈ {0, 1}n, and C(w) = true}. (65)

17In full generality, we could admit di�erent alphabets here, say R1 ⊆ Σ∗1 × Γ∗1, R2 ⊆ Σ∗2 × Γ∗2. In this case, the types of
the functions would be: f : Σ∗1 → Σ∗2, g : Σ∗1 × Γ∗1 → Γ∗2, and h : Σ∗1 × Γ∗2 → Γ∗1. We can easily restrict ourselves to a single
alphabet, e.g., by taking a superset of these alphabets (and slightly modifying the functions if necessary).

18It means that L = ∃R, see page 36.

42



We let
Boole-Sat = ∃RBoole

Theorem 8. The problem Boole-Sat is NP-complete in the sense of Levin.

Proof. Let L = ∃R, for some polynomial relation R (c.f. de�nitions on page 36). Without loss of generality,
we can strengthen (56) by

(∀x, y)R(x, y) ⇒ |y| = pR(|x|). (66)

We �rst adapt to polynomial relations the construction machine 7→ circuit of Theorems 2 and 5.

Claim 1. There is a P-time computable function 1n 7→ Dn(x1, . . . , xn, xn+1, . . . , xn+pR(n)), such that, for

v ∈ {0, 1}n and w ∈ {0, 1}pR(n),

Dn(v, w) = 1 ⇐⇒ R(v, w). (67)

To show the claim, consider the language {α(x, y) : R(x, y)} de�ned in Section 4.6.2. As this language
is in P , we have by Theorem 5 a polynomial mapping 12n+pR(n) 7→ E2n+pR(n), where the circuits E satisfy
E2n+pR(n)(u) = 1 i� u = α(v, w) and R(v, w). Recall that α(v, w) = v10v20 . . . vn−10vn1w. We transform
the circuit E2n+pR(n) into the circuit Dn be replacing the gates x2, x4, . . . , x2n−2 by 0, and the gate x2n by
119. We replace the negated gates x2i, i ≤ n accordingly, and rename the remaining gates in the obvious
way. Clearly

Dn(v, w) i� E2n+pR(n)(α(v, w)) i� R(v, w).

We are ready to de�ne a Levin reduction of R to RBoole . For w ∈ {0, 1}n, we let

f : v 7→ Hn

(
x1, . . . , xpR(n)

)
=def Dn

(
v, x1, . . . , xpR(n)

)
.

That is, Hn is obtained from Dn by �rst replacing in Dn the gates x1, . . . , xn by the subsequent bits
w1, . . . , wn and the negated gates x1, . . . , xn by w1, . . . , wn (c.f. footnote 19), and then renaming the remain-
ing gates xn+1, . . . , xn+pR(n) by x1, . . . , xpR(n). The witnesses in both directions remain the same, i.e., we
let

g(v, w) = h(v, w) = w.

It follows from (67) that, for all v and w,

R(v, w) ⇔ Dn(v, w) = 1 ⇔ RBoole(f(v), w),

hence f, g, h constitute indeed a Levin reduction. �

Analogously, we de�ne the satis�ability problem for propositional formulas and subclasses of formulas.

We �x a countable set of variables Var .
The set of propositional formulas is de�ned by the following rules.

1. true and false are formulas,

2. a variable x ∈ Var is a formula,

3. if ϕ is a formula then so is (¬ϕ),

4. if ϕ1, . . . , ϕk, are formulas, for k ≥ 1, then so are

19 Here we identify 0 and 1 with the constant gates false and true de�ned in (19) and (20), respectively.

43



(a) (ϕ1 ∨ . . . ∨ ϕk), and

(b) (ϕ1 ∧ . . . ∧ ϕk).

A literal is a variable or negation of a variable, (¬x). A clause is a disjunction

(`1 ∨ . . . ∨ `k),

where `1, . . . , `k are literals. If k = 0, we assume by convention that the clause equals false.

A formula is in conjunctive normal form (CNF ) if it is a conjunction

(ψ1 ∧ . . . ∧ ψm),

where ψ1, . . . , ψm are clauses. If m = 0, we assume by convention that the formula equals true.

A formula is in 3-CNF if it is in CNF and moreover each clause consists of at most 3 literals.

The formulas are evaluated in the Boolean algebra {0, 1}. Given a formula ϕ and a valuation v of all the
variables of ϕ, the value ϕ[v] is de�ned as expected. If the variables of ϕ are x1, . . . , xn, we will identify a
valuation xi 7→ wi with a word w = w1 . . . wn.

Like for circuits, we assume some standard encoding of formulas over some �xed alphabet; we will not
distinguish between a formula and its encoding. Let the relation Rprop be de�ned by

Rprop = {(ϕ,w) : ϕ[w] = 1} (68)

and let the relations RCNF−prop and R3−CNF−prop be subsets of Rprop obtained by restricting the �rst
component to formulas in CNF and in 3-CNF , respectively.

Let

Sat = ∃RCNF−prop (69)

CNF-Sat = ∃RCNF−prop (70)

3-CNF-Sat = ∃R3−CNF−prop . (71)

The NP -completeness of Boole-Sat stated in Theorem 8 implies the following.

Corollary 3 (Cook-Levin Theorem). The problems Sat, CNF-Sat, and 3-CNF-Sat are NP-complete in the
sense of Levin.

Proof. We �rst show a Levin reduction of Boole-Sat to Sat . Clearly, a Boolean circuit is always equivalent
to a formula, which de�nes the same Boolean function. However, a natural construction which unravels the
circuit duplicating the gates in needed may yield a formula which is exponentially bigger20. Instead, for a
circuit C, we will construct a formula ϕC with more variables, such that the satis�ability of C is equivalent
to satis�ability of ϕC .

We �rst demonstrate the construction on example. Consider the circuit of Figure 1 and its labelling by
identi�ers represented on Figure 2. We treat the identi�ers pi as propositional variables and construct a
formula, which describes the circuit:

(p1 ⇔ x1) ∧ (p2 ⇔ x2) ∧ (p3 ⇔ x3) ∧ (p4 ⇔ ¬x1) ∧ (p5 ⇔ ¬x2) ∧ (p6 ⇔ ¬x3) ∧
(p7 ⇔ (p1 ∨ p2)) ∧ (p8 ⇔ (p1 ∨ p5)) ∧ (p9 ⇔ (p2 ∨ p4)) ∧ (p10 ⇔ (p4 ∨ p5)) ∧

(p11 ⇔ (p7 ∧ p3 ∧ p10)) ∧ (p12 ⇔ (p8 ∧ p9 ∧ p6)) ∧ (p13 ⇔ (p11 ∨ p12)) ∧ p13

Here, for convenience, we have used the connective of equivalence, where α ⇔ β is an abbreviation of
(α⇒ β) ∧ (β ⇒ α), and α⇒ β is an abbreviation of ¬α ∨ β.

20It is however an open problem if it must be the case; see [6], Problem 15.5.4.

44



In general, for a circuit C(x1, . . . , xn) with M gates, our formula ϕC has variables x1, . . . , xn, p1, . . . , pM ,
and is a conjunction of the identi�er of the output gate pM , and the equivalence formulas (pi ⇔ . . .), de�ning
all the gates of the circuit. A crucial property is that, for an arbitrary valuation w of the variables x1, . . . , xn,
there is a unique extension

w̃ : {x1, . . . , xn, p1, . . . , pM} → {0, 1}

which makes all the equivalence formulas true. Moreover, the value w̃(pi) equals to the value of the gate
pi under the valuation w. Hence, the whole formula ϕC is true under the valuation w̃ i� w̃(pM ) is true i�
C[w] = 1. In particular, ϕC is satis�able i� C is satis�able.

Therefore, the function f of the Levin reduction is realized by the transformation C 7→ ϕC described
above, the function g by w 7→ w̃, and the function h restricts a valuation v of the variables in {x1, . . . , xn, p1, . . . , pM}
to the variables in {x1, . . . , xn}. We leave to the reader veri�cation that all these functions are computable
in polynomial time.

To show the NP-completeness of CNF-Sat , it is enough to note that the equivalence subformulas of ϕC
above are �almost� clauses. Reduction of CNF-Sat to 3-CNF-Sat is easy using some auxiliary variables. We
leave these two reductions as an exercise to the reader.

5.5.1 Search algorithms for NP-complete problems

We say that an algorithm A solves the search problem for a polynomial relation R if, for an input v, A
outputs some w, such that R(v, w) whenever such a word exists, otherwise A outputs sorry ! For example,
the algorithm A′ in Lemma 3 solves the search problem for the relation Rprop .

For a function T : N→ N, let poly(T ) be the smallest class of functions containing T and all polynomials
over N, and closed under composition. We say that an algorithm works in time poly(T ) if its working time
is bounded by some function in this class.

Proposition 5. Suppose a language L is NP-complete in the sense of Karp, and let L = ∃R, for some
polynomial relation R. Suppose an algorithm A recognizes the language L in time T (n). Then there is an
algorithm A′, which solves the search problem for R in time poly(T ).

Proof. We will explore the fact that Sat has such an algorithm and it is NP -complete in the sense of Levin.
Let f, g, h constitute a Levin reduction of R to Rprop , and let F be a reduction of Sat to L. The idea is
to reduce an instance v of the problem L to an instance f(v) = ϕ of Sat and then use the algorithm A′ of
Lemma 3. Whenever this algorithm calls the decision algorithm to check satis�ability of a formula ψ (which
we don't have), we reduce this ψ to an instance F (ψ) of the problem L and call the decision algorithm for
L, which we have by assumption. Here we use the fact that L itself is NP -complete (at least) in the sense
of Karp.

More speci�cally, we present our algorithm by the following pseudo-code. (We call it A′′ to distinguish
from the one in Lemma 3, but A stands for the assumed algorithm for L.)

45



Algorithm A′′

Input: v
Output: w, such that R(v, w) or: Sorry!
If A(v) = No then answer: Sorry!
else Let

ϕ(x1, . . . , xk) = f(v) in
ψ := ϕ
For i := 1, . . . k do
If A (F (ψ[0/xi])) = Yes (* ψ[0/xi] ∈ Sat *)
then ψ := ψ[0/xi]

xi := 0
else ψ := ψ[1/xi]

xi := 1
answer: w := h(x1 . . . xk)

We leave it to the reader to verify that the algorithm A′′ works in time poly(T ). �

Remark. What makes Proposition 5 particularly interesting is that we don't have an analogous result for
an arbitrary polynomial relation. For example, for the relation

R(n, d) ⇐⇒ d is a non-trivial divisor of n,

where n and d are given in binary, we know that the language ∃R is in P 21, but we do not know an algorithm
which would �nd a divisor fast; the security of the cryptosystem RSA (see Section 5.1) is actually based on
the conjecture that such an algorithm does not exist.

6 Randomization and interaction

6.1 Bounded-error probabilistic polynomial time

In this section we will only consider polynomial relations R (see Section 4.6), where the condition (56) is
strengthened in the following way: there is a polynomial r, such that

(∀x, y)R(x, y) ⇒ |y| = r(|x|). (72)

(We adopt the convention that the parameter of a relation is denoted by the same letter in the lower case.)
The above restriction is for convenience only; note that the class NP can be de�ned using polynomial relations
satisfying (72). We make an additional proviso that the alphabet in consideration is {0, 1}.

The class NP has been de�ned in terms of the existence of a witness: an input x is accepted if there
exists a witness y, such that the pair (x, y) satis�es a polynomial relation R. The probabilistic class BPP
will be de�ned in terms of the number of witnesses. Let R ⊆ {0, 1}∗ × {0, 1}∗ be a polynomial relation.
For a �xed n we consider a random variable Ur(n) taking the values in the �nite set {0, 1}r(n) with uniform
probability, i.e.,

(∀u ∈ {0, 1}r(n)) Pr(Ur(n) = y) =
1

2r(n)
. (73)

Note that, for any property α,

Pr(α(Ur(n))) =
∑
α(y)

Pr(Ur(n) = y) =
|{y : α(y)}|

2r(n)
. (74)

21The celebrated Agrawal�Kayal�Saxena (AKS) primality test discovered in 2002.

46



We say that that a polynomial relation R veri�es a language L ⊆ {0, 1}∗ with bounded error if

(∀x) x ∈ L ⇒ Pr(R(x, Ur(|x|))) ≥
3
4

(75)

(∀x) x 6∈ L ⇒ Pr(R(x, Ur(|x|))) <
1
4
. (76)

The above two conditions can be summarized in one:

(∀x) Pr
(
x ∈ L ⇐⇒ R(x, Ur(|x|))

)
≥ 3

4
. (77)

If (77) holds, we write L = ∃bppR. The class BPP consists of those languages L, which can be presented as
L = ∃bppR, for some polynomial relation R.

Note that, in general, a polynomial relation need not de�ne any language in the above sense; for this to
be the case, it is necessary that, for any x, the proportion of the y's satisfying R(x, y) to all y's of length
r(|x|) is either ≥ 3

4 or < 1
4 .

Remark A deterministic Turing machine M recognizing R can be viewed as an implementation of a
probabilistic polynomial time algorithm recognizing L. Note that we are only interested in the inputs for M
consisting of a (suitable encoded) pair (x, y), where |y| = r(|x|). (The other inputs will surely be rejected.)
For convenience, we may assume that M has two input tapes: the �main� input tape containing x, and a
random input tape containing y. During the execution, the machine occasionally �tosses a coin�, and this is
implemented by reading of a subsequent bit of y. We are interested in the probability of an event that M
has eventually accepts x, and this is precisely PrR(x, Ur(|x|)), whenever M and L satisfy (77).

The use of 3
4 in (77) is not essential. To show this, the following technique will be useful. Suppose we

repeat the choice of a random input y say 2m + 1 times, thus selecting a sequence y1, . . . , y2m+1. Possibly
R(x, yi) holds for some i's, and fails for others, but we are interested in the result for the majority of i's.

Lemma 4. Let U1
r(n), U

2
r(n), . . . , U

2m+1
r(n) be independent22 random variables with the same distribution as

Ur(n) (see (73)). Let x ∈ {0, 1}n, and suppose Pr
(
x ∈ L ⇐⇒ R(x, Ur(|x|))

)
= α, for some α > 1

2 . Then

Pr

(
|{i : x ∈ L ⇐⇒ R(x, U ir(|x|))}|

2m+ 1
>

1
2

)
≥ 1− (α · (1− α) · 4)m. (78)

Proof. We will estimate the probability of the opposite event, i.e., that only less than a half of i's satisfy
x ∈ L ⇐⇒ R(x, U ir(|x|)). By the independence of the U ir(n)'s, this amounts to

m∑
j=1

(
2m+ 1

j

)
αj · (1− α)2m+1−j ≤

m∑
j=1

(
2m+ 1

j

)
︸ ︷︷ ︸

22m

αm · (1− α)m

= (α · (1− α) · 4)m

�

Corollary 4. Let 1
2 < α < β. Suppose L and R satisfy (77) with the constant α replacing 3

4 , i.e.,

(∀x) Pr
(
x ∈ L ⇐⇒ R(x, Ur(|x|))

)
≥ α.

Then there is another polynomial relation R′, such that L and R′ satisfy

(∀x) Pr
(
x ∈ L ⇐⇒ R′(x, Ur′(|x|))

)
≥ β.

22Independence means that Pr
“
U1

r(n)
= y1 ∧ U2

r(n)
= y2 ∧ . . . ∧ U2m+1

r(n)
= y2m+1

”
= Pr

“
U1

r(n)
= y1

”
·Pr

“
U2

r(n)
= y2

”
· . . . ·

Pr
“
U2m+1

r(n)
= y2m+1

”
.

47



Proof. Note that the mapping z(1 − z) achieves its maximum 1
4 for z = 1

2 and then decreases, hence, in
particular, (α · (1 − α) · 4) < 1. Therefore, we can �nd m, such that (α · (1 − α) · 4)m < 1 − β. We let
r′(n) = (2m+ 1) · r(n), and, for any x ∈ {0, 1}n,

R′(x, y) ⇐⇒ |{i : R(x, yi)}|
2m+ 1

>
1
2
, (79)

where y = y1y2 . . . y2m+1 ∈ {0, 1}r
′(n), with |y1| = |y2| = . . . = |yn|. Using Lemma 4 (along with the

monotonicity of the mapping z(1− z)), we obtain that Pr
(
x ∈ L ⇐⇒ R(x, Ur′(|x|))

)
≥ β, as required. �

Remark No NP -complete problem is known to be in BPP . Some researchers go even further, conjecturing
that BPP = P .

One evidence for this conjecture is a non-uniform derandomization.

Theorem 9. BPP ⊆ P/poly.

Proof. Let BPP 3 L = ∃bppR, for a polynomial relation R (satisfying (77). Let R′ be de�ned by (79), for
some m. By Lemma 4 (along with the monotonicity of z(1− z)), we obtain that, for all x ∈ {0, 1}n,

Pr
(
x ∈ L 6⇐⇒ R′(x, Ur′(|x|))

)
≤

(
1
4
· 3

4
· 4
)m

=
(

3
4

)m
.

This estimates the probability that a sequence y = y1y2 . . . y2m+1 is not a good witness for x. Note that a
sequence y ∈ {0, 1}r′(n) can be a good witness for some x, and bad for some other x′. Is there a sequence
good for all x ∈ {0, 1}n ?

Let us estimate that y is not good for some x, where m = 3n.

Pr
(
(∃x ∈ {0, 1}n)x ∈ L 6⇐⇒ R′(x, Ur′(|x|))

)
≤

∑
x∈{0,1}n

Pr
(
x ∈ L 6⇐⇒ R′(x, Ur′(|x|))

)
≤ 2n ·

(
3
4

)3n

≤
(

2 · 27
64

)n
=

(
27
32

)n
< 1.

Therefore, there exists some sequence kn = ỹ1, ỹ2, . . . , ˜y6n+1, which is good for all x ∈ {0, 1}n, i.e., for all
x ∈ {0, 1}n,

x ∈ L ⇐⇒ R′(x, kn).

As this holds for all n ∈ N and R′ is recognized in polynomial time, we obtain a presentation (11) of L,
proving that L ∈ P/poly . �

6.2 Interactive proofs

Theorem 10 (Shamir). IP = PSPACE .

To be completed.

48



6.3 Exercises

1. Show that the class BPP is closed under Boolean operations, concatenation and star.

2. Consider a probabilistic machine (see Remark on page 47) which �tosses a coin�, but the coin is not
necessarily fair. That is, the probabilities of head and tail are p and 1 − p, respectively, for some
constant 0 < p < 1. Show that with this model we can nevertheless recognize any language in BPP .
(The rule (77) remains unchanged.)

7 Polynomial space

Recall we have de�ned the class PSPACE in (43). A language L is complete in this class PSPACE w.r.t.
polynomial (Karp) reductions (PSPACE-complete) if L is in PSPACE and, for anyM ∈ PSPACE ,M ≤K L
(c.f. (64)). We will present in this section a problem which naturally extends the problem Boole-Sat discussed
in Section 5.5. To this end, we �rst characterize the class PSPACE in terms of polynomial relations. Let R
be a polynomial relation. We let

∃̃∀R = {x : ∃y1∀y2∃y3 . . . Qyr(|x|)R
(
x, y1y2 . . . ypR(|x|)

)
}, (80)

where the variables yi range over bits in {0, 1}, the quanti�ers alternate, and Q is ∃ of ∀ depending on
whether pR(|x|) is odd or even, respectively.

Intuitively, ∃̃∀R is a game version of ∃R. It comprises those x with the property that a witness y (satisfying
R(x, y)) not only exists, but it can be constructed by a player who only chooses odd bits (1,3,5,. . . ) against
an adversary who chooses even bits (2,4,6,. . . ).

Proposition 6. A language L is in PSPACE i� L = ∃̃∀R, for some polynomial relation R.

Proof. Not di�cult using the characterization of PSPACE in terms of alternating Turing machines (The-
orem 7, (53)). �

Recall the de�nition of the polynomial relation RBoole and let

Q-Boole-Sat = ∃̃∀RBoole . (81)

Theorem 11. The language Q-Boole-Sat is complete in PSPACE.

Proof. The proof is analogous to the proof of Theorem 8, indeed the same reduction will work. Let

L ∈ PSPACE ; by Proposition 6, we have L∃̃∀R, for some polynomial relation R. Without loss of generality
we can assume that the witnesses have length exactly pR(|x|) (c.f. (66)). Consider the mapping 1n 7→
Dn(x1, . . . , xn, xn+1, . . . , xn+pR(n)) of Claim 1, satisfying (67), i.e.,

Dn(v, w) = 1 ⇐⇒ R(v, w).

The reduction is

f : v 7→ Hn

(
x1, . . . , xpR(n)

)
=def Dn

(
w, x1, . . . , xpR(n)

)
.

We have

v ∈ L ⇐⇒ ∃y1∀y2 . . . QypR(|x|)R(v, y1y2 . . . ypR(|x|))
⇐⇒ ∃y1∀y2 . . . QypR(|x|)Dn(v, y) = 1

⇐⇒ Hn

(
x1, . . . , xpR(n)

)
∈ Q − Boole − Sat ,

49



as required. �

As for Sat , we have an analogous problem for propositional formulas. We extend the formation rules of
page 5.5, by: if ϕ is a formula and x a variable then ∃xϕ, ∀xϕ are formulas.

Let QBF be the set of all true quanti�ed propositional sentences.

Corollary 5. The language QBF is complete in PSPACE.

Lemma 5 (Savitch). If f is fully space constructible and f(n) log n then

NSPACE (f(n)) ⊆ DSPACE
(
(f(n))2

)
Corollary 6. NPSPACE = PSPACE.

8 Approximation algorithms

To be completed.

References

[1] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach, Cambridge University
Press, 2009. http://www.cs.princeton.edu/theory/complexity/

[2] Oded Goldreich. Computational Complexity: A Conceptual Perspective, Cambridge University Press,
2008. See also lecture notes on professor Goldreich's website.

[3] John E. Hopcroft and Je�rey D. Ullman. Introduction to Automata Theory, Languages, and Computa-
tion, Addison-Wesley, 1979.

[4] Wojciech Jaworski and Damian Niwi«ski. Information Theory. Synopsis of Lecture,
http://www.mimuw.edu.pl/∼wjaworski/ TI/notatki 20-12.pdf, 2011.

[5] Ming Li and Paul Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications, Springer,
2008.

[6] Christos Papadimitriou. Computational complexity , Addison-Wesley, 1993. Wydanie polskie: Zªo»ono±¢
obliczeniowa, WNT Warszawa.

[7] Douglas R. Stinson. Cryptography: Theory and Practice, CRC Press, 2006. Wydanie polskie: Kryp-
togra�a. W teorii i w praktyce, WNT Warszawa.

Damian Niwi«ski, Warsaw University. Last modi�ed: 5.6.2012.

50


