Modal Fixpoint Logics: When Logic Meets Games, Automata and Topology

Alessandro Facchini \& Damian Niwiński
University of Warsaw
Lecture I
\section*{Rudiments of fixpoint logics}

ESSLLI Tübingen 2014

Disclaimer. Credits to many authors. Errors (if any) are mine...

How to define a big object shortly ?

How to define an infinite object at all ?

Recursion

Perpetuum mobile

Complex concepts in mathematics are often defined in recursive way.

This may involve risky steps like

The correctness relies on the existence of fixed points.

Example

Let u be a sequence of bits, such that the rewriting
$0 \rightarrow 01$
$1 \rightarrow 10$
produces the same sequence.

Does it exist??

Example Thue-Morse sequence

$0 \rightarrow 01$
$1 \rightarrow 10$

u_{0}	0															
u_{1}	0								1							
u_{2}	0				1				1				0			
u_{3}	0		1		1		0		1		0		0		1	
u_{4}	0	1	1	0	1	0	0	1	1	0	0	1	0	1	1	0

0110100110010110100101100110100110010110011010010110100110010110... $\lim u_{n}$ is a fixed point $u=u[01 / 0,10 / 1]$.

Fixed point of a function

$$
x=f(x)=f(f(x))=f(f(f(x)))=f(f(f(f(x))))=\ldots
$$

Plus ça change, plus c'est la même chose. Alphonse Karr, 1849

Fixed point theorems

Brouwer A continuous mapping of a closed ball into itself has a fixed point.

Banach A contracting mapping of a complete metric space into itself has a (unique) fixed point.

Knaster-Tarski A monotonic mapping of a complete lattice into itself has a (least) fixed point.

Example von Neumann definition of \mathbb{N}

The least set X, such that $\emptyset \in X$ and $x \in X \Longrightarrow x \cup\{x\} \in X$.

$$
\begin{aligned}
& \underbrace{\{\emptyset\} \cup\{x \cup\{x\}: x \in X\}}_{Z} \subseteq X \\
&\{\emptyset\} \cup\{z \cup\{z\}: z \in Z\} \stackrel{?}{\subseteq} Z \\
& z=x \cup\{x\} \wedge x \in X \Longrightarrow z \in X \Longrightarrow z \cup\{z\} \in Z .
\end{aligned}
$$

Yes! Hence,

$$
\{\emptyset\} \cup\{x \cup\{x\}: x \in \mathbb{N}\}=\mathbb{N}
$$

Example - reachability

Is there a path from s to t ?

There a path from s to t iff t belongs to the least set of nodes X, s.t.

$$
\{s\} \cup \operatorname{succ}(X) \subseteq X
$$

where $\operatorname{succ}(X)=\{y:(\exists x \in X) x \rightarrow y\}$.

Note: this X is a fixed point, because $Z=\{s\} \cup \operatorname{succ}(X)$ also satisfies $\{s\} \cup \operatorname{succ}(Z) \subseteq Z$.

Why do we care about fixed points ?

Knowing that the least X s.t. $\{s\} \cup \operatorname{succ}(X) \subseteq X$ satisfies

$$
X=\{s\} \cup \operatorname{succ}(X)
$$

we can compute it by iteration

$$
\begin{aligned}
& \{s\} \\
& \{s\} \cup \operatorname{succ}(\{s\}) \\
& \{s\} \cup \operatorname{succ}(\{s\}) \cup \operatorname{succ}(\operatorname{succ}(\{s\}))
\end{aligned}
$$

until it stops changes
$X=\emptyset \cup F(\emptyset) \cup F^{2}(\emptyset) \cup F^{3}(\emptyset) \cup \ldots$

Example - infinite path

Does this graph admit an infinite path? An exhaustive search is costly...
Try to characterize the nodes, which originate infinite paths.

Example - infinite path

The nodes, which originate infinite paths (Origin- ∞) could say:
I am lucky there, because after some move I can be lucky again.

If a set Z satisfies the "luckiness property"

$$
x \in Z \quad \Longrightarrow \quad(\exists z \in Z) x \rightarrow z
$$

shorter notation:

$$
Z \subseteq
$$

$$
\diamond(Z)
$$

then any $z \in Z$ originates an infinite path, i.e., $Z \subseteq$ Origin- ∞. But

$$
\text { Origin- } \infty \subseteq \diamond(\text { Origin }-\infty)
$$

hence, Origin- ∞ is a maximal set with luckiness property.

A maximal set satisfying the inequality $Z \subseteq \diamond(Z)$ is a fixed point

$$
Z=\diamond(Z)
$$

(otherwise $Z \subset \underline{\diamond(Z)} \subseteq \diamond(\diamond(Z))$).
Hence, it can be computed by iteration

$$
\text { Origin- } \infty=\bigcap_{\xi} \diamond^{\xi}(\mathbb{T})
$$

On finite graphs, this yields a polynomial time algorithm.

General setting: Knaster-Tarski Theorem

A monote mapping $f: L \rightarrow L$ of a complete lattice L has
a least fixed point

$$
\mu x . f(x)=\bigwedge\{d: f(d) \leq d\}
$$

and a greatest fixed point

$$
\nu x . f(x)=\bigvee\{d: d \leq f(d)\}
$$

Proof for ν.
Let $a=\bigvee \underbrace{\{z: z \leq f(z)\}}_{A}$.
$a \geq A \ni z \leq f(z) \leq f(a)$. Thus $A \leq f(a)$, hence $a \leq f(a)$.
By monotonicity, $f(a) \leq f(f(a))$, hence $f(a) \in A$, hence $f(a) \leq a$.

Alternative presentation of fixed points.

$$
\mu x . f(x)=\bigvee_{\xi \in O r d} f^{\xi}(\perp)
$$

where

$$
\begin{aligned}
f^{\xi+1}(\perp) & =f\left(f^{\xi}(\perp)\right) \\
f^{\eta}(\perp) & =\bigvee_{\xi<\eta} f^{\xi}(\perp), \text { for limit } \eta
\end{aligned}
$$

Similarly

$$
\nu x . f(x)=\bigwedge_{\xi \in O r d} f^{\xi}(\top)
$$

A great number of concepts can be defined by μ or ν.

But the fixpoint logics start from an observation that

$$
\mu x . \nu y . f(x, y),
$$

is meaningful as well.

$$
\begin{aligned}
& \mu x . \nu y \cdot f(x, y) \\
& \| \\
& x \\
& \| \\
& \| \\
& y
\end{aligned} \begin{aligned}
& \| y \cdot f(x, y) \\
& \\
&
\end{aligned} \begin{aligned}
& \| \\
& \\
&
\end{aligned}
$$

Note that $a=\mu x . \nu y . f(x, y)$ satisfies $a=f(a, a)$, hence

$$
\mu x . f(x, x) \leq \mu x . \nu y \cdot f(x, y) \leq \nu y . f(y, y)
$$

Example - words

Languages of finite and infinite words over alphabet Σ.
$\varepsilon \notin A \subseteq \Sigma^{*}, B \subseteq \Sigma^{*} \cup \Sigma^{\omega}, X, Y$ range over $\wp\left(\Sigma^{*} \cup \Sigma^{\omega}\right)$,
$A^{*}=\bigcup_{n} A^{n}$ (with $A^{0}=\{\varepsilon\}$), $A^{\omega}=\left\{w_{0} w_{1} w_{2} \ldots: w_{i} \in A, i<\omega\right\}$.

	X	$\stackrel{?}{=} A X \cup B$
least solution	X	$=A^{*} B$
greatest solution	X	$=A^{*} B \cup A^{\omega}$
i.e.,	$\mu X . A X \cup B$	$=A^{*} B$
	$\nu X . A X \cup B$	$=A^{*} B \cup A^{\omega}$.

Note

$$
\begin{aligned}
\mu X \cdot A X & =\emptyset \\
\nu X \cdot A X & =A^{\omega}
\end{aligned}
$$

Further

$\mu X . A X \cup B Y$	$=A^{*} B Y$
Y	$\stackrel{?}{=} A^{*} B Y$
Y	$=\left(A^{*} B\right)^{\omega}$
greatest solution	
i.e., $\quad \nu Y . \mu X . A X \cup B Y$	$=\left(A^{*} B\right)^{\omega}$
$\nu Y . A X \cup B Y$	$=B^{*} A X \cup B^{\omega}$
X	$\stackrel{?}{=} B^{*} A X \cup B^{\omega}$
$\mu X . \nu Y . A X \cup B Y$	$=\left(B^{*} A\right)^{*} B^{\omega}$

Note

$$
\mu X . \nu Y . A X \cup B Y \subseteq \quad \subseteq Y . \mu X . A X \cup B Y
$$

Example - trees

A (full binary) Σ-labeled tree is a mapping $t: 2^{*} \rightarrow \Sigma$.

Each $\sigma \in \Sigma$ induces an operation on trees

$$
\sigma\left(t_{1}, t_{2}\right)=\Sigma_{t_{2}}^{\sigma}
$$

and consequently on tree languages $L_{1}, L_{2} \subseteq T_{\Sigma}$

$$
\sigma\left(L_{1}, L_{2}\right)=\left\{\sigma\left(t_{1}, t_{2}\right): t_{1} \in L_{1}, \quad t_{2} \in L_{2}\right\}
$$

Example - trees continued

Let $\Sigma=\{a, b\}$.
$\nu y \cdot \mu x \cdot a(x, x) \cup b(y, y)=$ on each path there are infinitely many b 's
i.e., all paths are in $\nu y . \mu x . a x \cup b y$,
$\mu x . \nu y . a(x, x) \cup b(y, y)=$ on each path there are only finitely many a 's
i.e., all paths are in $\mu x . \nu y . a x \cup b y$.

Again $\mu x . \nu y \ldots \subseteq \nu y . \mu x \ldots$

Parenthesis.

$$
\mu x . \nu y . a(x, x) \cup b(y, y)=\quad \text { on each path there are only finitely many } a \text { 's }
$$

This set encodes the set of well founded trees $T \subseteq \omega^{*}$, and can be proved Π_{1}^{1}-complete, as a subset of the Cantor space $\{0,1\}^{\omega}$.

Example - trees continued

The pattern can be generalized.

$$
\begin{array}{cl}
\mu x_{1} \cdot \nu x_{0} \cdot & a_{0}\left(x_{0}, x_{0}\right) \cup a_{1}\left(x_{1}, x_{1}\right) \\
\nu x_{2} \cdot \mu x_{1} \cdot \nu x_{0} \cdot & a_{0}\left(x_{0}, x_{0}\right) \cup a_{1}\left(x_{1}, x_{1}\right) \cup a_{2}\left(x_{2}, x_{2}\right) \\
\mu x_{3} \cdot \nu x_{2} \cdot \mu x_{1} \cdot \nu x_{0} . & a_{0}\left(x_{0}, x_{0}\right) \cup a_{1}\left(x_{1}, x_{1}\right) \cup a_{2}\left(x_{2}, x_{2}\right) \cup a_{3}\left(x_{3}, x_{3}\right)
\end{array}
$$

On each path, if some a_{i} with i odd occurs infinitely often then there is some a_{j} with j even, which also occurs infinitely often, and $j>i$.

In short: the highest \mathbf{k}, such that a_{k} occurs infinitely often on a path, is even.

Basic laws of fixed points

$$
\begin{aligned}
\mu x \cdot \mu y \cdot f(x, y) & =\mu x \cdot f(x \cdot x) \\
\nu x \cdot \nu y \cdot f(x, y) & =\nu x \cdot f(x \cdot x) \\
\mu x \cdot \nu y \cdot f(x, y) & \leq \nu y \cdot \mu x \cdot f(x, y)
\end{aligned}
$$

If $a=\theta x \cdot \theta^{\prime} y \cdot f(x, y)$ then

$$
\begin{aligned}
a & =\theta^{\prime} y \cdot f(a, y) \\
& =\theta x \cdot f(x, a)
\end{aligned}
$$

Example - quasi-equational proof

$$
\underbrace{\mu x \cdot \nu y \cdot f(x, y)}_{a} \leq \nu y \cdot \mu x \cdot f(x . y)
$$

$a=f(a, a)$ implies $\mu x . f(x, a) \leq a$. By monotonicity of $\nu y . f(z, y)$ (in $z)$

$$
\nu y \cdot f(\underline{\mu x \cdot f(x, a)}, y) \leq \nu y \cdot f(\underline{a}, y)=a
$$

By monotonicity of f

$$
f(\mu x \cdot f(x, a), \underline{\nu y . f(\mu x \cdot f(x, a), y)) \leq f(\mu x . f(x, a), \underline{a})) ~}
$$

By reducing both sides $(F(\theta x . F(x)) \rightarrow \theta x . F(x))$

$$
\nu y \cdot f(\underline{\mu x . f(x, a)}, y) \leq \underline{\mu x . f(x, a)}
$$

By Knaster-Tarski Theorem this implies $(\underline{a}=) \mu x . \nu y . f(x, y) \leq \mu x . f(x, \underline{a})$.
Again by Knaster-Tarski, $a \leq \nu y . \mu x . f(x, y)$.

Vectorial fixed points - Bekič Principle

Let $\left(L, \leq_{L}\right),\left(K, \leq_{K}\right)$ be two complete lattices and

$$
F: L \times K \rightarrow L \times K
$$

be monotonic in two arguments. Let $F=\left(F_{1}, F_{2}\right)$. Then

$$
\mu\binom{x}{y} \cdot F(x, y)=\binom{\mu x \cdot F_{1}\left(x, \mu y \cdot F_{2}(x, y)\right)}{\mu y \cdot F_{2}\left(\mu x \cdot F_{1}(x, y), y\right)}
$$

Thus vectors can be eliminated at the expense of increasing the length.

Fixed point clones

A family \mathcal{C} of monotonic mappings of a finite arity over a complete lattice L is a clone if it is closed under composition and contains all projections $\pi_{k}^{i}: L^{k} \rightarrow L$,

$$
\pi_{k}^{i}:\left(a_{1}, \ldots, a_{k}\right) \mapsto a_{i}
$$

It is a μ-clone if moreover is closed under μ, i.e.,

$$
\mathcal{C} \ni f\left(x_{1}, \ldots, x_{k}\right) \Longrightarrow \mu x_{i} . f\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{C}
$$

A ν-clone is defined similarly.
$\operatorname{Comp}(\mathcal{F})$ the least clone
$\mu(\mathcal{F}) \quad$ the least μ-clone
$\nu(\mathcal{F}) \quad$ the least ν-clone containing \mathcal{F}

Fixed point hierarchy

$$
\begin{array}{r}
\Sigma_{0}^{\mu}(\mathcal{F})=\Pi_{0}^{\mu}(\mathcal{F})=\operatorname{Comp}(\mathcal{F}) \\
\Sigma_{n+1}^{\mu}(\mathcal{F})=\mu\left(\Pi_{n}^{\mu}(\mathcal{F})\right) \\
\Pi_{n+1}^{\mu}(\mathcal{F})=\nu\left(\Sigma_{n}^{\mu}(\mathcal{F})\right) \\
f p(\mathcal{F})=\bigcup_{n} \Sigma_{n}^{\mu}(\mathcal{F})=\bigcup_{n} \Pi_{n}^{\mu}(\mathcal{F})
\end{array}
$$

The hierarchy is in general strict.

Scalar vs. vectorial fixed points

Operations in $\Sigma_{n}^{\mu}(\mathcal{F})$ can be characterized as components of vectorial fixed points

$$
\mu\left(\begin{array}{c}
x_{1,1} \\
x_{1,2} \\
\ldots \\
x_{1, k}
\end{array}\right) \cdot \nu\left(\begin{array}{c}
x_{2,1} \\
x_{2,2} \\
\ldots \\
x_{2, k}
\end{array}\right) \ldots \theta\left(\begin{array}{c}
x_{k, 1} \\
x_{k, 2} \\
\ldots \\
x_{n, k}
\end{array}\right) . F(\vec{x}, \vec{z})
$$

with the components of F in \mathcal{F} (or projections).

De Morgan laws for fixed points

If a complete lattice L is a Boolean algebra (with $\bar{x}=\top-x$) then

$$
\begin{aligned}
x=f(x) \Longrightarrow \bar{x} & =\overline{f(x)} \\
& =\overline{f(\bar{x})}
\end{aligned}
$$

Thus a complement of a fixed point of f is a fixed point of the dual function $\widetilde{f}: x \mapsto \overline{f(\bar{x})}$.

Hence

$$
\begin{aligned}
\overline{\mu x . f(x)} & =\nu x \cdot \tilde{f}(x) \\
\overline{\nu x . f(x)} & =\mu x \cdot \tilde{f}(x)
\end{aligned}
$$

Formal syntax: μ-terms
Sig is a finite set of function symbols of finite arity.

$$
x
$$

$f\left(t_{1}, \ldots, t_{k}\right) \quad \widetilde{f}\left(t_{1}, \ldots, t_{k}\right) \quad$ for $f \in \operatorname{Sig}$ of arity k
$\mu x . t \quad \nu x . t$

Interpretation: powerset algebras

This framework generalizes the modal μ-calculus and previous examples.
A semi-algebra $\mathbb{B}=\left\langle B, f^{\mathbb{B}}, g^{\mathbb{B}}, c^{\mathbb{B}}, \ldots\right\rangle$ over signature $\operatorname{Sig}=\{f, g, c, \ldots\}$

$$
\begin{aligned}
f^{\mathbb{B}}\left(d_{1}, \ldots, d_{k}\right) \doteq b \quad \text { means } & \left(d_{1}, \ldots, d_{k}, b\right) \in f^{\mathbb{B}} \subseteq B^{k+1} \\
\text { for } \quad & f \in \text { Sig of arity } k
\end{aligned}
$$

Powerset algebra

$$
\begin{aligned}
& \wp \mathbb{B}=\left\langle\langle\wp B, \subseteq\rangle\left\{f^{\wp} \mathbb{B}: f \in S i g\right\} \cup\left\{\tilde{f}^{\wp \mathbb{B}}: f \in S i g\right\}\right\rangle \\
& f^{\wp \mathbb{B}}\left(L_{1}, \ldots, L_{k}\right)=\left\{b:\left(\exists a_{1} \in L_{1} \ldots \exists a_{k} \in L_{k}\right) f^{\mathbb{B}}\left(a_{1}, \ldots, a_{k}\right) \doteq b\right\}, \\
& \widetilde{f^{\wp} \subseteq \mathbb{B}}\left(L_{1}, \ldots, L_{k}\right)=\overline{f^{\wp} \mathbb{B}}\left(\overline{L_{1}}, \ldots, \overline{L_{k}}\right) \\
&=\left\{b:(\forall \vec{a}) f^{\mathbb{B}}\left(a_{1}, \ldots, a_{k}\right) \doteq b \Longrightarrow(\exists i) a_{i} \in L_{i}\right\} .
\end{aligned}
$$

Recall

$$
\begin{aligned}
& f^{\wp \sqrt{B}}\left(L_{1}, \ldots, L_{k}\right)=\left\{b:\left(\exists a_{1} \in L_{1} \ldots \exists a_{k} \in L_{k}\right) f^{\mathbb{B}}\left(a_{1}, \ldots, a_{k}\right) \doteq b\right\}, \\
& \widetilde{f^{\wp} \wp \mathbb{B}}\left(L_{1}, \ldots, L_{k}\right)=\overline{f^{\wp} \overline{\mathbb{B}}\left(\overline{L_{1}}, \ldots, \overline{L_{k}}\right)}
\end{aligned}
$$

The set-theoretic operations

We assume that \mathbb{B} has a partial operation $e q$

$$
e q^{\mathbb{B}}(a, b) \doteq c \quad \Longleftrightarrow \quad a=b=c
$$

Then \cap, \cup can be retrieved by

$$
\begin{aligned}
e q^{\wp \mathbb{B}}\left(L_{1}, L_{2}\right) & =\left\{c:\left(\exists a \in L_{1}, \exists b \in L_{2}\right) a=b=c\right\} \\
& =L_{1} \cap L_{2} \\
\widetilde{e q}^{\wp \bullet \mathbb{B}}\left(L_{1}, L_{2}\right) & =L_{1} \cup L_{2}
\end{aligned}
$$

Powerset algebra of words

```
universe operations
\Sigma*\cup \}
```


Powerset algebra of trees

universe operations
$T_{S i g} \quad f\left(t_{1}, \ldots, t_{k}\right) \quad$ for $f \in S i g, \quad t_{1}, \ldots, t_{k}$ in universe
Powerset algebra of a single tree $t \in T_{\text {Sig }}$
$t: \omega^{*} \supseteq d o m t \rightarrow S i g$
universe operations
$\operatorname{dom} t \quad f(v 1, \ldots, v k) \doteq v$

whenever $t(v)=f$

The modal μ-calculus of Kozen

Syntax

x	
p	$\neg p$
$\varphi \vee \psi$	$\varphi \wedge \psi$
$\diamond \varphi$	$\square \varphi$
$\mu x . \varphi(x)$	$\nu x . \varphi(x)$

Interpretation in Kripke structures
$\mathcal{K}=\langle S, R, \rho\rangle$, with $R \subseteq S \times S$, and $\rho:$ Prop $\rightarrow \wp S$.
$\llbracket \varphi \rrbracket_{\mathcal{K}}(v) \subseteq S$, for $v: \operatorname{Var} \rightarrow \wp S$
$\llbracket \diamond \varphi \rrbracket_{\mathcal{K}}(v)=\left\{s:\left(\exists s^{\prime}\right) R\left(s, s^{\prime}\right) \wedge s^{\prime} \in \llbracket \varphi \rrbracket_{\mathcal{K}}(v)\right\}$
$\llbracket \mu x . \varphi \rrbracket_{\mathcal{K}}(v)=\mu X . \llbracket \varphi \rrbracket_{\mathcal{K}}(v[X / x \rrbracket)$.

E.g.,

$$
\mu x . \nu y . \square y \wedge(H a p p y \vee \square x)
$$

On each path, I will be happy from some moment on.

Kripke structure as semi-algebra

$\mathcal{K}=\langle S, R, \rho\rangle$, with $R \subseteq S \times S$, and $\rho:$ Prop $\rightarrow \wp S$ can be identified with a semi-algebra \mathbb{K}.
signature universe operations

$$
\begin{array}{lll}
\operatorname{Prop} \cup\left\{\operatorname{act}_{R}\right\} \quad S & \rho(p) \subseteq S, & \text { for } p \in \text { Prop; } \\
& \operatorname{act}_{R}=R^{-1} & \text { i.e., } \operatorname{act}_{R}(z) \doteq y \text { iff } R(y, z) \\
& \operatorname{act}_{R}(Z) \approx \diamond Z
\end{array}
$$

Example

$$
p \doteq 1 \quad p \doteq 2 \quad q \doteq 2 \quad q \doteq 3
$$

$$
\begin{aligned}
& \operatorname{act}_{R}(3) \doteq 1 \quad \operatorname{act}_{R}(3) \doteq 2 \\
& \operatorname{act}_{R}(2) \doteq 1 \quad \operatorname{act}_{R}(2) \doteq 3
\end{aligned}
$$

This induces a translation $\alpha: \varphi \mapsto t_{\varphi}$ of the formulas of $L \mu$ into μ-terms.

$$
\begin{array}{rlr}
\alpha: & x \mapsto x & \\
& p \mapsto p & \neg p \mapsto \widetilde{p} \\
& (\varphi \wedge \psi) \mapsto e q(\alpha(\varphi), \alpha(\psi)) & (\varphi \vee \psi) \mapsto \widetilde{e q}(\alpha(\varphi), \alpha(\psi)) \\
\diamond \varphi \mapsto \operatorname{act}_{R}(\alpha(\varphi)) & \square \varphi \mapsto \widetilde{a_{c t}}(\alpha(\varphi)) \\
& \mu x . \varphi \mapsto \mu x \cdot \alpha(\varphi) & \nu x \cdot \varphi \mapsto \nu x \cdot \alpha(\varphi)
\end{array}
$$

For a sentence φ,

$$
s \in \llbracket \varphi \rrbracket \mathcal{K} \quad \text { iff } \quad s \in \alpha(\varphi)^{\wp \mathbb{K}}
$$

How to understand fixed point formulas?

$$
\mu x . \nu y . \diamond(x \wedge \square(y \vee \mu z . \diamond(x \wedge \square(y \vee z))))
$$

How to understand fixed point formulas ?

$$
\mu x . \nu y . \diamond(x \wedge \square(y \vee \mu z . \diamond(x \wedge \square(y \vee z))))
$$

A useful tool is games.

ICALP 2014. Courtesy of Henryk Michalewski

Games on graphs

$$
G=\left\langle\operatorname{Pos}_{\exists}, P_{o s}{ }_{\forall}, \text { Move, } C, \operatorname{rank}, W_{\exists}, W_{\forall}\right\rangle,
$$

where $\operatorname{Pos}=$ Pos $_{\exists} \cup$ Pos $_{\forall}, \quad$ Move $\subseteq \operatorname{Pos} \times \operatorname{Pos}$,
rank: Pos $\rightarrow C$, $W_{\exists}, W_{\forall} \subseteq C^{\omega}$, typically $W_{\forall}=\overline{W_{\exists}}$.

- Eve

Game equations

If the winning criterion W_{\exists} is independent on finite prefixes then the set of winning positions of Eve satisfies

$$
X=(E \cap \diamond X) \cup(A \cap \square X) \quad=_{d e f} \quad \operatorname{Eve}(X)
$$

and the set of winning positions of Adam

$$
Y=(A \cap \diamond Y) \cup(E \cap \square Y) \quad=_{\text {def }} \quad \operatorname{Adam}(Y)
$$

where E, A are interpreted as $\operatorname{Pos}_{\exists}, \operatorname{Pos} \forall$, respectively.
Note $X=\operatorname{Eve}(X)$ iff $\bar{X}=\operatorname{Adam}(\bar{X})$, implying
$\overline{\mu . \operatorname{Eve}(X)}=\nu Y . \operatorname{Adam}(Y)$.
Question. For which game is the winning set a least (resp. greatest) solution on the game equation?

Parity games

$C \subseteq \omega$ (finite).

Eve wants to visit even priorities infinitely often.
Adam wants to visit odd priorities infinitely often.
Maximal priority wins.
$W_{\exists}=\left\{u \in C^{\omega}: \limsup _{n \rightarrow \infty} u_{n}\right.$ is even $\}$
$W_{\forall}=\left\{u \in C^{\omega}: \limsup _{n \rightarrow \infty} u_{n}\right.$ is odd $\}$.

Parity games are intimately linked to the μ-calculus.
Eve's winning set (for $C=\{0,1,2,3\}$) is

$$
\begin{array}{ll}
\nu X_{4} \cdot \mu X_{3} \cdot \nu X_{2} \cdot \mu X_{1} \cdot \nu X_{0} . & \left(E \cap \operatorname{rank}_{0} \cap \diamond X_{0}\right) \cup \\
& \left(E \cap \operatorname{rank}_{1} \cap \diamond X_{1}\right) \cup \\
& \left(E \cap \operatorname{rank}_{2} \cap \diamond X_{2}\right) \cup \\
& \left(E \cap \operatorname{rank}_{3} \cap \diamond X_{3}\right) \cup
\end{array}
$$

$\left(A \cap \operatorname{rank}_{0} \cap \square X_{0}\right) \cup$
$\left(A \cap \operatorname{rank}_{1} \cap \square X_{1}\right) \cup$
$\left(A \cap \operatorname{rank}_{2} \cap \square X_{2}\right) \cup$
$\left(A \cap \operatorname{rank}_{3} \cap \square X_{3}\right)$

Note: its is a fixed point of $X=(E \cap \diamond X) \cup(A \cap \square X)$.

Game semantics for the μ-calculus

We define a parity game $\mathcal{G}(\mathbb{B}, t)$, such that, for $b \in B$

$$
b \in t^{\varsigma \mathbb{B}} \quad \text { iff } \quad \text { Eve wins the game } \mathcal{G}(\mathbb{B}, t) \text { from position }(b, t) .
$$

First, the variables should be indexed properly

$$
\begin{aligned}
& \mu x . \nu y . f(x, y, \mu z . \nu w . f(x, z, w)) \\
& \mu x_{3} . \nu x_{2} . f\left(x_{3}, x_{2}, \mu x_{1} . \nu x_{0} \cdot f\left(x_{3}, x_{1}, x_{0}\right)\right)
\end{aligned}
$$

Better

$$
\mu x_{11} \cdot \nu x_{01} \cdot f\left(x_{11}, x_{01}, \mu x_{12} \cdot \nu_{02} \cdot f\left(x_{11}, x_{12}, x_{02}\right)\right)
$$

ν-variables $x_{2 \mathrm{~m}, j}$,
μ-variables $x_{2 \mathrm{~m}+1, j}$.
If a variable $x_{\mathrm{k}, \ell}$ appears in the scope of $\theta x_{\mathbf{i}, j}$. then $k \geq i$.

Games for the powerset algebras

A game $\mathcal{G}(\mathbb{B}, t)$, for a semi-algebra \mathbb{B} and a (closed) μ-term t.
Idea of moves (f^{*} stands for f or \widetilde{f}):

where $f\left(a_{1}, \ldots, a_{k}\right) \doteq b$.
Proponent is Eve for f and Adam for \widetilde{f}.

Positions of the game $\mathcal{G}(\mathbb{B}, t)$

Head positions $=B \times \operatorname{Sub}(t) \times\{$ head $\}$
Tail positions $\subseteq B^{*} \times \operatorname{Sub}(t) \times\{$ tail $\}$
of the form $\quad\left(\left\langle a_{1}, \ldots, a_{k}\right\rangle, \quad f^{*}\left(t_{1}, \ldots t_{k}\right), \quad\right.$ tail $)$
or, more generally $\quad\left(\left\langle a_{1}, \ldots, a_{k}\right\rangle, \quad s \quad\{\right.$ tail $\left.\}\right)$

$$
f^{*}\left(t_{1}, \ldots t_{k}\right)
$$

whenever $s \xrightarrow{r e d} f^{*}\left(t_{1}, \ldots t_{k}\right)$.
Additionally, $(b, \perp$, head $)$ - Adam wins, or $(b, \top$, head $)$ - Eve wins.

Reduction red to guarded subterms $f^{*}\left(t_{1}, t_{2}\right)$ or \perp, \top.

$$
\begin{aligned}
& \operatorname{red}(z)=\operatorname{red}(\mu z \cdot \widetilde{f}(x, f(y, z)))=\widetilde{f}(x, f(y, z)) \\
& \operatorname{red}(w)=\operatorname{red}(\nu w \cdot \mu v \cdot w)=\top, \text { etc. }
\end{aligned}
$$

Ownership of positions

Eve

$$
\begin{aligned}
(b, s, \text { head }) & \text { if } \operatorname{red}(s)=f\left(t_{1}, \ldots, t_{k}\right), \\
(b, s, \text { head }) & \text { if } \operatorname{red}(s)=\perp, \\
\left(\left\langle a_{1} \ldots a_{k}\right\rangle, s, \text { tail }\right) & \text { if } \operatorname{red}(s)=\widetilde{f}\left(t_{1}, \ldots, t_{k}\right) .
\end{aligned}
$$

Adam

$$
\begin{aligned}
(b, s, h e a d) & \text { if } \operatorname{red}(s)=\widetilde{f}\left(t_{1}, \ldots, t_{k}\right), \\
(b, s, h e a d) & \text { if } \operatorname{red}(s)=\top \\
\left(\left\langle a_{1} \ldots a_{k}\right\rangle, s, \text { tail }\right) & \text { if } \operatorname{red}(s)=f\left(t_{1}, \ldots, t_{k}\right) .
\end{aligned}
$$

Size: $|\operatorname{Pos}|=\mathcal{O}(|\mathbb{B}| \cdot|t|)$.

Moves

whenever $\operatorname{red}(s)=f^{*}\left(t_{1}, \ldots t_{k}\right)$, and $f\left(a_{1}, \ldots, a_{k}\right) \doteq b$.
No move out from $(b, s, h e a d)$ if $\operatorname{red}(s)=\perp, \top$.

Ranking

$$
\operatorname{rank}\left(a n y, x_{\mathbf{i}, j}, a n y\right)=\mathbf{i},
$$

for all other positions, rank $=0$.
Index of the game: (min rank, max rank).
terms

games

Parity game semantics of the μ-calculus.

Theorem. Eve wins the game $\mathcal{G}(\mathbb{B}, t)$ from a position $(b, t$, head $)$ iff $b \in t^{6 \mathbb{B}}$.

We prove a more general claim for a term $t\left(z_{1}, \ldots, z_{k}\right)$, and the game $\mathcal{G}(\mathbb{B}, t, v a l)$, where Eve wins at the position $\left(b, z_{i}\right.$, head $)$ iff $b \in \operatorname{val}\left(z_{i}\right)$.

Induction on the structure of t. The case of $\mu x . t(x, \vec{z})$.
Let \mathbf{A} be the set of positions from which Eve wins the game $\mathcal{G}(\mathbb{B}, \mu x . t$, val $)$.
To show $A=(\mu x . t(x, \vec{z}))^{\wp_{B} \mathbb{B}}$ val, by Knaster-Tarski's Theorem, it is enough to prove
(i) $t^{\ell \mathbb{B}} \operatorname{val}[\mathbf{A} / x] \subseteq \mathbf{A}$
(ii) $(\forall X) t^{\wp \mathbb{B}} \operatorname{val}[X / x] \subseteq X \Longrightarrow \mathbf{A} \subseteq X$.
(i) $t^{\measuredangle \square \mathbb{B}} \operatorname{val}[\mathbf{A} / x] \subseteq \mathbf{A}$
(ii) $(\forall X) t^{\wp \mathbb{B}} \operatorname{val}[X / x] \subseteq X \Longrightarrow \mathbf{A} \subseteq X$.

By induction hypothesis, Eve has a strategy at $t^{\wp \mathbb{B}} \operatorname{val}[\mathbf{A} / x]$.
Ad (i). Combine the two strategies.
Ad (ii). For $b \in \mathbf{A}$, Eve has a strategy with the highest rank odd (well founded).

Example

$\mu x_{1} . \nu x_{0} \cdot a\left(x_{1}, x_{1}\right) \cup b\left(x_{0}, x_{0}\right)=$ the set of trees, such that on each path there are only finitely many a 's.

Adam selects a path in the tree and wins if a occurs infinitely often, otherwise Eve wins.

$$
a\left(x_{1}, x_{1}\right) \quad \cup \quad b\left(x_{0}, x_{0}\right)
$$

Games for the modal μ-calculus

Example

$\mu x . \nu y . \square y \wedge($ Happy $\vee \square x)$

Example - parity games

$\operatorname{Win}_{E}=$

$$
\begin{array}{r}
\nu X_{8} \cdot \mu X_{7} \ldots \mu X_{1} \cdot \nu X_{0} .\left(E \cap \operatorname{rank}_{0} \cap \diamond X_{0}\right) \cup\left(E \cap \operatorname{rank}_{1} \cap \diamond X_{1}\right) \cup \ldots \\
\ldots \cup\left(E \cap \operatorname{rank}_{7} \cap \diamond X_{7}\right) \cup\left(E \cap \operatorname{rank}_{8} \cap \diamond X_{8}\right) \cup \\
\cup\left(A \cap \operatorname{rank}_{0} \cap \square X_{0}\right) \cup\left(A \cap \operatorname{rank}_{1} \cap \square X_{1}\right) \cup \ldots \cup\left(A \cap \operatorname{rank}_{8} \cap \square X_{8}\right)
\end{array}
$$

The game induced by this formula is essentially the original game.

```
\(\operatorname{Win}_{E}=\)
\(\nu X_{8} . \mu X_{7} \ldots \mu X_{1} . \nu X_{0} .\left(E \cap \operatorname{rank}_{0} \cap \diamond X_{0}\right) \cup\left(E \cap \operatorname{rank}_{1} \cap \diamond X_{1}\right) \cup \ldots\)
    \(\ldots \cup\left(E \cap \operatorname{rank}_{7} \cap \diamond X_{7}\right) \cup\left(E \cap \operatorname{rank}_{8} \cap \diamond X_{8}\right) \cup\)
    \(\cup\left(A \cap \operatorname{rank}_{0} \cap \square X_{0}\right) \cup\left(A \cap \operatorname{rank}_{1} \cap \square X_{1}\right) \cup \ldots \cup\left(A \cap \operatorname{rank}_{8} \cap \square X_{8}\right)\)
```

By duality
Win $_{A}=$

$$
\begin{array}{r}
\mu X_{8} \cdot \nu X_{7} \ldots \nu X_{1} \cdot \mu X_{0} \cdot\left(E \cap \operatorname{rank}_{0} \cap \diamond X_{0}\right) \cup\left(E \cap \operatorname{rank}_{1} \cap \diamond X_{1}\right) \cup \ldots \\
\ldots \cup\left(E \cap \operatorname{rank}_{7} \cap \diamond X_{7}\right) \cup\left(E \cap \operatorname{rank}_{8} \cap \diamond X_{8}\right) \cup \\
\cup\left(A \cap \operatorname{rank}_{0} \cap \square X_{0}\right) \cup\left(A \cap \operatorname{rank}_{1} \cap \square X_{1}\right) \cup \ldots \cup\left(A \cap \operatorname{rank}_{8} \cap \square X_{8}\right)
\end{array}
$$

But the formulas complement each others, hence $\overline{\operatorname{Win}_{E}}=\operatorname{Win}_{A}$.
Thus, the game semantics result yields determinacy of parity games.
Note: infinite games are not always determined. But by Martin's Theorem, all games with Borel winning criteria are determined.

References

A. Arnold and D. Niwiński. Rudiments of μ-Calculus. Elsevier Science, 2001.
J. Bradfield and C. Stirling. Modal logics and mu-calculi: an introduction. In Handbook of Process Algebra, Elsevier, 2001.
E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In Proc. FOCS 1991.
E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments of the μ-calculus. In Proc. CAV, 1993.
D. Kozen. Results on the propositional μ-calculus. Theor. Comput. Sci., 1983.
D.A. Martin. Borel determinacy. Ann. Mathematics, 1975.
A. W. Mostowski. Games with forbidden positions. Tech. Rep. 78, Univ. Gdańsk, 1991.
D. Park. On the semantics of fair parallelism. In Abstract Software Specification, 1980.
M.O.Rabin. Weakly definable relations and special automata. In Math. Logic and Foundations of Set Theory, North Holland, 1970.

Summary of the lecture

— usefulness of fixed point definitions

- basic laws of μ and ν
— logic for fixed points: μ-terms and modal μ-calculus
- parity game semantics

Plan of the course

Monday	$D N$	Basic laws and games
Tuesday	$A F$	Automata for the μ-calculus
Wednesday	AF	μ-calculus vs. second-order logic
Thursday	AF	Fixpoint hierarchies and topology
Friday	$D N$	Complexity and probabilistic extension

