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How to define a big object shortly ?

How to define an infinite object at all ?
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Recursion

3



Perpetuum mobile
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Complex concepts in mathematics are often defined in recursive

way.

This may involve risky steps like

tree = ◦
||yyyyyy

""EEEEEE

tree tree

The correctness relies on the existence of fixed points.
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Example

Let u be a sequence of bits, such that the rewriting

0→ 01

1→ 10

produces the same sequence.

2222�22222222�2222 . . . . . .

2222��2222222��222 . . . . . .

Does it exist ??
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Example Thue-Morse sequence

0→ 01

1→ 10

u0 0

u1 0 1

u2 0 1 1 0

u3 0 1 1 0 1 0 0 1

u4 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

. . . . . . . . . . . . . . . .

0110100110010110100101100110100110010110011010010110100110010110. . .

limun is a fixed point u = u[01/0, 10/1].
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Fixed point of a function

x = f(x) = f (f(x)) = f(f(f(x))) = f (f(f(f(x)))) = . . .

Plus ça change, plus c’est la même chose. Alphonse Karr, 1849

Fixed point theorems

Brouwer A continuous mapping of a closed ball into itself has a fixed point.

Banach A contracting mapping of a complete metric space into itself has a

(unique) fixed point.

Knaster-Tarski A monotonic mapping of a complete lattice into itself has a

(least) fixed point.

. . . . . .
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Example von Neumann definition of N
The least set X , such that ∅ ∈ X and x ∈ X =⇒ x ∪ {x} ∈ X .

{∅} ∪ {x ∪ {x} : x ∈ X}︸ ︷︷ ︸
Z

⊆ X

{∅} ∪ {z ∪ {z} : z ∈ Z}
?
⊆ Z

z = x ∪ {x} ∧ x ∈ X =⇒ z ∈ X =⇒ z ∪ {z} ∈ Z .

Yes! Hence,

{∅} ∪ {x ∪ {x} : x ∈ N} = N
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Example – reachability

Is there a path from s to t ?

◦s

~~}}}}}}}

◦t ◦

  AAAAAAA ◦

``AAAAAAA

~~}}}}}}}

◦

``@@@@@@@

??�������
◦

~~|||||||

◦

__@@@@@@
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There a path from s to t iff t belongs to the least set of nodes X , s.t.

{s} ∪ succ(X) ⊆ X

where succ(X) = {y : (∃x ∈ X)x→ y}.

•s

~~}}}}}}

•t •

  AAAAAA ◦

``AAAAAA

~~}}}}}}

•

``AAAAAA

??������
•

~~||||||

•

__@@@@@@

Note: this X is a fixed point, because Z = {s} ∪ succ(X) also satisfies

{s} ∪ succ(Z) ⊆ Z .
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Why do we care about fixed points ?

Knowing that the least X s.t. {s} ∪ succ(X) ⊆ X satisfies

X={s} ∪ succ(X)

we can compute it by iteration

{s}
{s} ∪ succ({s})
{s} ∪ succ({s}) ∪ succ (succ({s}))
. . . . . . . . .

until it stops changes

X = ∅ ∪ F (∅) ∪ F 2(∅) ∪ F 3(∅) ∪ . . .
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Example – infinite path

◦

��
◦

��

◦ww ◦ **

ii

◦

��

◦ ◦

OO

99 ◦

OO

◦

VV HH

◦

XX

Does this graph admit an infinite path? An exhaustive search is costly. . .

Try to characterize the nodes, which originate infinite paths.
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Example – infinite path

◦

��
◦

��

◦ww • &.

ii

•

�	

◦ •

OO

5= •

KS

•

VV DL

•

T\

The nodes, which originate infinite paths (Origin-∞) could say:

I am lucky there, because after some move I can be lucky again.
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◦

��
◦

��
◦

yy
• #+

kk

•

|�
◦ •

OO

:B •

KS

•

SS GO

•

PX

If a set Z satisfies the “luckiness property”

x ∈ Z =⇒ (∃z ∈ Z)x→ z

shorter notation: Z ⊆ 3(Z)

then any z ∈ Z originates an infinite path, i.e., Z ⊆ Origin-∞. But

Origin-∞ ⊆ 3(Origin-∞)

hence, Origin-∞ is a maximal set with luckiness property.
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A maximal set satisfying the inequality Z ⊆ 3(Z) is a fixed point

Z = 3(Z)

(otherwise Z ⊂ 3(Z) ⊆ 3(3(Z))).

Hence, it can be computed by iteration

Origin-∞ =
⋂
ξ

3ξ(T)

On finite graphs, this yields a polynomial time algorithm.
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General setting: Knaster-Tarski Theorem

A monote mapping f : L→ L of a complete lattice L has

a least fixed point

µx.f(x) =
∧
{d : f(d) ≤ d}

and a greatest fixed point

νx.f(x) =
∨
{d : d ≤ f(d)}

Proof for ν.

Let a =
∨
{z : z ≤ f(z)}︸ ︷︷ ︸

A

.

a ≥ A 3 z ≤ f(z) ≤ f(a). Thus A ≤ f(a), hence a ≤ f(a).

By monotonicity, f(a) ≤ f(f(a)), hence f(a) ∈ A, hence f(a) ≤ a.
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Alternative presentation of fixed points.

µx.f(x) =
∨

ξ∈Ord

fξ(⊥)

where

fξ+1(⊥) = f
(
fξ(⊥)

)
fη(⊥) =

∨
ξ<η

fξ(⊥), for limit η.

Similarly

νx.f(x) =
∧

ξ∈Ord

fξ(>)
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A great number of concepts can be defined by µ or ν.

But the fixpoint logics start from an observation that

µx.νy.f(x, y),

is meaningful as well.
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µx.νy.f(x, y)

‖
x = νy.f(x, y)

‖
y = f(x, y)

Note that a = µx.νy.f(x, y) satisfies a = f(a, a), hence

µx.f(x, x) ≤ µx.νy.f(x, y) ≤ νy.f(y, y)
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Example – words

Languages of finite and infinite words over alphabet Σ.

ε 6∈ A ⊆ Σ∗, B ⊆ Σ∗ ∪ Σω , X,Y range over ℘(Σ∗ ∪ Σω),

A∗ =
⋃
nA

n (with A0 = {ε}), Aω = {w0w1w2 . . . : wi ∈ A, i < ω}.

X
?
= AX ∪B

least solution X = A∗B

greatest solution X = A∗B ∪Aω

i.e.,xxxxxxx µX.AX ∪B = A∗B

νX.AX ∪B = A∗B ∪Aω.

Notexxxxxxx µX.AX = ∅
νX.AX = Aω
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Further

µX.AX ∪BY = A∗BY

Y
?
= A∗BY

greatest solution Y = (A∗B)ω

i.e.,xxxxxxx νY.µX.AX ∪BY = (A∗B)ω

νY.AX ∪BY = B∗AX ∪Bω

X
?
= B∗AX ∪Bω

µX.νY.AX ∪BY = (B∗A)
∗
Bω

Note

µX.νY.AX ∪BY ⊆ νY.µX.AX ∪BY
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Example – trees

A (full binary) Σ-labeled tree is a mapping t : 2∗ → Σ.

a
0

vvllllllll 1

((RRRRRRRR

b

~~||||
  BBBB a

}}{{{{
!!DDDD

a

����� ��1
1 a

��
��2

22 b

��
��1

11 a

����� ��1
1

a b b a a a a b

Each σ ∈ Σ induces an operation on trees

σ(t1, t2) = σ

~~~~~~~
  @@@@@

t1 t2

and consequently on tree languages L1, L2 ⊆ TΣ

σ(L1, L2) = {σ(t1, t2) : t1 ∈ L1, t2 ∈ L2}
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Example – trees continued

Let Σ = {a, b}.

νy.µx.a(x, x) ∪ b(y, y) = on each path there are

infinitely many b’s

i.e., all paths are in νy.µx.ax ∪ by,

µx.νy.a(x, x) ∪ b(y, y) = on each path there are

only finitely many a’s

i.e., all paths are in µx.νy.ax ∪ by.

Again µx.νy . . . ⊆ νy.µx . . .
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Parenthesis.

µx.νy.a(x, x) ∪ b(y, y) = on each path there are only finitely many a’s

b

��=====

�������

a

�������
b

��=====

�������

b

������
a

�������
b

��=====

�������

b a

�������
a

�������
b

��:::::

�������

b a a

This set encodes the set of well founded trees T ⊆ ω∗, and can be proved

Π1
1-complete, as a subset of the Cantor space {0, 1}ω .

25



Example – trees continued

The pattern can be generalized.

µx1.νx0. a0(x0, x0) ∪ a1(x1, x1)

νx2.µx1.νx0. a0(x0, x0) ∪ a1(x1, x1) ∪ a2(x2, x2)

µx3.νx2.µx1.νx0. a0(x0, x0) ∪ a1(x1, x1) ∪ a2(x2, x2) ∪ a3(x3, x3)

. . . . . . . . . . . .

On each path, if some ai with i odd occurs infinitely often then there is some aj
with j even, which also occurs infinitely often, and j > i.

In short: the highest k, such that ak occurs infinitely often on a path, is even.
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Basic laws of fixed points

µx.µy.f(x, y) = µx.f(x.x)

νx.νy.f(x, y) = νx.f(x.x)

µx.νy.f(x, y) ≤ νy.µx.f(x, y)

If a = θx.θ′y.f(x, y) then

a = θ′y.f(a, y)

= θx.f(x, a)
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Example – quasi-equational proof

µx.νy.f(x, y)︸ ︷︷ ︸
a

≤ νy.µx.f(x.y)

a = f(a, a) implies µx.f(x, a) ≤ a. By monotonicity of νy.f(z, y) (in z)

νy.f(µx.f(x, a), y) ≤ νy.f(a, y) = a

By monotonicity of f

f(µx.f(x, a), νy.f(µx.f(x, a), y)) ≤ f(µx.f(x, a), a)

By reducing both sides (F (θx.F (x))→ θx.F (x))

νy.f(µx.f(x, a), y) ≤ µx.f(x, a)

By Knaster-Tarski Theorem this implies (a =) µx.νy.f(x, y) ≤ µx.f(x, a).

Again by Knaster-Tarski, a ≤ νy.µx.f(x, y).
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Vectorial fixed points – Bekič Principle

Let (L,≤L), (K,≤K) be two complete lattices and

F : L×K → L×K

be monotonic in two arguments. Let F = (F1, F2). Then

µ

 x

y

 .F (x, y) =

 µx.F1 (x, µy.F2(x, y))

µy.F2 (µx.F1(x, y), y)



Thus vectors can be eliminated at the expense of increasing the length.
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Fixed point clones

A family C of monotonic mappings of a finite arity over a complete lattice L is a

clone if it is closed under composition and contains all projections πik : Lk → L,

πik : (a1, . . . , ak) 7→ ai

It is a µ-clone if moreover is closed under µ, i.e.,

C 3 f(x1, . . . , xk) =⇒ µxi.f(x1, . . . , xk) ∈ C.

A ν-clone is defined similarly.

Comp(F) the least clone

µ(F) the least µ-clone

ν(F) the least ν-clone containing F
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Fixed point hierarchy

Σµ0 (F) = Πµ
0 (F) = Comp(F)

Σµn+1(F) = µ (Πµ
n(F))

Πµ
n+1(F) = ν (Σµn(F))

fp(F) =
⋃
n

Σµn(F) =
⋃
n

Πµ
n(F)

Σ0

NNNNNNNNNN Σ1

NNNNNNNNNN

pppppppppp Σ2

NNNNNNNNNN

pppppppppp Σ3

pppppppppp . . .

Π0 Π1 Π2 Π3 . . .

The hierarchy is in general strict.
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Scalar vs. vectorial fixed points

Operations in Σµn(F) can be characterized as components of vectorial fixed

points

µ


x1,1

x1,2

. . .

x1,k

 .ν


x2,1

x2,2

. . .

x2,k

 . . . . θ


xk,1

xk,2

. . .

xn,k

 .F (~x, ~z)

with the components of F in F (or projections).
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De Morgan laws for fixed points

If a complete lattice L is a Boolean algebra (with x = >− x) then

x = f(x) =⇒ x = f(x)

= f
(
x
)

Thus a complement of a fixed point of f is a fixed point of the dual function

f̃ : x 7→ f(x).

Hence

µx.f(x) = νx.f̃(x)

νx.f(x) = µx.f̃(x)
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Formal syntax: µ-terms

Sig is a finite set of function symbols of finite arity.

x

f(t1, . . . , tk) f̃(t1, . . . , tk) for f ∈ Sig of arity k

µx.t νx.t
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Interpretation: powerset algebras

This framework generalizes the modal µ-calculus and previous examples.

A semi-algebra B = 〈B, fB, gB, cB, . . .〉 over signature Sig = {f, g, c, . . .}

fB(d1, . . . , dk)
.
= b means (d1, . . . , dk, b) ∈ fB ⊆ Bk+1

for f ∈ Sig of arity k

Powerset algebra

℘B =
〈
〈℘B,⊆〉{f℘B : f ∈ Sig} ∪ {f̃℘B : f ∈ Sig}

〉
f℘B(L1, . . . , Lk) = {b : (∃a1 ∈ L1 . . . ∃ak ∈ Lk) fB(a1, . . . , ak)

.
= b},

f̃℘B(L1, . . . , Lk) = f℘B(L1, . . . ,Lk)

f℘B(L1, . . . , Lk) = {b : (∀~a) fB(a1, . . . , ak)
.
= b =⇒ (∃i) ai ∈ Li}.
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Recall

f℘B(L1, . . . , Lk) = {b : (∃a1 ∈ L1 . . . ∃ak ∈ Lk) fB(a1, . . . , ak)
.
= b},

f̃℘B(L1, . . . , Lk) = f℘B(L1, . . . ,Lk)

The set-theoretic operations

We assume that B has a partial operation eq

eqB(a, b)
.
= c ⇐⇒ a = b = c

Then ∩,∪ can be retrieved by

eq℘B(L1, L2) = {c : (∃a ∈ L1,∃b ∈ L2) a = b = c}

= L1 ∩ L2

ẽq℘B(L1, L2) = L1 ∪ L2
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Powerset algebra of words

universe operations

Σ∗ ∪ Σω σw for σ ∈ Σ, w in universe

Powerset algebra of trees

universe operations

TSig f(t1, . . . , tk) for f ∈ Sig , t1, . . . , tk in universe

Powerset algebra of a single tree t ∈ TSig
t : ω∗ ⊇ dom t→ Sig

universe operations

dom t f(v1, . . . , vk)
.
= v f, v

}}zzzzz
""DDDDDD

v1 vk

whenever t(v) = f
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The modal µ-calculus of Kozen

Syntax

x

p ¬p
ϕ ∨ ψ ϕ ∧ ψ
3ϕ 2ϕ

µx.ϕ(x) νx.ϕ(x)

Interpretation in Kripke structures

K = 〈S,R, ρ〉, with R ⊆ S × S, and ρ : Prop → ℘S.

[[ϕ]]K(v) ⊆ S, for v : Var → ℘S

[[3ϕ]]K(v) = {s : (∃s′)R(s, s′) ∧ s′ ∈ [[ϕ]]K(v)}
[[µx.ϕ]]K(v) = µX.[[ϕ]]K(v[X/x]).
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•
��~~~~~

• •
��@@@@@ •

__@@@@@

◦

__@@@@@

??~~~~~
•

??~~~~~

◦

__@@@@@

??~~~~~

E.g.,

µx.νy.2y ∧ (Happy ∨2x)

On each path, I will be happy from some moment on.
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Kripke structure as semi-algebra

K = 〈S,R, ρ〉, with R ⊆ S × S, and ρ : Prop → ℘S can be identified with a

semi-algebra K.

signature universe operations

Prop ∪ {actR} S ρ(p) ⊆ S, for p ∈ Prop;

actR = R−1 i.e., actR(z)
.
= y iff R(y, z)

actR(Z) ≈ 3Z

Example

3 qOO

��
1 p

<<yyyyyyyy
// 2 p, q

p
.
= 1 p

.
= 2 q

.
= 2 q

.
= 3

actR(3)
.
= 1 actR(3)

.
= 2

actR(2)
.
= 1 actR(2)

.
= 3
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This induces a translation α : ϕ 7→ tϕ of the formulas of Lµ into
µ-terms.

α : x 7→ x

p 7→ p ¬p 7→ p̃

(ϕ ∧ ψ) 7→ eq(α(ϕ), α(ψ)) (ϕ ∨ ψ) 7→ ẽq(α(ϕ), α(ψ))

3ϕ 7→ actR(α(ϕ)) 2ϕ 7→ ãctR(α(ϕ))

µx.ϕ 7→ µx.α(ϕ) νx.ϕ 7→ νx.α(ϕ)

For a sentence ϕ,

s ∈ [[ϕ]]K iff s ∈ α(ϕ)℘K.
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How to understand fixed point formulas ?

µx.νy.3(x ∧2(y ∨ µz.3(x ∧2(y ∨ z))))
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How to understand fixed point formulas ?

µx.νy.3(x ∧2(y ∨ µz.3(x ∧2(y ∨ z))))

A useful tool is games.

ICALP 2014. Courtesy of Henryk Michalewski
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Games on graphs

G = 〈Pos∃,Pos∀,Move, C, rank ,W∃,W∀〉,

where Pos = Pos∃
·
∪ Pos∀, Move ⊆ Pos× Pos,

rank : Pos→ C , W∃,W∀ ⊆ Cω , typically W∀ = W∃.

◦♠

��

��

◦♠oo

�� ""DDDDDDD
// ◦♠

◦Eve ◦♠

<<zzzzzzz
◦♠

��

//oo 2♠

OO

2Adam ♠2

OO <<zzzzzzz
2♠oo

<<zzzzzzz
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Game equations

If the winning criterion W∃ is independent on finite prefixes then the set of

winning positions of Eve satisfies

X = (E ∩3X) ∪ (A ∩2X) =def Eve(X)

and the set of winning positions of Adam

Y = (A ∩3Y ) ∪ (E ∩2Y ) =def Adam(Y )

where E,A are interpreted as Pos∃,Pos∀, respectively.

Note X = Eve(X) iff X = Adam
(
X
)

, implying

µ.Eve(X) = νY.Adam(Y ).

Question. For which game is the winning set a least (resp. greatest) solution on

the game equation ?
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Parity games

C ⊆ ω (finite).

◦3

��

��

◦4oo

�� ""EEEEEE
// ◦2

2◦

<<yyyyyy
◦7

��

//oo 28

OO

82

OO <<yyyyyy
52oo

<<yyyyyy

Eve wants to visit even priorities infinitely often.

Adam wants to visit odd priorities infinitely often.

Maximal priority wins.

W∃ = {u ∈ Cω : lim supn→∞ un is even }
W∀ = {u ∈ Cω : lim supn→∞ un is odd }.
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Parity games are intimately linked to the µ-calculus.
Eve’s winning set (for C = {0, 1, 2, 3}) is

νX4.µX3.νX2.µX1.νX0. (E ∩ rank0 ∩3X0)∪
(E ∩ rank1 ∩3X1)∪
(E ∩ rank2 ∩3X2)∪
(E ∩ rank3 ∩3X3)∪

(A ∩ rank0 ∩2X0)∪
(A ∩ rank1 ∩2X1)∪
(A ∩ rank2 ∩2X2)∪
(A ∩ rank3 ∩2X3)∪

Note: its is a fixed point of X = (E ∩3X) ∪ (A ∩2X).

47



Game semantics for the µ-calculus

We define a parity game G(B, t), such that, for b ∈ B

b ∈ t℘B iff Eve wins the game G(B, t) from position (b, t).

First, the variables should be indexed properly

µx1.νy1.f(x1, y1, µz1.νw1.f(x1, z1, w1))

µx3.νx2.f(x3, x2, µx1.νx0.f(x3, x1, x0))

Better

µx11.νx01.f(x11, x01, µx12.ν02.f(x11, x12, x02))

ν-variables x2m,j ,

µ-variables x2m+1,j .

If a variable xk,` appears in the scope of θxi,j . then k ≥ i.
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Games for the powerset algebras

A game G(B, t), for a semi-algebra B and a (closed) µ-term t.

Idea of moves (f∗ stands for f or f̃ ):

Proponent (b, f∗(t1, . . . tk), head)

��
Opponent (〈a1 . . . ak〉, f∗(t1, . . . tk), tail)

tthhhhhhhhhhh

**VVVVVVVVVVV

(a1, t1, head) (ak, tk, head)

where f(a1, . . . , ak)
.
= b.

Proponent is Eve for f and Adam for f̃ .

49



Positions of the game G(B, t)

Head positions = B × Sub(t)× {head}
Tail positions ⊆ B∗ × Sub(t)× {tail}

of the form (〈a1, . . . , ak〉, f∗(t1, . . . tk), tail)

or, more generally (〈a1, . . . , ak〉, s {tail})
↓

f∗(t1, . . . tk)

whenever s
red−→ f∗(t1, . . . tk).

Additionally, (b,⊥, head) – Adam wins, or (b,>, head) – Eve wins.
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Reduction red to guarded subterms f∗(t1, t2) or⊥,>.

µ.x

ν.y

f

xxxxx
FFFFF

ν.w µ.z

µ.v f̃

{{{{{{
?????

w

CC

x

GG

f

~~~~~
;;;;

y z

dd

..

ff

red(z) = red(µz.f̃(x, f(y, z))) = f̃(x, f(y, z))

red(w) = red(νw.µv.w) = >, etc.
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Ownership of positions

Eve

(b, s, head) if red(s) = f(t1, . . . , tk),

(b, s, head) if red(s) = ⊥,

(〈a1 . . . ak〉, s, tail) if red(s) = f̃(t1, . . . , tk).

Adam

(b, s, head) if red(s) = f̃(t1, . . . , tk),

(b, s, head) if red(s) = >,

(〈a1 . . . ak〉, s, tail) if red(s) = f(t1, . . . , tk).

Size: |Pos| = O(|B| · |t|).
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Moves

(b, s, head)

��
(〈a1 . . . ak〉, s, tail)

uukkkkkkkkk

))TTTTTTTTT

(a1, t1, head) (ak, tk, head)

whenever red(s) = f ∗(t1, . . . tk), and f(a1, . . . , ak)
.
= b.

No move out from (b, s, head) if red(s) = ⊥,>.
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Ranking

rank (any , xi,j , any) = i,

for all other positions, rank = 0.

Index of the game: (min rank ,max rank).

terms Σ0

OOOOOOOOOO Σ1

QQQQQQQQQQ

oooooooooo Σ2

QQQQQQQQQQ

mmmmmmmmmm Σ3

mmmmmmmmmm . . .

Π0 Π1 Π2 Π3 . . .

games (1, 1)

PPPPPPPP (0, 1)

PPPPPPPP

nnnnnnnn
(1, 3)

nnnnnnnn
. . .

(0, 0) (1, 2) (0, 2) . . .
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Parity game semantics of the µ-calculus.

Theorem. Eve wins the game G(B, t) from a position (b, t, head)
iff b ∈ t℘B.

We prove a more general claim for a term t(z1, . . . , zk), and the game

G(B, t, val), where Eve wins at the position (b, zi, head) iff b ∈ val(zi).

Induction on the structure of t. The case of µx.t(x, ~z).

Let A be the set of positions from which Eve wins the game G(B, µx.t, val).

To show A = (µx.t(x, ~z))
℘B

val , by Knaster-Tarski’s Theorem, it is enough to

prove

(i) t℘Bval [A/x] ⊆ A

(ii) (∀X) t℘Bval [X/x] ⊆ X =⇒ A ⊆ X .
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(i) t℘Bval [A/x] ⊆ A

(ii) (∀X) t℘Bval [X/x] ⊆ X =⇒ A ⊆ X .

By induction hypothesis, Eve has a strategy at t℘Bval [A/x].

Ad (i). Combine the two strategies.

Ad (ii). For b ∈ A, Eve has a strategy with the highest rank odd (well founded).

b, µx.t

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

�����������������
Tree induction.

•

•

• •

ttttttt
?????
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Example

µx1.νx0.a(x1, x1) ∪ b(x0, x0) = the set of trees, such that on each path

there are only finitely many a’s.

Adam selects a path in the tree and wins if a occurs infinitely often, otherwise Eve

wins.

a(x1, x1) ∪ b(x0, x0) ∃

a

ttjjjjjjjjjjjjjjjjj

**TTTTTTTTTTTTTTTTT ∀

a

��������

&&LLLLLLLLL b

yyrrrrrrrrr

  AAAAAA ∀
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Games for the modal µ-calculus

Eve K, s
?

|= ϕ ∨ ψ

wwnnnnnnnnn

��

Adam K, s |= ϕ ∧ ψ

wwooooooooo

��
K, s |= ϕ K, s |= ψ K, s |= ϕ K, s |= ψ

Eve K, s |= 3ϕ

��

Adam K, s |= 2ϕ

��
with R(s, s′) K, s′ |= ϕ K, s′ |= ϕ

K, s |= p Eve wins iff true

K, s |= X // K, s |= θX.ψ // K, s |= ψ
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Example

•
��~~~~

• •
��@@@@ •

__@@@@

◦

__@@@@
??~~~~

•

??~~~~

◦

__@@@@
??~~~~

•
��~~~~

• •
��@@@@ •

__@@@@

◦

__@@@@
??~~~~

•

??~~~~

◦

__@@@@
??~~~~

µx.νy.2y ∧ (Happy ∨2x)
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Example – parity games

◦3

��

��

◦4oo

�� ""EEEEEE
// ◦2

2◦

<<yyyyyy
◦7

��

//oo 28

OO

82

OO <<yyyyyy
52oo

<<yyyyyy

WinE =

νX8.µX7. . . . µX1.νX0.(E ∩ rank0 ∩ 3X0) ∪ (E ∩ rank1 ∩ 3X1) ∪ . . .

. . . ∪ (E ∩ rank7 ∩ 3X7) ∪ (E ∩ rank8 ∩ 3X8) ∪

∪(A ∩ rank0 ∩ 2X0) ∪ (A ∩ rank1 ∩ 2X1) ∪ . . . ∪ (A ∩ rank8 ∩ 2X8)

The game induced by this formula is essentially the original game.
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WinE =

νX8.µX7. . . . µX1.νX0.(E ∩ rank0 ∩ 3X0) ∪ (E ∩ rank1 ∩ 3X1) ∪ . . .

. . . ∪ (E ∩ rank7 ∩ 3X7) ∪ (E ∩ rank8 ∩ 3X8) ∪

∪(A ∩ rank0 ∩ 2X0) ∪ (A ∩ rank1 ∩ 2X1) ∪ . . . ∪ (A ∩ rank8 ∩ 2X8)

By duality

WinA =

µX8.νX7. . . . νX1.µX0.(E ∩ rank0 ∩ 3X0) ∪ (E ∩ rank1 ∩ 3X1) ∪ . . .

. . . ∪ (E ∩ rank7 ∩ 3X7) ∪ (E ∩ rank8 ∩ 3X8) ∪

∪(A ∩ rank0 ∩ 2X0) ∪ (A ∩ rank1 ∩ 2X1) ∪ . . . ∪ (A ∩ rank8 ∩ 2X8)

But the formulas complement each others, hence WinE = WinA.

Thus, the game semantics result yields determinacy of parity games.

Note: infinite games are not always determined. But by Martin’s Theorem, all

games with Borel winning criteria are determined.
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Summary of the lecture

— usefulness of fixed point definitions

— basic laws of µ and ν

— logic for fixed points: µ-terms and modal µ-calculus

— parity game semantics
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Plan of the course

Monday DN Basic laws and games

Tuesday AF Automata for the µ-calculus

Wednesday AF µ-calculus vs. second-order logic

Thursday AF Fixpoint hierarchies and topology

Friday DN Complexity and probabilistic extension
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