Modal Fixpoint Logics:When Logic Meets Games, Automata and Topology

A. Facchini \& D. Niwinski (U.Warsaw)

Lecture III

MSO vs Mu-Calculus

Two automata-theoretic characterizations:

$$
\varphi=\nu x \cdot \mu y \cdot(\diamond x \vee p) \wedge(\diamond y \vee \neg p)
$$

I. modal automata

$$
\begin{gathered}
\mathbb{A}=(\{a, b\}, a, \Delta, \text { rank }) \\
\Delta(a)=\Delta(b)=(\diamond a \vee p) \wedge(\diamond b \vee \neg p) \\
\operatorname{rank}(a)=2 \\
\operatorname{rank}(b)=1
\end{gathered}
$$

Two automata-theoretic characterizations:

$$
\begin{aligned}
& \varphi=\nu x \cdot \mu y \cdot(\Delta x \vee p) \wedge(\Delta y \vee \neg p) \\
& \text { 2. mu-automata } \operatorname{Aut}\left(\mathrm{FO}^{+}\right) \\
& \mathbb{A}=(\{a, b\}, \wp P, a, \Delta, \text { rank }) \\
& \Delta(a, Q)=\Delta(b, Q)= \begin{cases}\exists x \cdot a(x) & \text { if } p \notin Q \\
\exists x \cdot b(x) & \text { if } p \in Q\end{cases} \\
& \quad \operatorname{rank}(a)=2 \\
& \operatorname{rank}(b)=1
\end{aligned}
$$

Nice thing about mu-automata:

Simulation theorem
=

Normal form theorem

What we are going to see today...

The nice behavior of the mu-calculus:
(i) translatable into (fragment of MSO
(ii) tree model property
(iii) small model property
(iv) Janin-Walukiewicz characterization theorem:

```
MSO/\overleftrightarrow{ }=\muML (over all models)
bisimulation invariance
```

Bisimulation invariance of the mu-Calculus

Theorem: Assume $\mathcal{K}, s_{I} \overleftrightarrow{ } \mathcal{K}^{\prime}, s_{I}^{\prime}$. Then for every $\phi \in \mu \mathrm{ML}$:

$$
\mathcal{K}, s_{I} \models \phi \text { iff } \mathcal{K}^{\prime}, s_{I}^{\prime} \models \phi
$$

Theorem (Bounded Tree Model Property): Let

 $\phi \in \mu \mathrm{ML}$. If ϕ is satisfiable, then it is satisfiable at the root of a tree whose branching degree is bounded by the size of ϕ.Proof: Consider the tree unraveling of the model, then prune it by using the positional winning strategy for \exists in the accepting game of \mathbb{A}_{ϕ} (non-det.) considering only the existential part of the transition.

The case of the mu-calculus:
(i) translatable into (fragment of) MSO
(ii) tree model property
(iii) small model property
(iv) Janin-Walükiewicz characterization theorem:
$M S O / \leftrightarrow \quad=\mu M L$ (over all models)

General view

Once more: why to bother about the Janin-Walukiewicz Theorem?

Characterization Theorems

Once more: why to bother about the Janin-Walukiewicz Theorem?
instance of a more general problem

$$
\mathcal{L} / \leftrightarrows=\mathcal{M}(\text { over } \mathcal{C})
$$

$$
\mathcal{L} / \leftrightarrow=\mathcal{M}(\text { over } \mathcal{C})
$$

$$
\mathcal{L} / \leftrightarrows=\mathcal{M}(\text { over } \mathcal{C})
$$

$$
\mathcal{L} / \overleftrightarrow{\leftrightarrow}=\mathcal{M}(\text { over } \mathcal{C})
$$

$\phi::=x=y|p(x)| R(x, y)|\phi \vee \phi| \neg \phi|\exists x . \phi| \exists p . \phi$ with $p \in P$ and $x, y \in \mathcal{X}$.

A purely second-order variant of MSO
¿ $\phi::=x=y|p(x)| R(x, y)|\phi \vee \phi| \neg \phi|\exists x \cdot \phi| \exists p . \phi$ with $p \in P$ and $x, y \in \mathcal{X}$.
$\frac{0}{\Sigma}$
$\phi::=\downarrow p|p \subseteq q| R(p, q)|\phi \vee \phi| \neg \phi \mid \exists p . \phi$
with $p \in P^{\prime}$.

Given a Kripke model \mathcal{K}, and $s \in S$,

- $\mathcal{K}, s \vDash \downarrow p$ iff $\rho(p)=\{s\}$,
- $\mathcal{K}, s \models p \subseteq q$ iff $\rho(p) \subseteq \rho(q)$,
- $\mathcal{K}, s \models R(p, q)$ iff $\forall s \in \rho(p), \exists t \in \rho(q)$ s.t. $(s, t) \in R$,
- ...
- $\mathcal{K}, s \models \exists p . \phi$ iff $\exists X \subseteq Q . \mathcal{K}[p \mapsto X], s \models \phi$.
p-variant

A purely second-order variant of MSO

Proposition:

- for every $\phi(x) \in M S O^{\prime}$ there is $(\phi)^{t} \in M S O$ such that $\mathcal{K} \models \phi(s)$ iff $\mathcal{K}, s \models(\phi)^{t}$
- for every $\phi \in M S O$ there is $(\phi)_{t}(x) \in M S O$ such that $\mathcal{K}, s \models$ iff $\mathcal{K} \models(\phi)_{t}(s)$

A purely second-order variant of MSO

Proof (sketch): For the first item, use the fact that

- $\operatorname{Empty}(p)=\forall q \cdot p \subseteq q$
- $\operatorname{Sing}(p)=\neg \operatorname{Empty}(p) \wedge$ $\forall q(q \subseteq p \rightarrow(\operatorname{Empty}(q) \vee p \subseteq q))$.

For the second item, just write the semantics of MSO in MSO^{\prime}.

The Janin-Walukiewicz Theorem

Theorem: There are effective translations $(\cdot)^{\bullet}: \mathrm{MSO} \rightarrow \mu \mathrm{ML}$ and $(\cdot) \bullet: \mu \mathrm{ML} \rightarrow \mathrm{MSO}$, such that

1. $\phi \in \mathrm{MSO}$ is bisimulation invariant iff $\phi \equiv \phi^{\bullet}$,
2. $\psi \equiv \psi \bullet$ for every formula $\psi \in \mu \mathrm{ML}$.
```
MML = }\mu\mathrm{ -automata
    (over K)
```

(over trees)
$\mathrm{MSO}=\mathrm{MSO}$-automata

$$
\mu \mathbf{M L} \underset{\substack{\text { (over K) }}}{=} \quad \mu \text {-automata }
$$

(over trees)

$\mathrm{MSO}=$	MSO-automata
$\mu \mathrm{ML} \underset{(\text { over K) }}{=}=$	μ-automata

Proof idea

MSO-automata	$\operatorname{Aut}\left(\mathrm{FOE}^{+}\right)$ $\mu:(a, c) \mapsto \varphi \in \mathrm{FOE}^{+}(A)$ -automata
$\operatorname{Aut}\left(\mathrm{FO}^{+}\right)$	
$\Delta:(a, c) \mapsto \varphi \in \mathrm{FO}^{+}(A)$	

(over trees)		
$\mathrm{MSO}=$	O-automata	
$\mu \mathbf{M L} \underset{(\text { over K) }}{=}$	μ-automata	FO^{+}

Translating one-step logics
we want to find a translation satisfying:

$$
\begin{gathered}
(\cdot)^{\bullet}: \mathrm{FOE}^{+}(A) \rightarrow \mathrm{FO}^{+}(A) \\
\mathbf{D}_{\omega}:=\left(D_{\omega}, V_{\omega}\right) \models \varphi \\
\text { iff } \\
\mathbf{D}:=(D, V) \models \varphi^{\bullet}
\end{gathered}
$$

Translating one-step logics

$$
\begin{aligned}
& (D, V)=\bigcirc \bigcirc \bigcirc \bigcirc
\end{aligned}
$$

Translating one-step logics

$$
\begin{aligned}
& \left(D_{\omega}, V_{\omega}\right)=\left(D \times \omega, V_{\omega}\right) \\
& \text { where }
\end{aligned}
$$

$$
V_{\omega}((d, i))=V(d)
$$

Translating one-step logics

MSO-automata

μ-automata

omega-tree unraveling
$\mathcal{K}=$

omega-tree unraveling

MSO-automata

FOE^{+}

Translating one-step logics
$(\cdot)^{\bullet}: \operatorname{Aut}\left(\mathrm{FOE}^{+}\right) \rightarrow \operatorname{Aut}\left(\mathrm{FO}^{+}\right)$
$\Delta^{\bullet}(a, c):=(\Delta(a, c))^{\bullet}$

$$
\left.\mathcal{K}_{\omega}^{T}\right) \in L(\mathbb{A})
$$

iff

$$
\mathcal{K} \in L\left(\mathbb{A}^{\bullet}\right)
$$

The Janin-Walukiewicz theorem as a corollary of this picture
(over trees)

The Janin-Walukiewicz theorem as a corollary of this picture

Theorem: There are effective translations $(\cdot)^{\bullet}: \mathrm{MSO} \rightarrow \mu \mathrm{ML}$ and $(\cdot)_{\bullet}: \mu \mathrm{ML} \rightarrow \mathrm{MSO}$, such that

1. $\phi \in \mathrm{MSO}$ is bisimulation invariant iff $\phi \equiv \phi^{\bullet}$,

2. $\psi \equiv \psi \bullet$ for every formula $\psi \in \mu \mathrm{ML}$.

$\mu \mathrm{ML}$
$=$
μ-automata
(over K)

For item I of the theorem we reason as follows:
Let $\phi \in$ MSO bisimulation invariant:

$$
\mathcal{K} \models \phi \quad \underset{(\text { bis. inv.) }}{\text { iff }} \quad \mathcal{K}_{\omega}^{T} \models \phi
$$

$$
\begin{gathered}
\text { iff } \quad \mathcal{K}_{\omega}^{T} \in L\left(\mathbb{A}_{\phi}\right) \\
\text { (MSO=MSO-aut.) } \\
\underset{\substack{\text { iff } \\
\text { (transl.) }}}{\mathcal{K} \in L\left(\left(\mathbb{A}_{\phi}\right)^{\bullet}\right)}
\end{gathered}
$$

iff $\quad \mathcal{K} \models(\phi)^{\bullet}$ (mu-calculus=mu-automata)

What we want

$\mu \mathbf{M L}_{\text {(over K) }}^{=} \quad \mu$-automata $\quad \mathrm{FO}^{+}$

Automata for MSO

Definition: A MSO-automaton (over Σ) is a tuple

$$
\mathbb{A}=\left(A, \Sigma, a_{I}, \Delta, \Omega\right)
$$

such that

- $a_{I} \in A$ (initial state)
- $\Delta: A \times \Sigma \rightarrow \operatorname{FOE}^{+}(A)$ (transition fct)
- rank : $A \rightarrow \mathbb{N}$ (parity fct)

Aut(FOE^{+})

Acceptance (parity) game $\mathcal{G}(\mathbb{A}, \mathcal{K})$

Let $\mathcal{K}=(S, R, \rho: S \rightarrow \Sigma)$ be a tree model over Σ.

Position	Player	Admissible moves	Parity
$(a, s) \in A \times S$	\exists	$\{V: A \rightarrow \wp(R[s]) \mid$	$\operatorname{rank}(a)$
		$(R[s], V) \models \Delta(a, \rho(s))\}$	
$V: A \rightarrow \wp S$	\forall	$\{(b, t) \mid t \in V(b)\}$	$\max (\operatorname{rank}[A])$

Acceptance (parity) game $\mathcal{G}(\mathbb{A}, \mathcal{K})$

Definition: \mathbb{A} accepts $\left(\mathcal{K}, s_{I}\right)$ iff \exists has a winning strategy in $\mathcal{G}(\mathbb{A}, \mathcal{K}) @\left(a_{I}, s_{I}\right)$

$$
\left(\mathcal{K}, s_{I}\right) \in L(\mathbb{A})
$$

where s_{I} is the root of \mathcal{K}.

Automata for MSO

Let $\mathbb{A}=\left(A, \wp P, a_{I}, \Delta\right.$, rank $)$ be defined as follows.

$$
\begin{aligned}
A & :=\left\{a_{0}\right\} \\
a_{I} & :=a_{0} \\
\Delta\left(a_{0}, Q\right) & := \begin{cases}\forall x a_{0}(x) & \text { If } q \in Q \text { or } p \notin Q \\
\perp & \text { Otherwise }\end{cases} \\
\operatorname{rank}\left(a_{0}\right) & :=0
\end{aligned}
$$

Automata for MSO

Let $\mathbb{A}=\left(A, \wp P, a_{I}, \Delta\right.$, rank $)$ be defined as follows.

$$
\begin{aligned}
A & :=\left\{a_{0}\right\} \\
a_{I} & :=a_{0} \\
\Delta\left(a_{0}, Q\right) & := \begin{cases}\forall x a_{0}(x) & \text { If } q \in Q \text { or } p \notin Q \\
\perp & \text { Otherwise }\end{cases} \\
\operatorname{rank}\left(a_{0}\right) & :=0 \\
L(\mathbb{A}) & =\left\{\mathcal{K} \mid \mathcal{K}, s_{I} \models p \subseteq q\right\}
\end{aligned}
$$

Let $\mathbb{A}=\left(A, \wp P, a_{I}, \Delta\right.$, rank $)$ be defined as follows.

$$
\begin{array}{rll}
A & :=\left\{a_{0}, a_{1}\right\} \\
a_{I} & :=a_{0} \\
\Delta\left(a_{0}, Q\right) & := \begin{cases}\exists x\left(a_{1}(x) \wedge \forall y\left(y \neq x \rightarrow a_{0}(y)\right)\right) & \text { If } p \in Q \\
\forall x\left(a_{0}(x)\right) & \text { Otherwise }\end{cases} \\
\Delta\left(a_{1}, Q\right) & := \begin{cases}\perp & \text { If } q \notin Q \\
\exists x\left(a_{1}(x) \wedge \forall y\left(y \neq x \rightarrow a_{0}(y)\right)\right) & \text { If } p \in Q \text { and } q \in Q \\
\forall x\left(a_{0}(x)\right) & \text { Otherwise }\end{cases} \\
\operatorname{rank}\left(a_{0}\right) & :=0 & \\
\operatorname{rank}\left(a_{1}\right) & :=0 &
\end{array}
$$

Automata for MSO

Let $\mathbb{A}=\left(A, \wp P, a_{I}, \Delta\right.$, rank $)$ be defined as follows.

$$
\begin{aligned}
A & :=\left\{a_{0}, a_{1}\right\} \\
a_{I} & :=a_{0} \\
\Delta\left(a_{0}, Q\right) & := \begin{cases}\exists x\left(a_{1}(x) \wedge \forall y\left(y \neq x \rightarrow a_{0}(y)\right)\right) & \text { If } p \in Q \\
\forall x\left(a_{0}(x)\right) & \text { Otherwise }\end{cases} \\
\Delta\left(a_{1}, Q\right) & := \begin{cases}\perp & \text { If } q \notin Q \\
\exists x\left(a_{1}(x) \wedge \forall y\left(y \neq x \rightarrow a_{0}(y)\right)\right) & \text { If } p \in Q \text { and } q \in Q \\
\forall x\left(a_{0}(x)\right) & \text { Otherwise }\end{cases} \\
\operatorname{rank}\left(a_{0}\right) & :=0 \\
\operatorname{rank}\left(a_{1}\right) & :=0
\end{aligned}
$$

$$
L(\mathbb{A})=\left\{\mathcal{K} \mid \mathcal{K}, s_{I} \models R(p, q)\right\}
$$

$$
L(\mathbb{A})=\left\{\mathcal{K} \mid \mathcal{K}, s_{I} \models \downarrow p\right\}
$$

Automata for MSO

Let $\mathbb{A}=\left(A, \wp P, a_{I}, \Delta\right.$, rank $)$ be defined as follows.

$$
\begin{aligned}
& A:=\left\{a_{0}, a_{1}\right\} \\
& a_{I}:=a_{0} \\
& \Delta\left(a_{0}, Q\right):= \begin{cases}\forall x a_{1}(x) & \text { If } p \in Q \\
\perp & \text { Otherwise }\end{cases} \\
& \Delta\left(a_{1}, Q\right):=\forall x a_{1}(x) \\
& \operatorname{rank}\left(a_{0}\right):=0 \\
& \operatorname{rank}\left(a_{1}\right):=0 \\
& L(\mathbb{A})=\left\{\mathcal{K} \mid \mathcal{K}, s_{I} \models \downarrow p\right\}
\end{aligned}
$$

Automata for MSO

From MSO to MSO-automata

Theorem: For every $\phi \in$ MSO there is an equivalent MSO -automaton \mathbb{A}_{ϕ}.

From MSO to MSO-automata

Proof: By induction on the structure of ϕ. Atomic cases and disjunction easy.

Proof (cont.): For the negation,

$$
\therefore:\left\{\begin{array}{l}
a(x) \mapsto a(x) \\
\perp \mapsto \top \\
\top \mapsto \perp \\
x=y \mapsto x \neq y \\
x \neq y \mapsto x=y \\
\phi \vee \psi \mapsto \bar{\phi} \wedge \bar{\psi} \\
\phi \wedge \psi \mapsto \bar{\phi} \vee \bar{\psi} \\
\exists x \cdot \phi \mapsto \forall x \cdot \bar{\phi} \\
\forall x \cdot \phi \mapsto \exists x \cdot \bar{\phi}
\end{array}\right.
$$

Fact: Given $\phi,(D, V)$:
$(D, \bar{V}) \not \models \phi$ iff $(D, V) \models \bar{\phi}$.

From MSO to MSO-automata

Proof (cont.): For the negation,

$$
\begin{aligned}
& \mathcal{A}_{\neg \phi}:=\left(A_{\phi}, a_{I}, \bar{\Delta}, \overline{\operatorname{rank}}\right) \\
& \left\{\begin{array}{l}
\bar{\Delta}(a, Q)=\overline{\Delta(a, Q)} \\
\overline{\operatorname{rank}}(a)=\operatorname{rank}(a)+1
\end{array}\right.
\end{aligned}
$$

From MSO to MSO-automata

Proof (cont.): For quantification, we use the

Simulation Theorem: Every MSO-automaton is equivalent to a non-deterministic one.

Formulation of the simulation theorem:

$$
\operatorname{diff}\left(x_{1}, \ldots, x_{k}\right):=\bigwedge_{i \neq j \text { and } i, j \leq k} x_{i} \neq x_{j}
$$

A type is a subset of P.
Let Q be a type.

- $\tau_{Q}(x):= \begin{cases}\top & \text { if } Q=\emptyset \\ \bigwedge_{p \in Q} p(x) \wedge \bigwedge_{p \notin Q} \neg p(x) & \text { else; }\end{cases}$
- $\tau_{Q}^{+}(x):= \begin{cases}\top & \text { if } Q=\emptyset \\ \bigwedge_{p \in Q} p(x) & \text { else. }\end{cases}$

Formulation of the simulation theorem:

Definition: A formula $\phi \in \operatorname{FOE}(A)$ is in basic normal form $(\mathrm{BF}(\mathrm{A}))$ if it is of the form

$$
\nabla_{\mathrm{FOE}}(\bar{Q}, \Pi):=\exists \bar{x} \cdot \operatorname{diff}(\bar{x}) \wedge \bigwedge_{i \leq k} \tau_{Q_{i}}\left(x_{i}\right) \wedge \forall y \cdot \operatorname{diff}(\bar{x}, y) \rightarrow \bigvee_{T \in \Pi} \tau_{T}(y)
$$

When each type in $\bar{Q} \cup \Pi$ is either empty or a singleton, we say that it is in special normal form ($\mathrm{SBF}(\mathrm{A})$).

Definition: A formula $\phi \in \operatorname{FOE}^{+}(A)$ is in basic normal form $\left(\mathrm{BF}^{+}(\mathrm{A})\right)$ if it is of the form

$$
\nabla_{\mathrm{FOE}}^{+}(\bar{Q}, \Pi):=\exists \bar{x} \cdot \operatorname{diff}(\bar{x}) \wedge \bigwedge_{i \leq k} \tau_{Q_{i}}^{+}\left(x_{i}\right) \wedge \forall y \cdot \operatorname{diff}(\bar{x}, y) \rightarrow \bigvee_{T \in \Pi} \tau_{T}^{+}(y)
$$

When each type in $\bar{Q} \cup \Pi$ is either empty or a singleton, we say that it is in special normal form $\left(\mathrm{SBF}^{+}(\mathrm{A})\right)$.

Formulation of the simulation theorem:

Definition: A MSO-automaton \mathbb{A} is non-deterministic if

$$
\Delta: A \times \wp P \rightarrow \operatorname{SLatt}\left(S B F^{+}(A)\right)
$$

Formulation of the simulation theorem:

Simulation Theorem: Every MSO-automaton is equivalent to MSO-automaton whose transition formulas are only in special normal form.

Formulation of the simulation theorem:

Simulation Theorem: Every MSO-automaton is equivalent to MSO-automaton whose transition formulas are only in special normal form.

How to use this theorem in order to prove that if $\|\phi(p)\|$ is recognizable then $\|\exists p \cdot \phi(p)\|$ is also recognizable?

From simulation to closure under existential quantification

Functional winning strategies

Let $\mathcal{K} \in L(\mathbb{A})$ and \mathbb{A} non deterministic

Consider the winning strategy σ for \exists in the acceptance game

$$
\sigma(a, s)=(D, V) \text { s.t. }(D, V) \models \Delta(a, \rho(s))
$$

From simulation to closure under existential quantification

Functional winning strategies

Let $\mathcal{K} \in L(\mathbb{A})$ and \mathbb{A} non deterministic

Consider the winning strategy σ for \exists in the acceptance game

$$
\sigma(a, s)=(D, V) \text { s.t. }(D, V) \models \Delta(a, \rho(s))
$$

$(D, V) \models \exists x_{1} \exists x_{2} \cdot x_{1} \neq x_{2} \wedge a\left(x_{1}\right) \wedge a_{2}\left(x_{2}\right) \wedge \forall y . \operatorname{diff}\left(y, x_{1}, x_{2}\right) \rightarrow\left(c_{1}(y) \vee c_{2}(y)\right)$

From simulation to closure under existential quantification

Functional winning strategies

Let $\mathcal{K} \in L(\mathbb{A})$ and \mathbb{A} non deterministic

Consider the winning strategy σ for \exists in the acceptance game

$$
\sigma(a, s)=(D, V) \text { s.t. }(D, V) \models \Delta(a, \rho(s))
$$

$(D, V) \models \exists x_{1} \exists x_{2} \cdot x_{1} \neq x_{2} \wedge a\left(x_{1}\right) \wedge a_{2}\left(x_{2}\right) \wedge \forall y . \operatorname{diff}\left(y, x_{1}, x_{2}\right) \rightarrow\left(c_{1}(y) \vee c_{2}(y)\right)$

From simulation to closure under existential quantification

Functional winning strategies

Let $\mathcal{K} \in L(\mathbb{A})$ and \mathbb{A} non deterministic

Consider the winning strategy σ for \exists in the acceptance game

$$
\sigma(a, s)=(D, V) \text { s.t. }(D, V) \models \Delta(a, \rho(s))
$$

$$
(D, V) \models \exists x \exists y . x \neq y \wedge a(x) \wedge b(y) \wedge \forall z . \operatorname{diff}(x, y, z) \rightarrow(c(z) \vee d(z))
$$

$\sigma(a, s)=(D, V)=\bigcirc_{\mathbf{x}}^{\mathrm{a}} \mathrm{O}_{\mathbf{y}}^{\mathrm{b}}$
c,d
Z

From simulation to closure under existential quantification

Functional winning strategies

Let $\mathcal{K} \in L(\mathbb{A})$ and \mathbb{A} non deterministic

Consider the winning strategy σ for \exists in the acceptance game

$$
\sigma(a, s)=(D, V) \text { s.t. }(D, V) \models \Delta(a, \rho(s))
$$

$$
(D, V) \models \exists x \exists y . x \neq y \wedge a(x) \wedge b(y) \wedge \forall z . \operatorname{diff}(x, y, z) \rightarrow(c(z) \vee d(z))
$$

$$
\sigma(a, s)=(D, V)=\bigcirc_{\mathbf{x}}^{\mathrm{a}} \quad \bigcirc_{\mathbf{y}}^{\mathrm{b}}
$$

From simulation to closure under existential quantification

Functional winning strategies

Let $\mathcal{K} \in L(\mathbb{A})$ and \mathbb{A} non deterministic

The positional winning strategy σ for \exists in the acceptance game can be assumed to be functional i.e.
it induces a unique relabeling of \mathcal{K} where:

- each node is labeled with an element from $A \cup\{\star\}$

$$
\begin{gathered}
\mathcal{K}=(S, R, \rho: S \rightarrow C) \\
\mapsto \\
\mathcal{K}_{\sigma}:=\left(S, R, \rho_{\sigma}: S \rightarrow A \cup\{\star\}\right)
\end{gathered}
$$

From simulation to closure under existential quantification

How to use this theorem in order to prove that if $\|\phi(p)\|$ is recognizable then $\|\exists p \cdot \phi(p)\|$ is also recognizable?
we start by 're-formulating' this:

- from the point of view of a tree language
- from the point of view of automata

From simulation to closure under existential quantification

Let $\mathcal{K}^{\prime}=(S, R, \rho)$ over P. A p-variant $\mathcal{K}=\left(S, R, \rho^{\prime}\right)$ is a tree over $P \cup\{p\}$ such that $\left.\rho^{\prime}\right|_{P}=\rho$.

p-variant

From simulation to closure under existential quantification

Given a tree language L over $P \cup\{p\}$:
$\exists p . L=\left\{\mathcal{K}\right.$ over $P \mid \exists p$-variant \mathcal{K}^{p} of \mathcal{K} s.t. $\left.\mathcal{K}^{p} \in L\right\}$

Given $\mathbb{A}=\left(A, a_{I}, \Delta\right.$, rank) over $P \cup\{p\}$:
$\exists p \cdot \mathbb{A}=\left(A, a_{I}, \Delta^{\exists}\right.$, rank $)$ is over P, with

$$
\Delta^{\exists}(a, c):=\Delta(a, c) \vee \Delta(a, c \cup\{p\})
$$

Note that if \mathbb{A} non det., then \mathbb{A}^{\exists} non-det. too.

From simulation to closure under existential quantification

Proposition: Given a letter p and a nondeterministic \mathbb{A} on $P \cup\{p\}$,

$$
L(\exists p \cdot \mathbb{A})=\exists p . L(\mathbb{A})
$$

Proof: The direction from right to left is easy. Indeed, let \mathcal{K}^{p} be a p-variant such that \exists has a winning strategy σ in $\mathcal{G}\left(\mathbb{A}, \mathcal{K}^{p}\right) @\left(a_{I}, s_{I}\right)$. Then σ is also winning in $\mathcal{G}(\exists p . \mathbb{A}, \mathcal{K}) @\left(a_{I}, s_{I}\right)$

From simulation to closure under existential quantification

$L(\exists p . \mathbb{A}) \subseteq \exists p . L(\mathbb{A})$

Proof (cont.): Let $\mathcal{K} \in L(\exists p . \mathbb{A})$ over P.
Fix a functional winning strategy σ for \exists in $\mathcal{G}(\exists p . \mathbb{A}, \mathcal{K}) @\left(a_{I}, s_{I}\right)$. Define \mathcal{K}^{p} by:

$$
\rho^{p}(s)=\rho(s) \cup X
$$

$X= \begin{cases}\{p\} & \text { if } \rho_{\sigma}(s)=a \text { and } \\ & \sigma\left(\Delta^{\exists}(a, \sigma(s)) \models \Delta(a, \sigma(s) \cup\{p\})\right. \\ \emptyset & \text { else. }\end{cases}$
σ induces a w.s. for $\exists \operatorname{in} \mathcal{G}\left(\mathbb{A}, \mathcal{K}^{p}\right) @\left(a_{I}, s_{I}\right)$.

From simulation to closure under existential quantification
Theorem: For every $\phi \in$ MSO there is an equivalent MSO -automaton \mathbb{A}_{ϕ}.

Finishing the proof: Base cases and booleans are ok. For quantification, by the Simulation Theorem we can assume that \mathbb{A} is non-deterministic.

$$
\begin{array}{ll}
\mathcal{K} \in L\left(\exists p \cdot \mathbb{A}_{\phi}\right) & \text { iff } \\
\exists X \subseteq S \text { and } \mathcal{K}[p \mapsto X] \in L\left(\mathbb{A}_{\phi}\right) & \text { iff } \\
\exists X \subseteq S \text { and } \mathcal{K}[p \mapsto X], s_{I} \models \phi & \text { iff } \\
\mathcal{K}, s_{I} \models \exists p \cdot \phi &
\end{array}
$$

We have to prove the simulation theorem!

Proof strategy:

I. We show that each one step FO formula is equivalent to a formula in normal form
2. same for the positive fragment
3. we use this normal form results to construct the equivalent non deterministic parity automaton

Normal forms for one-step logic

In the following we give

- Normal forms for arbitrary formulas of FOE and FOE^{+},
- Strong forms of syntactic characterizations for the monotone fragments
- Normal forms for the monotone fragments.

Same can be done for FO and FO^{+}

Normal forms for one-step logic

Given a set A of (state) variables, the set of formula $\operatorname{FOE}(A)$ is defined as:
$\phi::=\top|\perp| x=y|x \neq y| a(x)|\neg a(x)| \phi \wedge \phi|\phi \vee \phi| \exists x . \phi \mid \forall x . \phi$
with $a \in A$.

Normal forms for one-step logic

Given a set A of (state) variables, the set of formula $\mathrm{FOE}^{+}(A)$ is defined as:

$$
\phi::=\top|\perp| x=y|x \neq y| a(x)|\phi \wedge \phi| \phi \vee \phi|\exists x . \phi| \forall x . \phi
$$

with $a \in A$.

Normal forms for one-step logic

A type is a subset of P.
Let Q be a type.

- $\tau_{Q}(x):= \begin{cases}\top & \text { if } Q=\emptyset \\ \bigwedge_{p \in Q} p(x) \wedge \bigwedge_{p \notin Q} \neg p(x) & \text { else } ;\end{cases}$
- $\tau_{Q}^{+}(x):= \begin{cases}\top & \text { if } Q=\emptyset \\ \bigwedge_{p \in Q} p(x) & \text { else. }\end{cases}$

Normal forms for one-step logic

Definition: A formula $\phi \in \operatorname{FOE}(A)$ is in basic normal form $(\mathrm{BF}(\mathrm{A}))$ if it is of the form

$$
\nabla_{\mathrm{FOE}}(\bar{Q}, \Pi):=\exists \bar{x} \cdot \operatorname{diff}(\bar{x}) \wedge \bigwedge_{i \leq k} \tau_{Q_{i}}\left(x_{i}\right) \wedge \forall y \cdot \operatorname{diff}(\bar{x}, y) \rightarrow \bigvee_{T \in \Pi} \tau_{T}(y)
$$

Normal forms for one-step logic

Definition: A formula $\phi \in \operatorname{FOE}^{+}(A)$ is in basic normal form $\left(\mathrm{BF}^{+}(\mathrm{A})\right)$ if it is of the form

$$
\nabla_{\mathrm{FOE}}^{+}(\bar{Q}, \Pi):=\exists \bar{x} \cdot \operatorname{diff}(\bar{x}) \wedge \bigwedge_{i \leq k} \tau_{Q_{i}}^{+}\left(x_{i}\right) \wedge \forall y \cdot \operatorname{diff}(\bar{x}, y) \rightarrow \bigvee_{T \in \Pi} \tau_{T}^{+}(y)
$$

(a) Normal forms for FOE

Theorem: Every sentence of $\operatorname{FOE}(A)$ is equivalent to a disjunction of formulas in $\mathrm{BF}(\mathrm{A})$.
(a) Normal forms for FOE

Proof: Given $\mathbf{D}=(D, V)$ and $\mathbf{D}^{\prime}=\left(D^{\prime}, V^{\prime}\right)$, define

$$
\begin{array}{r}
\mathbf{D} \sim_{k}^{\overline{=}} \mathbf{D}^{\prime} \Longleftrightarrow \forall Q \subseteq A\left(|Q|_{\mathbf{D}}=|Q|_{\mathbf{D}^{\prime}}<k\right. \\
\text { or } \left.|Q|_{\mathbf{D}},|Q|_{\mathbf{D}^{\prime}} \geq k\right)
\end{array}
$$

$$
|Q|_{\mathbf{D}}:=\left\{d \in D \mid \mathbf{D} \models \tau_{Q}(d)\right\}
$$

(a) Normal forms for FOE

Proof (cont): It holds that

1. $\sim_{\bar{k}}$ is an equivalence relation,
2. $\sim_{k}^{\bar{k}}$ has finite index,
3. Every equivalence class E is characterized by a formula $\varphi_{\bar{E}}^{\overline{\bar{E}}} \in \operatorname{FOE}(A)$ with $\operatorname{qr}\left(\varphi_{\bar{E}}^{\overline{\bar{E}}}\right)=k$.
(a) Normal forms for FOE

Proof (cont): It holds that

1. $\sim_{\bar{k}}$ is an equivalence relation,
2. $\sim_{k}^{\bar{k}}$ has finite index,
3. Every equivalence class E is characterized by a formula $\varphi_{E}^{\overline{\bar{E}}} \in \operatorname{FOE}(A)$ with $\operatorname{qr}\left(\varphi_{\bar{E}}^{\overline{\bar{E}}}\right)=k$.

By the fact that $\sim_{\bar{k}}$ equals \equiv_{k}, every FOE sentence φ is equivalent to

$$
\bigvee \quad \varphi_{E}^{\overline{\bar{E}}}
$$

$E:\|\varphi\| \cap E \neq \emptyset$
(a) Normal forms for FOE
$D, V=$
(a) Normal forms for FOE
$D, V=\quad \geq k$
$\exists x_{1} \ldots \exists x_{n_{i}}\left(\operatorname{diff}(\bar{x}) \wedge \bigwedge_{1 \leq \ell \leq n_{i}} \tau_{Q_{i}}\left(x_{\ell}\right) \wedge\right.$
Q_{i} $\begin{array}{r} \\ \left.\forall z \cdot \operatorname{diff}(\bar{x}, z) \rightarrow \neg \tau_{Q_{i}}(z)\right) \\ n_{i}<k\end{array}$
(a) Normal forms for FOE
$D, V=\quad<k$
$\geq k$
$T \in \Pi \quad \exists x_{1} \ldots \exists x_{k} \cdot \operatorname{diff}(\bar{x}) \wedge \bigwedge_{1 \leq \ell \leq k} \tau_{T}\left(x_{\ell}\right)$
(a) Normal forms for FOE

$$
\varphi_{E}^{\bar{E}} \equiv \nabla_{\mathrm{FOE}}\left(\bar{Q}^{\prime}, \Pi\right)
$$

The sequence \bar{Q}^{\prime} contains n_{i} occurrences of type Q_{i} and k occurrences of each type in Π.

Where we are in the proof of the Simulation Theorem

Proof strategy:

I. We show that each one step FO formula is equivalent to a formula in normal form 2. same for the positive fragment
3. we use this normal form results to construct the equivalent non deterministic parity automaton
(b) Normal forms for positive FOE

Proof idea

> I. we show that the positive fragment of FOE corresponds to its monotone fragment

2. we show that the previous normal form theorem for FOE provides us the expected normal form theorem for the positive fragment by using point I

(b) Normal forms for positive FOE - positive as monotone

Definition: Given a one-step logic $\mathcal{L}(A)$ and $\varphi \in \mathcal{L}(A)$, We say that φ is monotone in $a \in A$ if for every (D, V) and assignment of first-order variables λ :

$$
\begin{aligned}
& \text { If }(D, V), \lambda \models \varphi \text { and } V(a) \subseteq E \text { then } \\
& (D, V[a \mapsto E]), \lambda \models \varphi .
\end{aligned}
$$

$$
\mathcal{L} \mathrm{C}_{a}(A)
$$

(b) Normal forms for positive FOE - positive as monotone

Theorem: A sentence of $\operatorname{FOE}(A)$ is monotone in $a \in A$ iff it is equivalent to a sentence given by

$$
\varphi::=\psi|a(x)| \exists x . \varphi(x)|\forall x . \varphi(x)| \varphi \wedge \varphi \mid \varphi \vee \varphi
$$

where $\psi \in \operatorname{FOE}(A \backslash\{a\})$

$$
\operatorname{FOEM}_{a}(A)
$$

Analgously for set of variables.

```
FOEM
```

(b) Normal forms for positive FOE - positive as monotone

Proof: It follows by the following two lemmas.
Lemma 1: If $\varphi \in \operatorname{FOEM}_{a}(A)$ then φ is monotone in a;
Lemma 2: There exists an effective translation $(-)^{\odot}: \operatorname{FOE}(A) \rightarrow \operatorname{FOEM}_{a}(A)$ such that $\varphi \in \operatorname{FOE}(A)$ is monotone in a iff $\varphi \equiv \varphi^{\odot}$.
(b) Normal forms for positive FOE - positive as monotone

Proof of Lemma 2: Define:

$$
\left(\nabla_{F O E}(\bar{Q}, \Pi)\right)^{\odot}:=\nabla_{F O E}^{a}(\bar{Q}, \Pi)
$$

$$
\exists \bar{x} \cdot \operatorname{diff}(\bar{x}) \wedge \bigwedge_{i \leq k} \tau_{Q_{i}}^{a}\left(x_{i}\right) \wedge \forall y \cdot \operatorname{diff}(\bar{x}, y) \rightarrow \bigvee_{T \in \Pi} \tau_{T}^{a}(x)
$$

where $\quad \tau_{Q}^{a}(x):=\bigwedge_{b \in Q} b(x) \wedge \bigwedge_{b \in A \backslash(Q \cup\{a\})} \neg b(x)$
(b) Normal forms for positive FOE - positive as monotone

Proof of Lemma 2: Define:

$$
\left(\nabla_{F O E}(\bar{Q}, \Pi)\right)^{\odot}:=\nabla_{F O E}^{a}(\bar{Q}, \Pi)
$$

By Lemma 1, we have \Leftarrow.
(b) Normal forms for positive FOE - positive as monotone

Proof of Lemma 2: Define:

$$
\left(\nabla_{F O E}(\bar{Q}, \Pi)\right)^{\odot}:=\nabla_{F O E}^{a}(\bar{Q}, \Pi)
$$

For \Rightarrow we check that:

$$
(D, V) \models \phi \operatorname{iff}(D, V) \models \phi^{\odot}
$$

(b) Normal forms for positive FOE - positive as monotone

Proof of Lemma 2 (cont.): The direction \Rightarrow is trivial.

$$
\text { For } \Leftarrow \operatorname{let}(D, V) \models \nabla_{F O E}^{a}(\bar{Q}, \Pi)
$$

(b) Normal forms for positive FOE - positive as monotone

Proof of Lemma 2 (cont.): The direction \Rightarrow is trivial.

$$
\text { For } \Leftarrow \operatorname{let}(D, V) \models \nabla_{F O E}^{a}(\bar{Q}, \Pi) \text {. }
$$

witness of a a-positive type T in $\bar{Q} \cup \Pi$

$$
d \mapsto \tau_{T_{d}}^{a}
$$

(b) Normal forms for positive FOE - positive as monotone

Proof of Lemma 2 (cont.): Consider $\left(D, V^{\prime}\right)$ with

$$
V^{\prime}(b)= \begin{cases}V(b) & a \neq b \\ V(b) \backslash\left\{d \in D \mid a \notin T_{d}\right\} & a=b\end{cases}
$$

(b) Normal forms for positive FOE

- positive as monotone

Proof of Lemma 2 (cont.): Consider (D, V^{\prime}) with

$$
V^{\prime}(b)= \begin{cases}V(b) & a \neq b \\ V(b) \backslash\left\{d \in D \mid a \notin T_{d}\right\} & a=b\end{cases}
$$

It holds that $\left(D, V^{\prime}\right) \models \nabla_{F O E}(\bar{Q}, \Pi)$.
Thus $\left(D, V^{\prime}\right) \models \varphi$, and by monotonicity $(D, V) \models \varphi$.
(b) Normal forms for positive FOE

Proof idea

I. we show that the positive fragment of FOE corresponds to its monotone fragment
2. we show that the previous normal form theorem for FOE provides us the expected normal form theorem for the positive fragment by using point I
(b) Normal forms for positive FOE - providing a normal form

Corollary:

1. φ is monotone in $a \in A$ iff
it is equivalent to a formula in $\bigvee \nabla_{\mathrm{FOE}}^{a}(\bar{Q}, \Pi)$.
2. φ is monotone in every $a \in A$
(i.e., $\varphi \in \mathrm{FOE}^{+}(A)$) iff
it is equivalent to a formula in the basic form
$\vee \nabla_{\mathrm{FOE}}^{+}(\bar{Q}, \Pi)$

Where we are in the proof of the Simulation Theorem

Proof strategy:

I. We show that each one step FO formula is equivalent to a formula in normal form
2. same for the positive fragment
3. we use this normal form results to construct the equivalent non deterministic parity automaton

Transition in normal form:

$$
\Delta: A \times \wp P \rightarrow \operatorname{SLatt}\left(B F^{+}(A)\right)
$$

Transition for non-deterministic automata

$$
\Delta: A \times \wp P \rightarrow \operatorname{SLatt}\left(S B F^{+}(A)\right)
$$

In the search of non-determinism

Definition (change of base): Let $\varphi:=\nabla_{\text {FOE }}^{+}(\bar{Q}, \Pi)$. For each type T in $\bar{Q} \cup \Pi$, we define the formula $\tau_{T}^{\wp}(x)$ as follows:

$$
\tau_{T}^{\wp}(x):= \begin{cases}T(x) & \text { If } S \neq \emptyset \\ \top & \text { Otherwise }\end{cases}
$$

We denote with $\varphi^{\wp} \in \operatorname{SBF}^{+}(A)$ the sentence
$\exists x_{1} \ldots x_{k}\left(\operatorname{diff}(\bar{x}) \wedge \bigwedge_{1 \leq i \leq k} \tau_{Q_{i}}^{\wp}\left(x_{i}\right) \wedge \forall z\left(\operatorname{diff}(\bar{x}, z) \rightarrow \bigvee_{T \in \Pi} \tau_{T}^{\wp}(z)\right)\right)$.

$$
\Delta:(a, Q) \mapsto \bigvee \nabla_{\mathrm{FOE}}^{+}(\bar{Q}, \Pi)
$$

In the search of non-determinism

$$
\Delta:(a, Q) \mapsto \bigvee \nabla_{\mathrm{FOE}}^{+}(\bar{Q}, \Pi)
$$

$\exists:$

$$
\Delta:(a, Q) \mapsto \bigvee \nabla_{\mathrm{FOE}}^{+}(\bar{Q}, \Pi)
$$

In the search of non-determinism

$$
\Delta:(a, Q) \mapsto \bigvee \nabla_{\mathrm{FOE}}^{+}(\bar{Q}, \Pi)
$$

$$
\Delta:(a, Q) \mapsto \bigvee \nabla_{\mathrm{FOE}}^{+}(\bar{Q}, \Pi)
$$

In the search of non-determinism

$$
\Delta:(a, Q) \mapsto \bigvee \nabla_{\mathrm{FOE}}^{+}(\bar{Q}, \Pi)
$$

$$
\Delta:(a, Q) \mapsto \bigvee \nabla_{\mathrm{FOE}}^{+}(\bar{Q}, \Pi)
$$

$(D, V)=0<\nabla_{\mathrm{FOE}}^{+}(\bar{Q}, \Pi)$

$$
V: A \rightarrow \wp D
$$

In the search of non-determinism

$$
\begin{aligned}
& \exists: \\
& (D, V)=0 \text { o } 0 \text { o } \\
& V: \wp A \rightarrow \wp D
\end{aligned}
$$

In the search of non-determinism

Definition: Let $\mathbb{A}=\left(A, a_{I}, \Delta, \Omega\right)$ over C be an MSO-automaton.
Fix $a \in A$ and $c \in C$. The sentence $\Delta^{\star}(a, c)$ is defined as

$$
\Delta^{\star}(a, c):=\Delta(a, c)[(a, b) \backslash b \mid b \in A],
$$

where $\Delta(a, c)[(a, b) \backslash b \mid b \in A]$ denotes the sentence in $\mathrm{FOE}^{+}(A \times A)$ obtained by replacing each occurrence of an unary predicate $b \in A$ in $\Delta(a, c)$ with the unary predicate $(a, b) \in A \times A$.

In the search of non-determinism

Definition: Let $\mathbb{A}=\left(A, a_{I}, \Delta, \Omega\right)$ over C be an MSO-automaton.
Let $c \in C$ and $R \in \wp(A \times A)$.
There is a sentence $\Psi_{R, c}^{\#} \in \operatorname{SLatt}\left(\operatorname{BF}^{+}(A \times A)\right)$ s.t.

$$
\bigwedge_{a \in \operatorname{Ran}(R)} \Delta^{\star}(a, c) \equiv \Psi_{R, c}^{\#}
$$

Let $\Psi_{R, c} \in \operatorname{SLatt}\left(\operatorname{SBF}^{+}(\wp(A \times A))\right)$ be $\left(\Psi_{R, c}^{\#}\right)^{\wp}$.

Definition: Let $\mathbb{A}=\left(A, a_{I}, \Delta\right.$, rank $)$ over C be an MSO-automaton.
The automaton $\mathbb{A}^{\wp}=\left(A^{\wp}, a_{I}^{\wp}, \Delta^{\wp}, \mathrm{NBT}_{\text {rank }}\right)$ is given by

$$
\begin{aligned}
A^{\wp}:= & \wp(A \times A) \\
a_{I}^{\wp} & :=\left\{a_{I}, a_{I}\right\} \\
\Delta^{\wp}(R, c):= & \Psi_{R, c} \\
\mathrm{NBT}_{\mathrm{rank}}:= & \left\{w \in(\wp(A \times A))^{\omega} \mid\right. \\
& \text { every trace in } w \text { is good }\}
\end{aligned}
$$

the max parity occurring infinitely often along $\operatorname{rank}(w) \in \mathbb{N}$ is even

Proposition: $L(\mathbb{A})=L\left(\mathbb{A}^{\wp}\right)$.

Let \mathbb{Z} be the deterministic parity automaton s.t. $L(\mathbb{Z})=\mathrm{NBT}_{\text {rank }}$.

Definition: The non-deterministic MSO-automaton $\mathbb{A}^{N}=\left(A^{\wp} \times Z,\left(a_{I}^{\wp}, z_{I}\right), \Delta^{N}, \operatorname{rank}^{N}\right)$ is given by:
$\operatorname{rank}(q, z):=\operatorname{rank}_{Z}(z)$,

$$
\begin{aligned}
\Delta((q, z), c):= & \bigvee\left\{\operatorname{Shift}_{z}(\varphi) \in \operatorname{SBF}^{+}\left(A^{\wp} \times Z\right) \mid\right. \\
& \left.\varphi \text { is a disjunct of } \Delta^{\wp}(q, c)\right\} .
\end{aligned}
$$

$$
\operatorname{Shift}_{z}(\varphi):=\varphi\left[\left(q, \Delta_{Z}(z, q)\right) / q \mid q \in A^{\wp}\right]
$$

In the search of non-determinism

Proposition: $L\left(\mathbb{A}^{N}\right)=L\left(\mathbb{A}^{\wp}\right)$.

Where we are in the proof of the Simulation Theorem

Proof strategy:

I. We show that each one step FO formula is equivalent to a formula in normal form
2. same for the positive fragment
3. we use this normal form results to construct the equivalent non deterministic parity automaton
(over trees)
MSO \subseteq MSO-automata FOE^{+}
$\mu \mathbf{M L} \underset{\text { (over K) }}{=} \quad \mu$-automata $\quad \mathrm{FO}^{+}$

Automata for MSO

Automata for MSO

LFP

Definition: The fixed point logic LFP is given by:

$$
\varphi::=q(x)|R(x, y)| x=y|\neg \varphi| \varphi \wedge \varphi|\exists x . \varphi| \mu p . \varphi(p, x)
$$

where

- $p, q \in P, x, y \in X$;
- moreover p occurs only positively in $\varphi(p, x)$ and
- x is the only free variable in $\varphi(p, x)$.

LFP

The semantics of the fixpoint formula $\mu p . \phi(p, x)$ is the expected one: given \mathcal{K} and $s \in S$,

$$
\begin{gathered}
\mathcal{K} \models \mu p . \phi(p, s) \\
\text { iff } \\
s \in \operatorname{lfp} . F_{\phi}=\bigcap\left\{X \subseteq S \mid F_{\phi}(X) \subseteq X\right\}, \text { where } \\
F_{\phi}(X):=\{t \in T \mid \mathcal{K}[p \mapsto X] \models \phi(p, t)\}
\end{gathered}
$$

Proposition: There is an effective translation $(-)^{\circledast}: \mu M L \rightarrow$ LFP s.t. for every $\mathcal{K}, s \in S$ the following are equivalent:

- $(\mathcal{K}, s) \models \varphi$,
- $\mathcal{K} \models(\varphi)^{\circledast}(s)$.

From the mu- calculus to LFP

Proof: Consider translation
$(-)_{x}^{\circledast}: \mu M L \rightarrow \mathrm{LFP}$ for $x \in X$ given by:

- $(p)_{x}^{\circledast}=p(x)$,
- $(\diamond \phi)_{x}^{\circledast}=\exists y \cdot R(x, y) \wedge(\phi)_{y}^{\circledast}$,
- $(\neg \phi)_{x}^{\circledast}=\neg(\phi)_{x}^{\circledast}$,
- $(\psi \wedge \phi)_{x}^{\circledast}=(\psi)_{x}^{\circledast} \wedge(\phi)_{x}^{\circledast}$,
- $(\mu p \cdot \phi)_{x}^{\circledast}=\mu p \cdot(\phi)_{x}^{\circledast}$,

Automata for MSO

From the MSO-automata to LFP

Proposition: For every MSO-automaton there is an equivalent formula in LFP.

Proof: Proceed like for modal automata and μ formulas.

Automata for MSO

From the LFP to MSO
Proposition: There is a translation $(-)^{\ominus}:$ LFP \rightarrow MSO s.t.
for every \mathcal{K}, and valuation V the following are equivalent:

- $\mathcal{K}, V \models \varphi$,
- $\mathcal{K}, V \models(\varphi)^{\ominus}$.

Proof: $\quad(\mu p . \phi(p, x))^{\ominus}$
$=$
$\exists X .\left(X x \wedge \forall Y .\left(\forall y \cdot\left(\phi(p, y)^{\ominus} \rightarrow Y y\right) \rightarrow \forall z .(X z \rightarrow Y z)\right)\right)$

Automata for MSO

Where we are
(over trees)

$\mathrm{MSO}=$	MSO-automata	FOE^{+}
$\mu \mathrm{ML} \underset{\text { (over TS) }}{=}$	μ-automata	FO^{+}

Proposition: Let $(-)^{\bullet}: \mathrm{FOE}^{+}(A) \rightarrow \mathrm{FO}^{+}(A)$ given by

$$
\begin{gathered}
\left(\nabla_{F O E}^{+}(\bar{Q}, \Pi)\right)^{\bullet}=\nabla_{F O}^{+}(\bar{Q}, \Pi) \\
\nabla_{\mathrm{FOE}}^{+}(\bar{Q}, \Pi):=\exists \bar{x} \cdot \operatorname{diff}(\bar{x}) \wedge \bigwedge_{i \leq k} \tau_{Q_{i}}^{+}\left(x_{i}\right) \wedge \forall z \cdot \operatorname{diff}(\bar{x}, z) \rightarrow \bigvee_{T \in \Pi} \tau_{T}^{+}(z) \\
\nabla_{\mathrm{FO}}^{+}(\bar{Q}, \Pi):=\exists \bar{x} . \bigwedge_{i \leq k} \tau_{Q_{i}}^{+}\left(x_{i}\right) \wedge \forall z . \bigvee_{T \in \Pi} \tau_{T}^{+}(z) \\
\mathbf{D} \models \phi^{\bullet} \text { iff } \mathbf{D}_{\omega} \models \phi
\end{gathered}
$$

Closing the cycle
(over trees)

$\mathrm{MSO}=$	MSO-automata
$\mu \mathbf{M L} \underset{(\text { (over K) }}{=}$	μ-automata

Over all models

Over finitely branching trees

Over finitely branching trees

Over all models

Over all models

The same strategy works for WMSO [Carreiro, F.venema, Zanasi (2014]]

(over trees)		
$\mathrm{WMSO}=$	$\mathrm{Aut}_{c w}\left(\mathrm{FOE}^{\infty+}\right)$	FOE ${ }^{\infty+}$
$\bigcirc \uparrow$		$\stackrel{7}{5}$
-	$\frac{7}{3}$	$\frac{5}{5}$
场	$\frac{5}{n}$	$\stackrel{\square}{0}$
	\%	
$\mu_{c} \mathrm{FOE}^{\infty}$	$\stackrel{1}{ }$	FO^{+}
	\downarrow	
$\mu_{c} \mathrm{ML}=$	$\mathrm{Aut}_{c w}\left(\mathrm{FO}^{+}\right)$	
(over TS)		

What we have seen today...

Logic of Programs

