Modal Fixpoint Logics:When Logic Meets Games, Automata and Topology

A. Facchini \& D. Niwinski (U.Warsaw)

Lecture II

Automata for Modal Fixpoint Logics

What you have seen yesterday...

$$
\varphi::=p|\neg p|(\varphi \wedge \varphi)|(\varphi \vee \varphi)| \diamond \varphi|\square \varphi| \mu x . \varphi \mid \nu x . \varphi
$$

where $p, x \in$ Prop and x occurs only positively in $\eta x . \varphi(\eta=\nu, \mu)$, that is, $\neg x$ is not a subformula of φ.

Let $\mathcal{K}=(S, R, \rho)$ be a model.

- $\|p\|^{\mathcal{K}}=\rho(p)$ and $\|\neg p\|^{\mathcal{K}}=S \backslash \rho(p)$ for all $p \in$ Prop,
- $\|\phi \wedge \psi\|^{\mathcal{K}}=\|\phi\|^{\mathcal{K}} \cap\|\psi\|^{\mathcal{K}}$,
- $\|\phi \wedge \psi\|^{\mathcal{K}}=\|\phi\|^{\mathcal{K}} \cup\|\psi\|^{\mathcal{K}}$,
- $\|\square \phi\|^{\mathcal{K}}=\left\{s \in S \mid \forall t\right.$, if $(s, t) \in R$ then $\left.\left.t \in\|\phi\|^{\mathcal{K}}\right)\right\}$,
- $\|\diamond \phi\|_{\rho}^{\mathcal{K}}=\left\{s \in S \mid \exists t,(s, t) \in R\right.$ and $\left.\left.t \in\|\phi\|^{\mathcal{K}}\right)\right\}$.

What you have seen yesterday.....

Let $\mathcal{K}=(S, R, \rho)$ be a model.

- ...
- $\|\nu x \cdot \phi\|^{\mathcal{K}}=\bigcup\left\{N \subseteq S \mid N \subseteq\|\phi(x)\|^{\mathcal{K}[x \mapsto N]}\right\}$
- $\|\mu x . \phi\|^{\mathcal{K}}=\bigcap\left\{N \subseteq S \mid\|\phi(x)\|^{\mathcal{K}[x \mapsto N]} \subseteq N\right\}$
$\|\nu x \cdot \phi(x)\|^{\mathcal{K}}=G F P\left(\|\phi(x)\|^{\mathcal{K}}\right) \quad$ and $\quad\|\mu x . \phi(x)\|^{\mathcal{K}}=\operatorname{LFP}\left(\|\phi(x)\|^{\mathcal{K}}\right)$

What you have seen yesterday..... 3

What you have seen yesterday.....

What you have seen yesterday.....
3055..... 56

3055.....56.... $\in\{0, \ldots, 6\}^{\omega}$

Player \exists wins iff the greatest
What you have seen yesterday..... priority occurring infinitely often is even

Theorem [Emerson \& Jutla ('91), Mostowski ('91)]:
Parity games are positional determined

Theorem: Let $\mathcal{G}=\left(S, S_{\exists}, S_{\forall}, R\right.$, rank) be a parity game, and let $\mathcal{K}_{\mathcal{G}}=(S, R, \rho)$ the associated Kripke model. Then there is a formula ψ_{\exists} such that

$$
s \in\left\|\psi_{\exists}\right\|^{\mathcal{K}} \text { iff } \exists \text { has a w.s. in } \mathcal{G} @ s .
$$

Let $\mathcal{K}=(S, R, \rho)$ be a model, and φ be a μ-formula, Evaluation (parity) game $\mathcal{G}(\varphi, \mathcal{K})$
odd when $\varphi_{x}=\mu x . \psi$, else even.

Position	Player	Admissible moves	Parity
$(\eta x \cdot \psi, s) \in \operatorname{sub}(\varphi) \times S$	\exists	$\{(\psi, s)\}$	$\operatorname{rank}(\eta x . \psi)$
$(x, s) \in \operatorname{sub}(\varphi) \times S$	\exists	$\left\{\left(\varphi_{x}, s\right)\right\}$	$\operatorname{rank}\left(\varphi_{x}\right)$
$\left(\psi_{1} \vee \psi_{2}, s\right)$	\exists	$\left\{\left(\psi_{1}, s\right),\left(\psi_{2}, s\right)\right\}$	-
$\left(\psi_{1} \wedge \psi_{2}, s\right)$	\forall	$\left\{\left(\psi_{1}, s\right),\left(\psi_{2}, s\right)\right\}$	-
$(\diamond \varphi, s)$	\exists	$\{(\varphi, t) \mid t \in R[s]\}$	-
$(\square \varphi, s)$	\forall	$\{(\varphi, t) \mid t \in R[s]\}$	-
$(\neg p, s)$ and $p \notin \rho(s)$	\forall	\emptyset	-
$(\neg p, s)$ and $p \in \rho(s)$	\exists	\emptyset	-
(p, s) and $p \in \rho(s)$	\forall	\emptyset	-
(p, s) and $p \notin \rho(s)$	\exists	\emptyset	-

Let $\mathcal{K}=(S, R, \rho)$ be a model, and φ be a μ-formula,

Evaluation (parity) game $\mathcal{G}(\varphi, \mathcal{K})$

- $\operatorname{rank}(\eta x . \delta)=\left\{\begin{array}{rr}\operatorname{ad}(\eta x . \delta) \quad \text { if } \eta=\mu \text { and } \operatorname{ad}(\eta x . \delta) \text { is odd, or } \\ & \eta=\nu \text { and } \operatorname{ad}(\eta x . \delta) \text { is even; } \\ \operatorname{ad}(\eta x . \delta)-1 & \text { if } \eta=\mu \text { and } \operatorname{ad}(\eta x . \delta) \text { is even, or } \\ \eta=\nu \text { and } \operatorname{ad}(\eta x . \delta) \text { is odd, }\end{array}\right.$
- $\operatorname{rank}(x)=\operatorname{rank}\left(\varphi_{x}\right)$.

What you have seen yesterday.....

$$
\nu x . \mu y \cdot(\diamond x \vee p) \wedge(\diamond y \vee \neg p)
$$

$$
\begin{aligned}
\operatorname{ad}(\nu x \cdot \mu y \cdot(\diamond x \vee p) & \wedge(\diamond y \vee \neg p))=2 \\
\operatorname{ad}(\mu y \cdot(\diamond x \vee p) & \wedge(\diamond y \vee \neg p))=1
\end{aligned}
$$

Theorem [E.A. Emerson, R.S. Street (1989)] $s \in\|\varphi\|^{\mathcal{K}}$ iff \exists has a w.s. in $\mathcal{G}(\varphi, \mathcal{K}) @(\varphi, s)$

$$
(\mathcal{K}, s) \models \varphi
$$

What we are going to see today...

Logic of Programs
Model-Checking
Automata Theory

opology

Given a first-order sentence, can we decide if the sentence is valid?

Hilbert's Entscheidungsproblem (the decision problem)

Hilbert's decision problem is unsolvable

Starting point

Theorem [Trakhtenbrot, Craig 1950]: First-order logic over finite graphs is undecidable.

The decision problem became a classification problem

For which sublogic L of $F O$ is the decision problem solvable (in a efficient way)?

The case of modal logic:

The case of modal logic:

(i) translatable into (fragment of) FO
(ii) tree model property
(iii) small model property
(iv) van Benthem-Rosser characterization theorem:

$$
\begin{gathered}
F O / \not \leftrightarrow=M L \text { (over } \mathcal{C}) \\
\mathcal{C}=\left\{\begin{array}{l}
\text { all models } \\
\text { finite models }
\end{array}\right.
\end{gathered}
$$

The case of modal logic:
(i) translatable into (fragment of) FO
(ii) tree model property
(iii) small model property
(iv) van Benthem-Rosser characterization theorem:

$$
\begin{gathered}
F O / \overleftrightarrow{\leftrightarrow}=M L \text { (over } \mathcal{C}) \\
\mathcal{C}=\left\{\begin{array}{l}
\text { all models } \\
\text { finite models }
\end{array}\right.
\end{gathered}
$$

The case of the mu-calculus:

(i) translatable into (fragment of) MSO
(ii) tree model property
(iii) small model property
(iv) Janin-Walukiewicz characterization theorem:

$$
M S O / \overleftrightarrow{\leftrightarrow}=\mu M L \text { (over all models) }
$$

The case of the mu-calculus:
(i) translatable into (fragment of) MSO
(ii) tree model property
(iii) small model property
(iv) Janin-Walukiewicz characterization theorem.
'corollaries' of the correspondance between parity automata and fixpoint logics

Mu-Calculus vs MSO

I. Automata characterization of muCalculus over Kripke models (Janin \& Walukiewicz, I995)
2. Automata characterization of MSO over arbitrary trees (Walukiewicz, I996)
3. Characterization theorem for the muCalculus
(Janin \& Walukiewicz, 1996)

'Formula as automata'
a finite-state automaton is given by

- a finite input alphabet
- finite set of states
- an initial state
- a transition function
- an acceptance condition

$$
\mathbb{A}=(\{1,2\},\{a, b\}, 1, \Delta, \mathrm{Acc})
$$

- Δ tells how to move in the next position, given the properties of the actual position
- Acc tells when to accept the input

$$
\mathbb{A}=(\{1,2\},\{a, b\}, 1, \Delta, \text { Acc })
$$

- $\Delta(1, a)=2$
- $\Delta(1, b)=1$
- $\Delta(2, *)=2$
- $\mathrm{Acc}=\{2\}$
- $\Delta(1)=(a \rightarrow X 2) \wedge(b \rightarrow X 1)$
- $\Delta(2)=(a \rightarrow X 2) \wedge(b \rightarrow X 2)$
- Acc $=\{2\}$

$$
\mathbb{A}=(\{1,2\},\{a, b\}, 1, \Delta, \text { Acc })
$$

$b-b-b-a-b$

I
'Formula as automata'

$$
\mathbb{A}=(\{1,2\},\{a, b\}, 1, \Delta, \mathrm{Acc})
$$

b-b-b-a-b

$$
\mathbb{A}=(\{1,2\},\{a, b\}, 1, \Delta, \mathrm{Acc})
$$

$b-b-b-a-b$

I
'Formula as automata'

$$
\mathbb{A}=(\{1,2\},\{a, b\}, 1, \Delta, \text { Acc })
$$

b-b-b-a-b
 I

$$
\mathbb{A}=(\{1,2\},\{a, b\}, 1, \Delta, \mathrm{Acc})
$$

b-b-b-a-b

2
'Formula as automata'

$$
\mathbb{A}=(\{1,2\},\{a, b\}, 1, \Delta, \text { Acc })
$$

b-b-b-a-b

2

$$
\nu x . \mu y \cdot(\diamond x \vee p) \wedge(\diamond y \vee \neg p)
$$

'Formula as automata'

I
'Formula as automata'

I
'Formula as automata'

11
'Formula as automata'

II.....I

II.....I
'Formula as automata'

II.....I

II.....I
'Formula as automata'

II.....|2

| 112
'Formula as automata'

| ||2.....2| |.....|2.....2.....

'Formula as automata'

(input alphabet subsets of propositional variables)
'Formula as automata'

Given a set A of (state) variables, and a set P of propositional variables: the set $\operatorname{MLatt}(A ; P)$ is defined as:

$$
\phi::=\top|\perp| a|p| \neg p|\diamond a| \square a|\bigwedge \Phi| \bigvee \Phi
$$

with $a \in A$ and $p \in P$

Definition: A modal automaton is a tuple

$$
\mathbb{A}=\left(A, a_{I}, \Delta, \operatorname{rank}\right)
$$

such that

- $a_{I} \in A$ (initial state)
- $\Delta: A \rightarrow \operatorname{MLatt}(A ; P)$ (transition function)
- rank : $A \rightarrow \mathbb{N}$ (parity/rank function)

Acceptance (parity) game $\mathcal{G}(\mathbb{A}, \mathcal{K})$

Let $\mathcal{K}=(S, R, \rho)$ be a Kripke model.

Position	Player	Admissible moves	Parity
$(a, s) \in A \times S$	\exists	$\{(\Delta(a), s)\}$	$\operatorname{rank}(a)$
$\left(\psi_{1} \vee \psi_{2}, s\right)$	\exists	$\left\{\left(\psi_{1}, s\right),\left(\psi_{2}, s\right)\right\}$	-
$\left(\psi_{1} \wedge \psi_{2}, s\right)$	\forall	$\left\{\left(\psi_{1}, s\right),\left(\psi_{2}, s\right)\right\}$	-
$(\diamond \varphi, s)$	\exists	$\{(\varphi, t) \mid t \in R[s]\}$	-
$(\square \varphi, s)$	\forall	$\{(\varphi, t) \mid t \in R[s]\}$	-
$(\neg p, s)$ and $p \notin \rho(s)$	\forall	\emptyset	-
$(\neg p, s)$ and $p \in \rho(s)$	\exists	\emptyset	-
(p, s) and $p \in \rho(s)$	\forall	\emptyset	-
(p, s) and $p \notin \rho(s)$	\exists	\emptyset	-
(\top, s)	\forall	\emptyset	-
(\perp, s)	\exists	\emptyset	-

Acceptance (parity) game $\mathcal{G}(\mathbb{A}, \mathcal{K})$

Definition: \mathbb{A} accepts $\left(\mathcal{K}, s_{I}\right)$ iff \exists has a winning strategy in $\mathcal{G}(\mathbb{A}, \mathcal{K}) @\left(a_{I}, s_{I}\right)$

$$
\left(\mathcal{K}, s_{I}\right) \in L(\mathbb{A})
$$

$$
\varphi=\nu x . \mu y \cdot(\diamond x \vee p) \wedge(\diamond y \vee \neg p) \quad\left\{\begin{array}{l}
\Delta(a)=b \\
\Delta(b)=c \\
\Delta(c)=d \wedge e \\
\Delta(d)=f \vee g \\
\Delta(e)=h \vee i \\
\Delta(f)=\diamond l \\
\Delta(g)=p \\
\Delta(h)=\neg p \\
\Delta(i)=\diamond m \\
\Delta(l)=a \\
\Delta(m)=b
\end{array}\right.
$$

$$
\varphi=\nu x \cdot \mu y \cdot(\diamond x \vee p) \wedge(\diamond y \vee \neg p)
$$

$$
\begin{gathered}
\mathbb{A}=(\{a, b\}, a, \Delta, \text { rank }) \\
\Delta(a)=\Delta(b)=(\diamond a \vee p) \wedge(\diamond b \vee \neg p)
\end{gathered}
$$

$$
\begin{array}{r}
\operatorname{rank}(a)=2 \\
\operatorname{rank}(b)=1
\end{array}
$$

$$
\begin{gathered}
\left(\mathcal{K}, s_{I}\right) \models \varphi \\
\text { iff } \\
\left(\mathcal{K}, s_{I}\right) \in L(\mathbb{A})
\end{gathered}
$$

Theorem:

1. For every μ-formula ϕ there is an equivalent modal automaton \mathbb{A}_{ϕ},

2 . for every modal automaton \mathbb{A} there is an equivalent μ-formula $\phi_{\mathbb{A}}$.

Proof: For item 1, let φ be a well-named and guarded μ-formula.
unique fixpoint back edge

Modal automata

Proof: For item 1, let φ be a well-named and guarded μ-formula. Let \mathbb{A}_{φ} given by

- $A_{\varphi}=\{\hat{\psi} \mid \psi \leq \varphi\}$,
- $a_{I}:=\hat{\varphi}$,
$\Delta(\hat{\psi})= \begin{cases}\hat{\delta} \circ \hat{\theta} & \text { for } \psi=\delta \circ \theta \\ \circ \hat{\delta} & \text { for } \psi=\circ \delta, \circ=\diamond, \square \\ \psi & \text { for } \psi=p, \neg p, \perp, \top \\ \hat{\varphi_{x}} & \text { for } \psi=x \\ \hat{\theta} & \text { for } \psi=\eta x . \theta\end{cases}$

Proof (cont): and by

- $\operatorname{rank}(\eta \hat{x} . \delta)=\left\{\begin{array}{rc}\operatorname{ad}(\eta x . \delta) & \text { if } \eta=\mu \text { and } \operatorname{ad}(\eta x . \delta) \text { is odd, or } \\ & \eta=\nu \text { and } \operatorname{ad}(\eta x . \delta) \text { is even; } \\ \operatorname{ad}(\eta x . \delta)-1 \quad & \text { if } \eta=\mu \text { and } \operatorname{ad}(\eta x . \delta) \text { is even, or } \\ \eta=\nu \text { and } \operatorname{ad}(\eta x . \delta) \text { is odd, }\end{array}\right.$
- $\operatorname{rank}(\hat{x})=\operatorname{rank}\left(\hat{\varphi_{x}}\right)$,
- $\operatorname{rank}(\hat{\psi})=\min (\{\operatorname{rank}(\eta \hat{x} . \delta) \mid \eta x . \delta \leq \varphi\}$, for $\psi \neq x$ and $\psi \neq \eta x . \delta$.

Then $\left(\mathcal{K}, s_{I}\right) \models \varphi$ iff $\left(\mathcal{K}, s_{I}\right) \in L\left(\mathbb{A}_{\varphi}\right)$.

Proof (cont): For item 2, we reason as follows.
Let $\mathbb{A}=\left(A, a_{I}, \Delta\right.$, rank $)$ over $P^{\prime}=P \cup X$, and
$\Delta: A \rightarrow \operatorname{MLatt}(A \cup X ; P)$.

Modal automata

Proof (cont): For item 2, we reason as follows.
Let $\mathbb{A}=\left(A, a_{I}, \Delta\right.$, rank $)$ over $P^{\prime}=P \cup X$, and $\Delta: A \rightarrow$ MLatt $(A \cup X ; P)$.

$$
p \wedge q \wedge(\diamond a \vee \diamond x)
$$

Modal automata

Proof (cont): For item 2, we reason as follows.
Let $\mathbb{A}=\left(A, a_{I}, \Delta\right.$, rank) over $P^{\prime}=P \cup X$, and
$\Delta: A \rightarrow \operatorname{MLatt}(A \cup X ; P)$.
(P,X)-automata
(P, \emptyset)-automata $=$ modal automata

Proof (cont): For item 2, we reason as follows. Let $\mathbb{A}=\left(A, a_{I}, \Delta\right.$, rank) over $P^{\prime}=P \cup X$, and $\Delta: A \rightarrow \operatorname{MLatt}(A \cup X ; P)$.

Claim: For every (P, X)-automata \mathbb{A}, there is an equivalent μ-formula $\varphi_{\mathbb{A}}$, where each $x \in X$ occurs positively in $\varphi_{\mathbb{A}}$.

Proof of claim: By induction on

$$
\operatorname{index}(\operatorname{rank})= \begin{cases}-1 & \text { if no cycles in } \mathbb{A} \\ \max \{\operatorname{rank}(a) \mid a \text { is in a cycle }\} & \text { else } .\end{cases}
$$

Modal automata

Proof of claim: By induction on the index.
If index $=-1$, just write down the corresponding modal formula.

$$
\begin{gathered}
A=\left\{a_{I}, a, b\right\} \quad \Delta\left(a_{I}\right)=(p \vee q) \wedge \diamond a \wedge \square b \\
\Delta(a)=\neg p \wedge \square x \\
\Delta(b)=\perp \\
\varphi_{\mathbb{A}}=(p \vee q) \wedge \diamond(\neg p \wedge \square x) \wedge \square \perp
\end{gathered}
$$

Modal automata

Proof of claim: By induction on the index.
If index $($ rank $) \geq 0$, let
$M=\{a \in A \mid \operatorname{rank}(a)=\operatorname{index}(\mathrm{rank})$ and a lies in some scc $\}$ $\mathrm{W} \log a_{I} \notin M$.

Modal automata

Proof of claim: By induction on the index.
If index $($ rank $) \geq 0$, let
$M=\{a \in A \mid \operatorname{rank}(a)=\operatorname{index}(\mathrm{rank})$ and a lies in some scc $\}$

$$
\mathbb{A}_{M}=\left(A \backslash M, a_{I},\left.\Delta\right|_{A \backslash M},\left.\operatorname{rank}\right|_{A \backslash M}\right)
$$

This is a $(P, X \cup M)$-automaton of lower rank.

Proof of claim: By induction on the index.
If index $($ rank $) \geq 0$, let

$$
M=\left\{a_{0}, \ldots, a_{k}\right\}
$$

$$
\begin{aligned}
\mathbb{A}_{i}= & \left((A \backslash M) \cup\left\{a_{i}^{\star}\right\}, a_{i}^{\star}\right. \\
& \left.\left.\Delta\right|_{A \backslash M} \cup\left\{\left(a_{i}^{\star}, \Delta\left(a_{i}\right)\right)\right\},\left.\operatorname{rank}\right|_{A \backslash M} \cup\left(a_{i}^{\star}, 0\right)\right)
\end{aligned}
$$

All $(P, X \cup M)$-automata of lower rank.

Proof of claim (cont.):

$$
\begin{gathered}
\mathbb{A}_{M}, \mathbb{A}_{0}, \ldots, \mathbb{A}_{k} \\
\text { II II } \\
\varphi_{M}, \varphi_{0}, \ldots, \varphi_{k}
\end{gathered}
$$

Proof of claim (cont.):

$$
\begin{gathered}
\operatorname{Let} \bar{\varphi}=\left(\varphi_{0}, \ldots, \varphi_{k}\right) \\
\|\bar{\varphi}\|_{\mathcal{K}}: \wp(S)^{k+1} \rightarrow \wp(S)^{k+1} \\
\|\bar{\varphi}\|_{\mathcal{K}}\left(X_{0}, \ldots, X_{k}\right):=\left(\left\|\varphi_{0}\right\|_{\mathcal{K}[\bar{a} \mapsto \bar{X}]}, \ldots,\left\|\varphi_{k}\right\|_{\mathcal{K}[\bar{a} \mapsto \bar{X}]}\right)
\end{gathered}
$$

Proof of claim (cont.):

Let $\bar{\varphi}=\left(\varphi_{0}, \ldots, \varphi_{k}\right)$.

$$
\|\bar{\varphi}\|_{\mathcal{K}}: \wp(S)^{k+1} \rightarrow \wp(S)^{k+1}
$$

From the first lesson, we know that there are $\varphi_{0}^{\mu}, \ldots, \varphi_{k}^{\mu}$ and $\varphi_{0}^{\nu}, \ldots, \varphi_{k}^{\nu}$ s.t.
$\begin{cases}\left(\left\|\varphi_{0}^{\mu}\right\|_{\mathcal{K}}, \ldots,\left\|\varphi_{k}^{\mu}\right\|_{\mathcal{K}}\right) & \text { is the lfp of }\|\bar{\varphi}\|_{\mathcal{K}} \\ \left(\left\|\varphi_{0}^{\nu}\right\|_{\mathcal{K}}, \ldots,\left\|\varphi_{k}^{\nu}\right\|_{\mathcal{K}}\right) & \text { is the gfp of }\|\bar{\varphi}\|_{\mathcal{K}}\end{cases}$

Proof of claim (cont.):

Let $\varphi_{\mathbb{A}}=\varphi_{M}\left[a_{0} / \varphi_{0}^{\eta_{0}}, \ldots, a_{k} / \varphi_{k}^{\eta_{k}}\right]$, where
$\eta_{\ell}= \begin{cases}\mu & \text { if } \operatorname{rank}\left(a_{\ell}\right)=\text { index }(\text { rank }) \text { odd } \\ \nu & \text { else } .\end{cases}$

Proof of claim (cont.):

Let $\varphi_{\mathbb{A}}=\varphi_{M}\left[a_{0} / \varphi_{0}^{\eta_{0}}, \ldots, a_{k} / \varphi_{k}^{\eta_{k}}\right]$, where
$\eta_{\ell}= \begin{cases}\mu & \text { if } \operatorname{rank}\left(a_{\ell}\right)=\text { index }(\text { rank }) \text { odd } \\ \nu & \text { else. }\end{cases}$
One can then check that

$$
(\mathcal{K}, s) \models \varphi_{\mathbb{A}} \operatorname{iff}(\mathcal{K}, s) \in L(\mathbb{A})
$$

$$
\begin{gathered}
\mathbb{A}=(\{a, b\}, a, \Delta, \text { rank }) \\
\Delta(a)=\Delta(b)=(\diamond a \vee p) \wedge(\diamond b \vee \neg p) \\
\operatorname{rank}(a)=2 \\
\operatorname{rank}(b)=1
\end{gathered}
$$

$$
\mathbb{A}=\left(\left\{a_{I}, a, b\right\}, a_{I}, \Delta, \text { rank }\right)
$$

$$
\Delta(c)=(\diamond a \vee p) \wedge(\diamond b \vee \neg p)
$$

irrelevant priority

Modal automata

$$
\begin{gathered}
M=\{a\} \\
\mathbb{A}_{a}=\left(\left\{a_{I}, b\right\}, a_{I},\left.\Delta\right|_{\left\{a_{I}, b\right\}},\left.\operatorname{rank}\right|_{\left\{a_{I}, b\right\}}\right) \\
\Delta(c)=\left(\diamond x_{a} \vee p\right) \wedge(\diamond b \vee \neg p)
\end{gathered}
$$

$$
\text { irrelevant priority } \underset{\operatorname{rank}\left(a_{I}\right)=2}{\operatorname{rank}(b)=1}
$$

$$
\begin{aligned}
& M^{\prime}=\{a, b\} \\
& \left(\mathbb{A}_{a}\right)_{b}=\left(\left\{a_{I}\right\}, a_{I},\left.\Delta\right|_{\left\{a_{I}\right\}},\left.\operatorname{rank}\right|_{\left\{a_{I}\right\}}\right) \\
& \Delta\left(a_{I}\right)=\left(\diamond x_{a} \vee p\right) \wedge\left(\diamond x_{b} \vee \neg p\right) \\
& \varphi_{\left(\mathbb{A}_{a}\right)_{b}}=\left(\diamond x_{a} \vee p\right) \wedge\left(\diamond x_{b} \vee \neg p\right)
\end{aligned}
$$

$$
\begin{gathered}
\mathbb{A}_{a}=\left(\left\{a_{I}, b\right\}, a_{I},\left.\Delta\right|_{\left\{a_{I}, b\right\}},\left.\operatorname{rank}\right|_{\left\{a_{I}, b\right\}}\right) \\
\Delta(c)=\left(\diamond x_{a} \vee p\right) \wedge(\diamond b \vee \neg p) \\
\operatorname{rank}\left(a_{I}\right)=2 \\
\operatorname{rank}(b)=1 \\
\varphi_{\mathbb{A}_{a}}=\mu b \cdot\left(\diamond x_{a} \vee p\right) \wedge(\diamond b \vee \neg p)
\end{gathered}
$$

$$
\begin{gathered}
\mathbb{A}=(\{a, b\}, a, \Delta, \text { rank }) \\
\Delta(a)=\Delta(b)=(\diamond a \vee p) \wedge(\diamond b \vee \neg p) \\
\operatorname{rank}(a)=2 \\
\operatorname{rank}(b)=1 \\
\varphi_{\mathbb{A}}=\nu a \cdot \mu b \cdot(\diamond a \vee p) \wedge(\diamond b \vee \neg p)
\end{gathered}
$$

Given a set A of (state) variables, and a set P of propositional variables: the set $\mathrm{MLatt}_{g}(A ; P)$ is defined as:

$$
\phi::=\top|\perp| p|\neg p| \diamond a|\square a| \bigwedge \Phi \mid \bigvee \Phi
$$

with $a \in A$ and $p \in P$

Theorem: For every modal automaton there is an equivalent guarded one.

Proof hint: 'Syntactical massage'.

A general approach

Parity automata: $\operatorname{Aut}(\mathcal{L})$
$\left(A, \Sigma, a_{I}, \Delta, \operatorname{rank}: Q \rightarrow \mathbb{N}\right)$

$$
\Delta:(a, c) \mapsto \varphi \in \mathcal{L}(A)
$$

A general approach

$$
\Delta:(a, c) \mapsto \varphi \in \mathcal{L}(A)
$$

A general approach
$\Delta:(a, c) \mapsto \varphi \in \mathcal{L}(A)$

ヨ:

A general approach

$$
\exists: \quad \Delta:(a, c) \mapsto \varphi \in \mathcal{L}(A)
$$

A general approach

$$
\begin{aligned}
& \Delta:(a, c) \mapsto \varphi \in \mathcal{L}(A) \\
& \exists: \\
& V, V)=\underbrace{0}_{0} \underbrace{a \in A}_{0}
\end{aligned} \underbrace{}_{V}
$$

A general approach

A general approach

A general approach

Fact: Every $\phi \in \operatorname{MLatt}_{g}(A ; P)$ if equivalent to disjunction of formulas of the form

$$
\bigwedge_{p \in Q} p \wedge \bigwedge_{p \notin Q} \neg p \wedge \psi
$$

for $Q \subseteq P$ and $\psi \in \operatorname{MLatt}_{g}(A ; \emptyset)$

A general approach

$$
\bigwedge_{p \in Q} p \wedge \bigwedge_{p \notin Q} \neg p \wedge \psi
$$

A general approach

A general approach

$$
\Delta:(a, Q) \mapsto \psi \in \operatorname{Mlatt}_{g}(A ; \emptyset)
$$

$$
\bigwedge_{p \in Q} p \wedge \bigwedge_{p \notin Q} \neg p \wedge \psi
$$

A general approach
$\Delta:(a, Q) \mapsto \psi \in \operatorname{Mlatt}_{g}(A ; \emptyset)$

$$
\left\{\begin{array}{l}
\diamond a \mapsto \exists x \cdot a(x) \\
\square a \mapsto \forall x \cdot a(x)
\end{array}\right.
$$

$$
\Delta:(a, Q) \mapsto \psi \in \mathrm{FO}^{+}(A)
$$

A general approach

$$
\Delta:(a, Q) \mapsto \varphi \in \mathrm{FO}^{+}(A)
$$

A general approach

$$
\Delta:(a, Q) \mapsto \varphi \in \mathrm{FO}^{+}(A)
$$

$\exists:$

A general approach

$$
\Delta:(a, Q) \mapsto \varphi \in \mathrm{FO}^{+}(A)
$$

$$
V: A \rightarrow \wp D
$$

A general approach

$$
\Delta:(a, Q) \mapsto \varphi \in \mathrm{FO}^{+}(A)
$$

$$
\exists:
$$

$$
(D, V)=0 \text { o }
$$

$$
V: A \rightarrow \wp D
$$

A general approach

$$
\Delta:(a, Q) \mapsto \varphi \in \mathrm{FO}^{+}(A)
$$

A general approach

$$
\Delta:(a, Q) \mapsto \varphi \in \mathrm{FO}^{+}(A)
$$

Given a set A of (state) variables, the set of formula $\operatorname{FO}(A)$ is defined as:

$$
\phi::=\top|\perp| a(x)|\neg a(x)| \phi \wedge \phi|\phi \vee \phi| \exists x . \phi \mid \forall x . \phi
$$

with $a \in A$.

One-step logic

Given a set A of (state) variables, the set of formula $\mathrm{FO}^{+}(A)$ is defined as:

$$
\phi::=\top|\perp| a(x)|\phi \wedge \phi| \phi \vee \phi|\exists x \cdot \phi| \forall x . \phi
$$

with $a \in A$.

Given a set A of (state) variables, the set of formula $\operatorname{FOE}(A)$ is defined as:
$\phi::=\top|\perp| x=y|x \neq y| a(x)|\neg a(x)| \phi \wedge \phi|\phi \vee \phi| \exists x . \phi \mid \forall x . \phi$
with $a \in A$.

One-step logic

Given a set A of (state) variables, the set of formula $\mathrm{FOE}^{+}(A)$ is defined as:

$$
\phi::=\top|\perp| x=y|x \neq y| a(x)|\phi \wedge \phi| \phi \vee \phi|\exists x . \phi| \forall x . \phi
$$

with $a \in A$.

Models of one-step formulas are pairs (D, V)

- D is a non-empty set
- $V: A \rightarrow \wp D$

Definition: A μ-automaton is a tuple

$$
\mathbb{A}=\left(A, \wp P, a_{I}, \Delta, \Omega\right)
$$

such that

- $a_{I} \in A$ (initial state)
- $\Delta: A \times \wp P \rightarrow \mathrm{FO}^{+}(A)$ (transition fct)
- rank : $A \rightarrow \mathbb{N}$ (parity fct)

Acceptance (parity) game $\mathcal{G}(\mathbb{A}, \mathcal{K})$

Let $\mathcal{K}=(S, R, \rho)$ be a Kripke model.

Position	Player	Admissible moves	Parity
$(a, s) \in A \times S$	\exists	$\{V: A \rightarrow \wp(R[s]) \mid$	$\operatorname{rank}(a)$
		$(R[s], V) \models \Delta(a, \rho(s))\}$	
$V: A \rightarrow \wp S$	\forall	$\{(b, t) \mid t \in V(b)\}$	$\max (\operatorname{rank}[A])$

Acceptance (parity) game $\mathcal{G}(\mathbb{A}, \mathcal{K})$

Definition: \mathbb{A} accepts $\left(\mathcal{K}, s_{I}\right)$ iff \exists has a winning strategy in $\mathcal{G}(\mathbb{A}, \mathcal{K}) @\left(a_{I}, s_{I}\right)$

$$
\left(\mathcal{K}, s_{I}\right) \in L(\mathbb{A})
$$

$$
\varphi=\nu x \cdot \mu y \cdot(\diamond x \vee p) \wedge(\diamond y \vee \neg p)
$$

$$
\begin{gathered}
\mathbb{A}=(\{a, b\}, a, \Delta, \mathrm{rank}) \\
\Delta(a)=\Delta(b)=(\diamond a \vee p) \wedge(\diamond b \vee \neg p)
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{rank}(a) & =2 \\
\operatorname{rank}(b) & =1
\end{aligned}
$$

$$
\varphi=\nu x \cdot \mu y \cdot(\diamond x \vee p) \wedge(\diamond y \vee \neg p)
$$

$$
\begin{gathered}
\mathbb{A}=(\{a, b\}, \wp P, a, \Delta, \text { rank }) \\
\Delta(a, Q)=\Delta(b, Q)= \begin{cases}\exists x \cdot a(x) & \text { if } p \notin Q \\
\exists x \cdot b(x) & \text { if } p \in Q\end{cases} \\
\operatorname{rank}(a)=2 \\
\operatorname{rank}(b)=1
\end{gathered}
$$

Theorem:

1. For every modal automaton there is an equivalent μ-automaton ,
2. for every μ-automaton there is an equivalent modal automaton.

Proof: Point 1 is immediate from what precede. Point 2 is a corollary of the simulation theorem.

The Simulation Theorem

A type is a subset of P.
Let Q be a type.

- $\tau_{Q}(x):= \begin{cases}\top & \text { if } Q=\emptyset \\ \bigwedge_{p \in Q} p(x) \wedge \bigwedge_{p \notin Q} \neg p(x) & \text { else } ;\end{cases}$
- $\tau_{Q}^{+}(x):= \begin{cases}\top & \text { if } Q=\emptyset \\ \bigwedge_{p \in Q} p(x) & \text { else. }\end{cases}$

Definition: A formula $\phi \in \mathrm{FO}^{+}(A)$ is in special basic normal form if it is of the form

$$
\exists x_{0} \ldots \exists x_{k} \bigwedge_{i \leq k} \tau_{Q_{i}}^{+}\left(x_{i}\right) \wedge \forall y . \bigvee_{i \leq k} \tau_{Q_{i}}^{+}(x)
$$

where each type Q_{i} is either empty or a singleton.
We say that $\phi \in \operatorname{SBF}^{+}(A)$.

The Simulation Theorem

Definition: A μ-automaton \mathbb{A} is non-deterministic if

$$
\Delta: A \times \wp P \rightarrow \operatorname{SLatt}\left(S B F^{+}(A)\right)
$$

Simulation Theorem: Every μ-automaton is equivalent to a non-deterministic one.

Proof: ... (tomorrow, for MSO-automata.)

Theorem: Given a μ-automaton \mathbb{A} it is decidable whether $L(\mathbb{A})=\emptyset$.

The Simulation Theorem

Proof: Let \mathbb{A} be a μ-automaton. By the Simulation Theorem, there is a non-deterministic μ-automaton \mathbb{B} such that

$$
L(\mathbb{A})=L(\mathbb{B})
$$

It is thus enough to check that the emptiness problem is decidable for \mathbb{B}.

The Simulation Theorem

Proof (cont.): Transitions of \mathbb{B} are disjunctions of formulas of the form

$$
\exists x_{0} \ldots \exists x_{k} \bigwedge_{i \leq k} \tau_{Q_{i}}^{+}\left(x_{i}\right) \wedge \forall y . \bigvee_{i \leq k} \tau_{Q_{i}}^{+}(x)
$$

where each type Q_{i} is either empty or a singleton.

Proof (cont.): We define the following emptiness game over \mathbb{B}, denoted by $\mathcal{E}(\mathbb{B})$

Position	Player	Admissible moves	Parity
$a \in B$	\exists	$\{(\phi, Q) \mid Q \in \wp P \wedge \exists i \leq k$	$\operatorname{rank}(a)$
		$\left.\Delta(a, Q)=\bigvee_{\ell \leq k} \psi_{\ell} \wedge \psi_{i}=\phi\right\}$	
$\left(\exists \bar{x} \bigwedge_{i \leq k} \tau_{Q_{i}}^{+}\left(x_{i}\right)\right.$	\forall	$\bigcup_{i \leq k} Q_{i}$	-
$\left.\wedge \forall y . \bigvee_{i \leq k} \tau_{Q_{i}}^{+}(x), Q\right)$			

The Simulation Theorem

Claim: $L(\mathbb{B}) \neq \emptyset$ iff \exists has a winning strategy in $\mathcal{E}(\mathbb{B}) @ b_{I}$.

Proof of claim: From left to right, let $\mathcal{K} \in L(\mathbb{B})$. Thus \exists has a w.s. σ in $\mathcal{G}(\mathbb{B}, \mathcal{K}) @\left(b_{I}, s_{I}\right)$. Such σ induces a w.s. for \exists in $\mathcal{E}(\mathbb{B}) @ b_{I}$.

Proof of claim (cont.): From right to left, let σ be a w.s. for \exists in $\mathcal{E}(\mathbb{B}) @ b_{I}$. By positional determinacy of parity games, we can assume σ positional. Consider T_{σ}, the tree representing σ.
Since σ is positional, we can define a model \mathcal{K}_{σ} as follows:

- $S_{\sigma}=B \cap T_{\sigma}$ and $s_{I}=b_{I}$,
- $\left(b, b^{\prime}\right) \in R_{\sigma}$ iff $b^{\prime} \in \bigcup_{i} Q_{i}$ and $\left(\exists \bar{x} \bigwedge_{i \leq k} \tau_{Q_{i}}^{+}\left(x_{i}\right), Q\right)=\sigma(b)$,
- $\rho_{\sigma}(b)=Q$, where $\sigma(b)=(\phi, Q)$.

The Simulation Theorem

Proof of claim (cont.): Notice that $\left|\mathcal{K}_{\sigma}\right| \leq|B|$.
Clearly σ induces a w.s. for \exists in $\mathcal{G}\left(\mathbb{B}, \mathcal{K}_{\sigma}\right) @\left(b_{I}, s_{I}\right)$.

The Simulation Theorem

Corollary (Small Model Property): Let ϕ be a μ-formula. Then if ϕ is satisfiable, it has a model of size exponential in the size of the formula.

On the usefulness of mu-automata

> Mu automata - and the corresponding simulation theorem - are crucially used in proving some other important results in the theory of the modal mu-calculus

On the usefulness of mu-automata

Kozen's axiom system

(Prop) propositional tautologies,
(Sub) if $\vdash \varphi$ then $\vdash \varphi[p / \psi]$,
$\mathbf{(K)} \vdash \square(p \rightarrow q) \rightarrow(\square p \rightarrow \square q)$,
(Nec) if $\vdash \varphi$ then $\vdash \square \varphi$,
$(\mathbf{F A}) \vdash \varphi[x / \mu x . \varphi] \rightarrow \mu x . \varphi$,
(FR) if $\vdash \varphi[x / \psi] \rightarrow \psi$ then $\vdash \mu x . \varphi \rightarrow \psi$,
with $x \notin \operatorname{bound}(\varphi)$ and free $(\psi) \cap \operatorname{bound}(\varphi)=\emptyset$.

On the usefulness of mu-automata

Theorem [Walukiewicz (1995)]: Kozen's axiomatisation is (weakly) sound and complete (i.e. $A x \vdash \varphi$ iff $\models \varphi$).
W.'s proof makes crucial use of muautomata (and of the simulation theorem). At the moment is the unique proof we know for this result.

On the usefulness of mu-automata μ-automata can also be used in order to prove that:

- the μ-calculus enjoys uniform interpolation and Loś-Tarski theorem [D’Agostino, Hollenberg (2000)],
- it can be decided whether φ is continuous in p [Fontaine (2008)],
- the μ-calculus is the bisimulation invariant fragment of MSO [Janin, Walukiewicz (1996)]
- ...

