
Modal Fixpoint Logics: When Logic
Meets Games, Automata and Topology

A. Facchini & D. Niwinski (U. Warsaw)

ESSLLI 2014, Tübingen, 11-22 August 2014

Lecture II

Automata for Modal Fixpoint Logics

The landscape of the first four days

Mu-Calculus

Logic of Programs Automata Theory

Topology Game Theory

C
om

pl
ex

ity
 o

f M
od

el
s A

cceptance C
ondition

Model-Checking

Gale-Stewart Games

What you have seen yesterday.....

Mu-Calculus

Logic of Programs Automata Theory

Topology Game Theory

C
om

pl
ex

ity
 o

f M
od

el
s A

cceptance C
ondition

Model-Checking

Gale-Stewart Games

Adequacy Theorem

' ::= p | ¬p | (' ^ ') | (' _ ') | ⌃' | ⇤' | µx.' | ⌫x.'

where p, x 2 Prop and x occurs only

positively in ⌘x.' (⌘ = ⌫, µ), that is,

¬x is not a subformula of '.

What you have seen yesterday.....

Let K = (S,R, ⇢) be a model.

• kpkK = ⇢(p) and k¬pkK = S \ ⇢(p) for all p 2 Prop,

• k� ^ kK = k�kK \ k kK,

• k� ^ kK = k�kK [k kK,

• k⇤�kK = {s 2 S | 8t, if (s, t) 2 R then t 2 k�kK)},

• k⌃�kK⇢ = {s 2 S | 9t, (s, t) 2 R and t 2 k�kK)}.

What you have seen yesterday.....

Let K = (S,R, ⇢) be a model.

What you have seen yesterday.....

• . . .

• k⌫x.�kK =
S
{N ✓ S | N ✓ k�(x)kK[x 7!N]}

• kµx.�kK =
T
{N ✓ S | k�(x)kK[x 7!N] ✓ N}

k⌫x.�(x)kK = GFP (k�(x)kK) and kµx.�(x)kK = LFP (k�(x)kK)

1

3

6

0

2

5

What you have seen yesterday.....

1

3

6

0

2

5

3
What you have seen yesterday.....

1

3

6

0

2

5

30
What you have seen yesterday.....

1

3

6

0

2

5

305
What you have seen yesterday.....

1

3

6

0

2

5

3055.....5
What you have seen yesterday.....

1

3

6

0

2

5

3055.....56
What you have seen yesterday.....

1

3

6

0

2

5

3055.....56....2 {0, . . . , 6}!
What you have seen yesterday.....

1

3

6

0

2

5

What you have seen yesterday.....
Player 9 wins i↵ the greatest

priority occurring infinitely often

is even

What you have seen yesterday.....

Theorem [Emerson & Jutla (’91), Mostowski (’91)]:

Parity games are positional determined

Theorem: Let G = (S, S9, S8, R, rank) be a parity game,

and let KG = (S,R, ⇢) the associated Kripke model.

Then there is a formula 9 such that

s 2 k 9kK i↵ 9 has a w.s. in G@s.

What you have seen yesterday.....

Let K = (S,R, ⇢) be a model, and ' be a µ-formula,

Evaluation (parity) game G(',K)
odd when '

x

= µx. ,

else even.

Position Player Admissible moves Parity

(⌘x. , s) 2 sub(')⇥ S 9 {(, s)} rank(⌘x.)

(x, s) 2 sub(')⇥ S 9 {('
x

, s)} rank('

x

)

(1 _ 2, s) 9 {(1, s), (2, s)} �
(1 ^ 2, s) 8 {(1, s), (2, s)} �
(⌃', s) 9 {(', t) | t 2 R[s]} �
(⇤', s) 8 {(', t) | t 2 R[s]} �
(¬p, s) and p /2 ⇢(s) 8 ; �
(¬p, s) and p 2 ⇢(s) 9 ; �
(p, s) and p 2 ⇢(s) 8 ; �
(p, s) and p /2 ⇢(s) 9 ; �

What you have seen yesterday.....

Let K = (S,R, ⇢) be a model, and ' be a µ-formula,

Evaluation (parity) game G(',K)

• rank(⌘x.�) =

8
>><

>>:

ad(⌘x.�) if ⌘ = µ and ad(⌘x.�) is odd, or

⌘ = ⌫ and ad(⌘x.�) is even;

ad(⌘x.�)� 1 if ⌘ = µ and ad(⌘x.�) is even, or

⌘ = ⌫ and ad(⌘x.�) is odd,

• rank(x) = rank('

x

).

What you have seen yesterday.....

⌫x.µy.(⌃x _ p) ^ (⌃y _ ¬p)

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

ad(⌫x.µy.(⌃x _ p) ^ (⌃y _ ¬p)) = 2

ad(µy.(⌃x _ p) ^ (⌃y _ ¬p)) = 1

(K, s) |= '

What you have seen yesterday.....

Theorem [E.A. Emerson, R.S. Street (1989)]

s 2 k'kK i↵ 9 has a w.s. in G(',K)@(', s)

What we are going to see today...

Mu-Calculus

Logic of Programs Automata Theory

Topology Game Theory

Model-Checking

Gale-Stewart Games

C
om

pl
ex

ity
 o

f M
od

el
s A

cceptance C
ondition

Adequacy Theorem

Given a first-order sentence, can we decide if
the sentence is valid?

Hilbert’s Entscheidungsproblem (the decision problem)

Hilbert’s decision problem is unsolvable

Church-Turing theorem

Starting point

Theorem [Trakhtenbrot, Craig 1950]: First-order logic

over finite graphs is undecidable.

Starting point

The decision problem became
a classification problem

For which sublogic L of FO is the decision
problem solvable (in a efficient way) ?

Starting point

The case of modal logic:

The case of modal logic:

(i) translatable into (fragment of) FO
(ii) tree model property
(iii) small model property
(iv) van Benthem-Rosser characterization
theorem:

FO/$ = ML (over C)

C =

(
all models

finite models

The case of modal logic:

(i) translatable into (fragment of) FO
(ii) tree model property
(iii) small model property
(iv) van Benthem-Rosser characterization
theorem:

what about the mu-calculus?

FO/$ = ML (over C)

C =

(
all models

finite models

The case of the mu-calculus:

(i) translatable into (fragment of) MSO
(ii) tree model property
(iii) small model property
(iv) Janin-Walukiewicz characterization
theorem:

MSO/$ = µML (over all models)

‘corollaries’ of the correspondance
between parity automata and fixpoint logics

The case of the mu-calculus:

(i) translatable into (fragment of) MSO
(ii) tree model property
(iii) small model property
(iv) Janin-Walukiewicz characterization
theorem.

Mu-Calculus vs MSO

1. Automata characterization of mu-
Calculus over Kripke models
(Janin & Walukiewicz, 1995)

2. Automata characterization of MSO over
arbitrary trees

(Walukiewicz, 1996)
3. Characterization theorem for the mu-

Calculus
(Janin & Walukiewicz, 1996)

...the plan for the next two days...

‘Formula as automata’

a finite-state automaton is given by

- a finite input alphabet
- finite set of states
- an initial state
- a transition function
- an acceptance condition

‘Formula as automata’

A = ({1, 2}, {a, b}, 1,�,Acc)

• � tells how to move in the next position, given

the properties of the actual position

• Acc tells when to accept the input

‘Formula as automata’

A = ({1, 2}, {a, b}, 1,�,Acc)

• �(1, a) = 2

• �(1, b) = 1

• �(2, ⇤) = 2

• Acc = {2}

• �(1) = (a ! X2) ^ (b ! X1)

• �(2) = (a ! X2) ^ (b ! X2)

• Acc = {2}

‘Formula as automata’

b-b-b-a-b

A = ({1, 2}, {a, b}, 1,�,Acc)

1

‘Formula as automata’

b-b-b-a-b

A = ({1, 2}, {a, b}, 1,�,Acc)

1

‘Formula as automata’

b-b-b-a-b

A = ({1, 2}, {a, b}, 1,�,Acc)

1

‘Formula as automata’

b-b-b-a-b

A = ({1, 2}, {a, b}, 1,�,Acc)

1

‘Formula as automata’

b-b-b-a-b

A = ({1, 2}, {a, b}, 1,�,Acc)

2

‘Formula as automata’

b-b-b-a-b

A = ({1, 2}, {a, b}, 1,�,Acc)

2

⌫x.µy.(⌃x _ p) ^ (⌃y _ ¬p)

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

‘Formula as automata’

2
1

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

1

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

11

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

11

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

11

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

11

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

11

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

11

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

11.....1

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

11.....1

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

11.....1

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

11.....1

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

11.....12

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

11.....12

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

11.....12.....211.....12.....2.....

‘Formula as automata’

‘Formula as automata’

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

a

b

d

f

c

g h

l m

e

i

(_) (_)

(^)

(⌃)(⌃)
(p) (¬p)

‘Formula as automata’

a

b

d

f

c

g h

l m

e

i

(_) (_)

(^)

(⌃)(⌃)
(p) (¬p)

‘Formula as automata’

(input alphabet subsets of propositional variables)

({a, . . . ,m}, a,�, rank)

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

�(a) = b

�(b) = c

�(c) = d ^ e

�(d) = f _ g

�(e) = h _ i

�(f) = ⌃l
�(g) = p

�(h) = ¬p
�(i) = ⌃m
�(l) = a

�(m) = b

‘Formula as automata’

({a, . . . ,m}, a,�, rank)

Given a set A of (state) variables, and a set P of propositional variables:

the set MLatt(A;P) is defined as:

with a 2 A and p 2 P

� ::= > | ? | a | p | ¬p | ⌃a | ⇤a |
^

� |
_

�

Modal automata

Modal automata

Definition: A modal automaton is a tuple

A = (A, aI ,�, rank)

such that

• aI 2 A (initial state)

• � : A ! MLatt(A;P) (transition function)

• rank : A ! N (parity/rank function)

Let K = (S,R, ⇢) be a Kripke model.

Acceptance (parity) game G(A,K)

Position Player Admissible moves Parity

(a, s) 2 A⇥ S 9 {(�(a), s)} rank(a)
(1 _ 2, s) 9 {(1, s), (2, s)} �
(1 ^ 2, s) 8 {(1, s), (2, s)} �
(⌃', s) 9 {(', t) | t 2 R[s]} �
(⇤', s) 8 {(', t) | t 2 R[s]} �
(¬p, s) and p /2 ⇢(s) 8 ; �
(¬p, s) and p 2 ⇢(s) 9 ; �
(p, s) and p 2 ⇢(s) 8 ; �
(p, s) and p /2 ⇢(s) 9 ; �
(>, s) 8 ; �
(?, s) 9 ; �

Definition: A accepts (K, sI) i↵ 9 has a winning
strategy in G(A,K)@(aI , sI)

(K, sI) 2 L(A)

Acceptance (parity) game G(A,K)

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

�(a) = b

�(b) = c

�(c) = d ^ e

�(d) = f _ g

�(e) = h _ i

�(f) = ⌃l
�(g) = p

�(h) = ¬p
�(i) = ⌃m
�(l) = a

�(m) = b

' = ⌫x.µy.(⌃x _ p) ^ (⌃y _ ¬p)

Modal automata

A = ({a, . . . ,m}, a,�, rank)

' = ⌫x.µy.(⌃x _ p) ^ (⌃y _ ¬p)

�(a) = �(b) = (⌃a _ p) ^ (⌃b _ ¬p)

Modal automata

A = ({a, b}, a,�, rank)

rank(a) = 2

rank(b) = 1

(K, sI) |= '

(K, sI) 2 L(A)

iff

Modal automata

Theorem:

1. For every µ-formula � there is an

equivalent modal automaton A�,

2. for every modal automaton A there is an

equivalent µ-formula �A.

Modal automata

Modal automata

Proof: For item 1, let ' be a well-named and

guarded µ-formula.

⌫x

µy

_

⌃

^

p ¬p
x y

_

⌃

unique fixpoint
back edge

variable in the
scope of a
modality

Modal automata

Proof: For item 1, let ' be a well-named and

guarded µ-formula. Let A' given by

• A

'

= { ˆ | '},

• a

I

:= '̂,

• �(

ˆ

) =

8
>>>>>><

>>>>>>:

ˆ

� � ˆ

✓ for = � � ✓
�ˆ� for = ��, � = ⌃,⇤
 for = p,¬p,?,>
'̂

x

for = x

ˆ

✓ for = ⌘x.✓

Modal automata

Proof (cont): and by

Then (K, sI) |= ' i↵ (K, sI) 2 L(A').

• rank(

ˆ

⌘x.�) =

8
>><

>>:

ad(⌘x.�) if ⌘ = µ and ad(⌘x.�) is odd, or

⌘ = ⌫ and ad(⌘x.�) is even;

ad(⌘x.�)� 1 if ⌘ = µ and ad(⌘x.�) is even, or

⌘ = ⌫ and ad(⌘x.�) is odd,

• rank(x̂) = rank('̂

x

),

• rank(

ˆ

) = min({rank(ˆ

⌘x.�) | ⌘x.� '}, for 6= x and 6= ⌘x.�.

Modal automata

Proof (cont): For item 2, we reason as follows.

Let A = (A, aI ,�, rank) over P 0
= P [X, and

� : A ! MLatt(A [X;P).

Modal automata

Proof (cont): For item 2, we reason as follows.

p ^ q ^ (⌃a _ ⌃x)

Let A = (A, aI ,�, rank) over P 0
= P [X, and

� : A ! MLatt(A [X;P).

Modal automata

Proof (cont): For item 2, we reason as follows.

(P,X)-automata

(P,;)-automata = modal automata

Let A = (A, aI ,�, rank) over P 0
= P [X, and

� : A ! MLatt(A [X;P).

Modal automata

Proof (cont): For item 2, we reason as follows.

Claim: For every (P,X)-automata A, there is an

equivalent µ-formula 'A, where each x 2 X occurs

positively in 'A.

Let A = (A, aI ,�, rank) over P 0
= P [X, and

� : A ! MLatt(A [X;P).

Modal automata

Proof of claim: By induction on

index(rank) =

(
�1 if no cycles in A,
max{rank(a) | a is in a cycle } else.

Modal automata

�(aI) = (p _ q) ^ ⌃a ^⇤b

�(a) = ¬p ^⇤x

�(b) = ?

A = {aI , a, b}

'A = (p _ q) ^ ⌃(¬p ^⇤x) ^⇤?

If index = -1, just write down the corresponding

modal formula.

Proof of claim: By induction on the index.

Modal automata

Wlog aI /2 M .

Proof of claim: By induction on the index.

If index(rank) � 0, let

M = {a 2 A | rank(a) = index(rank) and a lies in some scc}

Modal automata

This is a (P,X [M)-automaton of lower rank.

M = {a 2 A | rank(a) = index(rank) and a lies in some scc}

AM = (A \M,aI ,�|A\M , rank|A\M)

Proof of claim: By induction on the index.

If index(rank) � 0, let

Modal automata

M = {a0, . . . , ak}

All (P,X [M)-automata of lower rank.

Proof of claim: By induction on the index.

If index(rank) � 0, let

Ai =((A \M) [{a?i }, a?i ,
�|A\M [{(a?i ,�(ai))}, rank|A\M [(a?i , 0))

Modal automata

Proof of claim (cont.):

'M ,'0, . . . ,'k

AM ,A0, . . . ,Ak

II II II

Modal automata

Proof of claim (cont.):

Let ' = ('0, . . . ,'k).

k'kK : }(S)k+1 ! }(S)k+1

k'kK(X0, . . . , Xk) := (k'0kK[a 7!X], . . . , k'kkK[a 7!X])

is monotone.

Modal automata

Proof of claim (cont.):

Let ' = ('0, . . . ,'k).

k'kK : }(S)k+1 ! }(S)k+1

From the first lesson, we know that there are

'µ
0 , . . . ,'

µ
k and '⌫

0 , . . . ,'
⌫
k s.t.

(
(k'µ

0kK, . . . , k'
µ
kkK) is the lfp of k'kK

(k'⌫
0kK, . . . , k'⌫

kkK) is the gfp of k'kK

Modal automata

Proof of claim (cont.):

Let 'A = 'M [a0/'
⌘0
0 , . . . , ak/'

⌘k

k], where

⌘` =

(
µ if rank(a`) = index(rank) odd

⌫ else.

Modal automata

Proof of claim (cont.):

Let 'A = 'M [a0/'
⌘0
0 , . . . , ak/'

⌘k

k], where

One can then check that

(K, s) |= 'A i↵ (K, s) 2 L(A)

⌘` =

(
µ if rank(a`) = index(rank) odd

⌫ else.

�(a) = �(b) = (⌃a _ p) ^ (⌃b _ ¬p)

Modal automata

rank(a) = 2

rank(b) = 1

A = ({a, b}, a,�, rank)

Modal automata

�(c) = (⌃a _ p) ^ (⌃b _ ¬p)

irrelevant priority

rank(aI) = rank(a) = 2

rank(b) = 1

A = ({aI , a, b}, aI ,�, rank)

Modal automata

�(c) = (⌃xa _ p) ^ (⌃b _ ¬p)

M = {a}

irrelevant priority

Aa = ({aI , b}, aI ,�|{aI ,b}, rank|{aI ,b})

rank(aI) = 2

rank(b) = 1

Modal automata

�(aI) = (⌃xa _ p) ^ (⌃xb _ ¬p)

'(Aa)b = (⌃xa _ p) ^ (⌃xb _ ¬p)

M 0 = {a, b}

(Aa)b = ({aI}, aI ,�|{aI}, rank|{aI})

Modal automata

�(c) = (⌃xa _ p) ^ (⌃b _ ¬p)

'Aa = µb.(⌃xa _ p) ^ (⌃b _ ¬p)

Aa = ({aI , b}, aI ,�|{aI ,b}, rank|{aI ,b})

rank(aI) = 2

rank(b) = 1

Modal automata

'A = ⌫a.µb.(⌃a _ p) ^ (⌃b _ ¬p)

�(a) = �(b) = (⌃a _ p) ^ (⌃b _ ¬p)

rank(a) = 2

rank(b) = 1

A = ({a, b}, a,�, rank)

Guarded modal automata

Given a set A of (state) variables, and a set P of propositional variables:

with a 2 A and p 2 P

the set MLattg(A;P) is defined as:

� ::= > | ? | p | ¬p | ⌃a | ⇤a |
^

� |
_

�

Theorem: For every modal automaton there is an

equivalent guarded one.

Proof hint: ‘Syntactical massage’.

Guarded modal automata

Parity automata:

� : (a, c) 7! ' 2 L(A)

Aut(L)

A general approach

(A,⌃, aI ,�, rank : Q ! N)

� : (a, c) 7! ' 2 L(A)

a 2 A

A general approach

� : (a, c) 7! ' 2 L(A)

a 2 A

9:

A general approach

D =

� : (a, c) 7! ' 2 L(A)

a 2 A

9:

A general approach

(D,V) =

V : A ! }D

� : (a, c) 7! ' 2 L(A)

a 2 A

9:

|= '

A general approach

V : A ! }D

(D,V) =

� : (a, c) 7! ' 2 L(A)

a 2 A

|= '

8:

A general approach

(D,V) =

� : (a, c) 7! ' 2 L(A)

a 2 A

|= '

8:

ai 2 A

A general approach

(D,V) =

A general approach

Fact: Every � 2 MLattg(A;P) if equivalent to disjunction

of formulas of the form

^

p2Q

p ^
^

p/2Q

¬p ^

for Q ✓ P and 2 MLattg(A; ;)

A general approach

^

p2Q

p ^
^

p/2Q

¬p ^

A general approach

^

p2Q

p ^
^

p/2Q

¬p ^

A general approach

^

p2Q

p ^
^

p/2Q

¬p ^

A general approach

^

p2Q

p ^
^

p/2Q

¬p ^

� : (a,Q) 7! 2 Mlattg(A; ;)

A general approach

(
⌃a 7! 9x.a(x)
⇤a 7! 8x.a(x)

� : (a,Q) 7! 2 Mlattg(A; ;)

� : (a,Q) 7! 2 FO+(A)

a 2 A

A general approach

� : (a,Q) 7! ' 2 FO+(A)

a 2 A

9:

A general approach

� : (a,Q) 7! ' 2 FO+(A)

D =

a 2 A

9:

A general approach

� : (a,Q) 7! ' 2 FO+(A)

V : A ! }D

(D,V) =

a 2 A

9:

|= '

A general approach

� : (a,Q) 7! ' 2 FO+(A)

V : A ! }D

(D,V) =

a 2 A

|= '

8:

A general approach

� : (a,Q) 7! ' 2 FO+(A)

(D,V) =

a 2 A

|= '

8:

ai 2 A

A general approach

� : (a,Q) 7! ' 2 FO+(A)

(D,V) =

Given a set A of (state) variables, the set of formula FO(A) is
defined as:

with a 2 A.

One-step logic

� ::= > | ? | a(x) | ¬a(x) | � ^ � | � _ � | 9x.� | 8x.�

Given a set A of (state) variables, the set of formula FO+(A) is
defined as:

with a 2 A.

One-step logic

� ::= > | ? | a(x) | � ^ � | � _ � | 9x.� | 8x.�

with a 2 A.

Given a set A of (state) variables, the set of formula FOE(A) is
defined as:

One-step logic

� ::= > | ? | x = y | x 6= y | a(x) | ¬a(x) | � ^ � | � _ � | 9x.� | 8x.�

Given a set A of (state) variables, the set of formula FOE+(A) is
defined as:

with a 2 A.

One-step logic

� ::= > | ? | x = y | x 6= y | a(x) | � ^ � | � _ � | 9x.� | 8x.�

One-step logic

Models of one-step formulas are pairs

• D is a non-empty set

• V : A ! }D

(D,V)

Mu automata

Definition: A µ-automaton is a tuple

A = (A,}P, aI ,�,⌦)

such that

• aI 2 A (initial state)

• � : A⇥ }P ! FO+(A) (transition fct)

• rank : A ! N (parity fct)

Acceptance (parity) game G(A,K)

Let K = (S,R, ⇢) be a Kripke model.

Position Player Admissible moves Parity

(a, s) 2 A⇥ S 9 {V : A ! }(R[s]) | rank(a)
(R[s], V) |= �(a, ⇢(s))}

V : A ! }S 8 {(b, t) | t 2 V (b)} max(rank[A])

Acceptance (parity) game

Definition: A accepts (K, sI) i↵ 9 has a winning
strategy in G(A,K)@(aI , sI)

G(A,K)

(K, sI) 2 L(A)

' = ⌫x.µy.(⌃x _ p) ^ (⌃y _ ¬p)

�(a) = �(b) = (⌃a _ p) ^ (⌃b _ ¬p)

Mu automata

A = ({a, b}, a,�, rank)

rank(a) = 2

rank(b) = 1

' = ⌫x.µy.(⌃x _ p) ^ (⌃y _ ¬p)

�(a,Q) = �(b,Q) =

(
9x.a(x) if p /2 Q

9x.b(x) if p 2 Q

Mu automata

A = ({a, b},}P, a,�, rank)

rank(a) = 2

rank(b) = 1

Theorem:

1. For every modal automaton there is an

equivalent µ-automaton ,

2. for every µ-automaton there is an

equivalent modal automaton.

Proof: Point 1 is immediate from what precede.

Point 2 is a corollary of the simulation theorem.

Mu automata

A type is a subset of P .

Let Q be a type.

• ⌧Q(x) :=

(
> if Q = ;
V

p2Q p(x) ^
V

p/2Q ¬p(x) else;

• ⌧

+
Q (x) :=

(
> if Q = ;
V

p2Q p(x) else.

The Simulation Theorem

Definition: A formula � 2 FO+(A) is in
special basic normal form if it is of the form

9x0 . . . 9xk

^

ik

⌧

+
Qi
(xi) ^ 8y.

_

ik

⌧

+
Qi
(x)

where each type Qi is either empty or a singleton.

We say that � 2 SBF+(A).

The Simulation Theorem

Definition: A µ-automaton A is non-deterministic if

� : A⇥ }P ! SLatt(SBF+(A))

The Simulation Theorem

The Simulation Theorem

Simulation Theorem: Every µ-automaton is

equivalent to a non-deterministic one.

Proof: . . . (tomorrow, for MSO-automata.)

The Simulation Theorem

Theorem: Given a µ-automaton A
it is decidable whether L(A) = ;.

The Simulation Theorem

Proof: Let A be a µ-automaton. By the Simulation

Theorem, there is a non-deterministic µ-automaton

B such that

L(A) = L(B)

It is thus enough to check that the emptiness

problem is decidable for B.

The Simulation Theorem

9x0 . . . 9xk

^

ik

⌧

+
Qi
(xi) ^ 8y.

_

ik

⌧

+
Qi
(x)

where each type Qi is either empty or a singleton.

Proof (cont.): Transitions of B are disjunctions

of formulas of the form

The Simulation Theorem

Proof (cont.): We define the following emptiness

game over B, denoted by E(B)

Position Player Admissible moves Parity

a 2 B 9 {(�, Q) | Q 2 }P ^ 9i k rank(a)

�(a,Q) =

W
`k ` ^ i = �}

(9x
V

ik ⌧
+
Qi
(xi) 8

S
ik Qi –

^8y.
W

ik ⌧
+
Qi
(x), Q)

The Simulation Theorem

Claim: L(B) 6= ; i↵ 9 has a winning strategy in
E(B)@bI .

Proof of claim: From left to right, let K 2 L(B).
Thus 9 has a w.s. � in G(B,K)@(bI , sI). Such �
induces a w.s. for 9 in E(B)@bI .

The Simulation Theorem

Proof of claim (cont.): From right to left, let �
be a w.s. for 9 in E(B)@bI . By positional deter-

minacy of parity games, we can assume � posi-

tional. Consider T�, the tree representing �.
Since � is positional, we can define a model K�

as follows:

• S� = B \ T� and sI = bI ,

• (b, b0) 2 R� i↵ b

0 2
S

i Qi and
(9x

V
ik ⌧

+
Qi
(xi), Q) = �(b),

• ⇢�(b) = Q, where �(b) = (�, Q).

The Simulation Theorem

Proof of claim (cont.): Notice that |K�| |B|.
Clearly � induces a w.s. for 9 in G(B,K�)@(bI , sI).

The Simulation Theorem

Corollary (Small Model Property): Let � be a

µ-formula. Then if � is satisfiable, it has a model of

size exponential in the size of the formula.

On the usefulness of mu-automata

Mu automata - and the corresponding
simulation theorem - are crucially used in

proving some other important results in the
theory of the modal mu-calculus

On the usefulness of mu-automata

Kozen’s axiom system

(Prop) propositional tautologies,

(Sub) if ` ' then ` '[p/],

(K) ` ⇤(p ! q) ! (⇤p ! ⇤q),

(Nec) if ` ' then ` ⇤',

(FA) ` '[x/µx.'] ! µx.',

(FR) if ` '[x/] ! then ` µx.'! ,

with x /2 bound(') and free() \ bound(') = ;.

On the usefulness of mu-automata

W.’s proof makes crucial use of mu-
automata (and of the simulation

theorem). At the moment is the unique
proof we know for this result.

Theorem [Walukiewicz (1995)]: Kozen’s

axiomatisation is (weakly) sound and complete

(i.e. Ax ` ' i↵ |= ').

On the usefulness of mu-automata

µ-automata can also be used in order to prove
that:

• the µ-calculus enjoys uniform interpolation
and Loś-Tarski theorem [D’Agostino,
Hollenberg (2000)],

• it can be decided whether ' is continuous
in p [Fontaine (2008)],

• the µ-calculus is the bisimulation invariant
fragment of MSO [Janin, Walukiewicz (1996)]

• . . .

What we have seen today...

Mu-Calculus

Logic of Programs Automata Theory

Topology Game Theory

Model-Checking

Gale-Stewart Games

C
om

pl
ex

ity
 o

f M
od

el
s A

cceptance C
ondition

Adequacy Theorem

mu-A
uto

mata

