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Abstract. It is known that the OWL 2 RL Web Ontology Language Profile
has PTime data complexity and can be translated into Datalog. However, the
result of translation may consist of a Datalog program and a set of constraints
in the form of negative clauses. Therefore, a knowledge base in OWL 2 RL may
be unsatisfiable. In the current paper we first identify a maximal fragment of
OWL 2 RL, called OWL 2 RL+, with the property that every knowledge base
expressed in OWL 2 RL+ can be translated to a Datalog program and hence
is satisfiable. We then propose some extensions of OWL 2 RL and OWL 2 RL+

that still have PTime data complexity.

1 Introduction

Semantic Web is a rapidly growing research area that has received lots of attention
in the last decade. As Semantic Web deals with ontologies and intelligent software
agents distributed over the Internet, it overlaps with the research area of compu-
tational collective intelligence. One of the layers of Semantic Web is OWL (Web
Ontology Language), which is used to specify knowledge of the domain in terms of
concepts, roles and individuals. The second version OWL 2 of OWL, recommended
by W3C in 2009, is based on the description logic SROIQ [17]. This logic is highly
expressive but has intractable combined complexity (N2ExpTime-complete) and data
complexity (NP-hard) for basic reasoning problems. Thus, W3C also recommended
profiles OWL 2 EL, OWL 2 QL and OWL 2 RL, which are restricted sublanguages of
OWL 2 Full with PTime data complexity. These profiles are based on the families of
description logics EL [2, 3], DL-Lite [5] and DLP (Description Logic Programs) [15],
respectively.

In the current paper we concentrate on OWL 2 RL. To achieve PTime data com-
plexity of computing queries, OWL 2 RL restricts the full language OWL 2. The ac-
cepted restrictions ensure a translation into Datalog, where purely negative clauses
are allowed. It is well-known that the data complexity of Datalog is PTime [1], so
the data complexity of OWL 2 RL is also guaranteed to be PTime. Moreover, efficient
computational methods designed for Datalog can immediately be applied.

1.1 Motivation and Contributions

Knowledge bases in OWL 2 RL may be unsatisfiable (that is, inconsistent), since their
translations into Datalog may also need negative clauses as constraints. Moreover,
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OWL 2 RL can be extended in various directions without losing its PTime data com-
plexity. That is, on the one hand, OWL 2 RL is too expressive as it may lead to
unsatisfiable knowledge bases. On the other hand, it can be made more expressive.
Therefore in the current paper we consider the following issues:

1. how to restrict OWL 2 RL so that knowledge bases are always satisfiable;
2. how to extend such restricted OWL 2 RL so that both satisfiability of knowledge

bases and tractability of computing queries are preserved.

Unsatisfiability of knowledge bases is a serious issue. OWL 2 RL reasoners provide
a functionality to check satisfiability of knowledge bases and even find the sources of
inconsistency. However, it is still desirable to identify in OWL 2 RL features used for
constructing positive (definite) rules as well as features used for constructing negative
clauses as constraints. There are two reasons:

1. when a given knowledge base is consistent, negative clauses do not participate in
drawing “positive conclusions”, so the ontology engineer may want to use syntactic
restrictions to guarantee consistency;

2. the departure point in Datalog-like languages are programs consisting of non-
negative clauses only; based on such programs one can introduce negation in
bodies of rules, like in stratified Datalog¬ as well as Datalog¬ with well-founded
semantics [1]; similarly, one can develop variants of OWL 2 RL with nonmonotonic
semantics and PTime data complexity starting from the fragment of OWL 2 RL
without constraints.

For simplicity, when specifying OWL 2 RL we ignore the predefined data types
and call the resulting logical formalism OWL 2 RL0. In this paper, we achieve the
following goals:

– we identify a maximal fragment of OWL 2 RL0, called OWL 2 RL+, with the prop-
erty that every knowledge base expressed in OWL 2 RL+ can be translated to
a Datalog program without negative clauses and hence is satisfiable;

– we prove that whenever a knowledge base KB in OWL 2 RL0 is satisfiable then its
corresponding version in OWL 2 RL+ is equivalent to KB w.r.t. positive queries;4

– we propose some natural extensions of OWL 2 RL0 and OWL 2 RL+ (respectively
denoted by OWL 2 eRL and OWL 2 eRL+); the ideas behind these extensions are
natural and ideas around them may have been known earlier, but here we formal-
ize them and prove that both OWL 2 eRL and OWL 2 eRL+ have PTime data
complexity, and that every knowledge base in OWL 2 eRL+ can be translated to
a knowledge base without negative clauses in eDatalog, an extension of Datalog;

– we extend both OWL 2 eRL and OWL 2 eRL+ with eDatalog itself; combining
OWL 2 eRL or OWL 2 eRL+ with eDatalog gives one the freedom to use the syntax
of both languages and allows one to represent knowledge not only in terms of
concepts and roles but also by predicates of higher arities.

1.2 Related Work

This work is a revised and extended version of our conference paper [6]. Comparing
to [6], we extend discussions and additionally provide full proofs of the results.

OWL 2 RL has been inspired by Description Logic Programs (DLP) [15] and
pD∗ [37] (see [34]). The logical base of DLP is the description Horn logic DHL [15].

4 That is, ignoring constraints and considering only positive queries, OWL 2 RL0 can be
replaced by OWL 2 RL+.
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Some extensions of DHL were considered in [30]. The pD∗ semantics [37] is a pre-
cursor for OWL 2 RL and for work on supporting OWL through Horn fragments.

A number of Horn fragments of DLs with PTime data complexity have also been
investigated in [5, 15, 19, 21, 23, 31, 32, 35]. The combined complexities of Horn frag-
ments of DLs were considered, amongst others, in [22]. Some tractable Horn fragments
of DLs without ABoxes have also been isolated in [2, 4]. The work [32] studies Horn
fragments of the DLs SHOIQ and SROIQ. This Horn-SROIQ fragment is expres-
sive, but does not extend OWL 2 RL as it does not allow for data roles and restricts
role inclusion axioms by regularity conditions. For an overview of most of these works
see [31, Section 4].

Various combinations of rule languages with description logics have been studied in
a considerable number of works, including [8] (on AL-log), [24] (on CARIN), [27] (on
DL-safe rules), [36] (on DL+log), [20, 26] (on hybrid MKNF), [9] (on hybrid programs),
[12] (on dl-programs), [7] (on WORL). Among these works, only [7] directly deals with
OWL 2 RL. In that work we have considered a combination of a variant of OWL 2 RL
with eDatalog¬.

Some other related results are [18] (on SWRL), [16] (on description logic programs
with negation), [10] (on layered rule-based architecture) and [11, 28, 29] (on Horn
fragments of modal logics).

1.3 The Structure of This Paper

The rest of this paper is structured as follows. In Section 2 we specify the logical
formalism OWL 2 RL0. Section 3 is devoted to OWL 2 RL+. Section 4 presents exten-
sions of OWL 2 RL0 and OWL 2 RL+. Section 5 concludes this work. Proofs of the
results of this paper are presented in the appendix.

2 A Logical Formalism of OWL 2 RL

In this section we specify OWL 2 RL as a description logic-based formalism. We focus
on logical aspects of this language while ignoring the concrete data types predefined for
OWL 2 RL [34]. In particular, we assume that considered knowledge bases are type-
correct. We call the resulting formalism OWL 2 RL0. The semantics of OWL 2 RL0

follows the “direct semantics” of OWL 2 [14].
In addition to notation listed in Table 1 (page 4), we shall use the following

notational convention:

– CNames stands for the set of concept names;
– RNames stands for the set of role names;
– INames stands for the set of individual names.

The syntax of families R, DR, lC, rC, eC is defined in Figure 1.5

We also use abbreviations: Disj (Disjoint), Func (Functional), InvFunc (InverseFunc-
tional), Refl (Reflexive), Irref (Irreflexive), Sym (Symmetric), Asym (Asymmetric),
Trans (Transitive), Key (HasKey).

Definition 2.1.

– A TBox axiom, standing for a ClassAxiom or a DatatypeDefinition or a HasKey
axiom [34], is an expression of one of the following forms:

lC v rC, eC ≡ eC ′, Disj(lC1, . . . , lCk), DT ≡ DR,
Key(lC,R1, . . . , Rk, σ1, . . . , σh).

5 In comparison to [6], the definitions of lC, rC and eC are extended with ⊥.
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Table 1. Correspondences between logical notation and the notation used in [34].

Logical notation Notation of [34]

> (truth) owl:Thing
⊥ (falsity) owl:Nothing

a, b individuals (i.e. objects)
d a literal (i.e. a data constant)

A, B concept names (i.e., Class elements)
C, D concepts (i.e., ClassExpression elements)
lC a concept standing for a subClassExpression
rC a concept standing for a superClassExpression
eC a concept standing for an equivClassExpression
DT a data type (i.e., a Datatype)
DR a data range (i.e., a DataRange)
r, s object role names (i.e., ObjectProperty elements)
R, S object roles (i.e., ObjectPropertyExpression elements)
σ, % data role names (i.e., DataProperty elements)

{a1} t . . . t {ak} the class constructor ObjectOneOf

R := r | r−

DR := DT | DT uDR

lC := ⊥ | A | {a} | lC u lC | lC t lC | ∃R.lC | ∃R.> | ∃σ.DR | ∃σ.{d}
rC := ⊥ | A | rC u rC | ¬lC | ∀R.rC | ∃R.{a} | ∀σ.DR | ∃σ.{d} |

≤1R.lC | ≤0R.lC | ≤1R.> | ≤0R.> | ≤1σ.DR | ≤0σ.DR

eC := ⊥ | A | eC u eC | ∃R.{a} | ∃σ.{d}

Fig. 1. The BNF grammar for families R, DR, lC, rC and eC.

– An RBox axiom, standing for an ObjectPropertyAxiom or a DataPropertyAxiom
[34], is an expression of one of the following forms:6

R1 ◦ . . . ◦Rk v S, R ≡ S, R ≡ S−,
Disj(R1, . . . , Rk), ∃R.> v rC, > v ∀R.rC,

Func(R), InvFunc(R), Irref(R), Sym(R), Asym(R), Trans(R),

σ v %, σ ≡ %, Disj(σ1, . . . , σk), ∃σ v rC, > v ∀σ.DR, Func(σ). 2

Table 2 lists some correspondences between RBoxes axioms expressed in logical
notation and the notation of [34]. One can classify these axioms as TBox axioms
instead of RBox axioms. Similarly, Key(. . .) axioms can be classified as RBox axioms
instead.

Definition 2.2. An ABox assertion is a formula of one of the following forms:

a ≈ b, a 6≈ b, rC(a), DT(d), r(a, b), ¬r(a, b), σ(a, d), ¬σ(a, d).

We call an ABox assertion also as an ABox axiom. 2

6 Axioms of the form R ≡ S, R ≡ S−, Sym(R) or Trans(R) are expressible by axioms of the
form R1 ◦ . . . ◦Rk v S, so can be deleted from this list.
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Table 2. Correspondences between axioms expressed in logical notation and the notation
used in [34].

Logical notation Notation of [34]

∃R.> v rC ObjectPropertyDomain
> v ∀R.rC ObjectPropertyRange
∃σ v rC DataPropertyDomain
> v ∀σ.DR DataPropertyRange

Note that:

– assertions of the form DT(d) are implicitly provided in OWL 2 RL [34] by decla-
rations of DT and d;

– the other ABox assertions listed in Definition 2.2 stand for Assertion elements
of [34];

– in OWL 2 RL [34] there are also declaration and annotation axioms used for ex-
pressing meta information about ontologies; these kinds of axioms are inessential
from the logical point of view and are omitted here.

Definition 2.3. An RBox (respectively, TBox, ABox) is a finite set of RBox (re-
spectively, TBox, ABox) axioms. An ABox is extensionally reduced if it does not
contain axioms of the form C(a) with C being a complex concept (i.e., not a concept
name).

A knowledge base (i.e., an ontology) in OWL 2 RL0 is defined to be a tuple
〈R, T ,A〉 consisting of an RBox R, a TBox T , and an ABox A.7 We may present
a knowledge base as a set of axioms. 2

Let us now define interpretations.

Definition 2.4. An interpretation I = 〈∆Io , ∆Id , ·I〉 consists of a non-empty set ∆Io
called the object domain of I, a non-empty set ∆Id disjoint from ∆Io , called the data
domain of I, and a function ·I called the interpretation function of I, which maps:

– every individual a to an element aI ∈ ∆Io ;
– every literal d to an element dI ∈ ∆Id ;
– every concept name A to a subset AI of ∆Io ;
– every data type DT to a subset DTI of ∆Id ;
– every object role name r to a binary relation rI ⊆ ∆Io ×∆Io ;
– every data role name σ to a binary relation σI ⊆ ∆Io ×∆Id . 2

It is expected that, when an ontology is loaded, appropriate preprocessing is done
to standardize literals. For example, literals 1 (of type “integer”), 1.0, 1.00 in expres-
sions of type “decimal” should be represented by the same value. Assuming that such
a standardization has been done for the considered knowledge base in OWL 2 RL0,
we adopt the Unique Names Assumption for literals, i.e.,

if d1 6= d2 then we assume that dI1 6= dI2 , too.
This assumption is suitable for OWL 2 RL0, as OWL 2 RL0 does not deal with prede-
fined data types.

The interpretation function is extended to interpret data ranges, inverse object
roles and complex concepts as shown in Figure 2.

7 One can convert a knowledge base to the form with an extensionally reduced ABox by
replacing every ABox assertion rC(a) by an ABox assertion A(a) and a TBox axiom
A v rC, where A is a new concept name.
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{d}I = {dI}, (DT uDR)I = DTI ∩DRI

(R−)I = (RI)−1 = {(y, x) | (x, y) ∈ RI}
>I = ∆Io , ⊥I = ∅, {a}I = {aI}, (¬C)I = ∆Io \ CI

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI

(∀R.C)I = {x ∈ ∆Io | ∀y[(x, y) ∈ RI implies y ∈ CI ]}
(∃R.C)I = {x ∈ ∆Io | ∃y[(x, y) ∈ RI and y ∈ CI ]}

(∀σ.DR)I = {x ∈ ∆Io | ∀y[(x, y) ∈ σI implies y ∈ DRI ]}
(∃σ.ϕ)I = {x ∈ ∆Io | ∃y[(x, y) ∈ σI and y ∈ ϕI ]}

(∃σ)I = {x ∈ ∆Io | ∃y (x, y) ∈ σI}
(≤nR.C)I = {x ∈ ∆Io | #{y ∈ ∆Io | (x, y) ∈ RI and y ∈ CI} ≤ n}

(≤nσ.DR)I = {x ∈ ∆Io | #{y ∈ ∆Id | (x, y) ∈ σI and y ∈ DRI} ≤ n}

Fig. 2. Interpretation of data ranges, inverse object roles, and complex concepts. We assume
here that ϕ is of the form DR or {d} and that #Γ denotes the cardinality of the set Γ .

From now on, if not stated otherwise, by an axiom we mean an RBox axiom,
a TBox axiom or an ABox axiom.

Definition 2.5. The satisfaction relation I |= ϕ between an interpretation I and an
axiom ϕ is defined below and stands for “I validates ϕ”:

– I |= R1 ◦ . . . ◦Rk v S iff RI1 ◦ . . . ◦RIk v SI ,
– I |= C v D iff CI ⊆ DI ,
– I |= C(a) iff aI ∈ CI ,
– I |= r(a, b) iff (aI , bI) ∈ rI ,
– I |= ¬r(a, b) iff (aI , bI) /∈ rI ,
– I |= σ(a, d) iff (aI , dI) ∈ σI ,
– I |= ¬σ(a, d) iff (aI , dI) /∈ σI ,
– I |= (ϕ ≡ ψ) iff ϕI = ψI ,

where ϕ and ψ may be of the form C, R, R−, DT or DR,
– I |= a ≈ b iff aI = bI ,
– I |= a 6≈ b iff aI 6= bI ,
– I |= Disj(ϕ1, . . . , ϕk) iff ϕIi ∩ ϕIj = ∅ for all 1 ≤ i < j ≤ k,

where ϕ1, . . .ϕk are of the form C, R or σ,
– I |= Func(R) iff RI is functional

(i.e. ∀x, y, z(RI(x, y) ∧RI(x, z)→ y = z)),
– I |= InvFunc(R) iff RI is inverse-functional

(i.e. ∀x, y, z(RI(x, z) ∧RI(y, z)→ x = y)),
– I |= Irref(R) iff RI is irreflexive,
– I |= Sym(R) iff RI is symmetric,
– I |= Asym(R) iff RI is asymmetric,
– I |= Trans(R) iff RI is transitive,
– I |= Func(σ) iff σI is functional,
– I |= Key(C,R1, . . . , Rk, σ1, . . . , σh) iff,

for every a, b ∈ INames, z1, . . . , zk ∈ ∆Io and d1, . . . , dh ∈ ∆Id ,
if aI ∈ CI , bI ∈ CI , and
{(aI , zi), (bI , zi)} ⊆ RIi for all 1 ≤ i ≤ k, and
{(aI , dj), (bI , dj)} ⊆ σIj for all 1 ≤ j ≤ h

then aI = bI .
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When ϕ is an ABox axiom, we also say I satisfies ϕ to mean I validates ϕ.
Let Γ be an RBox, a TBox or an ABox. An interpretation I is called a model of

Γ , denoted by I |= Γ , if it validates all axioms of Γ . I is called a model of a knowledge
base 〈R, T ,A〉, denoted by I |= 〈R, T ,A〉, if it is a model of all R, T and A. 2

Definition 2.6. A (ground conjunctive) query is a formula of the form ϕ1∧ . . .∧ϕk,
where each ϕi is of one of the following forms:

a ≈ b, a 6≈ b, A(a), ¬A(a), r(a, b), ¬r(a, b), σ(a, d), ¬σ(a, d).

An interpretation I satisfies the query ϕ = ϕ1 ∧ . . .∧ϕk, which is denoted by I |= ϕ,
if I |= ϕi for all 1 ≤ i ≤ k. We say that a query ϕ is a logical consequence of
a knowledge base 〈R, T ,A〉, denoted by 〈R, T ,A〉 |= ϕ, if every model of 〈R, T ,A〉
satisfies ϕ. 2

Note that queries are defined to be ground. In a more general context, one can
allow queries to contain variables for individuals or literals, accepting the range-
restrictedness condition stating that every variable occurring under negation occurs
also in an atomic formula not under negation. However, one of the approaches to deal
with such queries is to instantiate variables by individuals or literals occurring in the
knowledge base or the query.

Definition 2.7. The data complexity of OWL 2 RL0 (for the ground conjunctive
query answering problem) is the complexity of checking whether a query ϕ is a logical
consequence of a knowledge base 〈R, T ,A〉, measured w.r.t. the size of the ABox A,
assuming that A is extensionally reduced and R, T and ϕ are fixed. 2

3 The Fragment OWL2RL+

In this section we first give some examples of unsatisfiable knowledge bases in
OWL 2 RL0. Next, we present the restricted version OWL 2 RL+ of OWL 2 RL0 ensur-
ing that all knowledge bases are satisfiable. We also provide some important properties
of OWL 2 RL+.

Example 3.1. All the following knowledge bases in OWL 2 RL0 are unsatisfiable:

KB1 = {A ≡ ⊥, A(a)},
KB2 = {A v ⊥, A(a)},
KB3 = {A v ¬B, A(a), B(a)},
KB4 = {A v ≤0 r.B, A(a), r(a, b), B(b)},
KB5 = {A v ≤0 r.>, A(a), r(a, b)},
KB6 = {A v ≤0σ.DT, A(a), σ(a, d), DT(d)},
KB7 = {A v ≤1σ.DT, A(a), σ(a, d1), DT(d1), σ(a, d2), DT(d2)},

where d1 6= d2,

KB8 = {Disj(A,B), A(a), B(a)},
KB9 = {Disj(r, s), r(a, b), s(a, b)},

KB10 = {Disj(σ, σ′), σ(a, d), σ′(a, d)},
KB11 = {Irref(r), r(a, a)},
KB12 = {Irref(r), s v r, r ◦ r v r, s(a, b), r(b, a)},
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KB13 = {Asym(r), r(a, b), r(b, a)},
KB14 = {Asym(r), s v r, s(a, b), r(b, a)},
KB15 = {a 6≈ b, a ≈ b},
KB16 = {a 6≈ b, A v ≤1 r.B, A(c), r(c, a), B(a), r(c, b), B(b)},
KB17 = {¬r(a, b), r(a, b)},
KB18 = {¬r(a, b), s v r, s(a, b)},
KB19 = {¬σ(a, d), σ(a, d)}.

Assuming that assertions of the forms A(a), r(a, b), σ(a, d), DT(d), a ≈ b are basic
and should always be allowed, and that atomic concepts should be allowed at the left
hand side of v in TBox axioms, then it is clear that the above knowledge bases are
unsatisfiable. 2

Definition 3.2. We define OWL 2 RL+ to be the restriction of OWL 2 RL0 such that:

– the concept ⊥ is disallowed;8

– the constructors ¬lC, ≤ 0R.lC, ≤ 0R.> and ≤ nσ.DR (where n ∈ {0, 1}) are
disallowed in the BNF grammar rule defining the rC family;

– axioms of the forms Disj(. . .), Irref(R), Asym(R), a 6≈ b, ¬r(a, b), ¬σ(a, d) are
disallowed. 2

Restrictions listed in Definition 3.2 correspond to the following ones for
OWL 2 RL [34]:

– the class owl:Nothing is disallowed;
– the grammar elements superComplementOf, superObjectMaxCardinality with

limit 0, and superDataMaxCardinality are disallowed in the definition of
superClassProperty;

– axioms of the following forms are disallowed:
• DisjointClasses, DisjointObjectProperties, DisjointDataProperties,
• IrreflexiveObjectProperty, AsymmetricObjectProperty,
• DifferentIndividuals,
• NegativeObjectPropertyAssertion, NegativeDataPropertyAssertion.

Definition 3.3. A query is said to be in the language of KB if it does not use predi-
cates not occurring in KB.

A positive query is a formula ϕ1 ∧ . . . ∧ ϕk, where each ϕi is of one of the forms
a ≈ b, A(a), r(a, b), σ(a, d). 2

Let us now recall the definition of Datalog.

Definition 3.4.

– A term is either a constant or a variable.
– If p is an n-argument predicate and t1, . . . , tn are terms then p(t1, . . . , tn) is an

atomic formula, which is also called an atom.
– A Datalog program clause is a formula of the form ϕ1 ∧ . . . ∧ ϕn → ψ, where
n ≥ 0 and ϕ1, . . . , ϕn, ψ are atoms. The conjunction ϕ1 ∧ . . . ∧ ϕn is called the
body and ψ is called the head of the clause. The program clause is required to
satisfy the range-restrictedness condition stating that every variable occurring in
the clause’s head must occur also in the clause’s body.

8 In comparison to [6], we must add this restriction for OWL 2 RL+ as we do now allow ⊥
for OWL 2 RL0.
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– A Datalog program is a finite set of Datalog program clauses. 2

Theorem 3.5.

1. OWL 2 RL+ is a maximal fragment (w.r.t. allowed features) of OWL 2 RL0 such
that every knowledge base expressed in the fragment is satisfiable.

2. Every knowledge base KB in OWL 2 RL+ can be translated to a Datalog program
P which is equivalent to KB in the sense that, for every query ϕ in the language
of KB, KB |= ϕ iff P |= ϕ. 2

Definition 3.6. Let KB be a knowledge base in OWL 2 RL0. The normal form of
KB is the knowledge base obtained from KB as follows: if ¬lC occurs as an rC in
the knowledge base then replace it by a fresh (new) concept name A and add to the
knowledge base the TBox axiom A u lC v ⊥.

The corresponding version of KB in OWL 2 RL+ is the knowledge base obtained
from the normal form of KB by deleting all axioms containing ≤ 0R.lC, ≤ 0R.>
or ≤ nσ.DR (where n ∈ {0, 1}) and deleting all axioms of the forms A u lC v ⊥,
Disj(. . .), Irref(R), Asym(R), a 6≈ b, ¬r(a, b), ¬σ(a, d). 2

Theorem 3.7. Let KB be a knowledge base in OWL 2 RL0, KB′ be the normal form
of KB, and KB′′ be the corresponding version of KB in OWL 2 RL+. Then:

1. KB′ is equivalent to KB in the sense that, for every query ϕ in the language of KB,
KB |= ϕ iff KB′ |= ϕ;

2. if KB is satisfiable and ϕ is a positive query in the language of KB then
KB |= ϕ iff KB′′ |= ϕ. 2

The second assertion of Theorem 3.7 states that if KB is satisfiable then the corre-
sponding version of KB in OWL 2 RL+ is equivalent to KB w.r.t. positive queries. This
means that, ignoring constraints and considering only positive queries, OWL 2 RL0

can be replaced by OWL 2 RL+ without any further loss of expressiveness.

4 Extensions of OWL2RL0 with PTime Data Complexity

In this section we first define an extension of Datalog called eDatalog. We then pro-
pose an extension OWL 2 eRL of OWL 2 RL0 with PTime data complexity, and an
extension OWL 2 eRL+ of OWL 2 RL+ that can be translated into eDatalog. Next,
we extend both OWL 2 eRL and OWL 2 eRL+ with eDatalog.

4.1 eDatalog

From the point of view of OWL, there are two basic types: individual (i.e., object)
and literal [34] (i.e., data constant). We denote the individual type by IType, and the
literal type by LType. Thus,

– a concept name is a unary predicate of type P (IType);
– a data type is a unary predicate of type P (LType);
– an object role name is a binary predicate of type P (IType× IType);
– a data role name is a binary predicate of type P (IType× LType).

Extending OWL 2 RL0 with Datalog, in addition to concept names and role names,
we will also use:

– a set OPreds of ordinary predicates (including data types);
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– a set ECPreds of external checkable predicates.

We assume that the sets CNames, RNames, OPreds and ECPreds are finite and
pairwise disjoint. Let DPreds stand for the set of defined predicates,

DPreds = CNames ∪ RNames ∪OPreds.

A k-argument predicate from OPreds has type P (T1 × . . . × Tk), where each Ti is
either IType or LType. A k-argument predicate from ECPreds has type P (LTypek).

We assume that each predicate from ECPreds has a fixed meaning which is check-
able in the sense that, if p is a k-argument predicate from ECPreds and d1, . . . , dk
are constant elements of LType, then the truth value of p(d1, . . . , dk) is fixed and com-
putable in constant time. For example, one may want to use the binary predicates >,
≥, <, ≤ on real numbers with the usual semantics.

We assume there are two different equality predicates ≈ and � (both belonging to
OPreds), where≈ has the type P (IType×IType) and� has the type P (LType×LType).
These equality predicates have the standard semantics, with the Unique Names As-
sumption for literals (i.e., data constants).

While extending Datalog to eDatalog, we want to drop the range-restrictedness
condition. However, to allow external checkable predicates we cannot do that totally.
For this reason, we distinguish a subset RRPreds ⊆ DPreds as the set of range-
restricted predicates, which is required to contain both the equality predicates.

We define eDatalog as follows.

Definition 4.1.

– A term is either an individual (of type IType) or a literal (of type LType) or
a variable (of type IType or LType).

– If p is a predicate of type P (T1 × . . . × Tk) and for 1 ≤ i ≤ k, ti is a term of
type Ti, then p(t1, . . . , tk) is an atomic formula (also called an atom). An atom is
ground if it contains no variables.

– An eDatalog program clause is a formula of the form ϕ1 ∧ . . . ∧ ϕn → ψ, where
n ≥ 0 and ϕ1, . . . , ϕn, ψ are atomic formulas such that:
• ψ is an atom of a predicate from DPreds;
• if the predicate of ψ belongs to RRPreds then every variable occurring in ψ

occurs also in some ϕi whose predicate also belongs to RRPreds;
• every variable occurring in some ϕi whose predicate belongs to ECPreds occurs

also in some atom ϕj whose predicate belongs to RRPreds.
– An eDatalog program is a finite set of eDatalog program clauses.
– A knowledge base in eDatalog is a pair 〈P,A〉, where P is an eDatalog program

and A is an ABox consisting of ground atoms of predicates from DPreds. 2

The notions for eDatalog like interpretation, model and data complexity are de-
fined in the usual way, assuming the usual semantics for the equality predicates and
the Unique Names Assumption for literals.

4.2 OWL 2 eRL and OWL 2 eRL+

Axioms of the form Refl(R) (i.e., reflexive object property axioms) are disallowed
for OWL 2 RL. Translating Refl(R) into Datalog we get a program clause ∀xR(x, x)
that violates the range-restrictedness condition, which seems to be the reason of this
restriction. Similarly, > is disallowed as lC in OWL 2 RL. However, these restrictions
are unnecessary. The Horn fragment of predicate logic without function symbols also
has PTime data complexity. Furthermore, as shown in [25], evaluation methods of
Datalog can be extended to Horn knowledge bases in predicate logic without function
symbols. Therefore, we propose the following extensions of OWL 2 RL0:
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1. we allow ReflexiveObjectProperty axioms and > as lC;
2. we allow unary predicates from ECPreds to appear in the places of DataRange

elements.

To motivate the second proposal let us indicate that it is desirable to express concepts
like the class of all laptops with price not greater than 1000 USD. Using the syntax
of description logic, the concept can be written as:

laptop u ∃price.(≤ 1000).

Here, “≤ 1000” is a unary predicate. Other useful predicates are, e.g., other compar-
ison operators, string pattern matching operator and many other operators, used in
programming languages or SQL-based query languages.

The use of built-in predicates in rules has been suggested earlier for SWRL [18].
Some combined OWL 2 RL/SWRL tools with this capability have been imple-
mented [13]. DataTypeRestrictions using XML Schema facets [33] are a kind of unary
external checkable predicates.

Let us emphasize that in our second proposal all unary external checkable predi-
cates can be used and we still have Theorem 4.2 given below, where:

– by OWL 2 eRL we denote the extension of OWL 2 RL0 according to the two above
mentioned proposals;

– by OWL 2 eRL+ we denote the extension of OWL 2 RL+ by allowing axioms of
the form Refl(R) (i.e. ReflexiveObjectProperty axioms), allowing > as lC, and
allowing unary predicates from ECPreds to appear in the places of DR in the
BNF grammar rule defining lC.

Clearly, OWL 2 eRL+ is a sublanguage of OWL 2 eRL. The data complexity of
OWL 2 eRL and OWL 2 eRL+ is defined as usual.

Theorem 4.2.

1. The languages OWL 2 eRL and OWL 2 eRL+ have PTime data complexity.
2. Every knowledge base KB in OWL 2 eRL+ can be translated to a knowledge base

KB′ in eDatalog which is equivalent to KB in the sense that, for every query ϕ in
the language of KB, KB |= ϕ iff KB′ |= ϕ. 2

4.3 Combining OWL 2 eRL and OWL 2 eRL+ with eDatalog

For the combined languages OWL 2 eRL-eDatalog and OWL 2 eRL+-eDatalog studied
in the current section we assume that all data role names belong to RRPreds (i.e., are
range-restricted).

Definition 4.3. A knowledge base in the combined language OWL 2 eRL-eDatalog
(respectively, OWL 2 eRL+-eDatalog) is a tuple 〈R, T ,P,A〉, where:

– R is an RBox of OWL 2 eRL (respectively, OWL 2 eRL+);
– T is a TBox of OWL 2 eRL (respectively, OWL 2 eRL+);
– P is an eDatalog program;
– A is a set consisting of ABox assertions of OWL 2 eRL (respectively,

OWL 2 eRL+) and ground atoms of ordinary predicates (from OPreds).

The set A is called an ABox and its elements are called ABox assertions. 2
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Definition 4.4. A (ground conjunctive) query to a knowledge base of OWL 2 eRL-
eDatalog is a formula of the form ϕ1∧ . . .∧ϕk, where each ϕi is either a ground atom
of a predicate from DPreds \ {�} or a formula of one of the forms a 6≈ b, ¬A(a),
¬r(a, b), ¬σ(a, d).

A (ground conjunctive) query to a knowledge base of OWL 2 eRL+-eDatalog is
a formula of the form ϕ1 ∧ . . . ∧ ϕk, where each ϕi is a ground atom of a predicate
from DPreds \ {�}. 2

Other related notions are defined in the usual way.
We now have the following theorem.

Theorem 4.5.

1. The combined languages OWL 2 eRL-eDatalog and OWL 2 eRL+-eDatalog have
PTime data complexity.

2. Every knowledge base KB in OWL 2 eRL+-eDatalog can be translated to a knowl-
edge base KB′ in eDatalog which is equivalent to KB in the sense that, for every
query ϕ in the language of KB, KB |= ϕ iff KB′ |= ϕ. 2

The following example, considered in [30], involves car insurance discounts.

Example 4.6. Consider the knowledge base in OWL 2 eRL+-eDatalog with: 9

R = ∅

T = {∃has child.> v parent,

parent umale v father,

parent u female v mother}

P = {father(x) ∧ has child(x, y) ∧ age(y, k) ∧ k ≤ 3→ discount(x, 10),

mother(x) ∧ has child(x, y) ∧ age(y, k) ∧ k ≤ 3→ discount(x, 15)}

A = {female(Jane),male(Mike),male(Peter),

has child(Jane,Peter), has child(Mike,Peter), age(Peter, 2)}.

The query discount(x, y) to this knowledge base has answers (Jane, 15) and (Mike, 10).
2

5 Conclusions

In this paper we have identified the maximal fragment OWL 2 RL+ of OWL 2 RL0

with the property that every knowledge base expressed in this fragment is satis-
fiable. Identifying OWL 2 RL+ is a relatively simple step. More important are our
results about OWL 2 RL+ like the one stating that whenever a knowledge base KB in
OWL 2 RL0 is satisfiable then its corresponding version in OWL 2 RL+ is equivalent
to KB w.r.t. positive queries. Furthermore, OWL 2 RL+ itself constitutes a base for
the development of WORL [7], which combines Datalog¬ with a variant of OWL 2 RL,
using nonmonotonic semantics.

We have also proposed extensions of OWL 2 RL0 and OWL 2 RL+ by allow-
ing ReflexiveObjectProperty axioms, external checkable predicates, eDatalog program
clauses, and allowing > as lC. These extensions are very natural and some of the
ideas may be known already. Here, we have proved that our extensions OWL 2 eRL
and OWL 2 eRL+ have PTime data complexity. They allow efficient computational
methods based on the ones of Datalog and are useful for Semantic Web applications.

9 OWL 2 eRL+-eDatalog is a more general language than EDHL-Datalog [30].
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A Proofs

In this appendix we provide proofs for the theorems given earlier in the paper. We
first present a translation of OWL 2 RL0 into Datalog and give some lemmas.

Definition A.1. By a negative clause we understand a formula of the form a 6≈ b,
¬r(a, b), ¬σ(a, d) or ϕ1 ∧ . . . ∧ ϕk → ⊥, where ϕ1, . . . , ϕk are atomic formulas. 2

π(> v C) = {π(x)(C)}
π(∃σ v C) = {σ(x, y)→ π(x)(C)}
π(C v D) = {π(x)(C)→ π(x)(D)}
π(C ≡ D) = {π(x)(C)→ π(x)(D), π(x)(D)→ π(x)(C)}
π(DT ≡ DR) = {π(x)(DT)→ π(x)(DR), π(x)(DR)→ π(x)(DT)}
π(R ≡ S) = {R(x, y)→ S(x, y), S(x, y)→ R(x, y)}
π(R ≡ S−) = {R(x, y)→ S(y, x), S(y, x)→ R(x, y)}
π(R1 ◦ . . . ◦Rk v S) = {R1(x0, x1) ∧ . . . ∧Rk(xk−1, xk)→ S(x0, xk)}
π(σ v %) = {σ(x, y)→ %(x, y)}
π(σ ≡ %) = {σ(x, y)→ %(x, y), %(x, y)→ σ(x, y)}
π(Disj(C1, . . . , Ck)) = {π(x)(Ci) ∧ π(x)(Cj)→ ⊥ | 1 ≤ i < j ≤ k}
π(Disj(R1, . . . , Rk)) = {Ri(x, y) ∧Rj(x, y)→ ⊥ | 1 ≤ i < j ≤ k}
π(Disj(σ1, . . . , σk)) = {σi(x, y) ∧ σj(x, y)→ ⊥ | 1 ≤ i < j ≤ k}
π(Func(R)) = {R(x, y) ∧R(x, z)→ y ≈ z}
π(Func(σ)) = {σ(x, y) ∧ σ(x, z)→ y � z}
π(InvFunc(R)) = {R(y, x) ∧R(z, x)→ y ≈ z}
π(Refl(R)) = {R(x, x)}
π(Irref(R)) = {R(x, x)→ ⊥}
π(Sym(R)) = {R(x, y)→ R(y, x)}
π(Asym(R)) = {R(x, y) ∧R(y, x)→ ⊥}
π(Trans(R)) = {R(x, y) ∧R(y, z)→ R(x, z)}
π(A(a)) = {A(a)}
π(C(a)) = {A(a)} ∪ π(A v C) when C is a complex concept,

where A is a fresh concept name
π(ϕ) = {ϕ} if ϕ is an ABox assertion not of the form C(a)

π(Key(C,R1, . . . , Rk, σ1, . . . , σh)) =
{π(x)(C) ∧ π(y)(C) ∧
R1(x, u1) ∧R1(y, u1) ∧ . . . ∧Rk(x, uk) ∧Rk(y, uk) ∧
σ1(x, v1) ∧ σ1(y, v1) ∧ . . . ∧ σh(x, vh) ∧ σh(y, vh)→ x ≈ y}

Fig. 3. A translation π for axioms of OWL 2 RL0. All variables like x, y, z, u, v are fresh
(new) variables. The auxiliary translation π(x) is defined in Figure 4. For π(Key(. . .)), note
that OWL 2 RL0 does not “create” new objects and x, y will only be instantiated by named
individuals.

Let π be the translation specified in Figure 3. It translates each axiom of
OWL 2 RL0 to a set of formulas, using an auxiliary translation π(x), where x de-
notes a variable. The auxiliary translation is specified in Figure 4. It translates each
concept or data range to a formula.

Note that for π(x)(ϕ), in the cases when ϕ is ∃R.C, ∃R.> or ∃σ.DR:

– ϕ occurs at the left hand side of →;



16 S.T. Cao, L.A. Nguyen and A. Sza las

π(x)(DT) = DT(x)
π(x)(DT uDR) = DT(x) ∧ π(x)(DR)
π(x)(A) = A(x)
π(x)({a}) = (x ≈ a)
π(x)(¬C) = π(x)(C)→ ⊥
π(x)(C uD) = π(x)(C) ∧ π(x)(D)
π(x)(C tD) = π(x)(C) ∨ π(x)(D)
π(x)(∀R.C) = R(x, y)→ π(y)(C)
π(x)(∃R.C) = R(x, y) ∧ π(y)(C)
π(x)(∃R.{a}) = R(x, a)
π(x)(∃R.>) = R(x, y)
π(x)(>) = >
π(x)(∀σ.DR) = σ(x, y)→ π(y)(DR)
π(x)(∃σ.DR) = σ(x, y) ∧ π(y)(DR)
π(x)(∃σ.{d}) = σ(x, d)
π(x)(≤1R.C) = R(x, y) ∧R(x, z) ∧ π(y)(C) ∧ π(z)(C)→ y ≈ z
π(x)(≤0R.C) = R(x, y) ∧ π(y)(C)→ ⊥
π(x)(≤1R.>) = R(x, y) ∧R(x, z)→ y ≈ z
π(x)(≤0R.>) = R(x, y)→ ⊥
π(x)(≤1σ.DR) = σ(x, y) ∧ σ(x, z) ∧ π(y)(DR) ∧ π(z)(DR)→ y � z
π(x)(≤0σ.DR) = σ(x, y) ∧ π(y)(DR)→ ⊥

Fig. 4. An auxiliary translation π(x) used for the translation π defined in Figure 3. All
variables y and z are fresh (new) variables.

– the introduced variables are existentially quantified, so these quantifiers change
to universal ones when taken out of the scope of →.

Example A.2. For ϕ = (∃r.(A1 tA2) v ∀r.B), we have

π(ϕ) = {r(x, y) ∧ (A1(y) ∨A2(y))→ (r(x, z)→ B(z))}.

As for free variables, x, y and z are universally quantified. The only formula ψ of π(ϕ)
is not a Datalog program clause. The intended translation of ϕ to a set of Datalog
program clauses is

π3(ϕ) = π2(ψ) = {r(x, y) ∧A1(y) ∧ r(x, z)→ B(z),

r(x, y) ∧A2(y) ∧ r(x, z)→ B(z)}.

To specify the translation π3, we use auxiliary translations π2,l and π2 such that:

– when π2,l is applicable to a formula ψ of predicate logic, π2,l(ψ) is a set of conjunc-
tions of atomic formulas, and for any interpretation I, I |=

∨
π2,l(ψ) iff I |= ψ,

– when π2 is applicable to a formula ψ of predicate logic, π2(ψ) is a set of Dat-
alog program clauses and/or negative clauses, and for any interpretation I,
I |=

∧
π2(ψ) iff I |= ψ.

For example, π2,l(r(x, y) ∧ (A1(y) ∨A2(y))) = {r(x, y) ∧A1(y), r(x, y) ∧A2(y)}. 2
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We define:

π2,l(ξ) = {ξ} if ξ is not of any of the forms ϕ ∧ ψ, ϕ ∨ ψ, r−(t, t′)
π2,l(r

−(t, t′)) = {r(t′, t)}

π2,l(ϕ ∨ ψ) =

{
{>} if π2,l(ϕ) = {>} or π2,l(ψ) = {>}
π2,l(ϕ) ∪ π2,l(ψ) otherwise

π2,l(ϕ ∧ ψ) =

π2,l(ψ) if π2,l(ϕ) = {>}
π2,l(ϕ) if π2,l(ψ) = {>}
{ϕ′ ∧ ψ′ | ϕ′ ∈ π2,l(ϕ) and ψ′ ∈ π2,l(ψ)} otherwise

π2(ξ) = {ξ} if ξ is not of any of the forms ϕ ∧ ψ, ϕ→ ψ, r−(t, t′)
π2(r−(t, t′)) = {r(t′, t)}

π2(ϕ→ ψ) =


π2(ψ) if π2,l(ϕ) = {>}
{ϕ′ ∧ ξ′ → ζ ′ | ϕ′ ∈ π2,l(ϕ) and (ξ′ → ζ ′) ∈ π2(ψ)} ∪
{ϕ′ → ψ′ | ϕ′ ∈ π2,l(ϕ) and ψ′ ∈ π2(ψ) and

ψ′ is not of the form ξ′ → ζ ′} otherwise
π2(ϕ ∧ ψ) = π2(ϕ) ∪ π2(ψ).

Given an axiom ϕ of OWL 2 RL0, define:

π3(ϕ) =
⋃

ψ∈π(ϕ)

π2(ψ).

Given a knowledge base KB in OWL 2 RL0, define:

π3(KB) =
⋃

ϕ∈KB

π3(ϕ).

Note that, when the ABox of KB is not extensionally reduced, π3(KB) may contain
new concept names (not occurring in KB). Recall that queries in the language of KB
do not use predicates not occurring in KB.

Lemma A.3. Let KB be a knowledge base in OWL 2 RL0. Then:

1. π3(KB) contains only Datalog program clauses and negative clauses.
2. Every model of π3(KB) is also a model of KB.
3. For every query ϕ in the language of KB, KB |= ϕ iff π3(KB) |= ϕ.

Proof. In the following, let α denote an atomic formula. We define the families of lϕ
and rϕ by the following BNF grammar:

lϕ := α | r−(t, t′) | lϕ ∧ lϕ | lϕ ∨ lϕ
rϕ := α | r−(t, t′) | rϕ ∧ rϕ | lϕ→ rϕ | lϕ→ ⊥

First, it is straightforward to prove by induction on the structure of C that:

– if C is a concept of the lC family then π(x)(C) is a formula ϕ of the lϕ family such
that applying distribution laws for ∧ and ∨ to ϕ results in ϕ1 ∨ . . . ∨ ϕk (where
each ϕi does not contain ∨) such that the variable x occurs in each ϕi,

– if C is a concept of the rC family then π(x)(C) is a formula of the rϕ family such
that if a variable y different from x occurs in the formula then it occurs (among
others) at the left hand side of some → in the formula.

Next, it can be proved by induction on the structure of ϕ that:
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– if ϕ is a formula of the lϕ family then π2,l(ϕ) is a set of formulas of the lϕ family
without the connective ∨ and atoms of the form r−(t, t′);

– if ϕ is a TBox axiom or an RBox axiom and ψ ∈ π(ϕ) then π2(ψ) contains only
formulas of the rϕ family that are Datalog program clauses or negative clauses.

Therefore, π3(KB) contains only Datalog program clauses and negative clauses.
Let I be an arbitrary interpretation. It is easy to prove by induction on the

structure of ψ that:

– if ψ is a TBox axiom or an RBox axiom then I |= ψ iff I |= π(ψ),
– if ψ is a formula of predicate logic then:
• I |=

∨
π2,l(ψ) iff I |= ψ,

• I |=
∧
π2(ψ) iff I |= ψ.

Consequently, if ψ is a TBox axiom or an RBox axiom then:

I |= π3(ψ) iff I |= π(ψ), and iff I |= ψ. (1)

Also observe that:

if ψ is an ABox assertion and I |= π3(ψ) then I |= ψ.

Therefore, every model of π3(KB) is also a model of KB.
To consider the third assertion of the lemma assume that ϕ be a query in the

language of KB.
Assume that KB |= ϕ and I |= π3(KB). We need to show that I |= ϕ. Since

I |= π3(KB), by the second assertion of the lemma, I |= KB, and hence I |= ϕ.
Now assume that π3(KB) |= ϕ and I |= KB. We need to show that I |= ϕ. Let

I ′ be the interpretation that differs from I only in that: for every concept name A
occurring in π3(KB) but not in KB, which is used to represent a complex concept C
as in the translation of π(C(a)), we have that AI

′
= CI . Thus, if I |= C(a) then

I ′ |= A(a) and I ′ |= A v C. Since I |= KB, by (1), we can derive that I ′ |= π3(KB).
Since π3(KB) |= ϕ, it follows that I ′ |= ϕ, and hence I |= ϕ. 2

Let EqAxioms be the set of the following axioms, where p is any k-argument
predicate of DPreds different from ≈ and �, and i is any natural number between 1
and k such that the i-th argument of p is of type IType:

x ≈ x
x ≈ y → y ≈ x

x ≈ y ∧ y ≈ z → x ≈ z
xi ≈ x′i ∧ p(x1, . . . , xk)→ p(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk).

Since the Unique Names Assumption is adopted for literals (i.e. data constants),
to deal with the equality predicate � between literals we use a simpler approach:
having a ground atom d1 � d2, we replace it by > if d1 and d2 are the same literals,
and by ⊥ otherwise, and then simplify the context in which that atom occurs.

Let P be a Datalog program in the language with ≈ but without �. Then
P ∪ EqAxioms is a Datalog program. Let H be the least Herbrand model of
P ∪ EqAxioms, computed in the usual way, treating ≈ as a normal predicate. Let
I be the interpretation specified as follows:

– ∆Io is the set of all individuals occurring in H,
– ∆Id is the set of all data constants occurring in H,
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– for every k-argument predicate p ∈ DPreds,

pI = {〈t1, . . . , tk〉 | p(t1, . . . , tk) ∈ H}.

Observe that ≈I is a congruence of I. Clearly, the quotient I/≈ of I by the congruence
≈I is a model of P. We call it the standard model of P.

We now prove the theorems given earlier in the paper. To increase readability we
remind each of the theorems before presenting its proof.

Theorem 3.5.

1. OWL 2 RL+ is a maximal fragment (w.r.t. allowed features) of OWL 2 RL0 such
that every knowledge base expressed in the fragment is satisfiable.

2. Every knowledge base KB in OWL 2 RL+ can be translated to a Datalog program
P which is equivalent to KB in the sense that, for every query ϕ in the language
of KB, KB |= ϕ iff P |= ϕ.

Proof. Let KB be a knowledge base in OWL 2 RL+. Observe that P = π3(KB) is
a Datalog program without � .10 By Lemma A.3(2), the standard model of the Data-
log program π3(KB) is also a model of KB. Hence KB is satisfiable. The first assertion
of the theorem follows from this fact and Example 3.1. The second assertion of the
theorem follows from Lemma A.3(3). 2

Theorem 3.7. Let KB be a knowledge base in OWL 2 RL0, KB′ be the normal form
of KB, and KB′′ be the corresponding version of KB in OWL 2 RL+. Then:

1. KB′ is equivalent to KB in the sense that, for every query ϕ in the language of KB,
KB |= ϕ iff KB′ |= ϕ;

2. if KB is satisfiable and ϕ is a positive query in the language of KB then
KB |= ϕ iff KB′′ |= ϕ.

Proof. Consider the first assertion. Let ϕ be a query in the language of KB.
Assume that KB |= ϕ and let I be a model of KB′. We show that I |= ϕ. Recall

that a replacement of ¬lC by A for KB′ occurs only in positions for rC (i.e., in the
right hand side of v and not in the scope of ¬). If A u lC v ⊥ is an axiom of KB′

then I validates also the axiom A v ¬lC. Since I is a model of KB′, it follows that
I is also a model of KB, and hence I |= ϕ.

Now assume that KB′ |= ϕ and let I be a model of KB. We show that I |= ϕ. Let
I ′ be the interpretation that extends I by interpreting each concept name A occurring
in an axiom Au lC v ⊥ of KB′ by AI

′
= (¬lC)I . (Note that, for each concept name

A occurring in KB′ but not occurring in KB, KB′ contains exactly one axiom of the
form A u lC v ⊥.) Clearly, I ′ is a model of KB′, and hence I ′ |= ϕ. It follows that
I |= ϕ.

Consider the second assertion and assume that KB is satisfiable and ϕ is a positive
query in the language of KB. It suffices to show that KB′ |= ϕ iff KB′′ |= ϕ. Clearly,
KB′′ |= ϕ implies KB′ |= ϕ. Since ϕ is a positive query and KB′ \ KB′′ consists only
of axioms which are translated to negative clauses or clauses of the form (ψ → y � z)
(whose ground instances are either trivially true or equivalent to negative clauses),
we can also conclude that KB′ |= ϕ implies KB′′ |= ϕ, which completes the proof. 2

To prove Theorems 4.2 and 4.5 we need the following definition and lemma.

10 One can apply also the translation specified in [34] to KB to get a Datalog program,
which uses RDF triples as atoms and uses also constants like rdf:type, rdfs:subClassOf,
owl:hasValue. The program obtained in this way is “equivalent” to KB in a certain sense.
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Function ground-atomic-consequences(KB)

Input: a knowledge base with constraints KB in eDatalog.
Output: the set of ground atomic consequences of KB.

1 I := {ϕ ∈ KB | ϕ is of the form ⊥ or ψ or ¬ψ where ψ is a ground atom};
2 foreach formula (i.e., program clause or constraint clause or assertion) ρ

of KB ∪ EqAxioms do

3 reorder the body of ρ so that ρ = (ϕ1 ∧ . . . ∧ ϕk ∧ ψ1 ∧ . . . ∧ ψh → ξ), where:
– k ≥ 0, h ≥ 0,
– ϕ1, . . . , ϕk are atoms of predicates from DPreds,
– ψ1, . . . , ψk are atoms of predicates from ECPreds;

4 foreach instance ρ′ = (ϕ′1 ∧ . . . ∧ ϕ′k ∧ ψ′1 ∧ . . . ∧ ψ′h → ξ′) of ρ such that
for every 1 ≤ i ≤ k, ϕ′i ∈ I or ϕ′i is of the form d � d do

5 if ψ′1, . . . , ψ′h are all true (note that these atoms are ground) then
6 if ξ′ is ⊥ or a ground atom then add ξ′ to I
7 else // the predicate of ξ′ belongs to DPreds
8 foreach well-typed ground instance ξ′′ of ξ′ that uses individuals and

literals (i.e. data constants) only from KB do
9 add ξ′′ to I

10 if I changed during the last execution of Step 2 then goto Step 2;
11 return I

Definition A.4. An eDatalog constraint clause is a formula of the form

ϕ1 ∧ . . . ∧ ϕn → ψ,

where:

– n ≥ 0 and ϕ1, . . . , ϕn are atomic formulas,
– ψ is either ⊥ or an atom of a predicate from ECPreds,
– every variable occurring in ψ occurs also in some ϕi whose predicate belongs to

RRPreds,
– every variable occurring in some ϕi whose predicate belongs to ECPreds occurs

also in some atom ϕj whose predicate belongs to RRPreds.

A knowledge base with constraints in eDatalog is a pair 〈P,A〉, where P is a finite
set consisting of eDatalog program clauses and constraint clauses, and A, called the
ABox of the knowledge base, is a finite set of formulas of the form ϕ or ¬ϕ, where ϕ
is a ground atom of a predicate from DPreds. We sometimes treat the knowledge base
as the set P ∪ A. 2

Given a knowledge base with constraints KB in eDatalog, the set of ground atomic
consequences of KB is specified by function ground-atomic-consequences(KB) given
on page 20.

The following lemma can easily be proved.

Lemma A.5. Let KB be a knowledge base with constraints in eDatalog and let
I = ground-atomic-consequences(KB). Then:

1. KB is unsatisfiable iff I contains ⊥ or a pair ϕ and ¬ϕ or an atom d1 � d2, where
d1 and d2 are different literals, or a ground atom of a predicate from ECPreds
whose value is false.
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2. If KB is satisfiable and ϕ = (ϕ1 ∧ . . . ∧ ϕk) is a query of OWL 2 eRL-eDatalog
then KB |= ϕ iff, for every 1 ≤ i ≤ k, ϕi ∈ I or ϕi is of the form d � d.

3. The set I can be computed in deterministic polynomial time in the size of the
ABox of KB. 2

Let p be a unary predicate from ECPreds. Define π(x)(p) = p(x). This leads
to the corresponding extensions of translations π, π2 and π3 for OWL 2 eRL and
OWL 2 eRL+.

Theorem 4.2.

1. The languages OWL 2 eRL and OWL 2 eRL+ have PTime data complexity.
2. Every knowledge base KB in OWL 2 eRL+ can be translated to a knowledge base

KB′ in eDatalog which is equivalent to KB in the sense that, for every query ϕ in
the language of KB, KB |= ϕ iff KB′ |= ϕ.

Proof. Let KB be a knowledge base in OWL 2 eRL and let KB′ = π3(KB). Observe
that KB′ is a knowledge base with constraints in eDatalog, and if KB is a knowledge
base in OWL 2 eRL+ then KB′ is a knowledge base in eDatalog. As for Lemma A.3,
it can be seen that, for every query ϕ in the language of KB, KB |= ϕ iff KB′ |= ϕ.
By Lemma A.5, it follows that both OWL 2 eRL and OWL 2 eRL+ have PTime data
complexity. 2

Theorem 4.5 can be proved analogously.


