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In this paper we investigate a technique for fusing approximate knowledge obtained from
distributed, heterogeneous information sources. This issue is substantial, e.g., in modeling
multiagent systems, where a group of loosely coupled heterogeneous agents cooperate in
achieving a common goal. Information exchange, leading ultimately to knowledge fusion,
is a natural and vital ingredient of this process. We use a generalization of rough sets and
relations [30], which depends on allowing arbitrary similarity relations.

The starting point of this research is [6], where a framework for knowledge fusion in
multiagent systems is introduced. Agents’ individual perceptual capabilities are repre-
sented by similarity relations, further aggregated to express joint capabilities of teams. This
aggregation, expressing a shift from individual to social level of agents’ activity, has been
formalized by means of dynamic logic. The approach of Doherty et al. (2007) [6] uses
the full propositional dynamic logic, which does not guarantee tractability of reasoning.
Our idea is to adapt the techniques of Nguyen [26–28] to provide an engine for tractable
approximate database querying restricted to a Horn fragment of serial dynamic logic.
We also show that the obtained formalism is quite powerful in applications.

� 2009 Elsevier Inc. All rights reserved.
1. Similarities and approximate reasoning

In this paper we investigate a technique for fusing approximate knowledge obtained from distributed information
sources. We use a generalization of rough sets and relations [30], which depends on allowing arbitrary similarity relations,
while in [30] only equivalence relations are considered. In order to approximate relations one uses here a covering of the
underlying domain by similarity-based neighborhoods. Such approximate relations have been shown to be useful in many
application areas requiring the use of approximate knowledge structures [7].

There are many choices of constraints to be placed on the similarity relation used to define upper and lower approxima-
tions. For example, one might not want the relation be transitive since similar objects do not naturally chain in a transitive
manner. Many of these issues have been discussed in the context of rough sets (see, e.g., [3,5,7,9,12,18,20–22,29,31–
36,38,39]). The basic requirement regarding approximations is that the lower approximation of any set/relation is included
in its upper approximation. This is equivalent to the seriality of similarity relations (see [10]). We accept this property as the
only requirement.
. All rights reserved.
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The focus of this paper is approximate knowledge fusion based on the idea of approximations. Our starting point is [6],
where a framework for knowledge fusion in multiagent systems is introduced. Agents’ individual perceptual capabilities are
represented by similarity relations, further aggregated to express joint capabilities of teams. The aggregation expressing a
shift from individual to social level of agents’ activity has been formalized by means of propositional dynamic logic PDL.
The approach of [6], as using the full propositional dynamic logic, does not guarantee tractability of reasoning [16]. As advo-
cated before, we work with PDL with seriality requirement, denoted by SPDL. To achieve tractable approximate database que-
rying, we select a Horn fragment of SPDL, denoted by HSPDL and adapt the techniques of [26–28] to provide an engine for
computing queries expressed in HSPDL.

The computational engine distinguishes between extensional and intensional databases. To make this distinction clear we
use the traditional terminology of description logics [1]:

� ABox (assertion box) stands for the extensional database (containing facts).
� TBox (terminological box) stands for the intensional database (containing rules).

The method of computing queries is based on an algorithm, which for a TBox P consisting of an HSPDL logic program and
an ABox A, constructs a least SPDL model M of P and A. This model has the property that for every positive formula u and
for every individual a; uðaÞ is a logical consequence of P; A in SPDL (denoted by P; A �s uðaÞ) iff uðaÞ is true in M (i.e.
aM 2 uM). The role of the constructed least model is that it is used to compute answers to queries. The construction of M
is done in time polynomial in the size of A (and has a polynomial size in the size of A). As a consequence, the problem
of checking whether P; A �s uðaÞ has PTIME data complexity (measured in the size of A).

The paper is structured as follows. In Section 2 we recall Propositional Dynamic Logic, show its relationship to approx-
imate reasoning and approximate databases, and justify the requirement of seriality. Section 3 is devoted to showing the
PTIME data complexity of the selected Horn fragment HSPDL. Section 4 illustrates its potential in an exemplary real-world
application. Section 5 shows how to use the introduced formalism for epistemic reasoning in multiagent systems. Finally,
Section 6 concludes the paper.
2. Serial propositional dynamic logic

2.1. Language and semantics of SPDL

Let us define serial propositional dynamic logic (SPDL). The key idea is to provide calculus on similarity relations rather than
on programs. This somehow unusual move allows us to reason about similarities using the whole apparatus of dynamic lo-
gic, where ‘‘programs” are replaced by similarity relations.

Let MOD denote the set of similarity relation symbols, and PROP the set of propositions. We use letters like r to indicate
elements of MOD, and letters like p; q to indicate elements of PROP.

Definition 2.1. Formulas and similarity expressions are respectively defined by the two following BNF grammar rules:
u ::¼ > j p j :u j u ^u j u _u j u! u j haiu j ½a�u
a ::¼ r j a;a j a [ a j a� j u?
Operator ; is called the composition, [ the union, * the iteration and u? the test operator.

We use letters like a; b to denote similarity expressions; u; w to denote formulas; and a; b; c to denote individuals.
Intuitively,

� a1 ; a2 stands for a set-theoretical composition of relations a1 and a2.
� a1 [ a2 stands for set-theoretical union of relations a1 and a2.
� a� stands for the reflexive and transitive closure of a.
� u? stands for the test operator.

Operators hai and ½a� are modal operators of the dynamic logic with the following intended meaning:

� haiu: ‘‘there is an object similar w.r.t. a to a given object and satisfying formula u”.
� ½a�u: ‘‘all objects similar w.r.t. a to a given object satisfy u”.

The following definitions naturally capture these intuitions. Observe, however, that rather than possible worlds or states,
objects are used as elements of domains of Kripke structures.

Definition 2.2. A Kripke structure is a pair M ¼ hDM; �Mi, where DM is a set of objects, and �M is an interpretation function
that maps each individual a to an element aM of DM, each proposition p to a subset pM of DM, and each similarity relation
symbol r to a binary relation rM on DM.
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The interpretation function is extended for all formulas and similarity expressions as follows:
>M ¼ DM

ð:uÞM ¼ DM nuM

ðu ^ wÞM ¼ uM \ wM

ðu _ wÞM ¼ uM [ wM

ðu! wÞM ¼ ð:u _ wÞM

ðhaiuÞM ¼ fx 2 DM j 9y ½aMðx; yÞ ^uMðyÞ�g
ð½a�uÞM ¼ fx 2 DM j 8y ½aMðx; yÞ ! uMðyÞ�g
ða ; bÞM ¼ aM � bM ¼ fðx; yÞ j 9z ½aMðx; zÞ ^ bMðz; yÞ�g
ða [ bÞM ¼ aM [ bM

ða�ÞM ¼ ðaMÞ�

ðu?ÞM ¼ fðx; xÞ j uMðxÞg
We sometimes write M; x � u to denote x 2 uM. For a set C of formulas, we write M; x � C to denote that M; x � u for
all u 2 C. If M; x � C for all x 2 DM then we call M a model of C. If uM ¼ DM then we say that u is valid in M.

When dealing with the data complexity of the instance checking problem, without loss of generality we can assume that
both the sets MOD and PROP are finite and fixed. Under this assumption, the size of a Kripke structure M is defined to be the
number of elements of the set DM.

Lemma 2.3. Given a Kripke structure M with size n and a formula u with length m, the set uM can be computed in Oðm� n3Þ
steps.

Proof. Just notice that the complexity of computing the transitive closure of a binary relation is Oðn3Þ (see, e.g., [4]). h

For every r 2MOD, we adopt the axioms
½r�u! hriu ð1Þ
(or hri>, equivalently). It is well known (see, e.g., [10,37]) that (1) corresponds to the seriality property:
8x9y rMðx; yÞ: ð2Þ
Therefore we have the following definition.

Definition 2.4. By an admissible interpretation for SPDL we understand any Kripke structure M with all similarities r 2MOD

satisfying (2). We call such Kripke structures serial.

Note that we do not require a serial Kripke structure to satisfy the seriality condition 8x9yaMðx; yÞ for every similarity
expression a. This condition holds when a does not contain the test operator, but does not hold, e.g., for a ¼ ðð:>Þ?Þ.

2.2. SPDL as a query language in approximate databases

Let us now explain how SPDL is used as a query language. First observe that interpretations assign sets of objects to for-
mulas. Thus it is natural to consider each formula as the query selecting all objects satisfying the formula.

Example 2.5. Let, in a given interpretation M:

� DM ¼ fo1; o2; o3; o4; o5g.
� redM ¼ fo1; o3; o4g.
� smallM ¼ fo1; o2; o4; o5g.

Then ðred ^ smallÞM ¼ fo1; o4g, thus the query ðred ^ smallÞ returns the set fo1; o4g. Similarly, the query ðred! smallÞ
returns fo1; o2; o4; o5g.

In order to explain the role of similarities and modal operators, let us first recall the notion of approximations.

Definition 2.6. Let D be a set of objects and a be a similarity expression representing a serial binary relation on D. For a 2 D,
by the neighborhood of a w.r.t. a, we understand the set of elements similar to a : na ¼def fb 2 D j aða; bÞg.

For A # D, the lower and upper approximations of A w.r.t. a, denoted respectively by Aþa and A	a , are defined by
Aþa ¼ fa 2 D j naðaÞ# Ag
A	a ¼ fa 2 D j naðaÞ \ A – ;g
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The meaning of those approximations is illustrated in Fig. 1. Intuitively, assuming that the perception of an agent is mod-
eled by similarity expression a,

� a 2 Aþa means that all objects indiscernible from a are in A.
� a 2 A	a means that there are objects indiscernible from a which are in A.

Note that seriality guarantees that the lower approximation of a set is included in the upper approximation of the set. This
is the weakest requirement one places on approximations. It is often desirable to have the property that
Aþa # A # A	a ; ð3Þ
as, in fact, shown in Fig. 1. This property corresponds to the reflexivity of the similarity relation expressed by a (see, e.g.,
[10,39,37]) and guarantees that

� a 2 Aþa means that, from the point of view of the agent, a surely is in A, since all objects indiscernible from a are in A.
� a 2 A	a means that, from the point of view of the agent, a possibly is in A, since there are objects indiscernible from a which

are in A.

Unfortunately, in some applications the set A is only given via its approximations, so constraints (3) cannot be checked
automatically. This, in particular, happens when one deals with vague concepts that do not have precise definitions or whose
precise definitions are unacceptable in applications. Also, machine learned concepts are often approximated, as, e.g., in ver-
sion spaces (see [11]).

We have the following proposition which is an immediate consequence of Definition 2.6.

Proposition 2.7. Let M ¼ hDM; �Mi be a Kripke structure and a be a similarity expression. Then, for any SPDL formula u and
x 2 DM:
x 2 ðuMÞþa iff for all y 2 DM; if aMðx; yÞ holds then y 2 uM

x 2 ðuMÞ	a iff there is y 2 DM such that aMðx; yÞ holds and y 2 uM
By Proposition 2.7 we have that:
½a�A expresses the lower approximation of A w:r:t: a; i:e:; Aþa ð4Þ
haiA expresses the upper approximation of A w:r:t: a; i:e:; A	a ð5Þ
Remark 2.8. In the view of (4) and (5), axiom (1) expresses the property that the lower approximation of a set A w.r.t. any
similarity expression a is included in the upper approximation of A w.r.t. a. As noted before, axiom (1) is equivalent to
seriality expressed by (2). This justifies our seriality assumption as reflecting the basic requirement on approximations.

Example 2.9. Let M be the interpretation considered in Example 2.5. Let r be the reflexive closure of relation
fho1; o2i; ho2; o1i; ho3; o4ig. Then, for example, redþr ¼ fo3; o4g, red	r ¼ fo1; o2; o3; o4g.
2.3. The Horn fragment HSPDL

In order to express tractable queries we restrict the query language to the Horn fragment HSPDL, defined below.
Fig. 1. Lower approximation Aþa and upper approximation A	a of a set A.
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Definition 2.10. Positive formulas, upos, are defined by the following BNF grammar:
1 Not
non-de
upos ::¼ > j p j upos ^upos j upos _upos j hapos} iupos j ½apos
�
�upos

apos} ::¼ r j apos} ; apos} j apos} [ apos} j a
�
pos}
j upos?

apos
�

::¼ r j apos
�

; apos
�
j apos

�
[ apos

�
j a�pos

�

j ð:uposÞ?
HSPDL program clauses, uprog , are defined by the following BNF grammar:1
uprog ::¼ > j p j upos ! uprog j uprog ^uprog j haprog} iuprog j ½aprog
�
�uprog

aprog} ::¼ r j aprog} ; aprog} j uprog?

aprog
�

::¼ r j aprog
�

; aprog
�
j aprog

�
[ aprog

�
j a�prog

�

j upos?
An HSPDL logic program is a finite set of HSP DL program clauses. The Horn fragment HSPDL for the problem of checking whether
P; A �s uðaÞ consists of HSPDL logic programs for P and positive formulas for u.

Example 2.11. Observe that HSPDL is quite expressive. For example, it allows one to express a variant of default rules (dis-
cussed, e.g., in [7]). Namely, a typical default rule can be expressed as Aþr ; B	r ‘ Cþr , with intuitive meaning ‘‘if A is surely true
and B might be true then accept C as surely true”.

Let us now formally link SPDL with databases.

Definition 2.12. An individual assertion is an expression of the form pðaÞ, where p is a proposition and a is an individual. A
similarity assertion is an expression of the form rða; bÞ, where r is a similarity relation symbol and a, b are individuals. An
ABox is a finite set of individual assertions and similarity assertions.

Comparing to description logics, individual assertions correspond to concept assertions, and similarity assertions corre-
spond to role assertions. An ABox provides an extensional database (in [17], such an ABox is said to be extensionally reduced).

Definition 2.13. Given a Kripke structure M and an ABox A, we say that M is a model of A, denoted by M �A, if aM 2 pM

for every individual assertion pðaÞ 2A and ðaM; bMÞ 2 rM for every similarity assertion rða; bÞ 2A.

Definition 2.14. Given an HSPDL logic program P, an ABox A, a positive formula u and an individual a, we say that a has the
property u w.r.t. P and A in SPDL (or uðaÞ is a logical consequence of P; A in SPDL), denoted by P; A �s uðaÞ, if for every
serial Kripke structure M, if M is a model of P and A then aM 2 uM.

Recall that the pair P; A is treated as a database.

Definition 2.15. By the instance checking problem for HSPDL we mean the problem of checking whether P; A �s uðaÞ. The
data complexity of this problem is measured when P, u and a are fixed (and compose a query), while A varies as input data.
3. Computational aspects

3.1. Ordering Kripke structures

Definition 3.1. A Kripke structure M ¼ hDM; �Mi is said to be less than or equal to M0 ¼ hDM0
; �M0 i, denoted by M 6M0, if for

every positive formula u and every individual a, aM 2 uM implies aM0 2 uM0
.

Definition 3.2. Given Kripke structures M ¼ hDM; �Mi and M0 ¼ hDM0
; �M0 i and a binary relation r # DM � DM0

, we say that M
is less than or equal to M0 w.r.t. r, denoted by M 6r M

0, if the following conditions hold for every individual a, every similarity
relation symbol r, and every proposition p:

1. rðaM; aM0 Þ.
2. 8x; x0; y ½rMðx; yÞ ^ rðx; x0Þ� ! 9y0½rM0 ðx0; y0Þ ^ rðy; y0Þ�

� �
.

3. 8x; x0; y0 ½rM0 ðx0; y0Þ ^ rðx; x0Þ� ! 9y½rMðx; yÞ ^ rðy; y0Þ�
� �

.
4. 8x; x0½rðx; x0Þ ! ðx 2 pM ! x0 2 pM0 Þ�.

In Definition 3.2, the first three conditions state that r is a kind of bisimulation between the frames of M and M0. Intui-
tively, rðx; x0Þ states that x has fewer positive properties than x0.
ice the two occurrences of upos in the grammar. We do not allow formulas of the form ha [ biu or ha�iu to be HSPDL program clauses because they cause
terminism.
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Consider a similarity expression a. In Lemma 3.4 formulated below we will use an inductive argument based on selecting
from a a ‘‘path” c of atomic expressions (similarity relation symbols and tests) occurring in a, with the property that in a
given model M; aMðx; yÞ iff cMðx; yÞ. Intuitively, such a path reflects a run of regular program expressed by a, consisting
of atomic programs and tests. Formally, the argument requires the following definitions.

Definition 3.3. The alphabet RðaÞ of a similarity expression a is defined as follows:
RðrÞ ¼ frg
Rðu?Þ ¼ fu?g
Rðb1; b2Þ ¼ Rðb1Þ [ Rðb2Þ
Rðb1 [ b2Þ ¼ Rðb1Þ [ Rðb2Þ
Rðb�Þ ¼ RðbÞ
Note that, according to Definition 3.3, RðaÞ contains not only similarity relation symbols but also expressions of the form
u?.

A similarity expression a is a regular expression over its alphabet RðaÞ. The regular language LðaÞ generated by a is de-
fined as follows:
LðrÞ ¼ frg
Lðu?Þ ¼ fu?g
Lðb [ b0Þ ¼LðbÞ [Lðb0Þ
Lðb ; b0Þ ¼LðbÞ �Lðb0Þ
Lðb�Þ ¼ ðLðbÞÞ�
where if L and M are sets of words then L �M ¼ fab j a 2 L; b 2 Mg and L� ¼
S

nP0Ln with L0 ¼ feg and Lnþ1 ¼ L � Ln (e stands for
the empty word).

We treat words of LðaÞ also as similarity expressions, e.g. r1r2 denotes ðr1 ; r2Þ.

Lemma 3.4. Let M ¼ hDM; �Mi and M0 ¼ hDM0
; �M0 i be Kripke structures, and r # DM � DM0

be a relation that satisfies
Conditions 2–4 of Definition 3.2. If rðx; x0Þ holds then, for every positive formula u; x 2 uM implies x0 2 uM0

.

Proof. We prove this lemma by an induction on the structure of u. Assume that rðx; x0Þ holds and x 2 uM.

� The cases when u ¼ p or u ¼ w ^ n or u ¼ w _ n are trivial.
� Case u ¼ haiw:

Since x 2 uM, there exists y 2 DM such that aMðx; yÞ holds and y 2 wM. There exists
c ¼ r1 � � �ri1 ðn1?Þri1þ1 � � �ri2 ðn2?Þ � � �rik 2LðaÞ
such that cMðx; yÞ holds. Hence, there are elements
x0 ¼ x; x1; . . . ; xik
1; xik ¼ y
of DM such that rM
j ðxj
1; xjÞ holds for 1 6 j 6 ik and xih 2 nM

h for 1 6 h 6 k
 1. Let x00 ¼ x0. By Condition 2 of Definition 3.2, for
every 1 6 j 6 ik there exists x0j 2 DM0

such that rM0

j ðx0j
1; x
0
jÞ and rðxj; x0jÞ hold. Since rðxih ; x

0
ih
Þ holds, xih 2 nM

h and nh is a positive
formula, by the inductive assumption, for 1 6 h 6 k
 1 we have that x0ih 2 nM0

h . Hence, cM0 ðx0; y0Þ and rðy; y0Þ hold for y0 ¼ x0ik .
Thus, we also have that aM0 ðx0; y0Þ holds. Since rðy; y0Þ holds and y 2 wM, by the inductive assumption, y0 2 wM0

. Hence
x0 2 ðhaiwÞM

0
.

� Case u ¼ ½a�w:
Let y0 be an arbitrary element of DM0

such that aM0 ðx0; y0Þ holds. (If such a y0 does not exist then x0 2 uM0 clearly holds.)
There exists
c ¼ r1 � � �ri1 ð:n1?Þri1þ1 � � �ri2 ð:n2?Þ � � �rik 2LðaÞ
such that cM0 ðx0; y0Þ holds. Hence, there are elements
x00 ¼ x0; x01; . . . ; x0ik
1; x
0
ik
¼ y0
of DM0
such that rM0

j ðx0j
1; x
0
jÞ holds for 1 6 j 6 ik and x0ih 2 ð:nhÞM

0
holds for 1 6 h 6 k
 1. Let x0 ¼ x. By Condition 3 of Def-

inition 3.2, for every 1 6 j 6 ik there exists xj 2 DM such that rM
j ðxj
1; xjÞ and rðxj; x0jÞ hold. For 1 6 h 6 k
 1, since rðxih ; x

0
ih
Þ

holds and x0ih 2 ð:nhÞM
0

and nh is a positive formula, by the inductive assumption (via contrapositive), we have that
xih 2 ð:nhÞM. Hence, cMðx; yÞ and rðy; y0Þ hold for y ¼ xik . Thus, we also have that aMðx; yÞ holds. It follows that y 2 wM. Since
rðy; y0Þ holds and y 2 wM, by the inductive assumption, y0 2 wM0

. Hence x0 2 ð½a�wÞM
0
. h
Corollary 3.5. Let M and M0 be Kripke structures such that M 6r M
0 for some r. Then M 6M0.
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Definition 3.6. Let P be an HSPDL logic program and A be an ABox. We say that a Kripke structure M is a least SPDL model of
P and A if M is an SPDL model of P and A and for any other SPDL model M0 of P and A we have that M 6M0.
3.2. The algorithm

In this section, we present an algorithm that, given an HSPDL logic program P and an ABox A, constructs a finite least SPDL

model of P and A. During execution, the algorithm constructs the following data structures:

� D is a set of objects. We distinguish the subset D0 of D that consists of all the individuals occurring in the ABox A. In the
case A is empty, let D0 ¼ fsg for some element s.

� H is a mapping that maps every x 2 D to a set of formulas, which are the properties that should hold for x. When the ele-
ments of D are treated as states, HðxÞ denotes the contents of the state x.

� Next is a mapping such that, for x 2 D and hriu 2 HðxÞ, we have Nextðx; hriuÞ 2 D. The meaning of Nextðx; hriuÞ ¼ y is
that:

- hriu 2 HðxÞ and u 2 HðyÞ,
- the ‘‘requirement” hriu is realized for x by going to y via a r-transition.
We call the tuple hD;H;Nexti a model graph.
Using the above data structures, we define a Kripke structure M such that:

� DM ¼ D,
� aM ¼ a for every individual a occurring in A,
� pM ¼ fx 2 D j p 2 HðxÞg for every p 2 PROP,
� rM ¼ fða; bÞ j rða; bÞ 2Ag [ fðx; yÞ j Nextðx; hriuÞ ¼ y for some ug for every r 2MOD.
Definition 3.7. For x; y 2 D, we say that y is reachable from x if there exists a word r1 � � �rk such that ðr1 � � �rkÞMðx; yÞ holds.
We say that y is reachable from D0 if it is reachable from some x 2 D0.

Definition 3.8. The saturation of a set C of formulas, denoted by SatðCÞ, is defined to be the smallest superset of C such that:

� > 2 SatðCÞ and hri> 2 SatðCÞ for all r 2MOD,
� if u ^ w 2 SatðCÞ or hu?iw 2 SatðCÞ then u 2 SatðCÞ and w 2 SatðCÞ,
� if ha ; biu 2 SatðCÞ then haihbiu 2 SatðCÞ,
� if ½a ; b�u 2 SatðCÞ then ½a�½b�u 2 SatðCÞ,
� if ½a [ b�u 2 SatðCÞ then ½a�u 2 SatðCÞ and ½b�u 2 SatðCÞ,
� if ½a��u 2 SatðCÞ then u 2 SatðCÞ and ½a�½a��u 2 SatðCÞ,
� if ½u?�w 2 SatðCÞ then ðu! wÞ 2 SatðCÞ.
Observe that SatðCÞ is finite when C is finite. Define the size of a set of formulas to be the sum of the lengths of its for-
mulas. It can be shown that the size of SatðCÞ is quadratic in the size of C (cf. Lemma 6.3 in [16]).

Definition 3.9. The transfer of C through r is defined by:
2 The
TransðC;rÞ ¼def
Satðfu j ½r�u 2 CgÞ:
We use procedure FindðCÞ defined as:

if there exists x 2 D n D0 with HðxÞ ¼ C then return x,
else add a new object x to D with HðxÞ ¼ C and return x.
The algorithm shown in Fig. 2 constructs a least SPDL model for an HSPDL logic program P and an ABox A as follows. At the
beginning, D starts from D0, which consists of all the individuals occurring in A or some s if A is empty, with HðxÞ, for x 2 D0,
being the saturation of P [ fp j pðxÞ 2Ag. Then for each x 2 D reachable from D0 and for each formula u 2 HðxÞ that does not
hold for x, the algorithm makes a change to satisfy u for x.

There are three forms to be considered for u2:

1. u is of the form hriw:
to satisfy u for x, we connect x via a r-transition to an object y 2 D n D0 with
HðyÞ ¼ Satðfwg [ fn j ½r�n 2 HðxÞg [PÞ
by setting Nextðx; hriwÞ :¼ y
other possible forms of u are dealt with by the saturation operator Sat.



Fig. 2. Algorithm constructing a least SPDL model for an HSPDL logic program and an ABox.
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2. u is of the form ½r�w:
we would like to add w to HðyÞ for every y such that rMðx; yÞ. We do this for the case when y 2 D0. For y 2 D n D0, however,
modifying HðyÞ has two drawbacks:
� first, other objects connected to y will be affected (e.g., if p is added to HðyÞ and rM

2 ðz; yÞ holds, then hr2ip becomes
satisfied for z, while x and z may be independent),

� second, modifying HðyÞ may cause HðyÞ ¼ Hðy0Þ for some y0 2 D n D0 different from y, which we try to
avoid.

As a solution, instead of modifying HðyÞ we replace r-transitions ðx; yÞ by r-transitions ðx; y�Þ, where y� is the object such
that
3 The
is that x
Hðy�Þ ¼ HðyÞ [ SatðfwgÞ
3. u is of the form w! n (where w is a positive formula):
if w ‘‘must hold”3 for x then we would like to add n to HðxÞ. We do this for the case x 2 D0. For the case x 2 D n D0, analogously
to the case when u is of the form ½r�f, we do not modify HðxÞ, but replace transitions ðy; xÞ by transitions ðy; x�Þ, where x� is
the object such that
Hðx�Þ ¼ HðxÞ [ SatðfngÞ:
statement ‘‘w must hold for x” intuitively means that ‘‘w follows from HðxÞ”. As it can be seen later, a sufficient condition for the truth of this statement
2 wM and Nextðy; hri>Þ is defined for every y reachable from x and every r 2MOD.



Fig. 3. An illustration of the run of the algorithm shown in Fig. 2 for P ¼ fp! ½r��q, ½r��q! pg and A ¼ fpðaÞ; sðaÞ;rða; bÞg. We have that D0 ¼ fa; bg. In the
shown model graphs, an edge from a node x to a node y means Nextðx; hri>Þ ¼ y. The edges in the resulting model M represent the similarity relation rM.
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Example 3.10. Let P ¼ fp! ½r��q; ½r��q! pg and A ¼ fpðaÞ; sðaÞ;rða; bÞg. In Fig. 3 we illustrate the construction of a least
SPDL model of P and A.

Before we formally prove properties of the algorithm we need the following definitions.

Definition 3.11. The Fischer–Ladner closure of an HSPDL program clause u, denoted by FLðuÞ, is the set of formulas defined as
follows4:
4 We treat an HSPDL program clause of the form w! n not as a usual formula, and our definition of Fischer–Ladner closure is slightly different from the
traditional one given in [16].



5 Sinc
6 Tha
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FLð>Þ ¼ f>g; FLðpÞ ¼ fpg
FLðw! nÞ ¼ fw! ng [ FLðnÞ
FLðw ^ nÞ ¼ fw ^ ng [ FLðwÞ [ FLðnÞ
FLð½a�wÞ ¼ FL�ð½a�wÞ [ FLðwÞ
FLðhaiwÞ ¼ FL}ðhaiwÞ [ FLðwÞ
FL�ð½r�wÞ ¼ f½r�wg
FL�ð½a ; b�wÞ ¼ f½a ; b�wg [ FL�ð½a�½b�wÞ [ FL�ð½b�Þw
FL�ð½a [ b�wÞ ¼ f½a [ b�wg [ FL�ð½a�wÞ [ FL�ð½b�Þw
FL�ð½a��wÞ ¼ f½a��wg [ FL�ð½a�½a��wÞ
FL�ð½w?�nÞ ¼ f½w?�n; ðw! nÞg
FL}ðhriwÞ ¼ fhriwg
FL}ðha ; biwÞ ¼ fha ; biwg [ FL}ðhaihbiwÞ [ FL}ðhbiÞw
FL}ðhw?inÞ ¼ fhw?ing [ FLðwÞ
Definition 3.12. Let P be an HSPDL logic program. The Fischer–Ladner closure of P, denoted by FLðPÞ, is defined to beS
u2PFLðuÞ.

It can be shown that the size of FLðPÞ is quadratic in the size of P (cf. Lemma 6.3 in [16]).

Lemma 3.13. Let M be the model constructed by algorithm in Fig. 2 for P and A. Assume that P is fixed, while A varies and has n
assertions. Then DM has size OðnÞ and the algorithm runs in Oðn4Þ steps.

Proof. We will refer to the data structures used in the algorithm shown in Fig. 2.
Observe that the Fischer–Ladner closure of P;FLðPÞ, depends only on P. We have that HðxÞ# FLðPÞ for all x 2 D n D0.5

Since P is fixed and each x 2 D n D0 has a unique HðxÞ, the set D n D0 contains only Oð1Þ elements. Hence D has size OðnÞ.
Note that the size of HðxÞ for x 2 D n D0 and the size of HðaÞ n fp j pðaÞ 2Ag for a 2 D0 are bounded by a constant. Denote

this assertion by ð�Þ.
The total number of changes made at Steps 2a, 2(b)i, 2(c)i is OðnÞ. Note that if y is ‘‘simulated” by y� at Step 2(b)ii then Hðy�Þ

extends HðyÞ. A similar statement can be said for x and x� at Step 2(c)ii. Since D n D0 has size Oð1Þ and D has size OðnÞ and ð�Þ,
the total number of times that Steps 2(b)ii and 2(c)ii make a change is OðnÞ. Hence, the loop at Step 3 executes only OðnÞ times.

By ð�Þ, the calls of Sat and Trans can be done in constant time. Each execution of Steps 2a, 2(b)i, 2(b)ii, 2(c)i, or 2(c)ii runs
in time OðnÞ. By Lemma 2.3, checking x 2 wM at Step 2c runs in time Oðn3 � lengthðwÞÞ ¼ Oðn3Þ. Checking the remaining part
of the condition at Step 2c takes less time.

Summing up, the algorithm shown in Fig. 2 runs in Oðn4Þ steps. h

Lemma 3.14. The Kripke structure M constructed by the algorithm shown in Fig. 2 for P and A is a serial Kripke model of P and A.

Proof. Below we refer to the data structures used in the algorithm shown in Fig. 2. Observe that:

� if hriw 2 HðxÞ then there exists y such that rMðx; yÞ holds and w 2 HðyÞ,
� if ½r�w 2 HðxÞ and rMðx; yÞ holds then w 2 HðyÞ,
� if ðw! nÞ 2 HðxÞ and x 2 wM then n 2 HðxÞ.

These observations together with the definition of the saturation operator Sat and the fact that HðxÞ ¼ SatðHðxÞÞ for x 2 D
imply that: for every x 2 D and every u 2 HðxÞ; x 2 uM. (This can be proved by induction on the structure of u.) Hence M is a
model of P and A. It is a serial Kripke structure because hri> is included in HðxÞ for every r 2MOD and every x 2 D. h

Roughly speaking, the model M constructed by the algorithm shown in Fig. 2 for P and A is less than or equal to any
model M0 of P and A in SPDL because the objects of M are created only when necessary (cf. Condition 2 of Definition
3.2) with minimal sets Hð Þ of requirements (cf. Conditions 1 and 4 of Definition 3.2), which contain hri> for all
r 2MOD (to guarantee Condition 3 of Definition 3.2). A formal analysis is given below.

Lemma 3.15. Let M be the model constructed by the algorithm shown in Fig. 2 for P and A, and M0 be an arbitrary serial Kripke
model of P and A. Consider a moment after executing a numerated step6 in the execution of the algorithm. Let
r ¼ fða; aM0 Þ j a is an individual occurring in Ag [ fðx; x0Þ 2 DM � DM0 j x is not an individual and M0; x0 � HðxÞg
e the ABox A is extensionally reduced, the assertions of A are not transferred to HðxÞ for x 2 D n D0.
t is, one of 1, 2, 2b, 2(b)i, 2(b)ii, 2(b)iiA, 2(b)iiB, 2c, 2(c)i, 2(c)ii, 2(c)iiA, 2(c)iiB, 3, 4.
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Then for every u;v 2 DM; u0;v 0 2 DM0
; r 2MOD, every formula f and every individual a occurring in A the following assertions

hold:
½rðu;u0Þ ^ ðNextðu; hrifÞ ¼ vÞ ^ rM0 ðu0;v 0Þ ^ v 0 2 fM
0 � ! rðv ;v 0Þ ð6Þ

M0; aM0 � HðaÞ ð7Þ
Proof. We prove this lemma by induction on the number of executed steps. The base case occurs after executing Step 1 and
the assertions clearly hold. Consider some latter enumerated step K of the algorithm. Inductively assume that the assertions
of the lemma hold before executing that step. We first prove the following remark by an inner induction on the construction
of w.

Remark 3.16.
Let w be a positive formula. Suppose that rðx; x0Þ holds, x 2 wM, and Nextðy; hri>Þ is defined for every y reachable from x

and every r 2MOD. Then x0 2 wM0
.

Proof (of Remark 3.16). Let Mx (respectively, Dx) be the Kripke structure obtained by restricting M (respectively, D) to the
objects reachable for x. We show that:
8u;v 2 Dx 8u0 2 DM0 ½rMðu;vÞ ^ rðu;u0Þ� ! 9v 0 2 DM0 ½rM0 ðu0;v 0Þ ^ rðv ;v 0Þ�
h i

ð8Þ

8u 2 Dx 8u0;v 0 2 DM0 ½rM0 ðu0;v 0Þ ^ rðu;u0Þ� ! 9v 2 Dx½rMðu;vÞ ^ rðv; v 0Þ�
� �

ð9Þ
Consider assertion (8). Let u;v 2 Dx and suppose that rMðu;vÞ and rðu;u0Þ hold. If v 2 D0 (i.e. v is an individual occurring
in A) then rðu;vÞ 2A and u 2 D0. In that case, take v 0 ¼ vM0 and we have that rM0 ðu0; v 0Þ ^ rðv; v 0Þ. Consider the case v R D0.
Since rMðu;vÞ, we must have that Nextðu; hrifÞ ¼ v for some f. Thus hrif 2 HðuÞ. Since rðu;u0Þ, it follows that u0 2 ðhrifÞM

0
.

Hence, there exists v 0 2 DM0
such that rM0 ðu0;v 0Þ and v 0 2 fM

0
. By the inductive assumption (6) of the outer induction, we have

that rðv ;v 0Þ holds.
Consider assertion (9). Let u 2 Dx and suppose that rM0 ðu0;v 0Þ and rðu;u0Þ hold. Let v ¼ Nextðu; hri>Þ (which exists by the

assumption). Thus rMðu;vÞ holds. By the inductive assumption (6) of the outer induction, we have that rðv ;v 0Þ holds.
Applying Lemma 3.4 for Mx;M

0 and r, we obtain that x0 2 wM0
, which completes the proof of Remark 3.16. h

Proof (of Lemma 3.15 continued). We now return to the outer induction. Suppose that after executing the step K we have
r2; D2; H2; Next2; M2 in the places of r, D; H; Next; M, respectively. We show that the following conditions hold for every
u;v 2 D2; u0;v 0 2 D0; r 2MOD, every formula f and every individual a occurring in A:
½r2ðu; u0Þ ^ ðNext2ðu; hrifÞ ¼ vÞ ^ rM0 ðu0;v 0Þ ^ v 0 2 fM
0 � ! r2ðv ;v 0Þ ð10Þ

M0; aM0 � H2ðaÞ ð11Þ
It suffices to consider Steps 2a, 2(b)i, 2(b)iiB, 2(c)i, 2(c)iiB.

� Consider the case K ¼ 2a and suppose that Nextðx; hriwÞ is not defined. Let
y ¼ FindðSatðfwgÞ [ TransðHðxÞ;rÞ [P0Þ
It suffices to prove the assertion (10) for the case when u ¼ x; v ¼ y and f ¼ w. Consider this case. Suppose that
r2ðx; u0Þ ^ ðNext2ðx; hriwÞ ¼ yÞ ^ rM0 ðu0; v 0Þ ^ v 0 2 wM0
holds. We show that r2ðy;v 0Þ holds. Since r2ðx;u0Þ holds, rðx; u0Þ also holds, and hence M0;u0 � HðxÞ. It follows that
M0;v 0 � TransðHðxÞ;rÞ (since rM0 ðu0;v 0Þ holds). Hence M0;v 0 � H2ðyÞ, and r2ðy;v 0Þ holds.
� Consider the case K = 2(b)i. Since y 2 D0, we have that r2 ¼ r. Additionally, Next2 ¼ Next, hence the assertion (10) follows

from the inductive assumption (6). For the assertion (11), it suffices to consider the case y ¼ a and show that M0; aM0 � w.
Since rMðx; aÞ holds, x must be an individual occurring in A and rðx; aÞ 2A. By the inductive assumption (7),
M0; xM0 � HðxÞ, and hence M0; xM0 � ½r�w. Since M0 is a model of A and rðx; aÞ 2A, it follows that M0; aM0 � w.

� Consider the case K = 2(b)iiB. It suffices to show that if
rðx; x0Þ ^ ðNextðx; hrinÞ ¼ yÞ ^ rM0 ðx0; y0Þ ^ y0 2 nM0

then r2ðy�; y0Þ holds. Suppose that the premise holds. By the inductive assumption (6), rðy; y0Þ holds and M0; y0 � HðyÞ.
Since rðx; x0Þ holds, M0; x0 � HðxÞ. It follows that M0; y0 � w (since ½r�w 2 HðxÞ and rM0 ðx0; y0Þ holds). Therefore
M0; y0 � H2ðy�Þ and r2ðy�; y0Þ holds.

� Consider the case K = 2(c)i. Since r2 ¼ r and Next2 ¼ Next, the assertion (10) follows from the inductive assumption (6). For
the assertion (11), it suffices to consider the case x ¼ a and show that M0; aM0 � n. Since a 2 wM, by Remark 3.16,
aM0 2 wM0

. By the inductive assumption (7), M0; aM0 � HðaÞ, and hence M0; aM0 � ðw! nÞ. It follows that M0; aM0 � n.
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� Consider the case K = 2(c)iiB. Let x0 be an element of DM0
such that rðx; x0Þ holds. It suffices to show that r2ðx�; x0Þ holds. We

need only to show that M0; x0 � n. Since rðx; x0Þ holds and ðw! nÞ 2 HðxÞ, we have that M0; x0 � ðw! nÞ. Since x 2 wM and
rðx; x0Þ holds, by Remark 3.16, x0 2 wM0

. It follows that M0; x0 � n. h
Corollary 3.17. Let P, A, M, M0 be as in Lemma 3.15, and r be the relation defined as in Lemma 3.15 after the execution of the
algorithm shown in Fig. 2. Then M 6r M

0.

Proof. We check the four conditions of M 6r M
0. Condition 1 of M 6r M

0 follows from the definition of r. Condition 4 of
M 6r M

0 follows from the definition of r and the assertion (7) of Lemma 3.15. Analogously as in the proof of Remark
3.16, it can be shown that Conditions 2 and 3 of M 6r M

0 follow from the assertion (6) of Lemma 3.15. h

The following theorem is crucial for the querying machinery developed in this paper. Recall that the least model M has
the property that for every positive formula u and for every individual a, we have that P; A �s uðaÞ iff aM 2 uM. The model
is then used to compute answers to queries.

Theorem 3.18. Let P be an HSPDL logic program and A an ABox. The Kripke structure M constructed by the algorithm shown in
Fig. 2 for P and A is a least SPDL model of P and A.

This theorem immediately follows from Lemma 3.14 and Corollary 3.17. As a consequence, we obtain the following result,
showing that the proposed querying machinery is tractable.

Theorem 3.19. Let P be an HSPDL logic program, A an ABox, u a positive formula, and a an individual. Then checking
ðP;AÞ �s uðaÞ can be done in polynomial time in the size of A. That is, the data complexity of HSPDL is in PTIME.

Proof. Let M be the model constructed by the algorithm shown in Fig. 2 for P and A. By Theorem 3.18, ðP;AÞ �s uðaÞ iff
aM 2 uM. ConstructingM and checking aM 2 uM both can be done in polynomial time the size ofA (Lemmas 3.13 and 2.3). h
4. A case study: movability of objects

4.1. The scenario

Consider the following scenario:

Two robots, R1 and R2, have the goal to move objects from one place to another. Each robot is able to move objects of a
specific signature,7 and together they might be able to move objects of a combined signature. Some objects, when attempted
to be moved, may cause some damages for robots. Robots are working independently, but sometimes have to cooperate to
achieve their goals.

To design such robots one has to make a number of decisions as described below.

4.2. Formalizing movability of objects

We assume that the signature of movable objects for each robot is given by its specification together with a similarity
relation defining the range of movable objects. Assume the following specification:
7 For
8 Thi
spec1 �
defðlight ^ smoothÞ _ ðheavy ^ roughÞ — for robot R1 ð12Þ

spec2 �
def

small _medium — for robot R2: ð13Þ
Movable objects are then specified by
speci ! movablei ð14Þ
where i 2 f1;2g and movablei is true for objects that can be moved by Ri.
The idea is that all objects similar to movable ones are movable too.8 Let r1 and r2 be similarity relations reflecting per-

ceptual capabilities of R1 and R2, respectively (for a discussion of such similarity relations based on various sensor models see
[8]). Now, in addition to (14), movable objects are characterized by
hriispeci ! movablei ð15Þ
Remark 4.1. Note that rather than (15) one could assume
½ri�speci ! movablei
example, dependent on weight, size and type of surface.
s is a very natural and quite powerful technique, allowing one to express the inheritance of particular properties of objects by similar objects.



Fig. 4. An ABox for the example considered in Section 4.3.
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In addition to (14), this would mean considering objects similar only to movable ones. In some applications this choice
would indeed be reasonable and perhaps less risky.

Observe that in general it is impossible to automatically derive combined signatures that specify what robots can move
together. Therefore, we introduce specification spec3 and similarity expression a3 as a specification of such joint capabilities.
An example of spec3 can be given by
9 Of c
spec3 �
def

large ^ rough ð16Þ
Objects movable by robots working together are then defined by
ðspec3 _ ha3ispec3Þ ! movable by two ð17Þ
Observe that a3 is usually computed on the basis of r1 and r2, since we do not assume any observer other than R1; R2, and
r1; r2 reflect their perceptual capabilities. We shall assume that
a3 ¼def r1 [ r2 [ ðr1;r2Þ [ ðr2;r1Þ ð18Þ
The meaning of this expression is that an object o0 is similar w.r.t. a3 to an object o whenever

� o0 is perceived similar to o by R1 or by R2, or
� there is an object o00 such that

– o00 is perceived similar to o by R1 and o00 is perceived similar to o00 by R2, or
– o00 is perceived similar to o by R2 and o00 is perceived similar to o00 by R1.
Clearly, one can use much more complex expressions, reflecting particular algorithms for computing a3, since our oper-
ators are those accepted in PDL.9

4.3. The database

Let A be the ABox consisting of the assertions about objects o1, . . ., o5 that are illustrated in Fig. 4. It contains, for example,
lightðo1Þ; smoothðo1Þ; r1ðo1; o2Þ; r1ðo2; o1Þ, etc. Let P be the HSPDL logic program consisting of the clauses (14) and (15) for
i 2 f1;2g, and (17). We consider here the database consisting of P and A in SPDL (which adopts the axioms hr1i> and hr2i>
for all the objects of the domain).

In Fig. 5 we present the least SPDL model M of P; A constructed by our algorithm (given in Fig. 2). The object o6 is the
only additional object, not satisfying any proposition.

4.4. Some queries

As discussed earlier, having the least SPDL model M of P and A, to check whether an individual a has a positive property
u w.r.t. P and A in SPDL, it suffices to check whether a 2 uM.

In our example, we have that:
movableM

1 ¼ fo1; o2g
movableM

2 ¼ fo1; o2; o3; o4g
movable by twoM ¼ fo2; o3; o5g
ðmovable by two ^ hr1imovable1ÞM ¼ fo2g
ðmovable by two ^ ½r1�movable1ÞM ¼ ;
ourse, there are some restrictions, if one wants to stay in a tractable framework. Recall that we have accepted Definition 2.10 to guarantee tractability.



Fig. 5. A least SPDL model of the database considered in Section 4.3.
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5. Using SPDL in epistemic reasoning

5.1. Epistemic interpretation of approximations

SPDL can be used for reasoning about common knowledge and common beliefs in the presence of similarity relations.
Intuitively, an agent believes that a formula u holds when ½r�u, where r reflects the agent’s perception. This allows us to
integrate agents’ epistemic reasoning with the formalism of SPDL. Technically, individuals and objects of Kripke structures
are used to denote possible worlds, while similarity relations are used to denote accessibility relations between possible
worlds of agents and groups of agents. We assume here that each similarity relation symbol r reflects the accessibility rela-
tion of a single agent.

Consider a group of k agents with fr1; . . . ;rkg as their accessibility relations, respectively. Then:

� an expression of the form r1 [ � � � [ rk represents the integrated accessibility relation of the group of agents
� a formula of the form ½ðr1 [ � � � [ rkÞ��u states that u is a piece of common knowledge of the group of agents
� a formula of the form ½ðr1 [ � � � [ rkÞþ�u, where aþ ¼ ða ; a�Þ, states that u is a common belief of the group.10

The seriality axiom (1) can be reformulated as
10 Thi
11 Usu
12 Euc

axiom 5
13 In t
½r�u! :½r�:u
so in epistemic reasoning it states that if an agent believes that u holds then it does not believe :u. As the transitivity of r is
not assumed,11 to express positive introspection of knowledge (respectively, belief) one can use r� (respectively, rþ) as a basic
accessibility relation instead of r because ½r��u! ½r��½r��u (respectively, ½rþ�u! ½rþ�½rþ�u) is valid in every Kripke structure.
On the other hand, no suitable form reflecting the Euclidicity of r for expressing negative introspection is a tautology of SPDL

(i.e. valid in every serial Kripke structure).12

When SPDL is used in epistemic reasoning, individuals and ABoxes do not play an important role in complexity issues any-
more. In typical cases, solely the actual world is explicitly used as an individual.

5.2. The wise men puzzle

In this section we formalize the wise men puzzle using HSPDL, showing again its usefulness and illustrating our algorithm
given in Fig. 2.

The wise men puzzle is a famous benchmark of AI introduced by McCarthy [23]. It can be stated as follows (cf. [19]). A
king wishes to know whether his three advisors (represented by13 r1; r2; r3) are as wise as they claim to be. Three chairs are
lined up, all facing the same direction, one behind the other. The wise men are instructed to sit down in the order r1; r2; r3,
with r1 on front. Each of them can see the backs of the ones sitting before them (e.g. r3 can see r2 and r1). The king informs the
wise men that he has three cards, all of which are either black or white, at least one of which is white. He places one card, face
up, behind each of the three wise men, explaining that each wise man must determine the color of his own card. Each man must
announce the color of his own card as soon as he knows what it is. All know that this will happen. The room is silent; then, after
a while, wise man r1 says ‘‘My card is white!”.
s concept of common belief corresponds to the generally recognized notion of common belief considered, e.g., in [13–15,24].
ally expressed by modal axiom 4 (see [2]).
lidicity, i.e., the property stating that 8x8y8z½ðrðx; yÞ ^ rðx; zÞÞ ! rðy; zÞ�, usually accepted in modal epistemic reasoning, is expressed by the modal

(see [2]).
he rest of example to simplify the presentation we denote agents by their similarity relations.



Fig. 6. The model graph constructed by our algorithm (given in Fig. 2) for the database specified in Section 5.2. C is the set of formulas specified in
Section 5.3. The node with a shaded frame represents the actual world s. An edge from a node x to a node y with a label ri means Nextðx; hriinÞ ¼ y for some
n, where hriin is one of hr1i>, hr2i>, hr3i>, hr2iblack2, hr3iblack3. The proposition white1 is added to the bottom node due to the property w7 (see Sections
5.3 and 5.2), and after that it is added to the other nodes due to the properties w1 and w2 (see Sections 5.3 and 5.2).
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For 1 6 i 6 3, let whitei stand for ‘‘the card of ri is white”, and blacki stand for ‘‘the card of ri is black”. The wise men puz-
zle can be formalized as follows (cf. [25,28]).

The wise men commonly know that if y sits behind x then x’s card is white whenever y considers this possible:
u1 ¼ ½ðr1 [ r2 [ r3Þ��ðhr2iwhite1 ! white1Þ
u2 ¼ ½ðr1 [ r2 [ r3Þ��ðhr3iwhite1 ! white1Þ
u3 ¼ ½ðr1 [ r2 [ r3Þ��ðhr3iwhite2 ! white2Þ
The following program clauses are ‘‘dual” to the above ones:
u4 ¼ ½ðr1 [ r2 [ r3Þ��ðblack1 ! ½r2�black1Þ
u5 ¼ ½ðr1 [ r2 [ r3Þ��ðblack1 ! ½r3�black1Þ
u6 ¼ ½ðr1 [ r2 [ r3Þ��ðblack2 ! ½r3�black2Þ
The wise men commonly know that at least one of them has a white card:
u7 ¼ ½ðr1 [ r2 [ r3Þ��ððblack2 ^ black3Þ ! white1Þ
u8 ¼ ½ðr1 [ r2 [ r3Þ��ððblack3 ^ black1Þ ! white2Þ
u9 ¼ ½ðr1 [ r2 [ r3Þ��ððblack1 ^ black2Þ ! white3Þ
The wise men commonly know that: each of r2 and r3 does not know the color of his own card; in particular, each of
them considers that it is possible that his own card is black:
u10 ¼ ½ðr1 [ r2 [ r3Þ��hr2iblack2

u11 ¼ ½ðr1 [ r2 [ r3Þ��hr3iblack3
The formulas u1; . . . ;u9 are supposed to hold for every possible world, while the formulas u10 and u11 are only supposed
to hold for the actual world. Since only extensionally reduced ABoxes are allowed, we encode the conjunction u10 ^u11 by a
proposition s, and assume that our ABox A is fsðsÞg, where s is the only individual which represents the actual world, and we
treat s! ðu10 ^u11Þ as a global assumption. Thus, our database consists of the mentioned ABox A and the HSPDL logic pro-
gram P ¼ fu1; . . . ;u9, ðs! ðu10 ^u11ÞÞg.

The goal is to check whether wise man r1 believes that his card is white: that is, whether ð½r1�white1ÞðsÞ is a logical con-
sequence of P;A in SPDL.

5.3. The least SPDL model constructed by our algorithm

For 1 6 i 6 11, let wi be the formula such that ui ¼ ½ðr1 [ r2 [ r3Þ��wi. Let
C ¼ Satðfu1; . . . ;u11gÞ [ fs! ðu10 ^u11Þg
¼ fui;wi; ½r1 [ r2 [ r3�ui; ½rj�ui j 1 6 i 6 11;1 6 j 6 3g [ f>; hr1i>; hr2i>; hr3i>; ðs! ðu10 ^u11ÞÞg
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In Fig. 6 we present the model graph constructed by our algorithm (given in Fig. 2) for P and A. By Theorem 3.18, the
model M corresponding to this model graph is a least SPDL model of P and A. Since sM 2 ð½r1�white1ÞM, we have that
ð½r1�white1ÞðsÞ is a logical consequence of P;A in SPDL. Notice also that sM 2 ð½ðr1 [ r2 [ r3Þ��½r1�white1ÞM. That is, the wise
men commonly know (believe) that wise man r1 believes that his card is white.
6. Conclusions

In this paper we have presented a powerful formalism for approximate knowledge fusion, based on adaptation of Prop-
ositional Dynamic Logic. We have shown that restricting this logic to its suitably chosen Horn fragment results in tractable
querying mechanism which can be applied in application, where approximate knowledge from various sources is to be fused,
e.g., in robotics and multiagent systems.

Importantly, serial PDL, denoted by SPDL, is also useful as a description logic for domains where seriality condition appears
naturally.14 For example, in reasoning about properties of web pages one can assume that every considered web page has a link
to another page (or to itself).

We plan to extend the framework to deal with other operations on similarity relations, expressing even more subtle
approximations and fused knowledge structures. This would be applicable in different stages of teamwork in multiagent sys-
tems as discussed in [13,14].
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