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multiagent systems, where a group of loosely coupled heterogeneous agents cooperate in
achieving a common goal. Information exchange, leading ultimately to knowledge fusion,
is a natural and vital ingredient of this process. We use a generalization of rough sets and
relations [30], which depends on allowing arbitrary similarity relations.

Il:?l/l Zgrjesés The starting point of this research is [6], where a framework for knowledge fusion in
Similarity relation multiagent systems is introduced. Agents’ individual perceptual capabilities are repre-
Dynamic logic sented by similarity relations, further aggregated to express joint capabilities of teams. This
Knowledge fusion aggregation, expressing a shift from individual to social level of agents’ activity, has been
Approximate database formalized by means of dynamic logic. The approach of Doherty et al. (2007) [6] uses

the full propositional dynamic logic, which does not guarantee tractability of reasoning.
Our idea is to adapt the techniques of Nguyen [26-28] to provide an engine for tractable
approximate database querying restricted to a Horn fragment of serial dynamic logic.
We also show that the obtained formalism is quite powerful in applications.

© 2009 Elsevier Inc. All rights reserved.

1. Similarities and approximate reasoning

In this paper we investigate a technique for fusing approximate knowledge obtained from distributed information
sources. We use a generalization of rough sets and relations [30], which depends on allowing arbitrary similarity relations,
while in [30] only equivalence relations are considered. In order to approximate relations one uses here a covering of the
underlying domain by similarity-based neighborhoods. Such approximate relations have been shown to be useful in many
application areas requiring the use of approximate knowledge structures [7].

There are many choices of constraints to be placed on the similarity relation used to define upper and lower approxima-
tions. For example, one might not want the relation be transitive since similar objects do not naturally chain in a transitive
manner. Many of these issues have been discussed in the context of rough sets (see, e.g., [3,5,7,9,12,18,20-22,29,31-
36,38,39]). The basic requirement regarding approximations is that the lower approximation of any set/relation is included
in its upper approximation. This is equivalent to the seriality of similarity relations (see [10]). We accept this property as the
only requirement.
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The focus of this paper is approximate knowledge fusion based on the idea of approximations. Our starting point is [6],
where a framework for knowledge fusion in multiagent systems is introduced. Agents’ individual perceptual capabilities are
represented by similarity relations, further aggregated to express joint capabilities of teams. The aggregation expressing a
shift from individual to social level of agents’ activity has been formalized by means of propositional dynamic logic Pp.
The approach of [6], as using the full propositional dynamic logic, does not guarantee tractability of reasoning [16]. As advo-
cated before, we work with PpL with seriality requirement, denoted by SPpL. To achieve tractable approximate database que-
rying, we select a Horn fragment of SPpi, denoted by HSPpL and adapt the techniques of [26-28] to provide an engine for
computing queries expressed in HSPpL.

The computational engine distinguishes between extensional and intensional databases. To make this distinction clear we
use the traditional terminology of description logics [1]:

e ABox (assertion box) stands for the extensional database (containing facts).
e TBox (terminological box) stands for the intensional database (containing rules).

The method of computing queries is based on an algorithm, which for a TBox 2 consisting of an HSPpL logic program and
an ABox .7, constructs a least SPpL model .# of 2 and .«7. This model has the property that for every positive formula ¢ and
for every individual a, ¢(a) is a logical consequence of 22, .7 in SPpL (denoted by 2, .«/ | ¢(a)) iff ¢(a) is true in .# (i.e.
a” € ¢"). The role of the constructed least model is that it is used to compute answers to queries. The construction of .#
is done in time polynomial in the size of .«# (and has a polynomial size in the size of .«#). As a consequence, the problem
of checking whether 2, .« |=; ¢(a) has Prive data complexity (measured in the size of .«7).

The paper is structured as follows. In Section 2 we recall Propositional Dynamic Logic, show its relationship to approx-
imate reasoning and approximate databases, and justify the requirement of seriality. Section 3 is devoted to showing the
Prive data complexity of the selected Horn fragment HSPpL. Section 4 illustrates its potential in an exemplary real-world
application. Section 5 shows how to use the introduced formalism for epistemic reasoning in multiagent systems. Finally,
Section 6 concludes the paper.

2. Serial propositional dynamic logic
2.1. Language and semantics of SPpL

Let us define serial propositional dynamic logic (SPp). The key idea is to provide calculus on similarity relations rather than
on programs. This somehow unusual move allows us to reason about similarities using the whole apparatus of dynamic lo-
gic, where “programs” are replaced by similarity relations.

Let .# 0% denote the set of similarity relation symbols, and 2202 the set of propositions. We use letters like ¢ to indicate
elements of .#0%, and letters like p, g to indicate elements of 2202.

Definition 2.1. Formulas and similarity expressions are respectively defined by the two following Bnr grammar rules:
¢ =TIp[~@lereloVele—@[{0e]|[e
o= o|oo|auo|o|@?
Operator ; is called the composition, U the union, " the iteration and @? the test operator.
We use letters like o, § to denote similarity expressions; ¢, y to denote formulas; and a, b, c¢ to denote individuals.

Intuitively,

oy ; o stands for a set-theoretical composition of relations «; and o;.
oy U o, stands for set-theoretical union of relations o and o;.

o* stands for the reflexive and transitive closure of o.

@? stands for the test operator.

Operators (o) and [o] are modal operators of the dynamic logic with the following intended meaning:

e (a): “there is an object similar w.r.t. o to a given object and satisfying formula ¢”.
o [o]: “all objects similar w.r.t. o to a given object satisfy ¢”.

The following definitions naturally capture these intuitions. Observe, however, that rather than possible worlds or states,
objects are used as elements of domains of Kripke structures.

Definition 2.2. A Kripke structure is a pair .# = (4, %), where 4 is a set of objects, and -“ is an interpretation function
that maps each individual a to an element a# of A4”, each proposition p to a subset p# of 4, and each similarity relation
symbol ¢ to a binary relation ¢-# on 4.
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The interpretation function is extended for all formulas and similarity expressions as follows:
T,f/ =A v
(ﬁ(p)«// _ AJ{ \ (p,i/
(9 A9)" =g Ny
( ),,// _ (p,// U lpu{/
(@ =)' =Cov)”
()" ={xea” |3y 2" xy) A" )]}
()" ={x € 4" |y [ (x,y) — @“ ()]}
(o3 By =’ o B ={(x,y) | 32 (" (x,2) A B (2,Y)]}
(
(
(

We sometimes write ./, x = ¢ to denote x € ¢“. For a set I" of formulas, we write .#, x = I to denote that .#, x = ¢ for
al p eI If 4, x =T for all x € A then we call .# a model of I'. If @ = A then we say that ¢ is valid in .#.

When dealing with the data complexity of the instance checking problem, without loss of generality we can assume that
both the sets .# (0% and 220 are finite and fixed. Under this assumption, the size of a Kripke structure .# is defined to be the
number of elements of the set 4.

Lemma 2.3. Given a Kripke structure . with size n and a formula ¢ with length m, the set ¢ can be computed in O(m x n3)
steps.
Proof. Just notice that the complexity of computing the transitive closure of a binary relation is O(n?) (see, e.g., [4]). O

For every ¢ € .# 0%, we adopt the axioms

[o]p — (o) (M
(or (0)T, equivalently). It is well known (see, e.g., [10,37]) that (1) corresponds to the seriality property:
Vx3y a“(x,). (2)

Therefore we have the following definition.

Definition 2.4. By an admissible interpretation for SPpr. we understand any Kripke structure .# with all similarities o € .Z0%
satisfying (2). We call such Kripke structures serial.

Note that we do not require a serial Kripke structure to satisfy the seriality condition Vx3y o-#(x,y) for every similarity
expression «. This condition holds when o does not contain the test operator, but does not hold, e.g., for « = ((=T)?).
2.2. SPDL as a query language in approximate databases

Let us now explain how SPpL is used as a query language. First observe that interpretations assign sets of objects to for-
mulas. Thus it is natural to consider each formula as the query selecting all objects satisfying the formula.
Example 2.5. Let, in a given interpretation ./#:
o 4" = {01,02,03,04,05}.

o red” = {0y,03,04}.
o small” = {01,0,,04,05}.

Then (red A small)” = {01,04}, thus the query (red A small) returns the set {0;,04}. Similarly, the query (red — small)
returns {01, 02,04,05}.
In order to explain the role of similarities and modal operators, let us first recall the notion of approximations.

Definition 2.6. Let 4 be a set of objects and « be a similarity expression representing a serial binary relation on 4. For a € 4,
by the neighborhood of a w.r.t. &, we understand the set of elements similar to a: n* def {be 4|a(a,b)}.
For A C 4, the lower and upper approximations of A w.r.t. «, denoted respectively by A, and A;, are defined by

A, ={ae 4|n*(a)CA}
A; ={ac 4|n*(@)nA+#0}
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The meaning of those approximations is illustrated in Fig. 1. Intuitively, assuming that the perception of an agent is mod-
eled by similarity expression o,

e a € A, means that all objects indiscernible from a are in A.
e a ¢ A; means that there are objects indiscernible from a which are in A.

Note that seriality guarantees that the lower approximation of a set is included in the upper approximation of the set. This
is the weakest requirement one places on approximations. It is often desirable to have the property that

A; CACA;, 3)

as, in fact, shown in Fig. 1. This property corresponds to the reflexivity of the similarity relation expressed by « (see, e.g.,
[10,39,37]) and guarantees that

e a € A, means that, from the point of view of the agent, a surely is in A, since all objects indiscernible from a are in A.
e a € A; means that, from the point of view of the agent, a possibly is in A, since there are objects indiscernible from a which
are in A.

Unfortunately, in some applications the set A is only given via its approximations, so constraints (3) cannot be checked
automatically. This, in particular, happens when one deals with vague concepts that do not have precise definitions or whose
precise definitions are unacceptable in applications. Also, machine learned concepts are often approximated, as, e.g., in ver-
sion spaces (see [11]).

We have the following proposition which is an immediate consequence of Definition 2.6.

Proposition 2.7. Let .# = (A", ") be a Kripke structure and o be a similarity expression. Then, for any SPoL formula ¢ and
xea’:

xe (™) iff forally € A7, if o”(x,y) holds then y € ¢
x € (@")E iff there is y € A such that o” (x,y) holds and y € @

By Proposition 2.7 we have that:
[o]A expresses the lower approximation of A w.r.t. «, i.e., A} (4)

(a)A expresses the upper approximation of A w.rt. a, i.e., A} (5)

Remark 2.8. In the view of (4) and (5), axiom (1) expresses the property that the lower approximation of a set A w.r.t. any
similarity expression « is included in the upper approximation of A w.r.t. «. As noted before, axiom (1) is equivalent to
seriality expressed by (2). This justifies our seriality assumption as reflecting the basic requirement on approximations.

Example 2.9. Let .# be the interpretation considered in Example 2.5. Let ¢ be the reflexive closure of relation
{(01,02), (02,01), (03,04)}. Then, for example, red, = {03,04}, red, = {01,0,03,04}.

2.3. The Horn fragment HSPDL

In order to express tractable queries we restrict the query language to the Horn fragment HSPpL, defined below.

T
v

+

A(X

Fig. 1. Lower approximation A, and upper approximation A; of a set A.
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Definition 2.10. Positive formulas, ¢,,,, are defined by the following BNF grammar:

q)pos =T |p | (ppos A q)pos ‘ (ppos v q)pos | <(xpos<>)(pp05 | [aPOSE}q)pos
Olpos, = O | Upos,, ;5 Xpos,, ‘ pos,, U pos,, ‘ a;oso ‘ qopos?

Olpos, == O | Olposy, 5 Olpos, | Ofpos;, U Oposy, | O‘Z}asH | (= (ppas)?

HSPoL program clauses, ¢,,,,,, are defined by the following BNF grammar:!

q)prog =T | p | (ppos - goprog | (pprog A (pprug | <OCP"0g<>>(pprog | [O(ngu](pprug
Oprog, == O | Oprog, 5 Oprog, | Pprog’
Olprog, = O | Olprog., 5 Otprogs, | Olprogs, U Otprogs, | Oprog., | @pos?

An HSPoL logic program is a finite set of HSP pL program clauses. The Horn fragment HSPpL for the problem of checking whether
2, of ks @(a) consists of HSPpL logic programs for 2 and positive formulas for ¢.

Example 2.11. Observe that HSPpL is quite expressive. For example, it allows one to express a variant of default rules (dis-
cussed, e.g., in [7]). Namely, a typical default rule can be expressed as A}, B: - C;, with intuitive meaning “if A is surely true
and B might be true then accept C as surely true”.

Let us now formally link SPo. with databases.

Definition 2.12. An individual assertion is an expression of the form p(a), where p is a proposition and a is an individual. A
similarity assertion is an expression of the form o(a, b), where ¢ is a similarity relation symbol and q, b are individuals. An
ABox is a finite set of individual assertions and similarity assertions.

Comparing to description logics, individual assertions correspond to concept assertions, and similarity assertions corre-
spond to role assertions. An ABox provides an extensional database (in [17], such an ABox is said to be extensionally reduced).

Definition 2.13. Given a Kripke structure ./ and an ABox .«Z, we say that ./ is a model of .=/, denoted by .# = .«/, if a” € p*
for every individual assertion p(a) € 7 and (a#,b™”) € o for every similarity assertion o(a,b) € .

Definition 2.14. Given an HSPpL logic program 2, an ABox .«7, a positive formula ¢ and an individual a, we say that a has the
property @ w.r.t. # and 7 in SPpL (or ¢(a) is a logical consequence of 2, .7 in SPpL), denoted by 2, </ |= ¢(a), if for every
serial Kripke structure .#, if .# is a model of 2 and .«# then a“ € ¢“.

Recall that the pair 22, .7 is treated as a database.

Definition 2.15. By the instance checking problem for HSPpL we mean the problem of checking whether 2, <7 |= ¢(a). The
data complexity of this problem is measured when 2, ¢ and a are fixed (and compose a query), while .7 varies as input data.

3. Computational aspects

3.1. Ordering Kripke structures

Definition 3.1. A Kripke structure .# = (4, -} is said to be less than or equal to .4’ = (4" , "'}, denoted by .# < ./, if for
every positive formula ¢ and every individual a, @ € ¢ implies a”' € ¢

Definition 3.2. Given Kripke structures .2 = (A4 ) and .4’ = (4", "'y and a binary relation r C 4 x A4, we say that .#
is less than or equal to .#' w.r.t. r, denoted by .# <, .#', if the following conditions hold for every individual a, every similarity
relation symbol ¢, and every proposition p:

1. r(a@”,a”).

2. VXX [0 (x,y) Ar(x,x)] = Iy [0 (X y) Ar(y.y)].
3. 9% Xy ([0 (. y) AT X)) = o (x,y) AT, Y]]
4. VX, X[r(x,X) = (x € p? = X € p)].

In Definition 3.2, the first three conditions state that r is a kind of bisimulation between the frames of .# and .#'. Intui-
tively, r(x,x’) states that x has fewer positive properties than x'.

! Notice the two occurrences of (Ppos In the grammar. We do not allow formulas of the form (& U f5) ¢ or (o*) ¢ to be HSPoL program clauses because they cause
non-determinism.
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Consider a similarity expression . In Lemma 3.4 formulated below we will use an inductive argument based on selecting
from o a “path” y of atomic expressions (similarity relation symbols and tests) occurring in o, with the property that in a
given model .7, o”(x,y) iff y#(x,y). Intuitively, such a path reflects a run of regular program expressed by «, consisting
of atomic programs and tests. Formally, the argument requires the following definitions.

Definition 3.3. The alphabet X () of a similarity expression o is defined as follows:
2(0) ={a}
2(9?) = {97}
2(P1; B) = 2(B1) U Z(B2)
2(BrUBy) = Z(B1) U Z(By)
2(p7) = 2(p)
Note that, according to Definition 3.3, X(«) contains not only similarity relation symbols but also expressions of the form
Q7.
A similarity expression o is a regular expression over its alphabet X (o). The regular language #(x) generated by « is de-
fined as follows:
Z(0) = {0}
2(0?7) = {97}
LBUp)=2B)UL(p)
LB B)=2B)-L(F)
L) =(ZB)
where if L and M are sets of words thenL- M = {ap | o€ L, € M} and L* = |, oL" with L° = {¢} and L' = L-L" (¢ stands for

the empty word).
We treat words of (o) also as similarity expressions, e.g. 610, denotes (o, ; 73).

Lemma 3.4. Let .# = (4”,-“) and .4 = (4" ") be Kripke structures, and rC 4 x 4* be a relation that satisfies
Conditions 2-4 of Definition 3.2. If r(x,x’) holds then, for every positive formula ¢, x € ¢* implies ' € ¢

Proof. We prove this lemma by an induction on the structure of ¢. Assume that r(x,x’) holds and x € ¢“.

e The cases when ¢ =p or ¢ =y A& or @ = V ¢ are trivial.
e Case ¢ = (a)yy:
Since x € ¢, there exists y € 4“ such that o“(x,y) holds and y € y+*. There exists

=010 (&)1 0,(E7) - 04, € L()
such that y(x,y) holds. Hence, there are elements
Xo =X, X1,..., Xj—1, X, =Y

of 4 such that 0 (xi-1,%) holds for 1 < j < iy and x;, € &¥ for 1 < h < k— 1. Let x; = x'. By Condition 2 of Definition 3.2, for
every 1 <j < iy there exists x; € 4 “ such that ;" (x,_,,x}) and r(x;,x)) hold. Since r(x;,, x; ) holds, x;, € &' and ¢& is a positive
formula, by the inductive assumption, for 1 < h < k —1 we have that x; € &” . Hence, ' (x,y") and r(y,y’) hold for y' = X -
Thus, we also have that o# (x',y') holds. Since r(y,y’) holds and y € y“, by the inductive assumption, y' € . Hence
X € (o).
e Case ¢ = [o]y:
Let y' be an arbitrary element of A4 such that o-#'(x',y’) holds. (If such a y’ does not exist then x' € ¢ clearly holds.)
There exists

Y=010i (270011 0, (=67) -0y, € L()
such that p“'(x',y’) holds. Hence, there are elements

Xo=X,X],... ,x;kfl,xgk =y
of 4 such that ;" (%_4,%)) holds for 1 <j < i, and x; € (=) “ holds for 1 < h < k — 1. Let xo = x. By Condition 3 of Def-
inition 3.2, for every 1 <j < i, there exists x; € 4 such that aj”(xj,l,xj) and I, ) hold. For 1 < h < k-1, since r(Xi,, X;)
holds and x; € (=)™ and ¢, is a positive formula, by the inductive assumption (via contrapositive), we have that

x;, € (=¢&)™”. Hence, y“(x,y) and r(y,y’) hold for y = x; . Thus, we also have that a:*(x,y) holds. It follows that y € y“. Since
r(y,y') holds and y € y+“, by the inductive assumption, y' € . Hence x’ € ([a]y)”. O

Corollary 3.5. Let .« and .#' be Kripke structures such that .# <, .#' for some r. Then .# < .'.
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Definition 3.6. Let # be an HSPpL logic program and .«# be an ABox. We say that a Kripke structure .# is a least SPpr. model of
2 and .o/ if .4 is an SPpL model of 2 and .«# and for any other SPpL model .#' of 2 and .« we have that .# < ./#'.

3.2. The algorithm

In this section, we present an algorithm that, given an HSPpL logic program 2 and an ABox .7, constructs a finite least SPpL
model of 2 and .«7. During execution, the algorithm constructs the following data structures:

e A is a set of objects. We distinguish the subset 4, of 4 that consists of all the individuals occurring in the ABox .. In the
case .« is empty, let 4o = {7} for some element t.
e His a mapping that maps every x € 4 to a set of formulas, which are the properties that should hold for x. When the ele-
ments of 4 are treated as states, H(x) denotes the contents of the state x.
e Next is a mapping such that, for x € 4 and (o) € H(x), we have Next(x, (c)¢) € 4. The meaning of Next(x, (g)p) =y is
that:
- (0)¢ € H(x) and ¢ € H(y),
- the “requirement” (o) is realized for x by going to y via a g-transition.

We call the tuple (4, H, Next) a model graph.
Using the above data structures, we define a Kripke structure .# such that:

o A" =4,

e a’ = a for every individual a occurring in .oz,

o p”={xed|peH(x)} for every p € 2202,

e 0/ ={(a,b) | o(a,b) € &/} U{(x,y)| Next(x,(c)p) =y for some ¢} for every ¢ € .#0%.

Definition 3.7. For x,y € 4, we say that y is reachable from x if there exists a word a7 - - - 6 such that (a7 - - - 63,)“ (x, y) holds.
We say that y is reachable from Aq if it is reachable from some x € 4.

Definition 3.8. The saturation of a set I" of formulas, denoted by Sat(I'), is defined to be the smallest superset of I" such that:

T e Sat(I') and (0)T € Sat(I') for all 0 € .4 02,

if @ Ay e Sat(I') or (p?)y € Sat(I') then ¢ € Sat(I") and ¢ € Sat(I),
if (a; B)¢ € Sat(I') then () (B)¢p € Sat(I),

if [or; Bl € Sat(I") then [o][]¢p € Sat(I'),

if [cU Bl € Sat(I') then [o]¢@ € Sat(I") and [B]¢ € Sat(I),

if [o*]¢p € Sat(I") then ¢ € Sat(I") and [o][o*] € Sat(I),

if [@7?y € Sat(I') then (¢ — V) € Sat(I).

Observe that Sat(I') is finite when I is finite. Define the size of a set of formulas to be the sum of the lengths of its for-
mulas. It can be shown that the size of Sat(I') is quadratic in the size of I' (cf. Lemma 6.3 in [16]).

Definition 3.9. The transfer of I' through o is defined by:
Trans(I',0) & Sat({@ | [0]p € T'}).
We use procedure Find(I") defined as:

if there exists x € 4\ 4o with H(x) = I’ then return x,
else add a new object x to 4 with H(x) = I" and return x.

The algorithm shown in Fig. 2 constructs a least SPpL model for an HSPpL logic program 2 and an ABox . as follows. At the
beginning, 4 starts from Ao, which consists of all the individuals occurring in .«7 or some 7 if .« is empty, with H(x), for x € 4o,
being the saturation of 2 U {p | p(x) € «/}. Then for each x € 4 reachable from 4, and for each formula ¢ € H(x) that does not
hold for x, the algorithm makes a change to satisfy ¢ for x.

There are three forms to be considered for ¢

1. ¢ is of the form (o)y:
to satisfy ¢ for x, we connect x via a g-transition to an object y € 4\ 4o with

H(y) = Sat({y} u{¢|[0o]¢ e HXx)} U 2)
by setting Next(x, (o)) :=y

2 The other possible forms of ¢ are dealt with by the saturation operator Sat.
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Input: An HSPDL logic program P and an ABox A.
Output: A least SPDL model M of P and A.

1. let Ay be the set of all individuals occurring in A;
if Ag =0 then Ag := {7};
set A=Ay, P’ := Sat(P);
forx € A, set H(z) :=P' U{p|p(z) € A};
2. for every x € A reachable from Aj and for every formula
p € H(x)
(a) case p = (o)t : if Next(x, (o)1) is not defined then
Next(x, (o)1) := Find(Sat({¢}) U Trans(H (x),0) UP’);
(b) case ¢ = [o]t :
i. for every y € Ag such that o™ (x,%) holds and ¢ ¢ H(y)
H(y) := H(y) USat({y});
ii. for every y € A\ Ag such that o™ (z,y) holds and
¢ ¢ H(y)
A. y. :=Find(H (y) USat({¥'}));
B. for every & such that Next(z, (0)§) =y
Next(x, (0)€) := yu;
(c) case ¢ = (¢ — &) : if x € Y™ and Next(y, (0)T) is defined
for every y reachable from x and every o € MOD then
i. if z € Ag then H(z) := H(x) U Sat({{})
ii. else
A. z, :=Find(H(z) USat({¢}));
B. for every y, o, ¢ such that Next(y, (o)) =«
Neat(y, (0)C) i= a.;
3. while some change occurred, go to Step 2;
4. delete from A every x unreachable from Aj and delete from H
and Next all elements related with such an x.

Fig. 2. Algorithm constructing a least SPo. model for an HSPoL logic program and an ABox.

2. @ is of the form [a]y:
we would like to add y to H(y) for every y such that o+ (x,y). We do this for the case when y € 4y. Fory € 4\ 4o, however,
modifying H(y) has two drawbacks:
o first, other objects connected to y will be affected (e.g., if p is added to H(y) and 03/ (z,y) holds, then (g,)p becomes
satisfied for z, while x and z may be independent),
e second, modifying H(y) may cause H(y) =H(y') for some y' € 4\ 4, different from y, which we try to
avoid.
As a solution, instead of modifying H(y) we replace g-transitions (x,y) by o-transitions (x,y,), where y, is the object such
that

H(y.) = H(y) USat({y'})

3. @ is of the form y — ¢ (where y is a positive formula):
if  “must hold”? for x then we would like to add ¢ to H(x). We do this for the case x € 4,. For the case x € 4\ 4o, analogously
to the case when ¢ is of the form [0]{, we do not modify H(x), but replace transitions (y,x) by transitions (y, x..), where x, is
the object such that

H(x.) = H(x) USat({¢}).

3 The statement “y must hold for x” intuitively means that “y follows from H(x)". As it can be seen later, a sufficient condition for the truth of this statement
is that x € Y/ and Next(y, (6)T) is defined for every y reachable from x and every ¢ € .Z0%.
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The model graph after the first execution of Step 2 :

a

P.T.{0)T.ps

P, T,{(o)T

‘/

The model graph after the second execution of Step 2 :

a

b

P, T,{0)T,p,s
[9]g, 4 [o][o"]q

P, T,{0)T
[07]9, 4, [o]lo*]g, p

c
P, T,{0)T
N

The model graph after the third execution of Step 2 :

a

b

P, T,{0)T,p,s
[o]g, 4. ]o][o"]g

[o7]g, 4, ]o][o"]a, p

P, T,{(o)T

N

d e
(&
P, T, 00T *79 T7<U>T* *P:T7<0>1—
<~ [0*]g.q.[o]lo"]q [0*]a,9.[o][o"]g.p
_
The resulting SPDL model M :
a b
D;S,q q,p

Fig. 3. An illustration of the run of the algorithm shown in Fig. 2 for # = {p — [0*]q, [6*]q — p} and .« = {p(a),s(a), o (a,b)}. We have that 4, = {a, b}. In the
shown model graphs, an edge from a node x to a node y means Next(x, (¢)T) = y. The edges in the resulting model .# represent the similarity relation ¢-*.

Example 3.10. Let 2 = {p — [6*]q,[0*]q — p} and o7 = {p(a),s(a), a(a,b)}. In Fig. 3 we illustrate the construction of a least

SPoL model of 2 and .«.

e
4P

W

Before we formally prove properties of the algorithm we need the following definitions.

Definition 3.11. The Fischer-Ladner closure of an HSPpL program clause ¢, denoted by FL(¢), is the set of formulas defined as

follows*:

4 We treat an HSPpL program clause of the form y — ¢ not as a usual formula, and our definition of Fischer-Ladner closure is slightly different from the

traditional one given in [16].
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FL(T) ={T}, FL(p)={p}
FL(y — &) ={¥ = SFUFL(S)
FL(y A Q) = {¥ A &} UFL(Y) UFL(E)

(v

(v
FL([oy) = FL™([oyr) UFL()
FL(()w) = FL®({a)) UFL(¥)

FL™([oly) = {[aly}

FLY(focs Br) = {locs By} UL ([ [Blw) U FLZ ()
FLY([oc U Blyr) = {[oe U Blwr} U FL7 (o) U FLZ([B])w
FLE (o) = {[ec' Ty} U FLE ([ [or Jy)

FLY(?)0) = {71E, (v — &)}

FLY((o)y) = {(o)v}

FLO((ocs o) = {03 By} UFLE (o) (Bw) UFLE ((B))yr
FLO((W7)¢) = {(W?) &} UFL(Y)

Definition 3.12. Let # be an HSPpL logic program. The Fischer-Ladner closure of #, denoted by FL(2), is defined to be
Ugpes FL(@).

It can be shown that the size of FL(2) is quadratic in the size of 2 (cf. Lemma 6.3 in [16]).

Lemma 3.13. Let. %Z be the model constructed by algorithm in Fig. 2 for 2 and .«/. Assume that 2 is fixed, while .«7 varies and has n
assertions. Then A has size O(n) and the algorithm runs in O(n*) steps.

Proof. We will refer to the data structures used in the algorithm shown in Fig. 2.

Observe that the Fischer-Ladner closure of 2, FL(#), depends only on 2. We have that H(x) CFL(#) for all x € 4\ 4,.”
Since 2 is fixed and each x € 4\ 4y has a unique H(x), the set 4\ 4, contains only O(1) elements. Hence 4 has size O(n).

Note that the size of H(x) for x € 4\ 4y and the size of H(a) \ {p | p(a) € .«/} for a € Ay are bounded by a constant. Denote
this assertion by ().

The total number of changes made at Steps 2a, 2(b)i, 2(c)i is O(n). Note that if y is “simulated” by y, at Step 2(b)ii then H(y, )
extends H(y). A similar statement can be said for x and x, at Step 2(c)ii. Since 4 \ 4¢ has size O(1) and 4 has size O(n) and (),
the total number of times that Steps 2(b)ii and 2(c)ii make a change is O(n). Hence, the loop at Step 3 executes only O(n) times.

By (*), the calls of Sat and Trans can be done in constant time. Each execution of Steps 2a, 2(b)i, 2(b)ii, 2(c)i, or 2(c)ii runs
in time O(n). By Lemma 2.3, checking x € y* at Step 2c runs in time O(n® x length(y)) = O(n?). Checking the remaining part
of the condition at Step 2c takes less time.

Summing up, the algorithm shown in Fig. 2 runs in O(n#) steps. O

Lemma 3.14. The Kripke structure .# constructed by the algorithm shown in Fig. 2 for 2 and .« is a serial Kripke model of 2 and ./.
Proof. Below we refer to the data structures used in the algorithm shown in Fig. 2. Observe that:

e if (0)y € H(x) then there exists y such that ¢-/(x,y) holds and y € H(y),
e if [0]y € H(x) and 0/ (x,y) holds then y € H(y),
o if (y — &) € H(x) and x € y* then ¢ € H(x).

These observations together with the definition of the saturation operator Sat and the fact that H(x) = Sat(H(x)) forx € 4
imply that: for every x € 4 and every ¢ € H(x),x € ¢“. (This can be proved by induction on the structure of ¢.) Hence .# is a
model of 2 and .. It is a serial Kripke structure because ()T is included in H(x) for every ¢ € .#(0% and every x € 4. O

Roughly speaking, the model .# constructed by the algorithm shown in Fig. 2 for 2 and .«7 is less than or equal to any
model .#' of 2 and .«# in SPpL because the objects of .# are created only when necessary (cf. Condition 2 of Definition
3.2) with minimal sets H(.) of requirements (cf. Conditions 1 and 4 of Definition 3.2), which contain (¢)T for all
o € /0% (to guarantee Condition 3 of Definition 3.2). A formal analysis is given below.

Lemma 3.15. Let .# be the model constructed by the algorithm shown in Fig. 2 for 2 and .«/, and ./’ be an arbitrary serial Kripke
model of # and . Consider a moment after executing a numerated step® in the execution of the algorithm. Let

= {(a,a”) | a is an individual occurring in =7} U{(x,X) € 4% x A" | x is not an individual and .4’ X = H(x)}

> Since the ABox .7 is extensionally reduced, the assertions of ./ are not transferred to H(x) for x € 4\ 4.
8 That is, one of 1, 2, 2b, 2(b)i, 2(b)ii, 2(b)iiA, 2(b)iiB, 2¢, 2(c)i, 2(c)ii, 2(c)iiA, 2(c)iiB, 3, 4.
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Then for every u,v € A, u', v € A", ¢ € .#09, every formula { and every individual a occurring in </ the following assertions
hold:

[r(u,u') A (Next(u, (6)0) = v) Aa” (U, V)NV € (7] — (v, 1) (6)
A',a" = H(a) (7)

Proof. We prove this lemma by induction on the number of executed steps. The base case occurs after executing Step 1 and
the assertions clearly hold. Consider some latter enumerated step K of the algorithm. Inductively assume that the assertions
of the lemma hold before executing that step. We first prove the following remark by an inner induction on the construction
of y.

Remark 3.16.
Let y be a positive formula. Suppose that r(x,x’) holds, x € ¥, and Next(y, (¢)T) is defined for every y reachable from x
and every ¢ € .Z0%. Then X' €y

Proof (of Remark 3.16). Let ., (respectively, 4,) be the Kripke structure obtained by restricting .# (respectively, A) to the
objects reachable for x. We show that:

Yu, v e AV € 4" {[o—”’(u, V) AT — 3V € 47 [0 (U, V) AT (D, v’)}] (8)
Yue AV, v e A" ([0 (W, V) AT(u,u)] — Fv € Ao (u, ) AT(v, V)] 9)

Consider assertion (8). Let u, v € 4, and suppose that ¢-#(u, v) and r(u,u’) hold. If v € 4, (i.e. vis an individual occurring
in.o7) then o(u, v) € .« and u € 4. In that case, take ¢/ = v and we have that o (i, ) A (v, v'). Consider the case v ¢ Ao.
Since ¢ (u, v), we must have that Next(u, (6){) = v for some {. Thus (g){ € H(u). Since r(u,u’), it follows that v’ € ((5){)”".
Hence, there exists v/ € 4" such that ¢ (', /) and v’ € ¢*'. By the inductive assumption (6) of the outer induction, we have
that r(», ¢/) holds.

Consider assertion (9). Let u € 4y and suppose that o+ (1, ¢/) and r(u, ') hold. Let v = Next(u, (¢)T) (which exists by the
assumption). Thus ¢-#(u, v) holds. By the inductive assumption (6) of the outer induction, we have that r(v, ) holds.

Applying Lemma 3.4 for .#y, .#' and r, we obtain that x' € y*, which completes the proof of Remark 3.16. O

Proof (of Lemma 3.15 continued). We now return to the outer induction. Suppose that after executing the step K we have
2, A2, Hy, Next,, ./, in the places of r, A, H, Next, ./, respectively. We show that the following conditions hold for every
uvedy, u,ved, oc.#402,every formula ¢ and every individual a occurring in .«7:

[ra(u,u') A (Nexty(u, (6)0) = V) A (W, V) AV € 7] = ra(v, V) (10
A a” k= Hy(a) (11)
It suffices to consider Steps 2a, 2(b)i, 2(b)iiB, 2(c)i, 2(c)iiB.

o Consider the case K = 2a and suppose that Next(x, (¢)y) is not defined. Let
y = Find(Sat({y/}) U Trans(H(x),d) U #')

It suffices to prove the assertion (10) for the case when u =x, v =y and { = . Consider this case. Suppose that
ry(x, 1) A (Nexty(x, ()W) =y) Aa” (U, V) AV €

holds. We show that r,(y, 2/) holds. Since r(x,u’) holds, r(x,u’) also holds, and hence .#',u’ = H(x). It follows that

',V Trans(H(x), 0) (since o+ (v, ) holds). Hence .#', v = Hy(y), and r,(y, ) holds.

e Consider the case K = 2(b)i. Since y € 4o, we have that r, = r. Additionally, Next, = Next, hence the assertion (10) follows
from the inductive assumption (6). For the assertion (11), it suffices to consider the case y = a and show that .#’, a*' }= .
Since ¢“(x,a) holds, x must be an individual occurring in .«# and o(x,a) € /. By the inductive assumption (7),
', x*” = H(x), and hence .#', x* |= [o]y. Since .4’ is a model of «# and o (x,a) € .«Z, it follows that .#', a”' | y.

o Consider the case K = 2(b)iiB. It suffices to show that if

r(x,x) A (Next(x, (6)&) =y) Aa” (X, Y)Yy € &7
then r;(y,,y’) holds. Suppose that the premise holds. By the inductive assumption (6), r(y,y’) holds and .#’, y' E H(y).
Since r(x,x') holds, .#', X = H(x). It follows that .#', y' =y (since [o]y € H(x) and ¢“(x,y) holds). Therefore
A,y = Hy(y,) and r(y,,y’) holds.

e Consider the case K = 2(c)i. Since r, = r and Next, = Next, the assertion (10) follows from the inductive assumption (6). For
the assertion (11), it suffices to consider the case x = a and show that .#’, a” | ¢ Since a € y“, by Remark 3.16,
a* <y . By the inductive assumption (7), .#’, a' |= H(a), and hence .#', a” & (y — ¢&). It follows that .2/, a” [ ¢.
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e Consider the case K = 2(c)iiB. Let x’ be an element of 4 such that r(x, x') holds. It suffices to show that r5(x,,x’) holds. We
need only to show that .#’, X' |= ¢. Since r(x,x') holds and ( — &) € H(x), we have that .#’, x' | (y — &). Since x € y* and
r(x,x') holds, by Remark 3.16, x' € y+*'. It follows that .+, X ¢ O

Corollary 3.17. Let 2, </, ., /' be as in Lemma 3.15, and r be the relation defined as in Lemma 3.15 after the execution of the
algorithm shown in Fig. 2. Then .4 <, ./’

Proof. We check the four conditions of .# <, .#'. Condition 1 of .# <, .#' follows from the definition of r. Condition 4 of
M <, " follows from the definition of r and the assertion (7) of Lemma 3.15. Analogously as in the proof of Remark
3.16, it can be shown that Conditions 2 and 3 of .# <, .4’ follow from the assertion (6) of Lemma 3.15. O

The following theorem is crucial for the querying machinery developed in this paper. Recall that the least model .# has
the property that for every positive formula ¢ and for every individual a, we have that 2, .« = ¢(a) iff a” € ¢-. The model
is then used to compute answers to queries.

Theorem 3.18. Let 2 be an HSPoL logic program and .« an ABox. The Kripke structure ./ constructed by the algorithm shown in
Fig. 2 for 2 and <7 is a least SPbL model of 2 and .o/.

This theorem immediately follows from Lemma 3.14 and Corollary 3.17. As a consequence, we obtain the following result,
showing that the proposed querying machinery is tractable.

Theorem 3.19. Let 2 be an HSPpL logic program, ./ an ABox, ¢ a positive formula, and a an individual. Then checking
(2, /) Es (a) can be done in polynomial time in the size of <. That is, the data complexity of HSPpL is in PriME.

Proof. Let .# be the model constructed by the algorithm shown in Fig. 2 for 2 and .«z. By Theorem 3.18, (2, <7) ks ¢(a) iff
a’ e ¢.Constructing ./ and checking a” € ¢ both can be done in polynomial time the size of .7 (Lemmas 3.13and 2.3). O

4. A case study: movability of objects
4.1. The scenario

Consider the following scenario:

Two robots, R; and R,, have the goal to move objects from one place to another. Each robot is able to move objects of a
specific signature,” and together they might be able to move objects of a combined signature. Some objects, when attempted
to be moved, may cause some damages for robots. Robots are working independently, but sometimes have to cooperate to
achieve their goals.

To design such robots one has to make a number of decisions as described below.
4.2. Formalizing movability of objects

We assume that the signature of movable objects for each robot is given by its specification together with a similarity
relation defining the range of movable objects. Assume the following specification:

spec, déf(light A smooth) v (heavy A rough) — for robot R, (12)

spec, © small v medium — for robot R,. (13)
Movable objects are then specified by
spec; — mouvable; (14)

where i € {1,2} and mowvable; is true for objects that can be moved by R.

The idea is that all objects similar to movable ones are movable t00.® Let ¢; and g, be similarity relations reflecting per-
ceptual capabilities of R; and R,, respectively (for a discussion of such similarity relations based on various sensor models see
[8]). Now, in addition to (14), movable objects are characterized by

(g;)spec; — mowvable; (15)

Remark 4.1. Note that rather than (15) one could assume

[oi]spec; — mowvable;

7 For example, dependent on weight, size and type of surface.
8 This is a very natural and quite powerful technique, allowing one to express the inheritance of particular properties of objects by similar objects.
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Fig. 4. An ABox for the example considered in Section 4.3.

In addition to (14), this would mean considering objects similar only to movable ones. In some applications this choice
would indeed be reasonable and perhaps less risky.

Observe that in general it is impossible to automatically derive combined signatures that specify what robots can move
together. Therefore, we introduce specification spec; and similarity expression o5 as a specification of such joint capabilities.
An example of spec; can be given by

specs o large A rough (16)

Objects movable by robots working together are then defined by

(spec; V {a3)spec;) — mowvable_by_two (17)
Observe that o3 is usually computed on the basis of ¢; and a5, since we do not assume any observer other than R;, R,, and
01, 0, reflect their perceptual capabilities. We shall assume that

s & o Ua, U (01;02) U (02 01) (18)

The meaning of this expression is that an object o’ is similar w.r.t. o3 to an object o whenever

e 0’ is perceived similar to o by R; or by R, or
o there is an object 0” such that
- 0" is perceived similar to o by R; and o” is perceived similar to o” by R, or
0" is perceived similar to o by R, and o” is perceived similar to 0o” by R;.

Clearly, one can use much more complex expressions, reflecting particular algorithms for computing o3, since our oper-
ators are those accepted in PpL.°

4.3. The database

Let .«# be the ABox consisting of the assertions about objects o4, ..., 05 that are illustrated in Fig. 4. It contains, for example,
light(o1), smooth(o1), 61(01,02), 01(02,01), etc. Let 2 be the HSPpL logic program consisting of the clauses (14) and (15) for
i€{1,2}, and (17). We consider here the database consisting of # and .« in SPpL (which adopts the axioms (¢1)T and (0,)T
for all the objects of the domain).

In Fig. 5 we present the least SPoL model .# of 2, .o/ constructed by our algorithm (given in Fig. 2). The object o¢ is the
only additional object, not satisfying any proposition.

4.4. Some queries

As discussed earlier, having the least SPoL model .# of 2 and .o, to check whether an individual a has a positive property
@ w.r.t. # and 7 in SPpi, it suffices to check whether a € ¢“.
In our example, we have that:
movable;’ = {0;,0,}
mouvable,’ = {01,0,,03,04}
mowvable_by two” = {0,,03,05}
(mowable_by_two A (a1)movable;)” = {0,}
=0

(mowvable_by_two A [o1)movable; )"

9 Of course, there are some restrictions, if one wants to stay in a tractable framework. Recall that we have accepted Definition 2.10 to guarantee tractability.
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Fig. 5. A least SPoL model of the database considered in Section 4.3.

5. Using SPpL in epistemic reasoning
5.1. Epistemic interpretation of approximations

SPoL can be used for reasoning about common knowledge and common beliefs in the presence of similarity relations.
Intuitively, an agent believes that a formula ¢ holds when [o]¢, where ¢ reflects the agent’s perception. This allows us to
integrate agents’ epistemic reasoning with the formalism of SPpL. Technically, individuals and objects of Kripke structures
are used to denote possible worlds, while similarity relations are used to denote accessibility relations between possible
worlds of agents and groups of agents. We assume here that each similarity relation symbol ¢ reflects the accessibility rela-
tion of a single agent.

Consider a group of k agents with {o4,...,0,} as their accessibility relations, respectively. Then:

e an expression of the form ¢; U--- U 0} represents the integrated accessibility relation of the group of agents
¢ a formula of the form [(1 U--- U 04)"]@ states that ¢ is a piece of common knowledge of the group of agents
o a formula of the form [(o; U---U a})"]¢, where ot = (o ; a*), states that ¢ is a common belief of the group.!®

The seriality axiom (1) can be reformulated as

[0]¢p — —[o]-¢

so in epistemic reasoning it states that if an agent believes that ¢ holds then it does not believe —¢. As the transitivity of ¢ is
not assumed,'! to express positive introspection of knowledge (respectively, belief) one can use ¢* (respectively, 6*) as a basic
accessibility relation instead of ¢ because [6*]¢p — [0*][0*]¢ (respectively, [67]¢p — [o7][oF]¢) is valid in every Kripke structure.
On the other hand, no suitable form reflecting the Euclidicity of ¢ for expressing negative introspection is a tautology of SPpL
(i.e. valid in every serial Kripke structure).'?

When SPpL is used in epistemic reasoning, individuals and ABoxes do not play an important role in complexity issues any-
more. In typical cases, solely the actual world is explicitly used as an individual.

5.2. The wise men puzzle

In this section we formalize the wise men puzzle using HSPpL, showing again its usefulness and illustrating our algorithm
given in Fig. 2.

The wise men puzzle is a famous benchmark of Al introduced by McCarthy [23]. It can be stated as follows (cf. [19]). A
king wishes to know whether his three advisors (represented by'? g,, ¢, &3) are as wise as they claim to be. Three chairs are
lined up, all facing the same direction, one behind the other. The wise men are instructed to sit down in the order 7, 0, 03,
with ¢ on front. Each of them can see the backs of the ones sitting before them (e.g. g5 can see ¢, and g,). The king informs the
wise men that he has three cards, all of which are either black or white, at least one of which is white. He places one card, face
up, behind each of the three wise men, explaining that each wise man must determine the color of his own card. Each man must
announce the color of his own card as soon as he knows what it is. All know that this will happen. The room is silent; then, after
a while, wise man o, says “My card is white!”.

10 This concept of common belief corresponds to the generally recognized notion of common belief considered, e.g., in [13-15,24].

11 Usually expressed by modal axiom 4 (see [2]).

12 Euclidicity, i.e., the property stating that VxvyVz[(a(x,y) A (x,2)) — G(y,2)], usually accepted in modal epistemic reasoning, is expressed by the modal
axiom 5 (see [2]).

13 In the rest of example to simplify the presentation we denote agents by their similarity relations.
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T, blacks, blacks, [o3]blacks, white;
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Fig. 6. The model graph constructed by our algorithm (given in Fig. 2) for the database specified in Section 5.2. I' is the set of formulas specified in
Section 5.3. The node with a shaded frame represents the actual world 7. An edge from a node x to a node y with a label o; means Next(x, (g;)¢) = y for some
& where (g;)¢ is one of (61)T, (62)T, (03)T, (02)black,, (o3)blacks. The proposition white; is added to the bottom node due to the property ., (see Sections
5.3 and 5.2), and after that it is added to the other nodes due to the properties y; and y, (see Sections 5.3 and 5.2).

For 1 < i < 3, let white; stand for “the card of g; is white”, and black; stand for “the card of g; is black”. The wise men puz-
zle can be formalized as follows (cf. [25,28]).
The wise men commonly know that if y sits behind x then x’s card is white whenever y considers this possible:
¢, = [(01 U 02 U 03)"]({02)White; — white,)
@, = [(01 U 03 U 03)"|({(03)White; — white,)
. = [(01 U 02 U 03)"]((03)white, — white)

S

The following program clauses are “dual” to the above ones:

@4 = [(01 U 03 Uas3)’|(blacky — [o3]blacky)
Ps = [(O’] Joy U 63)*](black1 — [0'3]black1)
¢ = [(01 U 02 U a3)"|(black, — [a3]black,)
The wise men commonly know that at least one of them has a white card:
@5 = [(01 U 03 U a3)"]((black, A blacks) — white,)

I
¢g = [(01 U 02 U 03)"|((blacks A black,) — white,)
@y = [(01 U 02 U a3)"]((black, A blacky) — whites)
The wise men commonly know that: each of o, and o3 does not know the color of his own card; in particular, each of
them considers that it is possible that his own card is black:
@10 = [(01 U 02 U g3)"]{02)black,
@11 = [(01 U g2 U a3)"]{03)blacks
The formulas ¢,, ..., ¢4 are supposed to hold for every possible world, while the formulas ¢,, and ¢,; are only supposed
to hold for the actual world. Since only extensionally reduced ABoxes are allowed, we encode the conjunction ¢, A ¢, by a

proposition s, and assume that our ABox .7 is {s(7)}, where 7 is the only individual which represents the actual world, and we
treat s — (¢ A ¢17) as a global assumption. Thus, our database consists of the mentioned ABox .«# and the HSPbL logic pro-

gram 2 = {@y,..., Pqg, (S = (P10 A P11)) }
The goal is to check whether wise man ¢, believes that his card is white: that is, whether ([g,]white,)(7) is a logical con-
sequence of 2, .7 in SPpL.

5.3. The least SPpL model constructed by our algorithm

For 1 <i< 11, let y; be the formula such that ¢; = [(61 U 02 U 03)"]y;. Let

I'=Sat({@g,--, @1 ) U{S = (@10 A @11)}
={¢i¥i, (01U 020039, 0] | 1 << 11,1 <j <3} U{T.(01)T,(02)T,(03) T, (S = (@10 A @11))}
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In Fig. 6 we present the model graph constructed by our algorithm (given in Fig. 2) for 2 and .. By Theorem 3.18, the
model .# corresponding to this model graph is a least SPo. model of # and .«#. Since 1 € ([o1]white;)”, we have that
([o1]white; )(7) is a logical consequence of #,.«# in SPpL. Notice also that T € ([(61 U 6, U 63)*][o1]white;)”. That is, the wise
men commonly know (believe) that wise man ¢; believes that his card is white.

6. Conclusions

In this paper we have presented a powerful formalism for approximate knowledge fusion, based on adaptation of Prop-
ositional Dynamic Logic. We have shown that restricting this logic to its suitably chosen Horn fragment results in tractable
querying mechanism which can be applied in application, where approximate knowledge from various sources is to be fused,
e.g., in robotics and multiagent systems.

Importantly, serial Ppi, denoted by SPpi, is also useful as a description logic for domains where seriality condition appears
naturally.' For example, in reasoning about properties of web pages one can assume that every considered web page has a link
to another page (or to itself).

We plan to extend the framework to deal with other operations on similarity relations, expressing even more subtle
approximations and fused knowledge structures. This would be applicable in different stages of teamwork in multiagent sys-
tems as discussed in [13,14].
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