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Abstract. We consider probabilistic automata over finite words. Such an au-
tomaton defines the language consisting of the set of words accepted with prob-
ability greater than a given threshold. We show the existence of a universally
non-regular probabilistic automaton, i.e. an automaton such that the language it
defines is non-regular for every threshold. As a corollary, we obtain an alterna-
tive and very simple proof of the undecidability of determining whether such a
language is regular.

1 Introduction

Rabin introduced probabilistic automata in 1963 [Rab63]. They have been stud-
ied ever since, with applications to different areas, such as Computational Lin-
guistics and Biology. Despite its simplicity, this computational model is very
powerful, and many decision problems for probabilistic automata are known to
be undecidable.

A probabilistic automaton defines a probabilistic language through a thresh-
old semantics, as defined by Rabin [Rab63]. The algorithmic properties of these
languages are well-understood; we refer to the book of Paz [Paz71] and the
survey of Condon [Con01] for a wealth of results about them.

The class of probabilistic languages strictly subsumes the class of regu-
lar languages; in this paper, we consider the decision problem of determining
whether a probabilistic language is regular. This problem has been considered
by Bertoni [Ber75], and proved undecidable. The aim of this paper is to give a
different and simple proof of this result.

2 Preliminaries

Let () be a finite set of states. A distribution over () is a function 6 : @ — [0, 1]
such that 3 ° 5 6(g) = 1. We denote D(Q) the set of distributions over Q.

Definition 1 (Probabilistic automaton). A probabilistic automaton A is given
by a finite set of states @, a transition function ¢ : A — (Q — D(Q)), an initial
state qo € Q, and a set of final states F C Q.



All the numbers in the transition function of a probabilistic automaton are
assumed to be rational numbers.

In a transition function ¢, the quantity ¢(a)(s,t) is the probability to go
from the state s € @ to the state t € () reading the letter a. A transition function
naturally induces a morphism ¢ : A* — (Q — D(Q)). We denote P 4(s — )
the probability to go from a state s to a state ¢ reading w on the automaton A4,
e p(w)(s,t).

The acceptance probability of a word w € A* by Ais Y, p d(w)(qo, 1),
which we denote P 4(w).

The following threshold semantics was introduced by Rabin [Rab63].

Definition 2 (Probabilistic language). Let A be a probabilistic automaton and
x € (0,1). This induces the probabilistic language

L7%(A) = {w € A* | Py(w) > x}.

The emptiness problem was considered by Rabin: given a probabilistic au-
. 1 . . .
tomaton A, determine whether L~ 2 (A) is non-empty, i.e. whether there exists
a word w such that P4 (w) > 3.

Theorem 1 ([Paz71]). The emptiness problem is undecidable.

A simple undecidability proof was given by Gimbert and Oualhadj in [GO10].

3 A Universally Non-Regular Probabilistic Automaton

Theorem 2. There is a probabilistic automaton C such that for every number x
n (0,1), the language L="(C) is non-regular.

In the original paper introducing probabilistic automata, Rabin [Rab63] gave
an example of a probabilistic automaton .4 such that L=%(.A) is non-regular, for
all irrational numbers x. The alphabet of the Rabin’s automaton A is {0, 1}.
The automaton .A computes the binary decomposition function denoted bin, i.e.
P 4(u) = bin(u), defined by bin(a; - - - a,) = g+ + -+ + 3¢ (i.e. 0.5 ... a7 in
binary). We show that adding one letter and one transition to this probabilistic
automaton makes it universally non-regular.

The automaton C is represented in Figure 1. The alphabet is C' = {0, 1, f}.
The only difference between the automaton A proposed by Rabin [Rab63] and
this one is the only transition over f. As observed by Rabin, a simple induction
shows that for v in {0, 1}*, we have P¢(u) = bin(u).



Fig. 1. A universally non-regular probabilistic automaton. The initial state is marked by an ingo-
ing arrow and the final state by an outgoing arrow. The first symbol over a transition is a letter
(either 0, 1, or #). The second symbol (if given) is the probability of this transition. If there is only
one symbol then the probability of the transition is 1.

We show that for all numbers z in (0, 1), the language L~*(C) is non-
regular. Let u, v in {0, 1}*, observe that P¢(w - § - v) = bin(u) - bin(v).

Fix z in (0,1). For every w, v in {0, 1}* such that x < bin(u) < bin(v),
there exists w in {0,1}* such thatw - - w ¢ L”*(C)and v - § - w € L7*(C);

it suffices to choose w such that bin(w) is in ﬁ(v), B f(u) . It follows that the

left quotients ! - L>*(C) and v~! - L>%(C) are distinct, so L>*(C) has an in-
finite number of pairwise distinct left quotients. By the Myhill-Nerode theorem
L~*(C) is not regular.

4 Main Result

Theorem 3. (Undecidability of the regularity problem) The regularity problem
is undecidable for probabilistic automata.

This result was originally proved in [Ber75].
Roughly speaking, the idea is to use the universally non-regular automaton
given in Section 3 to “amplify” an irregular behaviour.

Proof. We construct a reduction from the emptiness problem to the regularity
problem. Then, undecidability of the latter follows from Theorem 1.

Let A be a probabilistic automaton over an alphabet A. We construct a prob-
abilistic automaton B such that:

L>2 (A)isempty if and only if L>2 (B) is regular.

The automaton B is over the alphabet B = AW C where C' = {0, 1,1}, and
uses the automaton C from Section 3. It is obtained as the sequential composition
of A and C: it starts in .4 and from every final state of A moves by # to the initial



state of C. The initial state of B is the initial state of .A, the only final state of B
is the final state of C.

For u € A* and v € C*, we have Pg(u - § - v) = P4(u) - Pe(v). A word
which is not in A*-f- C* has no accepting run, so is accepted with probability 0.

— Assume that 1”2 (A) is empty. Thanks to the above observation we have
that 1> (B) is empty, so in particular it is regular.

— Conversely, assume that L>2 (A) is non-empty. Let u be a word such that
P(u) > %. Observe that L>2(B)N(u-4-C*) = u-f-L>(C), where
x = m isin (0, 1). By Theorem 2, the language L~%(C) is non-regular,

hence so is u - f - L~*(C), implying that L>: (B) is also non-regular.
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