On Determinisation of Good-for-Games
Automata*

Denis Kuperberg!?® and Michal Skrzypczak3*

! Onera/DTIM, Toulouse
2 IRIT, University of Toulouse
3 University of Warsaw
4 LIAFA, University of Paris 7

Abstract. In this work we study Good-For-Games (GFG) automata
over w-words: non-deterministic automata where the non-determinism
can be resolved by a strategy depending only on the prefix of the w-word
read so far. These automata retain some advantages of determinism:
they can be composed with games and trees in a sound way, and inclu-
sion L(A) 2 L(B) can be reduced to a parity game over A x B if A is
GFG. Therefore, they could be used to some advantage in verification,
for instance as solutions to the synthesis problem.

The main results of this work answer the question whether parity GFG
automata actually present an improvement in terms of state-complexity
(the number of states) compared to the deterministic ones. We show that
a frontier lies between the Biichi condition, where GFG automata can be
determinised with only quadratic blow-up in state-complexity; and the
co-Biichi condition, where GFG automata can be exponentially smaller
than any deterministic automaton for the same language. We also study
the complexity of deciding whether a given automaton is GFG.

1 Introduction

One of the classical problems of automata theory is synthesis — given a spec-
ification, decide if there exists a system that fulfils it and if there is, automat-
ically construct one. The problem was solved positively by Biichi and Landwe-
ber [BL69] for the case of w-regular specifications. There are two standard
approaches to the problem: either by deterministic automata [McN66] or by
tree automata [Rab72]. Henzinger and Piterman [HP06] have proposed a model
of Good-For-Games (shortly GFG) automata that enjoy a weak form of non-
determinism while still preserving soundness and completeness when solving the
synthesis problem.

An automaton is Good-For-Games if there exists a strategy that resolves the
non-deterministic choices, by taking into account only the prefix of the input
w-word read so far. The strategy is supposed to construct an accepting run of

* Research funded by ANR/DGA project Cz (ref. ANR-~13-ASTR-0006); and by fon-
dation STAE project BRlefcaSE. The second author has been supported by Poland’s
National Science Centre grant (decision DEC-2014-13/B/ST6/03595).

the automaton whenever an w-word from the language is given. The motivation
for this model in [HP06] was to simplify the transition structure of automata
as solutions of the synthesis problem for Linear Temporal Logic. Experimental
evaluation of GFG automata and their applications to stochastic problems were
discussed in [KMBK14].

The notion of GFG automata was independently discovered in [Col09] under
the name history-determinism, in the more general framework of regular cost
functions. It turns out that deterministic cost automata have strictly smaller
expressive power than non-deterministic ones and therefore history-determinism
is used whenever a sequential model is needed.

In the survey [Col12] two important results about GFG automata over finite
words are mentioned: first that every GFG automaton over finite words con-
tains an equivalent deterministic subautomaton, second that it is decidable in
PTIME if a given automaton over finite words is GFG. Additionally, a conjecture
stating that every parity GFG automaton over w-words contains an equivalent
deterministic subautomaton is posed.

In [BKKS13], examples were given of Biichi and co-Biichi GFG automata
which do not contain any equivalent deterministic subautomaton. Moreover,
a link between GFG and tree automata was established: an automaton for a
language L of w-words is GFG if and only if its infinite tree version accepts the
language of trees that have all their branches in L. However, the problem of
the gap in the number of states between deterministic and GFG automata over
w-words was left open. Indeed, for all the available examples of GFG automata,
there was an equivalent deterministic automaton of the same size.

We settle this question in the present paper. We show that for Biichi au-
tomata determinisation can be done with only a quadratic state-space blow-up.
The picture is very different for co-Biichi automata (and all higher parity con-
ditions), for which for every n we give an example of a GFG automaton with
2n + 1 states that does not admit any equivalent deterministic automaton with

on
less than T T states.

The lower bound for determinising co-Biichi GFG automata shows that these
automata can be exponentially more succinct than deterministic ones. Therefore,
it indicates possibility of avoiding exponential blow-up by using GFG automata
instead of deterministic automata in the problems of containment or synthesis.
On the other hand, the quadratic determinisation construction for Biichi GFG
automata shows that in this case GFG automata are close to deterministic ones.
Therefore, the GFG model may be considered less relevant (with respect to
succinctness) for Biichi condition than for general parity condition.

We emphasize the fact that although the model of GFG automata requires
the existence of a strategy resolving the non-determinism, this strategy is not
used in algorithms but only in proofs. Therefore, it is not a part of the size
of the input in computations based on GFG automata. This is what allows an
improvement on deterministic automata: we just rely on the existence of this
strategy without having to explicit it.

In the present paper we additionally consider the problem of deciding whether
a given parity automaton is GFG. The problem is decidable in EXPTIME
(see [HP06]) but no efficient algorithm is known. In the special case where the
automaton accepts all w-words, we show that this is equivalent to solving a par-
ity game, so it is in PTIME for any fixed parity condition, and in NP n co-NP if
the parity condition is a part of the input. The general case of deciding GFGness
of parity automata is a priori more complicated. We show that it is in PTIME
for co-Biichi automata, moreover the procedure involves building another au-
tomaton that could be GFG even if the input automaton is not. Therefore, this
procedure could be used as a tool to produce co-Biichi GFG automata in some
cases. The PTIME complexity in this case is surprising — although the required
strategy can be of exponential size in the co-Biichi case, we can decide in poly-
nomial time whether it exists. In the Biichi case we show that it is in NP to
decide whether a given automaton is GFG. The problem of efficiently deciding
GFGness of automata of higher parity indices remains open.

Structure of the paper. In Section 2 we briefly introduce the basic notions
used in our constructions. In Section 3 we provide the lower bound on the state-
complexity of determinising co-Biichi GFG automata. Section 4 is devoted to the
determinisation construction for Bichi GFG automata. In Section 5 we study
the problem of deciding GFGness of a given automaton and in Section 6 we
conclude. The technical details of the presented results are given in Appendix.

2 Definitions

By A we denote a finite alphabet, elements a € A are called letters. A* is the
set of finite words over A and A“ is the set of w-words over A. e stands for the
empty word. The successive letters of a word « are a(0), (1), ... The length of
a finite word w is |w|. We use the standard notions of prefix and suffix of a word.

By ua we denote the concatenation of a finite word u with a finite word or an

w-word a. If K € A% and w € A* then we define w—'K % {a € A¥ | wa € K}.

In our constructions it is easier to work with an acceptance condition over
transitions instead of states. Clearly, the translation from the state-based ac-
ceptance to the transition-based acceptance does not influence the number of
states of a parity automaton. The opposite translation may increase the num-
ber of states by the factor corresponding to the acceptance condition but this
translation is still polynomial (even linear for a fixed condition). Except that,
the proposed definitions are standard.

2.1 Automata over w-words
A non-deterministic parity automaton over w-words (shortly parity automaton)

is a tuple A = <AA, QA, qi“, AA, QA> that consists of: a finite set A4 called the
input alphabet; a finite set QA of states; an initial state qf4 e Q4; a transition

relation A < QA x AA x Q4; and a priority function 24: A4 — N. If the
automaton A is known from the context then we skip the superscript A.

Transitions (g,a,q’) € A are usually noted ¢ —— ¢'. Similarly, if w =
aopai ...an and ¢ —> ¢;41 is a transition of A for all i < n then we write
g0 — ¢n41 and call it a path in A. We additionally require that for every ¢ € Q,
a € A there is at least one transition in A of the form ¢ —— ¢’ for some ¢’ € Q.

If 2: A—{i,i+1,...,j} then we say that the parity indezx of A is (i,7). An
automaton of parity index (1,2) is called a Biichi automaton and an automaton
of parity index (0,1) is called a co-Biichi automaton. If A is a Biichi automaton
then we additionally define FF < A as £271(2) and call it the set of accepting
transitions. Similarly, if A is a co-Biichi automaton then we define R € A as
271(1) and call it the set of rejecting transitions.

If A is such that for every ¢ € Q and a € A, there is a unique state ¢’ € Q
such that ¢ — ¢/ then A is a deterministic automaton. In this case, we might
denote its transition relation by a function §: Q x A — @Q instead of A.

For an w-word o € A%, a run of A over a from a state ¢ € @ is a function

p: w — @ where for every n > 0, we have a transition of A p(n) i) p(n+1) and

p(0) = q. p is accepting over o if° limsup,,_,,, 2((p(n), a(n), p(n+1)) is even.
In other words, the condition requires the highest priority that occurs infinitely
often to be even. The priorities can be seen as positive (even) and negative (odd)
events, ordered by their importance. The formula says that the most important
event happening infinitely often has to be positive.

By the definition, if A is Biichi it means that the above sequence of transitions
should contain infinitely many accepting transitions. Similarly, if A is co-Biichi
then it should contain only finitely many rejecting transitions.

An automaton A accepts an w-word « from g € Q) if there exists an accepting
run p of A from g over a. By L(A, q) we denote the set of all w-words that are

accepted by A from ¢. The language of an automaton A is L(.A) ef L(A, q1).
An automaton A is Good-For-Games (GFG, for short) if there exists a func-
tion o: A* — (@ that resolves the non-determinism of A depending only of
the prefix of the input w-word read so far: over every w-word «, the function
n — o(a(0)a(l)...a(n —1)) is a run of A from gr over a, and it is accepting
over a whenever « € L(A). Clearly, every deterministic automaton is GFG.

3 Co-Biichi case

In this section we provide the following result about the state-complexity of
determinising co-Biichi GFG automata.

Theorem 1. For every n there exists a co-Biichi GFG automaton C,, with 2n+1
states such that any equivalent deterministic automaton has at least zsﬁ states.
All the automata C, for n > 1 share the same alphabet consisting of four

symbols A def {t,0,m,4}. The letters of the alphabet enable to manipulate on

5 Note that whether a run p is accepting over a depends on the w-word o.

the set {0,1,2,...,2n — 1}: +, o, 7 are three permutations of this set such that
every permutation of this set can be obtained as a composition of these three (in
fact ¢ is the identity permutation used for padding). The symbol £ corresponds
to the identity permutation on {1,...,2n — 1} but it is undefined on 0.

This way a finite word or an w-word a over the alphabet A can be seen as
a sequence of relations on the set {0,...,2n — 1} as depicted on Figure 1. We
will represent these relations as a graph (denoted Graph(«)). If « is finite let
D = {0,1,...,|a|}, otherwise D = w. The graph is a plait of width 2n: the
domain of Graph(«) is {0,1,...,2n — 1} x D and all the edges are of the form
(i,k) = (a(k)(@),k+1) for i € {0,...,2n — 1} and k,k+1 € D.

@ o s L o i o 0 f
1
Graph(a): { m f&
time: 0 1 2 3 4 5 6 7 8

Fig. 1. The infinite sequence of relations on the set {0,...,3} (i.e. n = 2) represented
by an w-word o € A“.

The language L,, contains an w-word « € A if and only if Graph(«) contains
at least one infinite path.

The set of states of the automaton C,, is @ = {1,0,1,2,...,2n—1}. The states
{0,...,2n — 1} are deterministic: reading a € A in such a state ¢ the automaton
moves to the successive state according to the relation represented by a (or to L
if a = f and ¢ = 0). The state L is non-deterministic — the automaton can move
from | over any letter a € A to any state ¢’ € {0,...,2n — 1}. Let the initial
state of C,, be L and the rejecting transitions be those of the form L —% ¢'.

Note that every accepting run of C,, over an w-word « indicates an infinite
path in Graph(a). Therefore, we obtain the following fact.

Fact 2. L(C,) € L,.
Lemma 3. C,, is a GFG automaton recognising the language L, .

Proof. Tt is enough to construct a function o: A* — @ that for every w-word
« € L, produces an accepting run of C,, over o — it will prove that L,, < L(C,)
and that C, is GFG. We will do it inductively with o(e) = L = ¢§".

Let o follow deterministically the transitions of C,, for all the states ¢ # L. It
remains to define o(wa) if o(w) = L and a successive letter a is given. Assume
that |wal| = k.

For every i € {0,1,...,2n — 1} let p; be the unique maximal path containing
the node (4,k) in Graph(wa). Note that each of these paths p; has a starting

position — a node (i,k;) on the path p; with a minimal moment of time ;.
Clearly k; < k. We say that p; is older than py if k; < ki — in other words, p;
reaches further to the left than p;.

Let o(wa) = i such that p; is the oldest among these paths (if there are two
paths equally old, we move to that with smaller).

Assume that a € L,,. We need to prove that o produces an accepting run of
C, over a. Let p1,pa, ..., pm be the set of infinite paths in Graph(a) (we know
that 1 < m < 2n). Assume that p; is an oldest among them and that it starts in
a moment of time k;. For every node (¢, k1) for i = 0,...,2n — 1 that does not
belong to any of these infinite paths, the unique maximal path containing (7, k1)
is finite. Therefore, for some k' > k1, one of the paths p1,...,pn is the oldest
among the paths intersecting the (k’)th moment of time. So the function o will
use at most once a rejecting transition of C,, after reading the (k")th symbol of
« and then it will follow one of the paths pq,...,p, and accept. O

We now assume for the sake of contradiction that there exists a deterministic
automaton D recognising L, that has strictly less than 2511 states. By Theo-
rem 4 from [BKKS13] it means that we can use D as a memory structure for the
automaton C, to recognise L,,. Therefore, we focus on the product C,, x D with
the acceptance condition taken from C,,. What is important is that C,, x D has
to follow the transitions of C,,. We know that C,, x D is a deterministic co-Biichi
automaton with strictly less than 2™ states and L(C,, x D) = Ly,.

We will use the symbol p to denote finite and infinite runs of C,, x D. For a
given run p there are possibly many w-words a that induce this run, since only
the sequence of states is considered in p.

The rest of the argument aims at providing an w-word « that belongs to L,,
but is rejected by the product automaton C,, x D. Intuitively, the construction of
« requires to balance between the two aims: we need to infinitely often force the
product automaton C, x D to take a rejecting transition of C, but at the same
time to ensure that there is at least one infinite path in Graph(«). The w-word
«, an infinite path in Graph(«), and the rejecting run of C,, x D over « will be
constructed as a limit of inductively constructed finite approximations. We will
not control exactly the way C,, x D works in every position of our approximation,
we will be interested only in some checkpoints controlled by partial runs.

Definition 4. A partial run is a finite partial mapping 7: w — Q% x QP such
that 7(0) is defined and equal to (L, qP).
A partial run T is rejecting if all its states are of the form (L, m).
By T € p we denote the fact that a run p agrees with T wherever T is defined.
The length of 7 is the mazimal moment of time k such that 7(k) is defined.

Note that the domain of a partial run 7 does not have to be an initial segment
of w. The following definition is crucial.

Definition 5. Let 7 be a partial run of length k. We say that a value i €
{0,...,2n — 1} is alive in 7 if there exists an w-word a such that for the run
p of Cp x D over a we have 7 S p and there exists a path p: {0,1,... k} —

{0,1,...,2n — 1} in Graph(«) that starts in the moment of time 0 and ends in
the moment of time k with the value i (i.e. p(k) = 1).

Note that in the above definition we actually care only about the first &
letters of . However, it is cleaner to consider w-words « here.

T
a:
0
1
Graph(a):
2
3
p:
time: 0 1 2 3 4 5 6 7 8

Fig. 2. An example of a partial run 7 and an w-word « that witnesses the fact that 2
is alive in 7. p is the run of C,, x D over a and the states of p and 7 agree wherever
defined. The dashed path is the path witnessing that 2 is alive in 7.

Figure 2 depicts a partial run and a witness that the value ¢ = 2 is alive.

Our aim is to construct a sequence of partial rejecting runs of increasing
lengths 79 € 71 < ... such that for all £ € N there are at least n alive values in
7¢. It will give a contradiction with our assumptions by the following lemma.

Lemma 6. Assume that there exists a sequence of partial rejecting runs 19 C
T1 C ... of increasing lengths such that for all £ € N there exists an alive value
in 7p. Then there exists an w-word o € L,, such that the run p of C, x D over «
s rejecting.

Proof. Let ky be the length of 7y. Take any ¢ and assume that i, is a value that
is alive in 7y. Observe that it is witnessed by:

— an w-word ay,
— arun py of C,, x D over ay, such that 7, < py,
— apath pe: {0,...,ke} — {0,...,2n — 1} in Graph(ay) with pe(ke) = ie.

Now we take a subsequence of (ay, pg, pe)een that is point-wise convergent to

a triple
w
(a)p7p)e<AX(anXQD)X{O""72n_1}) b

such that:

— p is the run of C,, x D over «,
— for infinitely many ¢ we have 7, S p,
— p encodes an infinite path in Graph(a).

To formally construct («, p, p) we can proceed similarly as in the proof of Konig’s
lemma. We fix («(i), p(7), p(i)) inductively for ¢ = 0,1,.... At each moment we
require that infinitely many (ay, pe, pe) agree with («, p, p) on the first ¢ positions.
Since for each i there are only finitely many choices of («(%), p(i), p(i)) so we can
fix these values in such a way that still infinitely many (ay, pe, pe) agree with
them.

By the properties of («, p,p) we know that p is rejecting as it contains in-
finitely many times a state of the form (L,m). On the other hand, o € L,
because p is a witness that Graph(a) contains an infinite path. O

What remains is to construct the sequence 7, inductively. Our inductive

assumption is that 7y is a partial rejecting run and the values 1, 3,5,...,2n—1 are
alive in 7, (note that there is n such values). We put 7o = [0 — (L, ¢P)]. Clearly
To satisfies the inductive assumption (in fact all the values i = 0,...,2n — 1 are

alive in 79).

Let k¢ be the length of 7,. We construct 7441 from 7, by applying some words
to the last state (L, my) = 7¢(k¢) of 7, and observing the behaviour of C,, x D.

Observe that there are N = 2" words uq,...,uny € {t,0,7}* that encode
distinct permutations P of {0,...,2n — 1} such that for all ¢ € {0,...,2n — 1},
we have |i/2] = |P(4)/2] i.e. such a permutation maps {2, 2i + 1} to itself.

We can assume that all the words ug, ..., uy are of equal length by padding
them with ¢. Since there are strictly less than N = 2™ states of C,, x D, there are
two distinct such words u, u' leading from (L, my) to the same state (g;, m}) of
C,, x D. By the construction of C,, x D we know that ¢; € {0,...,2n — 1}.

Assume that the permutations corresponding to u and v’ differ on 2i + 1,
i.e. one of them maps 2¢ + 1 to 2¢ and the other to 2i + 1. Let X be the set of
the values {u(1),u(3),...,u(2n — 3),u(2n — 1),4'(2i + 1)} (we write here u(i’)
for the value assigned to ¢’ by the permutation corresponding to u, the same for
u’). By the above observations X contains exactly n + 1 elements.

Consider w € {¢, 0, 7}* encoding a permutation that maps:

— ¢; to 0,
- X\{¢g;} t0 1,3,5,...,2n—11if ¢, € X,
- X tol,3,...,2n—1,and 2 if ¢, ¢ X.

Since w as a permutation maps ¢ to 0, we know that after reading w from
the state (¢j, m}) the automaton C,, x D reaches a state of the form (L, mg41).
For an illustration of these permutations, see Figure 3.

Fact 7. Consider 7¢41 defined as 7o U [ke + |u| + |w| + 1 — (L, me41)]. By the
definition Ty C Tyy1, Tet1 15 rejecting, and all the values 1,3, ...,2n—1 are alive
in o1 (it is witnessed by the fact that these values were alive in 7, and by the
words uwf and w'wf).

a/a:
Graph(a):
|
plp’s (Lime) (3,mf) O,mf) (Lymesa)
time: ke ke + |ul ke+|ul+|w| kesr

Fig. 3. The behaviour of C,, x D over wwf and w'wi. The alive values are in circles, only
edges between the alive values are drawn. The dashed edge corresponds to the action
of the word v’ on the value 1 (u and v’ differ on this value). X is the set of values
in circles at the moment of time ks + |u|. g = 3 is mapped to 0 by the permutation
corresponding to w, the other elements of X are mapped to 1 and 3.

Therefore, we have constructed 7,41 that satisfies the inductive invariant.
This concludes the inductive construction of the sequence (7¢)sen. By Lemma 6
it finishes the proof of Theorem 1.

4 Biichi case

In this section we discuss the quadratic upper bound for the state-complexity of
determinising Biichi GFG automata, as expressed by the following theorem.

Theorem 8. For every Biichi GFG automaton there exists an equivalent deter-
ministic Biichi automaton with quadratic number of states.

Here we provide some high level overview of the construction. A detailed
description of it can be found in Appendix B.

The main part of the construction is an inductive normalisation of a given
Biichi automaton A. The normalisation is guided by the powerset automaton
D having sets of states of A as its states. It turns out that if A is GFG then
L(A) = L(D). During the normalisation we remove some irrelevant transitions
of A and mark some existing transitions as accepting (while ensuring that we
preserve the language L(A) and the fact that A is GFG).

When reaching a fixed-point of the normalisation, we know that 4 is in cer-
tain formal sense optimal. This optimal A needs not be deterministic. However,
we can prove that there is a function o witnessing that A is GFG that uses
A as a memory structure. Therefore, by combining A with o, we can define a
structure of a deterministic Biichi automaton for L(A) over A x A.

5 Recognising GFG automata

We now investigate the algorithmic complexity of recognising whether a given au-
tomaton is GFG. We provide three results about general GFG-automata, Biichi
GFG automata, and co-Biichi GFG-automata. Let us recall that in general, the
problem of deciding if a given parity automaton is GFG was shown in [HP06] to
belong to EXPTIME.

Equivalence with parity games. The following theorem shows that in gen-
eral, the problem of GFGness of a given parity automaton is at least as hard
as solving parity games. The later is known to be NP n co-NP but there is no
PTIME algorithm known.

Theorem 9. Finding the winner of a parity game of index (i,7) is polynomi-
ally equivalent to deciding whether a given parity automaton of index (i,j) that
accepts all w-words is GFG.

Indeed, we show that given a parity game G between the players 3 and V, it
is possible to build an automaton A accepting all w-words, with the same parity
index as G, such that A is GFG if and only if 3 wins G. In the initial state of
A the automaton is supposed to non-deterministically guess the next letter. If
the guess is correct, we move to an accepting sink state, otherwise we move to
a subautomaton mimicking the game G, where moves of V are represented by
letters and moves of 3 are represented by a choice of transition. This way A
accepts all w-words but no GFG strategy can guarantee to reach the accepting
sink state. Therefore, A is GFG only if 3 has a strategy to win the original
game G. A polynomial reduction from the problem of GFGness of an automaton
accepting all w-words to a parity game of the same index is an easy consequence
of [HPO06].

A detailed construction of A and the proof of equivalence are presented in
Appendix C.

Recognising Biichi GFG automata. The upper bounds given in Section 4
allow us to state the following theorem, see Appendix D for a detailed proof .

Theorem 10. [t is in NP to decide whether a given non-deterministic Biichi
automaton A is GFG. Moreover, if A is GFG then we can construct an equivalent
deterministic Biichi automaton in NP.

Recognising co-Biichi GFG automata.

Theorem 11. Given a non-deterministic co-Bilichi automaton, we can decide
whether it is GFG in polynomial time.

We will only sketch the proof here, the detailed proof is presented in Ap-
pendix E.

The cornerstone of the construction is a game called the Joker Game, defined
relatively to a co-Biichi automaton A. This is a perfect information two players

game played between 3 and V. The set of positions is Q4 x Q4 the initial position
is (¢f",qi"), and at a round n starting in (p,, ¢,) the following choices are made
by the players:

— V chooses a letter a,, € A,

— 3 chooses a transition p, —% p,,1 of A,

— V chooses a transition g, — ¢,41 of A or plays JOKER and chooses a
transition p, —> ¢, 41 of A.

After that the game moves to the position (pp41,gn+1). Player 3 wins an infinite
play if either:

— the run (py), of A is accepting over (an)n,
— V played infinitely many times JOKER,
— or the run (g,), of A is not accepting over (a,),°.

Intuitively, the Joker Game forces 3 to produce an accepting run of A over
(an)n sequentially, whenever possible. However, since we cannot put the fact that
(an)n € L(A) into the acceptance condition (it would hide an exponential blow-
up in the acceptance condition). Therefore, we ask V to concurrently produce a
run of A over (ay,),. If V manages to produce an accepting run while 3 fails to
do so, it shows that A is not GFG. The other implication is problematic: the
automaton 4 may not be GFG but 3 may win the Joker Game by relying on
the choices made by V.

We start by computing in polynomial time the winner of the Joker Game
(a parity game of index (0,2)) on A. We show that if V wins the Joker Game
then A is not GFG. In the opposite case we are able to build a GFG automaton
B of the same number of states as A4 that recognises the same language. Then,
using again an appropriate game over 4 x B we can decide GFGness of A in
polynomial time.

To build the automaton B, we first compute a binary relation — on the states
of A. This relation is the winning region of yet another game, the safety game,
which is the Joker Game where seeing a rejecting transition means immediate
loss. By referring to the Joker Game we prove that for all ¢ there is p such that
p—pandp—gq.

This means that we can construct a deterministic safety automaton D with
states p such that p — p. Every w-word that is accepted by A has a suffix
accepted by D from some state p. It remains to add non-deterministic rejecting
transitions to D in order to allow it to guess such a state p. For this, we compute
an equivalence relation F on the states of A reflecting simultaneous reachability.
We then use this relation to build B by connecting E-equivalent states of D
using rejecting transitions. We finally show that the automaton B is GFG and
recognises L(A). The strategy witnessing GFGness of B uses the same intuition
as the one in Lemma 3

5 Formally, only the suffix of (g,). after the last JOKER played by V is a run of A over
the suffix of (an)n.

6 Conclusion

The main result of this paper is a solution of the open problem asking what is the
state-complexity of determinising parity GFG automata over w-words. We prove
that for co-Biichi GFG automata (and therefore all higher parity indices) the
exponential blow-up cannot be avoided. For the remaining case of Biichi GFG
automata we provide a construction of an equivalent deterministic automaton
with quadratic number of states.

Using the tools developed to prove the above results, we are additionally able
to study the complexity of the decision problem of verifying if a given parity
automaton is GFG. We prove that for general parity automata the problem
is at least as hard as solving parity games (for which no PTIME algorithm is
known). Then we focus on the two subcases of Biichi and co-Biichi automata.
In the case of Biichi automata we provide a very simple NP algorithm based
on our determinisation construction. In the case of co-Biichi automata we have
a bit more involved PTIME decision procedure. One of the advantages of the
procedure is that, even if the automaton itself is not GFG, there could be cases
when the procedure builds an equivalent GFG automaton with the same number
of states. The possibilities of exploiting this fact are still to be studied.

Hopefully, the results presented in this paper will shed some light on possible
efficient applications of GFG automata in the classical problems of verification.

For future research, in the Biichi case, both the exact time-complexity (be-
tween PTIME and NP) and state-complexity (between linear and quadratic) of
the determinisation algorithm are still to be clarified.

The complexity of deciding GFGness for general parity automata is still open,
with a lower bound of solving parity games and an EXPTIME upper bound.

Appendix

A Game approach

Games on finite arenas will play a central role in our study of the parity GFG
automata. We will be mainly interested in two types of games, as defined in the
following subsections.

A.1 Game on a single automaton

In this section we recall the construction of a game G(.A) from [HP06,BKKS13]
for resolving GFGness of parity automata.

Let A= (A, Q,q, A, 2) be a parity automaton over an alphabet A. The set
of positions of the game G(A) is @ and the initial position vy is the initial state
g1- In the nth round for n = 0,1, ... starting in a position g, first V plays a letter
a, € A and then 3 plays a state ¢,41 such that ¢, — g,,1 is a transition of A.
Consider an infinite play in which V played an w-word a and 3 played a run p of
A over «. Such a play is won by 3 if either the run p is accepting or the w-word
a does not belong to L(A).

Observe that the arena of the game G(.A) is finite and the winning condition
is w-regular. Therefore, one of the players has a finite-memory winning strategy.
It is shown in [BKKS13] that 3 wins G(A) if and only if A is GFG'.

We will also need a reformulation of Theorem 4 from BKKS13].

Proposition 12. Assume that A is a parity GFG automaton.

1. If 3 has a finite-memory winning strategy in G(A) with M memory states
then there exists a deterministic parity automaton recognising L(A) with
|QA| - M states.

2. If D is a deterministic parity automaton recognising L(A) then 3 has a finite
memory winning strategy in G(A) with |QP| memory states.

A.2 Game on two automata

Let A, B be two non-deterministic parity automata, both over an alphabet A.

We define the game G(A, B) similarly to G(A) from the previous section,
except that we require Player V to explicitly build a run of the other automaton
B. In more detail, the set of positions is Q** x QB, the initial position is (q{‘, qIB),
and at a round n starting in (p,, ¢n):

— V chooses a letter a,, € A,
— 3 chooses a transition p, — p, 11 of A,

" Originally, in [HP06] the definition of GFG automata was given by the game G(A).

— V chooses a transition g, — ¢,+1 of B.

After that the game moves to the position (pp+1, gn+1). Player 3 wins an infinite
play if the run (p,), of A is accepting over (a,), or the run (g,), of B is not
accepting over (ap).

The following remark follows from the existing algorithms for solving Rabin
games in polynomial time for every fixed number of Rabin pairs [PP06].

Remark 1. For each fixed index (¢,7) the winner of G(A, B) can be decided in
polynomial time in the number of states of automata A, B of index (3, j).

Theorem 13. Let A be a GFG automaton and B be a non-deterministic au-
tomaton. Then 3 wins G(A, B) if and only if L(A) 2 L(B).

Proof. If L(B) ¢ L(A) then playing a € L(B)\L(A) together with an accepting
run of B over « is a winning strategy for V in G(A, B).

On the other hand, if L(B) < L(A), playing the GFG strategy of A is winning
for 3, since every w-word a € L(B) will yield an accepting run of A over « via
this strategy. O

The following result from [HP06] provides the EXPTIME upper bound for
the general GFGness problem.

Theorem 14 ([HPO06]). Let A, B be two non-deterministic parity automata
such that L(A) = L(B) and B is GFG. Then 3 wins G(A, B) if and only if A is
GFG.

Proof. By Theorem 13, if A is GFG and L(B) < L(A), Player 3 wins G(A, B).
Now, assume 3 wins G(.A, B) using a strategy o. We want to provide a GFG

strategy
O,GFG: A* QA~

The principle is simply to use the GFG strategy oz of B to play moves of V, and
answer them with a winning strategy o to find a valid run of A. This way, if
the input w-word is in L(A) = L(B), the correctness of og ensures that the run
of B is accepting, and in turn the correctness of o ensures that the run of A is
accepting.

Let us describe the function o more formally. Assume that u € A* and
the sequence of states of B produced by op over u is p’. Consider the play of
G(A, B) in which V plays successive letters of u and successive states of p’. Let
oSFG(u) be the state played by 3 according to her winning strategy after V
played v and p'.

We need to prove that if o € L(A) = L(B) then the sequence of states p
defined by oFS is an accepting run of A over a. Let p’ be the sequence of
states of B given by op over «. Since a € L(B) we know that p’ is an accepting
run of B over a. Since p is the run constructed by the winning strategy o against
V playing o and p’, we know that p has to be an accepting run of A over a.

O

GFG

B Biichi case

In this section, we prove the following theorem:

Theorem 8. For every Biichi GFG automaton there exists an equivalent deter-
ministic Biichi automaton with quadratic number of states.

Let A =(A,Q,q, A, F)with F € A be a Biichi GFG automaton recognising
a language L < A“.

The crucial phase of our construction will consist of inductively modify-
ing A while preserving L. The modifications will not influence the alphabet
A nor the initial state g;. Let us put Qo = Q, A9 = A, Fy = F, and Ay =
(A, Qo, q1, Ao, Fp). During the construction we will keep the following invari-
ants:

1 eEQRiy1€Q; €,
A1 € A€ A,
F; c Ay
Aipi\Fi1 € ANEF;,
L(Ait1) = L(A) = L,

and additionally we will ensure that the automaton A; is GFG.

B.1 Residual languages

We will start by observing that the fact that a given automaton A; is GFG
implies that the residual languages L(A;, q) of A; are in a sense simple.

Let us fix a function oGF%: A* — Q; witnessing that A; is GFG.
GFG Zf

%

Definition 15. We say that A; is minimal with respect to o

— for every state q € Q; there is a word w such that aiGFG(w) =gq,

— for every transition ¢ — ¢’ € A; there is a word w such that oS¥S (w) = ¢

and 0S¥ (wa) = ¢, i.e. the transition is used somewhere in cOFC.

Lemma 16. We can assure that the automaton A; is minimal with respect to
oS¥C while preserving the invariants.

Proof. Let us define A} as the copy of A; with all the states and transitions of
A; not accessible via 0%F¢ removed. Clearly after these modifications we still
have L(A}) = L: the € inclusion follows from monotonicity of the modifications
and the D is witnessed by the strategy O'Z-GFG. Since O'Z-GFG is a complete function,
the remaining A} satisfies the condition that from every state there is at least
one transition over every letter. Also the monotonicity constrains are satisfied.

From that point on we assume that 4; = A.. O

We will now study residuals of A; — the languages L(A;, q) for states g of A;.
The following lemma shows that the residuals of A; cannot split — for every pair
of tramsitions ¢ — ¢’ and ¢ — ¢” of A; the residuals L(A;,¢") and L(A;,¢")
are the same.

Lemma 17. If 08¥C (w) = ¢ and 0FF%(wa) = ¢ then

L(Aw q/) = a’_lL(Aia Q)

Proof. Clearly the © containment holds — if A; has an accepting run over «
from ¢’ then it has an accepting run over aa from gq.

For the © containment take o € A“ such that aa belongs to L(A4;,¢q). Since
UiGFG(w) = ¢ we know that gt — ¢. Therefore, there exists an accepting run
of A; over waa from ¢f* (i.e. waa € L(A;)). It means that the run constructed
by oS¥G over waa is also accepting. But o&F¢(wa) = ¢/, therefore this run
witnesses that there is an accepting run of A; over a from ¢'. Therefore, o €
L(Aiq). O

Corollary 18. If ¢ - ¢ is a transition of A; then L(A;,¢') = a 'L(A;, q).
If ¢ = ¢ is a path in A; then L(A;, ¢') = u='L(A;, q).
If g > ¢ and g = ¢" are paths in A; then L(A;, ¢') = L(A;, q").

Proof. The first claim follows from Lemma 17 and minimality of .A; with respect
to O'iGFG.
The second claim follows from the first one by induction over wu.

The third claim follows directly from the second one. O

Intuitively, this corollary guarantees that we can always make finitely many
bad non-deterministic choices over an w-word « € L(A4;) and still accept it.

B.2 A simple deterministic automaton D; for L

Now we will construct an exponential but simple deterministic Biichi automaton
for L. Let us fix an arbitrary total order <¢ on the set of states @ of the original
automaton A.

Let us define

The set of states of D; is M; and the initial state is {gr}. Let the transition
function of D; for m € M;, a € A be defined as:
575) {min<Q {geQ;|Ipem. (p,a,q) € FZ}} if such ¢ exists
‘(m,a) =
’ {qeQi|Ipem. (p,a,q) € A;} otherwise
In other words, if any of the transitions from m over a is accepting (i.e. in Fj),

we move to the singleton of the minimal state accessible by such a transition.
Otherwise, we just proceed as in the standard powerset construction. Note that

by Corollary 18 we know that the successive set of states of A; is also an element
The accepting transitions FP¢ of D; are the transitions of the first type
(notice that their target is always a singleton). Summing up,

D; = (A, M;, {ai},67*, FP%)

is a deterministic Biichi automaton.
See Figure 4 for a depiction of a run of D; over an w-word. In this section we
follow the convention that accepting transitions are dashed.

Fig. 4. The behaviour of D; over an w-word a. Dots correspond to states of A;. Nodes
in circles belong to the current state of D;. Dashed edges are accepting transitions of
A;, normal edges are normal transitions of 4;. Transitions from states of A; outside
the current state of D; are omitted. The order <g on the states of A is from top to
the bottom.

The following lemma implies that the automaton D; is equivalent to A; in a
strong sense.

Lemma 19. If m e M, and q € m then
L(Di,m) = L(Ai, q).
In particular, L(D;) = L(A;) and if m < m’ for m,m' € M; then
L(D;,m) = L(D;, m').

Proof. Clearly an accepting run of D; over « from m encodes an accepting run
of A; over a from a state ¢’ € m, i.e. a € L(A;,¢'). By (1) it means that also
a € L(A;, q). Therefore L(D;,m) < L(A;, q).

Consider an w-word « € L(A;, q¢). We need to prove that D; accepts « from
m. We will proceed by induction showing that D; uses infinitely many accepting
transitions in its run over a.

It will be achieved by the following inductive claim.

Claim. If ¢ € m € M; and « € L(A;,q) then D; uses an accepting transition
when reading « from m.

We start by proving why this claim finishes the proof of the lemma. Take
geme M; and a € L(A;, q). Let m — m/ be the execution of D; from m over
a prefix w of « that contains an accepting transition given by the above claim.
Let a = wa/. For every ¢’ € m’ there is a path ¢ — ¢’ in A; with ¢” € m.
By the definition of M; we know that a € L(A;,¢”) and by Corollary 18 we
know that o’ € L(A;,q"). Therefore, we can apply the above claim inductively
for ¢ € m' € M; and o € L(A;,¢"). This way we prove that the run of D; over
«a from m contains infinitely many accepting transitions.

For the proof of the claim assume contrarily that the run of D; over « from
m does not contain any accepting transition. In that case for every n the state
my, of D; after reading «(0)...a(n — 1) from m is

a(0)...a(n—1 .
{q/|q()—(>)q/lnAi}.

Consider an accepting run p = (go, g1, ...) of A; over « from q. Let the first

accepting transition in this run be g, on) Qn+1- Since q (0).-a{n—1) Gn in A; we

know that ¢, € m,, and therefore the transition of D; when reading a(n) from
my s accepting.

Figures 5 and 6 present the two possibilities for the run of D; from m to have
an accepting transition if p is an accepting run of A; over « from g € m.

Fig. 5. The execution of D; over a — the states in circles belong to the current state
m of D, the run p of A; is boldfaced, the dashed boldfaced edge is the first accepting
transition in the run p over a. This transition is also the source of the first accepting
transition in the run of D; over «.

B.3 Combinement of A; and D;

We can now define formally the parity game G; that combines the automata A;
and D;. Let W; € Q; x M; contain all pairs (¢, m) such that

L(A;,q) = L(D;,m). (2)

The set of positions of G; is of the form W, u W, x A. The positions from
W; belong to V and the remaining ones to 3. The edges are of the following two
kinds:

Fig. 6. The execution of D; over a — the states in circles belong to the current state
m of D, the run p of A; is boldfaced, the dashed boldfaced edge is the first accepting
transition in p. The automaton D; performs an accepting transition before the first
accepting transition is taken in the run p over a. The state m’ = {q1} of D; after its
first accepting transition does not contain the respective state in p. However, by the
equivalence of residuals we know that o’ € L(A;, q1).

— (¢;m) — (¢,m,a) for all a € A,
— (g, m,a) — (¢’,m’) for all transitions ¢ —— ¢’ of A; and m/ = 6P (m, a).

The priorities of the transitions of the first kind are 0. The priority of a
transition of the second kind is either:

— 0 if both transitions ¢ — ¢’ of A; and m —— m/ of D; are not accepting,

— 2if the transition ¢ - ¢’ of A; is accepting,

— 1 otherwise (i.e. if the transition of .4; is not accepting but the transition of
Di IS)

Fact 20. Consider a play of G; starting from a position (g, m) € W; in which ¥
proposed a sequence of letters o and 3 proposed a sequence of states p of A;. Let
k be the limsup of priorities of edges during this play. The following cases can
occur (recall (2)):

— k=0and a¢ L(A;q),
— k=1 and a € L(A;,q), but the run p is not accepting over «,
— k = 2 and the run p is accepting over a (it witnesses the fact that o €

L(A;,q))

Summing up, 3 wins such a play if either a ¢ L(A;,q) or she managed to
produce an accepting run p of A; over a from q.

The following lemma follows directly from the fact that A; is GFG.

Lemma 21. For every pair (qg,m) € W; 3 has a winning strategy in G; from
(¢;m).

Proof. By our assumptions on minimality of A; there is a word w € A* such
that 05FC (w) = ¢. Consider the following strategy of 3 in G;: after V playing a
sequence of letters v € A*, 3 moves to the state c&F%(wv). By the assumptions

i

on o°FC and Lemma 19 this is a correct play in G;. Consider a play in which

V played a € A¥. Assume for contradiction that the lim sup of the priorities in
this play is 1. By Fact 20 it means that « € L(A4;, ¢) but the run constructed by

UZ»GFG is not accepting over . But in that case wa € L but the run constructed

by UiGFG over wa is not accepting. A contradiction with the assumptions on

5GFG O
i

In particular (gr,{q1}) € W; is a winning position of 3. Note that W; may
contain some pairs (¢, m) where ¢ ¢ m, such pairs will be essential in our con-
struction (see e.g. Definition 29).

B.4 Optimal strategy

We now recall some simple variant of the theory of ranks (or signatures) in parity
games. The definitions will be specialised for the game G, with priorities {0, 1, 2}.

Let us recall that a positional strategy is uniform, if it wins from all the
winning positions in the game. By [EJ91,Mo0s91] parity games are uniformly po-
sitionally determined. Since 3 wins from all the positions W;, a uniform positional
strategy of 3 in G, is a function o: W; x A — W;. Note that if 0(¢, m, a) = (¢’,m’)
then by the definition of G; we have

6Pi(m,a) = m'.

We will additionally require our strategy to be optimal with respect to ranks
defined as follows.

Definition 22. Let o be a winning strategy of 3 in G; from a position (q,m).
We say that rank(o,q,m) is k if k is the mazimal number of edges of priority 1
taken before the first® edge of priority 2 is taken in plays consistent with o.

Now we can ask for optimal ranks of given positions.
Definition 23. For (q¢,m) € W, let rank;(q,m) be the minimal rank(o,q,m)
ranging over winning strategies o of 3 from (g, m).

Let opt,;(q) be the minimal rank;(q, m) ranging over m such that (g, m) € W;.

The following proposition states that there exists a winning strategy opti-
mising the values rank; in all positions, see [SE89,Wal02].

Proposition 24. There exists a uniform positional winning strategy 7; of 3 in
G; such that for every position (g, m) € W; we have

ra‘nk(T’h q, m) = ranki(Q7 m) (3)

8 If there is no such edge then we count all the edges of priority 1 in a given play.

Sketch of a proof. Having computed the values rank; we can let the strategy 7;
move from (g, m, a) to the position (¢, m’) of minimal rank; among the available
successive positions. This way 7; is a winning strategy because whenever it takes
an edge of priority 1 the current value of rank, decreases. Consider (3). First 7;
witnesses the > inequality. But since 7; follows the optimal values of rank;, the
< inequality also holds. O

From that point on we work with a fixed optimal uniform positional strategy
Ti: W; x A — W;. Let us additionally assume that all the ambiguous choices in
the construction of 7; are resolved using the order <g. This way we guarantee
that if the automaton A; is the same as A; then the strategy 7 is the same as
7;. Figure 7 presents an automaton 4; and a strategy 7; in a schematic way.

a q
¢ |_ye 10
5.///).8
4// ° 4
4 o] q"
4 —
1 e—
—e 1
e .
e 0

0 0

Fig. 7. An illustration of A; and 7;. The rectangles are states q of A;, the dots inside
them are respective values m such that (¢,m) € W;. The straight edges are mappings
by the function 7; under a, the bent edges are transitions of A; over a. The accepting
transitions of A; are dashed. The number next to each dot is the value of rank;(q, m)
and the number at the bottom of the rectangle is the value of opt,(q).

The following lemma summarises the monotonicity properties of rank;.

Lemma 25. Consider (g,m) € W; and a € A. Assume that 7;,(q,m,a) = (¢, m’)
and ¢ — ¢ is not an accepting transition of A;. Then:

— rank;(q,m) > rank;(¢’,m’),
— if m = m/ is a non-accepting transition of D; then we have

rank;(q, m) > rank;(¢’,m’).

B.5 Inductive normalisation

We will now perform a sequence of modifications on A; to obtain A; ;. Dur-
ing these modifications we will preserve certain properties witnessing that our
current automaton is still GFG. Let us introduce these concepts more formally.

Consider an automaton A" = (A, Q;, g1, A’, F") with set of states @; and set
of transitions A’ = A;. The set of accepting transitions F’ can be any subset of
transitions A’

Assume that 7: W; x A — W; is a function such that for all (¢, m) € W; and
a € A we have 7(¢,m,a) = (¢’,m') with:

— ¢ % ¢ is a transition of A’ (i.e. also a transition of A;),
— if the above transition is non-accepting in A; then

rank;(q, m) > rank;(q¢’,m’).

For each finite or infinite word o € A* Ly A¥ and (g, m) € W; such a function
7 induces a sequence (finite or infinite) of pairs

def
T[qam] T = (QO7m0)?(q17m1)7"'

defined inductively: (go,m0) = (¢, m) and (¢n41, Mns1) = 7(gn, Mn, a(n)). Note
that in that case the sequence g, g1, ... is a (finite or infinite) run of A’ over «
from ¢. This sequence is called the 7-run of A’ over « from (q,m).

Definition 26. For A’ and 7 as above we say that 7 is a GFG-witness for A’
if:

1. for every q € Q; we have

2. for every (¢,m) € W; and « € L(A;,q), the T-run of A" over « from (q, m)
contains at least one accepting transition of A’.

Lemma 27. Assume that A’ is as above and T is a GFG-witness for A’. Then:

— for every (g,m) € W; and o € L(A;,q), the T-run of A" over a from (g, m)
is accepting (with respect to the accepting transitions of A’),

— for every q € Q; we have L(A’,q) = L(A;, q),

— the automaton A’ is a GFG automaton for our language L.

Proof. The first claim follows from the inductive application of Item 2 from

Definition 26: we start by finding one accepting transition g, () Gn+1 in the
run. Then we observe that (a(n+1),a(n+2),...) € L(A;i, gn+1) by Corollary 18
and we can proceed inductively.

The second claim follows from the first one and (4). For the last it is enough
to observe that T[ql, {ql}] -« constructs letter-by-letter an accepting 7-run of A’
over «, for every o € L. O

Now we can prove the following lemma.

Lemma 28. 7; is a GFG-witness for A;.

Proof. 1t is enough to prove Item 2 from Definition 26. We will in fact prove
that the run contains infinitely many accepting transitions.

Consider (¢,m) € W; and a € L(A;,q). By (2) we know that o € L(D;,m).
Consider the play of G; starting in (g, m) in which V proposes successive letters
of o and 3 plays according to 7;. The sequence of positions from W; visited in
this play is exactly the sequence T; [q, m] - Q.

Since « € L(D;, m), the priority at least 1 is visited infinitely often in this
play. Since 7; is a winning strategy, also priority 2 has to be seen infinitely often.
But it means that 7; constructs an accepting run of A; over . This run is the
7;-run of A; over a from (g, m). O

Overview of the steps The construction of A;,; from A; will be done in four
steps: we will define AEJ) and Tl-(j) for j =1,2,3,4. The steps of the construction
are illustrated on Figures 8, 9, 10, and 11. The convention for these figures
is as explained in Figure 7. Note that during the following four steps of the
construction we consider the original values rank;(g,m) and opt;(g) (they are
not recomputed).

Let us overview the four steps that we will perform:

1. A; to Agl): determinise transitions ¢ — ¢’ if rank;(q, {¢}) = 0, see Figure 8,

2. AZ(»I) to Al@): determinise accepting transitions ¢ — ¢, see Figure 9,

3. .Az(»z) to A§3): ensure that if ¢ -~ ¢’ is non-accepting then opt,(q) = opt,(q’),
see Figure 10,

4. AZ(»?’) to .AZ(-4): make all transitions ¢ — ¢’ with opt,;(q) > opt,(q’) accepting,
see Figure 11.

Determinising self-dependent states The first step is focused on the so-
called self-dependent states. The dependency relation is defined as follows. It will
play crucial role in defining the polynomial deterministic automaton equivalent

to A.

Definition 29. If (¢,{¢'}) € W; and rank;(q,{q'}) = 0 we say that q depends
on ¢' and denote it ¢ —; ¢’ (or ¢ — ¢ if i is known from the context).

At this point of the construction we will turn deterministic all non-accepting
transitions from a state ¢ whenever rank;(q,{q}) = 0 (i.e. ¢ —; ¢ is self-
dependent). Note that by the definition we always have (g, {q}) € W;.

Let .AZ(-l) be the automaton A; with the following modification: if ¢ — ¢’ is
a non-accepting transition of A;, rank;(q, {q}) = 0, and 7;(q, {q},a) = (¢’,m’)
then remove all the transitions ¢ — ¢” with ¢” # ¢. Let Ti(l) = 7; except for
the values (¢,m) € W;, a € A when 7;(¢,m,a) = (¢”,m”) and the transition
g — ¢" has been removed. Then let Ti(l)(q,m,a) = 7;(q,{q},a). See Figure 8
for an illustration of the performed modifications.

To prove that the above operation guarantees that M is a GFG-witness for

Az(-l) we will use the following notion.

a q q
o7 o7
/.4 e 4
a //704 a ® 4
5 | :
’ / 4 ’ 4
40/ 4\ a
4 4
N N
i 0'\§ 4 @ | 0 e q

N ; \if

\0 0 | m

Fig. 8. The step from A, 7; to AEI), Ti(l). The pair (q,{q}) has rank; equal 0 and
therefore triggers removal of all other transitions ¢ — ¢”. D maps all the values

(g, m") from the removed transition to (¢',m’) = 7:(q, {q}, a).

4D 7@

i 7 7 2

Q

[/

\ 4 \
\ N \ N
\\ \\x

Fig. 9. The step from from Agl), Ti(l) to A§2) to Tl-(2). The transition ¢ — ¢’ is accept-
ing, it triggers removal of the transition ¢ — ¢” and modification of Ti<1) on the two
upper pairs of the form (g, m). For these pairs any value m’ such that (¢',m’) € W; is
used.

i 7 » Ty
" "
a q q
o7 o7
/704 ® 4
q q
/704 ® 4

/ Q\
]/

/

Ny 1 \§1

0 0

Fig. 10. The step from from Agz), Ti<2) to AZ(-?’) to TZ.(S). Both transitions ¢ — ¢’ and
q %> ¢" are non-accepting. The transition ¢ —~> ¢” increases the value of opt; and

therefore is removed. The mapping by 7'}2) is modified appropriately.

d
"N

1 1

Fig. 11. The step from AES), Ti(3> to AZ@) to ’Ti<4>. Both transitions ¢ — ¢’ and ¢ — ¢”
were non-accepting. The transition ¢ — ¢’ decreases the value of opt; and after the
modification the it is made accepting.

Definition 30. For q € Q; let L (A;, q) be the set of finite words w € A* such
that there exists a finite run of A; over w from q that contains at least one
accepting transition of Aj.

Note that except the accepting transitions of A4;, the automaton D; operates
as the standard powerset construction. Therefore, we obtain the following fact.
The second part of the fact follows from the definition of the ranks.

Fact 31. If (g,m) € Wy, ¢ € m, and w € L' (A;,q) then the finite run of D;
over w from m contains at least one accepting transition of D;.

If rank;(¢,m) = 0, ¢ € m, and w € Li"(A;, q) then the 7;-run of A; over w
from (q,m) contains an accepting transition of A;.

Lemma 32. Ti(l) is a GFG-witness for Agl).
Proof. First observe that by monotonicity we know that L(Al(.l),q) c L(A;,q)
for every q € @Q;, since we just removed transitions. Therefore, it is enough to
prove Item 2 of Definition 26.

For the sake of the contradiction assume that for (¢,m) € W; and o € L(A;, q)
the Ti(l)—run of AZ(-I) over « from (g, m) does not contain any accepting transition.
Since 7; is a GFG-witness for A4;, it means that in the above run over « infinitely
many times a triple (¢, m, a) appears with

(g, m,a) # 7. (q,m, a) = 7.(q,{q},).

Moreover, notice that if no accepting transition is witnessed in AZ(-I), then the
invariant that ¢ € m is preserved by all other transitions (of two types: powerset
transitions and new transitions). Therefore, we can start our considerations from
such a triple with rank;(¢, m) = 0 and g € m.
Since a € L(A;, q), there exists a finite prefix w of a such that w € L (A;, q).
The contradiction follows from the following claim.

Claim. If (g,m) € W;, rank;(g,m) = 0, ¢ € m, and w € Lf"(A;,¢q) then the
Ti(l)—run of Al(»l) over w from (g, m) contains an accepting transition of AEI).

Note that the claim holds for w = € as € ¢ Li%(A;, q) for every q. The proof
of the claim is inductive in the length of w. Assume that w = av and the claim
holds for all words of length at most |v|. Let (¢/,m’') = 7'2-(1)((],m7 a). Note that
either (¢, m’) = 7;(¢,m,a) or (¢',m') = 7:(q,{q},a) with rank;(q, {¢}) = 0. In
the latter case we can assume without loss of generality that m = {q} and thus
Tl-(l)(q, m,a) = 7;(q, m,a) (the Ti(l)—runs over w from (¢, m) and from (¢, {q}) are
the same except the first state).

If the transition ¢ —— ¢’ is accepting in A; then the claim clearly holds.
Assume the opposite. Since rank;(g,m) = 0, the transition m —~ m’ is a non-
accepting transition of D;. Therefore, ¢’ € m’ and rank;(¢’,m’) = 0. Thus, it
remains to prove that v € Li*(A4;,¢') and use the inductive assumption.

By Fact 31 we know that the 7;-run of A; over av from (g, m) contains
an accepting transition. But this run starts with the non-accepting transition
q > ¢, therefore it witnesses the fact that v € Li"(A;, ¢'). See Figure 12 for

an illustration of this proof. O
A, 7V
v
a q// A
- - DANANANS
L]
L]
q
L]
[
[]
L
L
v
’ A

BN 9 R AAYAAY
\ .

\. >

Fig. 12. The inductive proof of Lemma 32. By the assumption that w = av € L (4;, q)
we know that the upper path exists in A; and contains an accepting transition. The
value m is fixed such that ¢ € m, rank;(q,m) = 0, and Tfl)(q, m,a) = 7;(qg,m,a) =
(¢’,m'). If the transition ¢ — ¢’ is not accepting then 7; constructs a run from (¢’,m’)
over v that contains an accepting transition (lower path). This path witnesses the fact
that v e L (A4;,¢').

Deterministic accepting transitions Now we will enforce that if .Az(-l) can
perform from a state ¢ an accepting transition over a: ¢ — ¢’ then this is the
only transition from g over a. Let AEQ) be obtained from Agl) by consequent
picking an accepting transition ¢ — ¢’ and removing all other transitions (both
accepting and non-accepting) ¢ — ¢” with ¢” # ¢. The order in which we pick
the accepting transitions is not relevant. 0

Now we need to define a new function ’7'2-(2). Let Tl@) equal 7,7’ except for the

values (¢, m) € W;, a € A such that Ti(Q) (g,m,a) = (¢",m") with the transition
g - ¢" removed from Agl). In such a case let ¢ =% ¢’ be the accepting transition

that triggered the removal and let m’ be any value such that (¢’,m’) € W;. Let

(1)(

us put 7,7 (q,m,a) = (¢',m’) instead of (¢”, m"). See Figure 9 for an illustration

(2)

of the construction of 7; from Ti(l)

Lemma 33. Ti@) is a GFG-witness for .AZ(»Q)

Proof. First observe that by monotonicity we know that L(AEQ),(]) c L(A;,q)
for every ¢q € Q;, since we only removed transitions. Therefore, it is enough to
prove Item 2 of Definition 26.

Consider a pair (g, m) € W; and an w-word o € L(A;, q). Let

7_1_(1) [q7m] = (qum0)7 s
Ti(2) [q7m] = (Q67m6)7 e

We will prove that the run ¢f), ¢}, . . . contains at least one accepting transition.
Indeed, the first place where the runs (¢,), and (¢n), can differ is, by the

(2

definition of 7;%/, an accepting transition in (g,),. If the runs do not differ then

(q/,)n is accepting because (g,)n, was accepting (7; M) was a GFG-witness for
AWy, 0

Decreasing opt;(g) We now want to modify .Az(»z) and Ti(Q) in such a way to
guarantee that if ¢ — ¢’ is a non-accepting transition of AZ@) then opt;(q) =
opt;(¢’). What we know is that the values of rank; decrease along such transi-
tions, see Lemma 25. It does not imply that the values of opt, decrease, see the
left-hand part of Figure 10.

Let Ti(3) = Ti(Z) except for (q,m) € W; and a € A such that Ti(z) (g;m,a) =
(¢",m”) and opt;(q) < opt,;(q”). For such values, let m, be a value realising the
minimal rank; in ¢, i.e. (¢,mq) € W; and rank;(¢, my) = opt,;(¢). In that case

put Ti(3)(q,m,a) = Ti(2)(

g,mq,a) = (¢’,m’), see Figure 10. Also, remove from
AZ@) all the non-accepting transitions ¢ — ¢” such that opt;(q) < opt;(¢”) and
obtain AE?’).

Note that for the values (¢,m) € W; and a € A where Ti(Q)(q,m,a) #

TZ_(3) (g,m,a) = (¢’,m') as above, we have:

rank; (Z()(q,m, a)) = rank;(q’,m’) by the definition of Ti(?’)
< rank;(q, mg) because 7'()(q,mq,a) = (¢, m’)

= opt;(q) by the choice of m,

< opt;(¢") by the assumption

< rank; (¢, m") by of the definition of opt;

< rank;(q, m) because T()(q,m,a) = (¢",m").

Summing up, if TZ-(Q)(q, m,a) # 7'1-(3)(q7 m,a) then

rank; (Ti(?’) (g,m,a)) < rank;(gq,m). (5)

Lemma 34. Ti(?’) is a GFG-witness for Az(»g).
Proof. As before, by monotonicity we know that L(A§3), q) € L(A;, q) for every
q € Q;, since we only removed transitions. Therefore, it is enough to prove Item 2
of Definition 26.

Assume contrarily, that there exists (¢,m) € W; and « € L(A4;, ¢) such that

the Ti(?’)—run over « from (g,m) does not contain any accepting transition. Let

3
Ti()[q’m] = (q63m6)7 (q/hm/l)a s

For every n € N there are two possibilities:

)

_ 7-2,(2) (g, my,, (n)) = (g1, My 4q) (ice. 7@ and 7'i(3 agree in that case)

2 3
— 7 (gl iy, () # (dyrs My 1) = 70
modification.

q,,,mh, a(n)) because of the above

In the first case rank;(q,,,m,,) > rank;(q,,,,m,_,) because the transition
q, a(n) q¢,,.1 is non-accepting in Agg) and therefore also in A; and 7‘;2) is a GFG-
witness. In the second case we know that rank;(q),,m,,) > rank;(q},,,m;,,)
by (5). Therefore, the second case can happen only finitely many times (ranks
are non—negative). It means that from some point on, the Ti(?’)—run over «v agrees
with the Ti@)—run over some suffix of o and thus is accepting (see the first item
in Lemma 27).

More formally, let N be a number such that for all n > N only the first case
above happens. Let

TZ(2)[q§V7m9V:| . (Oé(N),Oé(N-i— 1)a) = (qNamN)7(qN+lamN+1)a" ..

It means that for n > N we have:
(a7, m7) = (gn,mn).

Since 71(2) is GFG-witness and (a(N),a(N + 1),...) € L(A;, qn) we know
that the run (¢n, gn+1, - . -) is an accepting run of .A,L(-B) over (a(N), a(N+1),..)
and so is the original run (¢(, g, - - .)- O

Let us note that the construction of AES) guarantees the following fact.

Fact 35. If ¢ - ¢’ in AZ(-S) is a non-accepting transition of AE3) then opt;(q) =
opt;(¢').

Adding Biichi transitions We can now proceed to the crucial step of the
modifications of A; — we will add some new Biichi transitions to it. Because of
a special care that will be taken, we will ensure that the added transitions do
not enlarge the language recognised by the automaton. Intuitively, the values of
rank;; computed with respect to this enriched automaton will be smaller — it
will be easier to use an accepting transition of A;,; and thus take an edge of
priority 2 in G;41.

Let TZ-(4) = Ti(g)

and A§4) be the automaton .AZ(-?’) with all the transitions

q — ¢ such that opt,(q) > opt;(q’) made accepting. Figure 11 illustrates the

modifications.

Lemma 36. Ti(4) is a GFG-witness for AE4).

Proof. Tt is enough to prove that for q € Q; we have L(A§4), q) S L(Ag?’)7 q).
Let p be an accepting run of A§4) over an w-word « from g € Q;. Of course p

is also a run of AEB) over « from q. We want to prove that p is also accepting with

respect to AES). Assume contrarily that p does not contain any accepting tran-

sition of AES) (as before, we inductively focus on this case). Let p = (qo, g1, - - .)-
Observe that by Fact 35 we know that opt;(go) = opt,;(g1) = By the con-

struction of .AZ(-4) if the transition g, (n) Gn+1 is accepting in AZ(-4) but not in
Agg) then opt;(¢n) > opt;(gn+1). Therefore, there may be only finitely many
such transitions in p and therefore p is rejecting with respect to A§4) as well. O

Defining A; 1 We now define A;,1 = Az(»4) and since Ti(4) is a GFG-witness for
A§4) we know that it is a GFG automaton recognising our language L. Clearly
the invariants stated at the beginning of Section 4 are preserved by all the steps

of our construction. This way we have completed the definition of A; 1 from A;.

B.6 Monotonicity

We will now show that there is some form of monotonicity of the values of
rank; (g, m) with respect to the set of states m, as expressed by the following
lemma. Figure 13 shows that if we skip the assumption that rank;(q,m) = 0
then the monotonicity does not hold any more.

Lemma 37. Assume that (q,m) € W; and rank;(¢,m) = 0. If & # m' < m
then (¢,m’) € W; and rank;(q,m’) = 0.

Proof. The fact that (q,m’) € W; follows from the definition of W;. To prove
that also rank;(g,m’) = 0 we will use Proposition 24 — it is enough to provide
a winning strategy o of 3 in G; from (¢, m’) that stays within the winning region
(i.e. the whole set W;) and does not visit any edge of priority 1 before the first
edge of priority 2. Recall that the only choice of 3 in G; is which state of A; to
choose (the successive state of D; is taken deterministically).

@00
Q: ® . . .
AR R CREROS

Fig. 13. An w-word a witnessing that rank;(qo, m() > 3 and rank;(qo, mo) = 1 with
m({ S mo. The states in circles are elements of mg, m1, ..., the states in squares are
elements of mg, mj, We assume that qo = q{, 7i(qn, Mn, (1)) = (n+1,Mnt1),
Ti(qn,mp,a(n)) = (¢n41, Mni1), and the runs (g.), (¢5,) over a do not contain any
accepting transitions of A;. Then, the run (my) over « contains one accepting transition
of D; while the run (m’n) over « contains three accepting transitions of D;.

Let o play from (q,m’) as would play 7; from (g, m), i.e. after V played
w € A* let (qu,mq) be the successive state according to 7; and let 3 play g,
(the successive state will in that case be (q.,, m!,) for m!, possibly different than
My). When the first accepting transition of A; is taken let o follow some winning
strategy from a given position.

Clearly, since 7; does not visit any accepting transition of D; before an ac-
cepting transition of A; is taken, during this simulation we always preserve that
ml, S my,. Therefore, we do not visit any accepting transition of D; before the
first accepting transition of 4; in all the plays consistent with ¢ from (¢, m’). O

Lemma 38. Assume that (q,m) € W; and (¢',m') € W; such that ¢’ € m. Then
(g, m') € W; and if rank;(q, m) = rank;(¢’,m’) = 0 then also rank;(q, m’) = 0.

Proof. The fact that (¢,m’) € W; follows directly from the definition of W;.
Similarly as above we will provide a winning strategy o of 3 from (¢, m’) that
guarantees not visiting any accepting transition of D; before an accepting tran-
sition of A; is visited.

This claim can be proved inductively: it is enough to provide a response ¢;
for one letter a played by V from the position (g, m’). We need to guarantee that
we do not pass through an accepting transition of D; before we take an accepting
transition of A;.

First assume that there is an accepting transition of A; of the form ¢ —— q;.
In that case just take it and stay within the winning region W;.

Assume that there is no such transition and 7; moves over a: from (¢, m) to
(g1, m1) and from (¢’,m’) to (¢}, m}), see Figure 14. Since rank;(g, m) = 0, the
transition m — my of D; is not accepting, in particular the transition ¢’ BN a1
of A; is not accepting (recall that ¢’ € m).

By monotonicity of rank; over non-accepting transitions of .A; we know that
rank; (¢q1, m1) = rank; (¢}, m}) = 0. By the definition of m; we know that ¢} € m;.
Let o move from (g, m’) over a to ¢;. By repeating the above construction we
preserve the invariant that rank;(g,,m,) = rank;(¢,,m.) = 0 and ¢}, € my,
therefore the strategy o is a witness that rank;(g, m’) = 0. O

!
q1 q1
° °
° ° ° .
[] [] [] L]
: //)’ 0 | mi3qg; ¢ //)’ 0 | mh
dem| 0 e m | 0 e

Fig.14. An illustration of the proof of Lemma 38. We know that ¢’ € m and
rank;(q,m) = rank;(¢’,m’) = 0. The arrows are actions of 7;. The implications go
as follows: the transition ¢ — g1 is not accepting so the transition m — m; is not
. oy . ’ a ;7 . . e ’ a !
accepting so the transition ¢ — ¢; is not accepting so the transition m’ — mj is
not accepting. Therefore, rank;(qi, m1) = rank;(qi,m}) = 0 and ¢} € m;. Note that
m’ is one of the dots in the state ¢ but we do not care what is the value 7;(g, m', a).

B.7 Stabilisation point

The above inductive construction of A;,; from A; is monotone with respect to
the set of states @Q;, set of transition 4;, and set of non-accepting transitions
A\F; (see the invariants at the beginning of Section 4). Therefore, there exists
I such that Ay, = A;. We will prove the following lemma. It says that in the
limit we succeed with diminishing the ranks to 0 (at least the opt; ones).

Lemma 39. If A;,1 = A; and g € QAI then opt;(q) = 0.

Proof. Assume contrarily that there exists a state ¢ € Q; such that opt;(g) > 0.
Let m be a memory value such that (¢, m) € W and rank;(q, m) = opt;(q) > 0.
Consider a play consistent with 77 in G; that witnesses this fact: an w-word a such
that there is at least one edge of priority 1 taken before the first edge of priority
2 is taken. Let 77 [q,m] - = (gn,Mn)nen be the sequence of positions visited

N
during the play. Assume that my a(—>) mpy+1 is the first accepting transition of

Dy in this play and all the transitions g, olm) Qn+1 for n < N are non-accepting
in Aj.

Our aim is to prove that for some transition g, () Qn+1 With n < N we have
opt;(gn) > opt;(gn+1). In that case this transition should be made accepting
by the step performed in Section B.5. Observe that opt;(g,) = opt;(gn+1) for
n < N, otherwise some transition would be removed by the step performed in
Section B.5.

By Lemma 25 we know that rank;(gn, my) > rank;(qy+1, my+1). Therefore
we obtain

opt;(qo) = ranks(qo, mo) = rank;(gn, my) =

= rank;(qn, my) > rankr(gn41, My 1) = optr(gn41)-

It means that on the traversed path from ¢o to gy41 the value opt;(g,) has to
strictly decrease, see Figure 15. 0

(g0, mo) (gn,mnN) (gqn1,mu41)

Fig. 15. An illustration of the proof of Lemma 39. The path is the plot of values
of ranks(gn,mn) for n < N + 1. The gray rectangles denote the range of values
rank;(gn, m’) for possible values m’. At the beginning opt;(g0) = rank;(qo, mo) and
then rank;(gn, mn) > rank;(¢gn+1, ma+1). The horizontal dashed line marks the dif-
ference between rank;(gn, my) and rank;(gn+1, mn+1). Therefore, somewhere on the
path there is the first rectangle crossing the dashed line (i.e. a transition ¢, o) Qn+1
with opt;(gn) > opt;(gn+1))-

Let us recall the dependency relation from Definition 29: g depends on ¢’
(denoted ¢ — ¢') if (¢,{¢'}) € W1 and rank;(q, {¢'}) = 0. The following lemma
summarises the properties of the dependency relation using the results of Sec-
tion B.6.

Lemma 40. The following conditions hold:

For every q € Qg there exists ¢ € Qp such that ¢ — ¢'.

If g — ¢ and ¢ — q" then ¢ — ¢".

For every q € Qp there exists ¢ € Q such that ¢ — q and ¢ — q.

If g — q, a € A, and 71(q,{q},a) = (¢’,m’) such that ¢ - ¢ is a non-
accepting transition of Ar then ¢ — ¢'.

T oo~

Proof. For the first claim observe that by Lemma 39 we know that opt;(¢) = 0.
Let m be the value such that (¢,m) € W; and rank;(q,m) = 0. Since m #
&, we can choose ¢’ to be any element of m. By Lemma 37 we know that
rank;(q, {¢’'}) < rank;(q,m) = 0.

Now take ¢ — ¢’ and ¢’ — ¢”. In that case ¢’ € {¢'} so Lemma 38 applies
and ranky (g, {¢"}) =0 (i.e. ¢ = ¢").

For the third claim it is enough to apply the previous two inductively and
use the fact that @Q; is finite.

Consider g € Qr such that ¢ — ¢ and let 7;(q, {q},a) = (¢, m’). In that case
we know that rank;(¢’,m’) = 0 and ¢’ € m/ therefore by Lemma 37 we know
that also rank;(¢’, {¢’}) =0 and ¢’ — ¢'. O

B.8 Construction of B

Now we move to the construction of a small deterministic Biichi automaton B
recognising L. We start by defining a GFG-witness for A; that will involve only
polynomially many pairs (¢,m) € Wy. Let 77 = 77 for all values (¢, m) € Wi,
a € A such that 77(¢,m, a) = (¢’,m’) with the transition ¢ — ¢’ non-accepting
in A;. If the above transition is accepting in Az, let 77(q, m,a) = (¢, {¢’}) where
¢’ is the state given by Item 3 of Lemma 40.

Lemma 41. The function 71 is a GFG-witness for Aj.

Proof. 1t is enough to verify Item 2 of Definition 26. Since the action of 7; differs
from 77 only on accepting transitions of Ay, this modification cannot lead to a
non-accepting 77-run over o € A%. O

We will now define the automaton B. Let the set of states of B be the sub-
set of elements W accessible from (g, {g1}) via 7. The transition function of
B is given by 77, the accepting transitions are those of the form (g,m) —%>
(¢',m') = 77(q,m, a) with ¢ — ¢’ an accepting transition of .A;. This way B is
a deterministic Biichi automaton.

Lemma 42. If (¢,m) is a state of B then m is a singleton.

Proof. We will in fact prove that if (¢,m) is a state of B then m = {q;} with
q1 — q1- It is enough to prove that 7; preserves this property. Clearly the initial
state of B is of this form and the states obtained via accepting transitions of B
are of this form. Consider a transition (¢, {q1}) = (¢’,m’) = 71(¢,{q1}, a) of B
such that ¢ — ¢’ is not an accepting transition of A;. By the assumption that
¢1 — ¢q1 we know that ranky(q1,{¢1}) = 0. In the step performed in Section B.5
we have determinised all the transitions of the form ¢; —— ¢} with ¢ — q.
It means that m’ = 6P¢({q1},a) is a singleton. Since ¢; € m/, m’ = {¢;}. By
Item 4 of Lemma 40 we know that in that case also ¢} < ¢} so the invariant is
preserved. O

Corollary 43. The number of states of B is at most |Q*|?.
Lemma 44. The language L(B) is equal to the language L.

Proof. Clearly L(B) < L(A;) = L because of the definition of B. It remains to
prove that if a € L(Ay) then B accepts a.. But this follows directly from the fact
that 77 is a GFG-witness for Aj. O

Therefore, we have completed the proof of Theorem 8 by constructing a de-
terministic Biichi automaton B recognising L that has at most |Q*|? states. The
construction presented in this section is effective but not efficient. In Section 5
we discuss how to determinise a Biichi GFG automaton efficiently.

B.9 Example of the determinisation procedure

In this section we provide an example of the application of our determinisation
procedure to a particular automaton A. The automaton comes from BKKS13]
and it is GFG but not DBP (determinisable by pruning), i.e. it does not contain
any equivalent deterministic subautomaton. The automaton A is depicted on
Figure 16. It recognises the language

L = [(za + zb)*(zaxa + xbxb)]”.

The accepting transitions A” —% I and B” —%» I are marked by dashed
edges. For the sake of readability the sink state | and some of the transitions
to it (i.e. I - 1) are not presented.

The only non-determinism is in the state I when the letter = is read. In that
case the automaton has to guess whether the successive letter will be a or b.
One of the strategies for resolving this non-determinism is to move to A or B
depending on the previous letter (a or b). Correctness of this strategy relies on
the fact that the language recognised by the automaton requires that infinitely
many times the previous letter a or b reappears.

Figure 17 presents the automaton Ay = A together with the data values
My and a GFG-witness 79. The red edges are transitions of Ay while the black
edges are transitions of 7y. Dashed red edges are accepting transitions of Ay and
dashed black edges correspond to the accepting transitions of Dy. The numbers
denote rankg(g, m) and opty(g) respectively. Only the relevant pairs (g, m) are
presented.

The only freedom in the choice of the strategy 7¢ is in the position (¢,m) =
(I,{I}) when the letter x is played. The depicted strategy moves then to A. The
choice that from the position (I, {I, A’}) the strategy moves to A over z (and
dually for b) follows from the fact that the strategy is optimal with respect to
the ranks (see Proposition 24).

In the first step of the construction the following steps are performed. The
only modification of Ay is done in the last step.

— all the transitions from the self-dependant states are already deterministic,

— all the accepting transitions are already deterministic,

— no non-accepting transition increases opty(q),

— the transitions A —> A’ and B —%> B’ are made deterministic because they
decrease optg(q).

This way the automaton A; is obtained, see Figure 18. In this automaton all
the states g satisfy opt,(¢) = 0. Further steps of the construction do not modify
the automaton A; and therefore I = 1.

The following dependencies are important when constructing the determin-
istic automaton B:

IT—A A< A I—-B B < B.
The states A’, B, A”, B” are self-dependant. There is a freedom in choosing I: it

can either be A’ or B’, we assume that it is A’. Figure 19 presents the automaton
B obtained via our construction.

Fig. 16. The automaton A — an example of a Biichi GFG automaton that is not DBP.

C Reduction to parity games

In this section we prove Theorem 9.

Theorem 9. Finding the winner of a parity game of index (i,j) is polynomi-
ally equivalent to deciding whether a given parity automaton of index (i,j) that
accepts all w-words is GFG.

Proof. First, if we are given a parity automaton of index (i, j) that accepts all w-
words then deciding whether it is GFG is a parity game of index (¢, j): V chooses
letters, 3 chooses transitions, and 3 wins if the resulting run is accepting over the
given w-word. Therefore, solving this parity game allows us to decide whether
the input automaton is GFG, provided this automaton accepts all w-words.

Conversely, let G = (V5, Vi, v, I, 29) be a parity game of index (ig, jo).

We build an automaton A = (A, Q, g, A, 2*) where the non-determinism
corresponds to the choices of 3, while the choices of V lie in the input alphabet.

The set of states @ is Vu{T} and g1 = v;. We define the alphabet A ©f AV xV
— the edges that can be taken by V (we assume that there are at least two edges
that can be taken by V in G). The state T is a sink accepting state with only
self-loops T —% T of even priority.

Finally, we define the set of transitions A of A for states other than T:

— for ve Vy and a = (v,v') € A let A contain the transition v — v/,

— for v € Vy and a = (v',v”) € A with v' # v let A contain the transition
v—T,

— for v € V5 and any a € A let A contain all the transitions v — o’ for
(v,v") € I' (in that case a does not play any role).

The priority £24 of a transition v —— v’ with both v, ¢/ different than T is
29 (v,0").

{a1}

{vt

{n

{a1}

A

v

{1}

T
T {.a'av}
q
1
T {uv'avh
! {g'v}
v

Fig.17. The automaton Ay together with 7p.

{,a}

{v}

{1}

{4}

{uv}

{g'v}

Fig. 18. The automaton A; together with 7.

Fig. 19. The automaton B — the polynomial determinisation of A.

This way the games G and G(A) are equivalent — in positions v € V4 3 has
no choice in G(A) because there is a unique transition to take and in positions
v € V3 the letters chosen by V in G(.A) does not play any role. If A accepts all
w-words then the winning condition of G(A) requires that the run proposed by
7 is accepting and therefore is equivalent to the winning condition of G.

However, if A does not accept all w-words then 3 may lose the game G but
the automaton A might still be GFG for a smaller language. To avoid this, we
need to build another automaton B which accepts all w-words in any case but is
GFG if and only if 3 wins G.

We fix an arbitrary letter a € A and build an automaton B = (A4,Q u
{4i, Gas a3}, qi, A, 7). We build A’ from A by adding the following transitions:
G > Gay @ > Gz o~ T, gz~ qf, and for all b # a, gz —> T and

b
Ga — q'IA-

First, it is clear that L(B) = A“: every w-word can be accepted by guessing if
the second letter is a, and reaching the accepting sink state T. We claim that B
is GFG if and only if 3 wins G. Assume B is GFG with a function o: A* — Q8
witnessing that. Then, there is a letter b € A such that o(ab) = ¢f* (take b # a
if o(a) = g, and b = a otherwise). Let 0’: abw — o(w) be the GFG strategy
starting in q{‘. Since all w-words are in L(B), o/ must accept every w-word a,
and therefore corresponds to a winning strategy in G. Conversely, every winning
strategy in G can be turned into a GFG strategy in B, by adding an arbitrary
choice at the beginning between ¢, and ¢z.

Fig. 20. The construction of the automaton B simulating a parity game G. The sub-
automaton A corresponds to G while the rest guarantees that L(B) = A“.

Finally, we showed that from a parity game G, we can build an automaton
B with same parity index, such that G is winning for 3 if an only if B is GFG.
Moreover, the language of B is A%. O

D Recognising Biichi GFG automata

We give the detailed proof of the following theorem:

Theorem 10. [t is in NP to decide whether a given non-deterministic Biichi
automaton A is GFG. Moreover, if A is GFG then we can construct an equivalent
deterministic Biichi automaton in NP.

Proof. Let A be an input Biichi automaton and let @ be its set of states. By
Theorem 8, if A is GFG, it is witnessed by a strategy 77 with memory M of size
|Q*|. Therefore, we can guess such a structure M, and build the deterministic
automaton B = A x M, where runs of A are guided by the current memory
state in M. The acceptance component is inherited from A, and therefore we
have L(B) < L(A), since every accepting run of B contains in particular an
accepting run of A. It remains for the algorithm to check L(A) € L(B), which
can be done in polynomial time because B is deterministic. More precisely, we
can complement B in B¢ and check for emptiness of L(A) n L(B°).

Conversely, if such a memory structure M is guessed by the non-deterministic
algorithm, it is a witness that A is GFG. Therefore, this non-deterministic poly-
nomial algorithm is correct. Clearly if A is GFG then a side-effect of a successful
run of the algorithm is an equivalent deterministic automaton B. O

E Recognising co-Biichi GFG automata

In this section, we show that for the particular case of co-Biichi automata, the
problem of deciding GFGness is in PTIME.

Theorem 11. Given a non-deterministic co-Biichi automaton, we can decide
whether it is GFG in polynomial time.

Let A= (A, Q,q1, A, R) be a non-deterministic co-Biichi automaton.

E.1 Normalised automata

The following notion will be important when we will consider the safety game

gsafc

Definition 45. A co-Biichi automaton is normalised if for any path p — q

without rejecting transition there is a path ¢ — p without rejecting transition.

Lemma 46. Any co-Biichi automaton A can be turned into an equivalent nor-
malised automaton N(A) by changing some transitions to rejecting. This can be
done in polynomial time.

For every «, the sets of accepting runs of A and N(A) over a coincide. In
particular L(A,p) = L(N(A),p) for every p € Q.

Proof. We start by computing the strongly-connected components (SCC) of the
graph of the automaton without rejecting transitions. Then, all transitions that
change SCC are switched to rejecting.

The accepting runs are preserved, because if an infinite path contains in-
finitely many new rejecting transitions, it also contains infinitely many original
rejecting transitions. We get a normalised automaton, because the graph of the
automaton restricted to non-rejecting transitions is a disjoint union of strongly-
connected components. O

E.2 Joker game
The crucial ingredient of the construction is the Joker Game, as defined below.

Definition 47. The Joker Game on A (denoted G'°%°*, A is fived in this sec-
tion) is defined on the set of positions Q x Q. The initial position is (g1, q1)-
The game is played in rounds n = 0,1,..., in a round n starting in a position
(P, qn) the following actions are performed:

— VY chooses a letter a, € A,
— 3 chooses a transition p, — pp41 of A,
— VY either:
e chooses a transition ¢, — ¢n4+1 of A,
.. an
e or plays JOKER and chooses a transition p, — gni+1 of A.

After such a round the game moves to the position (Dn+1,Gn+1)-
Now, the priority of an edge corresponding to a round as above is either:

2 if V played JOKER,

— otherwise 2 if the transition g, LN Gn+1 18 Tejecting in A,
otherwise 1 if the transition p, —= pp.1 is rejecting in A,
— otherwise 0.

An infinite play of the above game produces: an w-word o = agay ..., a run
p = pop1--. of A, and a pseudo-run T = qoqy ... — each time V plays JOKER,
the successive state ¢,.1 may not be accessible from g, via a transition of A.
However, since the acceptance condition is prefix-independent, if V played only
finitely many times JOKER then it makes sense to ask whether the pseudo-run 7
is accepting over a.

Note that there are the following possibilities for the limes superior of the
priorities of edges during this play:

— 0 and both p and 7 are accepting over «,

— 1 and the pseudo-run 7 is accepting over a but p is not,

— 2 and either V played infinitely many times JOKER or T is not accepting over
a.

Therefore, we obtain the following fact.
Fact 48. 3 wins a play as above if and only if either:

— VY played JOKER infinitely many times,
— T 18 not accepting over o, or
— p is accepting over .

A variant of the Joker Game with a bounded number of times V could play
JOKER would be enough for our purposes. However, the unbounded variant pre-
sented above allows us to provide more elegant proofs.

Lemma 49. If the automaton A is GFG then 3 wins GJoker

Proof. Assume that A is GFG and let use the function witnessing that A is GFG
as her strategy in the game G'°%* regardless of the current value ¢,. We will
prove that this strategy is winning. Assume contrarily and consider a play «, p,
7 in which V won. Therefore, there exists n such that in the nth round V played
JOKER for the last time (or he did not play JOKER at all and n = 0). After that

he managed to propose an accepting run of A over o = (a(n),a(n + 1),...)

from the state p(n). In means that o’ € L(A, p(n)). Since p(0) *(0).an=1) p(n),

we know that also o € L(A, p(0)) = L(A). Therefore, the run constructed by
the function witnessing that A is GFG has to be accepting in A. So 3 won this
play. U

Therefore, we can start our procedure by verifying (in polynomial time) if
3 wins G7oker If she loses then A is not GFG. From that point on we assume
that 3 wins this game and W7 < @Q x Q is her winning region. Let Q7 be the
projection of W+ onto the first coordinate — the set of states p such that 3 can
win from some position of the form (p,). The winning condition of G'°k* is a
parity condition so we can fix a uniform positional winning strategy of 3 of the
form

o W' x A— Q7 (6)

We say that a transition p —— p’ is used by agj if there exists a position
(p,q) € W’ such that o7 (p,q,a) = p'. Let A’ be the non-deterministic co-Biichi
automaton obtained by restricting A to the set of states Q7 and transitions used
by o7, and by normalising the resulting automaton using Lemma 46. Notice
that normalising does not change the winning region, as the accepting runs are
unchanged. The strategy agj witnesses that if p € Q7 and o € L(A,p) then also
a € L(A7,p) (in particular, L(A7) = L(A)).

E.3 Structure of A’
Now we will study the structure of the automaton A”.
Lemma 50. Ifpe Q’ then (p,p) e W7.

Proof. Let (p,q) € WY be a witness that p is used in o. It is enough to observe
that every strategy of V from (p,p) can be also used by V from (p, q) at the cost
of playing JOKER at the first round of the play. Therefore, if 3 wins from (p, q)
then she wins from (p,p) as well. O

Lemma 51. If p % ' is a transition of A7 then L(A,p') = a 'L(A, p).

Proof. The € containment is trivial. For the © consider an w-word ac € L(A, p).
We need to prove that a € L(A,p’). Let 7 be an accepting run of A over ac from
p. Assume that the transition p — p’ is used by o9 from a position (p,q) € W7.

Consider the play of G°k* from (p,q) in which 3 plays according to aj] and
V plays: in the first round the letter a and then JOKER to use the transition
p = 7(0) =% 7(1); and in further rounds successive letters of o and successive
transitions of 7. Since 07 is winning and the run 7 proposed by V is accepting
over aq, also the run p constructed by 3 has to be accepting over ac. But
the first transition of this run is p —— p’, therefore the run witnesses that

aeL(AY). O

Similarly as in Section B.1 we can obtain a variant of Corollary 18 for A”.

E.4 Equivalence relation

We define an equivalence relation £ € Q7 x Q7 that will keep track of states
that are accessible in A7 via the same word from a common state.

Definition 52. Let E < Q7 x Q7 be the smallest equivalence relation on Q7
such that for any (p,q) € E and a € A, if there are transitions p —> p' and
g q in A7 then (p',q¢') € E.

The relation F can be computed in polynomial time via a standard saturation
algorithm.

Remark 2. By Lemma 51, for all (p,q) € E we have L(A,p) = L(A, q).

E.5 Safety game

We will now consider a variant G of the game G(A’, A7) where the first
rejecting transition is losing for the respective player. Let the set of positions of
G he £ < Q7 x Q7. In such a position (p,q) the following choices are done:

— first V proposes a letter a € A,
— then 3 proposes a transition p —— p’ of A7,
— then V proposes a transition ¢ — ¢’ of A”.

If the transition p —— p’ (resp. ¢ — ¢') is rejecting in A7 then 3 (resp. V)
immediately loses (if both transitions are rejecting then V immediately loses).
All the infinite plays are won by 3.

Let W5 < FE be the winning region of 3 and let of: W° x A — Q7 be a
uniform positional winning strategy of 3 in her winning region of Gsafe.

For each p € Q, we now define the language L*¢(A7 p) as the set of w-words
a such that there exists a run of A” from p over o that does not contain any
rejecting transition of A”.

The winning region W* provides us a dependency relation on Q7. Let us
write p — q if (p,q) € W°. This relation will be essential in the rest of the
construction.

Lemma 53. For every g € Q7 there exists p € Q7 such that p — q.

Proof. Assume contrarily that there exists ¢ € Q7 such that for no p € Q7 we
have p — q.

We will inductively construct a play of G'°% from (g, q). Let us start with
po = ¢. The invariant is that (p,,q) € Q7 x Q7 belongs to W’ n E. Lemma 50
implies that for n = 0 the invariant holds. Assume that n steps of the construc-
tion have been done and a state p,, is defined. Since p,, — ¢ does not hold, V has
a winning strategy of in G**¢ from (py, ¢). Consider the play of G%* resulting
from V playing o\f and J using her strategy aj] from GJoker,

Since a§ is winning, after a finite word w,, has been played the two con-

structed runs are p, — p,, and ¢ BN q,, with the first path containing a
rejecting transition of A” and the second one not containing any rejecting tran-
sition of A”. Since the automaton A’ is normalised, we know that there exists

a path ¢, N q without any rejecting transition. Let V proceed along this path

and 3 play using o3: pl, N Pn+1- After this finite play we reached the position

(Pnt1,q) and the invariant that (p,,1,q) € W7 n E holds because we simulated
the winning strategy aj] of 3, and only took transitions of A”.

After infinitely many steps of the above construction we obtain a play of
GIoker that is consistent with 031 . In this play V never plays JOKER, the con-
structed w-word «a is wowjwiwy] ..., the pseudo-run 7 over a does not contain
any rejecting transition of A’ while the run p over a contains infinitely many
rejecting transitions of A”. Therefore, 7 is an accepting run over « of A as well
and p is not accepting. Therefore, we obtain a contradiction with the fact that

J . . .
03 18 winning. O

Lemma 54. Ifp—q and g —r thenp — 7.

Proof. We need to provide a winning strategy of 3 in G from the position
(p,r). Since the winning condition of G¥¢ is safety, it is enough to show how 3
can survive one round. The invariant is that (p,q) € W*¥, (g,7) € W¥, and the
current position is (p,r). Assume that V plays a letter a € A. We will simulate
two plays of G5 from (p,q) and (g,7). Let the strategy of move from (p,q)
over a to p’ and from (q,r) over a to ¢'. Let 3 play from (p,r) the state p’ and
assume that V replied by 7.

Since ¢ - ¢’ so ¢’ is a valid reply of V in the play from (p,¢). Similarly,
r —% 1’ so ' is a valid reply in the play from (g, 7). The only possibility for 3
to lose in this round would be if the transition r — r’ was non-rejecting in A”
but the transition p —— p’ was rejecting in A”. But in that case, the transition
q % ¢’ cannot be rejecting in A’ (otherwise (¢,7) ¢ W) and therefore neither
p — p’ can be rejecting in A’ (otherwise (p,q) ¢ W*). Therefore, 3 did not
lose in this round, (p’,¢') € W* and (¢’,7') € W* so the invariant holds. O

The following corollary follows directly from the two above lemmas and the
fact that Q7 is finite.

Corollary 55. For every q € Q7 there exists p € Q7 such thatp — p and p — q.
Lemma 56. If p — q then Ls*¢(A7 p) 2 Lsafe(47 ¢).

Proof. Consider o € L¥¢(A7 ¢) and a play of G5 from (p,q) where 3 plays
according to her winning strategy and V plays o together with a run 7 of A7 from
q over « that does not contain any rejecting transition. Since 3 plays according
to her winning strategy, we know that the run p over a proposed by 3 neither
contains a rejecting transition. Therefore, o € L5 (A7, p). O

E.6 Deterministic part

Now we will focus on states p € Q7 such that p — p. Similarly as in Section B.5
we will define a structure of a deterministic automaton D on this set of states.
The automaton will be a safety automaton — this time we allow its transition
function to be partial, and we consider the run non-accepting if it is finite and

accepting if it is infinite. Notice that we could equivalently define D as a co-
Biichi automaton by adding a sink state with rejecting self-loop, and all other

transitions non-rejecting.
€

We will use D & {pe @’ | p— p} as the set of states of D.
Lemma 57. If p € D and o5(p,p,a) = p' with the transition p — p’ not
rejecting in A7 then p' € D (i.e. p' —p').

Proof. If ¥ plays a in the position (p, p) of G%*¢ then the reply of o5 is p’ as above.
This round can be finished by V playing p’ as well and reaching the position
(p',p'). If the transition p — p’ is non-rejecting in .A” then this round does not
finish the game and therefore 3 is able to win from (p/,p’) (i.e. (p',p’) € W9 and
therefore p — p). O

Now we define the transitions of the automaton D: let (p,a) € D x A, we

define 67 (p, a) def o (p,p,a) if p = o9 (p,p,a) is non-rejecting, and 6% (p, a)

undefined (noted 1) otherwise.

This deterministic automaton D has safety condition, meaning a run is ac-
cepting if and only it is infinite. The initial state ¢¥ of D is any state p such
that p — ¢f* (such a state exists by Lemma 53).

Lemma 58. For all pe D we have L% (A7 p) = L(D, p).

Proof. Clearly the 2 containment is trivial — an accepting run of D from p over
a is a run of A7 from p over a that does not contain any rejecting transition. It
remains to prove that if o € L*¢(A7, p) then a € L(D, p). The proof is inductive
proving that D does not get blocked when reading « from p. The invariant is
that D is in a state p € D and a € L (A7 p).

Let o = aa’ and p be a run of A’ from p over a witnessing that o €
Lsfe (A7 p). Now let p' = 0P(p,a) and ¢’ = p(1). Since p’ does not contain
any rejecting transition over ac, we know that the transition p —— ¢’ is a
non-rejecting transition of A”7. Since p — p, the transition p —— p’ cannot be
rejecting, otherwise 3 would lose in the position (p, p) of G#f What remains is
to prove that o/ € L (A7, p'). But o/ € Ls*(A7, ¢') and since (p,p) € W5,
also (p/,q¢') € W9 (ie. p’ — ¢') as V can lead the strategy of 3 from (p,p) to
(p',q'). Therefore, by Lemma 56 we know that o/ € L(A”, p’). Thus, the invariant
holds. O

E.7 Building a GFG automaton

We will now build a co-Biichi GFG automaton B on top of D, recognising L(.A).
The set of states of B is D and the initial state is ¢F. Consider a state p € D and
a letter a € A. For each transition p — ¢’ of A’ and each (p/,¢)e D x Q7' n E
we have a transition p —— p’ in AB. Moreover, if §P(p,a) = p’ (in particular it is
defined) then the transition is non-rejecting, otherwise it is rejecting. Note that
if 67 (p,a) = p’ is defined then by the definition of E there is a (non-rejecting)
transition p — p’ in B.

Intuitively, the automaton B follows D as long as possible, and at any time
it can jump to any E-equivalent state via a rejecting transition.
By the definition of B we obtain the following fact.

Fact 59. For every p € D we have L¥¢(B, p) = L(D, p).
Lemma 60. The following relations between paths in A7 and B hold.

1. Assume that (p,q) € D x Q7 n E and there is a path ¢ — ¢ in A7 with
u # € then

{(p'eD|p—5p isapath of By ={p' € D|(p,q) € E} # &.

2. Conversely, if (p,q) € D x Q’ n E and there is a path p — p’ in B then
there exists ¢ € Q7 and a path ¢ = ¢' in A’ such that (p',q') € E.

In particular, the above properties hold for p = qf and q = qf4 because
(af ai') € E.

Proof. Both items are proved by induction on w. In Item 2 it is important that
A7 can always perform at least one transition from a given state ¢ € Q7 over a
letter a € A. O

Lemma 61. L(B) = L(A).

Proof. Let o € L(A) = L(A7). We know that there exists a decomposition
a = ua’ and a path ¢f* = ¢’ in A” such that o/ € L3 (A7 ¢'). Let p’ € D such
that p’ — ¢ (in particular (p’,¢’) € F). By Lemma 56 we have o’ € Ls¥¢(A7 p/).
Therefore, by Lemma 58 we know that o' € L(D,p’) and by Fact 59 also o €
Lsfe(B,p'). Ttem 1 of Lemma 60 implies that there exists a path ¢f — p’ in B.
This path together with the fact that o’ € L*¢(B,p) provides an accepting run
of B over ua/ = a.

Conversely, let o € L(B). Since the acceptance condition of B is co-Biichi,
we know that there exists a state p’ € D and a decomposition a = ua’ such
that ¢F —% p’ and o' € L*(B,p’). In particular o/ € L5 (A7 p') < L(A7,p).
Item 2 of Lemma 60 implies that there exists a path qf4 2 ¢ in A with ¢’ € Q”
and (p',q') € E. Since (p/,q') € E, we know that o/ € L(A”,¢'). Therefore, we
can find an accepting run of A’ over ua’ = « that starts with the path qf“ 5 4.
This run is an accepting run of A’ over a and therefore a € L(.A). O

E.8 Bis GFG

We now define a strategy o“¥S in the game G(B) proving that B is in fact
GFG. Intuitively, the strategy will try the non-rejecting paths in B (we can
deterministically follow these paths as in D) one after another. Consider the
memory structure M = D<IPI\{¢} — finite non-empty sequences of states from
D. The invariant of our strategy is that if we are in a position p of G(B) and our
memory state is m = dy .. .dy then:

- pP= d07
— each state appears at most once in m,
— for all 4,5 < ¢ we have (d;,d;) € E.

The initial memory value is mg = {¢¥}. The memory states m can be seen as a
simplification of the structure of Last-Appearance-Record from [Biic83].

Consider a position p in G(B) when the memory state is m = dody ...dp € M
and V plays a letter a € A. For each i = 0,..., ¢ let us define d as:

— e if 6P(d;,a) = 1,
— € if 6 (d;, a) is among dj for j <1,
— 6P(d;, a) otherwise.

Let p’ = o9(p,p,a) and let r € D* be a list of all states ¢ € D such that
(¢',q) € E and q is not any of d;. Now m’ = dj, ...d}-r (clearly p’ appears in this
list, either as dj, or later if d{, = €). By the construction, each state in m’ appears
at most once and all of them are E-equivalent. Now let 3 move in such a case to
the position m’(0) and set the memory state to m’. By Lemma 60 and the fact
that all d; are E-equivalent we know that there exists a transition p — m/(0)
of B.

Note that the transition taken by 3 according to the above strategy may be
rejecting in B if 6P (dg,a) = L. Clearly if d appears in m at a position i and
0P(d,a) = d # 1 then d’ appears in m’ at a position 7 such that i > 4’. If the
transition played by 3 in the given round is rejecting in B then i > ¢’

Lemma 62. The strategy 0S¢ is a winning strategy in G(B).

Proof. Consider a play in which V proposed an w-word a and 3 produced an
infinite run p of B over . Assume that o € L(B), in particular a = ua’ with
¢? — p a path in B and o/ € L***(B,p). Let p be a run of B from p over a
witnessing that o/ € L% (B, p) — p does not contain any rejecting transition of
B. Therefore, p is an accepting run of D from p over a.

For n = 0,... let m,, be the memory state of the above strategy of 3 after
¥ has played ua(0) - a(n — 1). By Lemma 60, we know that the state p = p(0)
appears in mg at some position ig. By the definition of ¢%FC it will always be
there — for every n the state p(n) appears in m,, at a position 4,,. As we observed
above, we know that i,, > 7,41 and whenever 3 plays a rejecting transition of B
then ,, > 7,,41. Therefore, there can be at most iy such transitions played after
V has played the word w. O

E.9 Deciding GFGness of A

Putting together the results from this section, we get the following theorem:

Theorem 63. Given a co-Biichi automaton A, there is a polynomial time algo-
rithm that either

— answers “A is not GFG” (if ¥ wins the Joker game G'°k°r)

— builds a co-Biichi GFG automaton B in polynomial time, of the same size
and language as A.

Now Theorem 11 follows by applying Theorem 14 to the automata A and B
in the second case above.

References

BKKS13.

BL69.

Biic83.

Col09.

Coll2.

EJI1.

HPO6.

KMBK14.

McN66.

Mos91.

PPO6.

Rab72.

SES89.

Wal02.

Udi Boker, Denis Kuperberg, Orna Kupferman, and Michat Skrzypczak.
Nondeterminism in the presence of a diverse or unknown future. In ICALP
(2), pages 89-100, 2013.

Julius Richard Biichi and Lawrence H. Landweber. Solving sequential con-
ditions by finite-state strategies. Transactions of the American Mathemat-
ical Society, 138:295-311, 1969.

Julius Richard Biichi. State-strategies for games in F-sigma-delta inter-
sected G-delta-sigma. J. Symb. Log., 48(4):1171-1198, 1983.

Thomas Colcombet. The theory of stabilisation monoids and regular cost
functions. In ICALP (2), volume 5556 of LNCS, pages 139-150, 2009.
Thomas Colcombet. Forms of determinism for automata (invited talk). In
STACS, pages 1-23, 2012.

Allen Emerson and Charanjit Jutla. Tree automata, mu-calculus and de-
terminacy. In FOCS’91, pages 368-377, 1991.

Thomas A. Henzinger and Nir Piterman. Solving games without deter-
minization. In CSL, LNCS, pages 395-410. Springer, 2006.

Joachim Klein, David Miiller, Christel Baier, and Sascha Kliippelholz. Are
good-for-games automata good for probabilistic model checking? In LATA,
Madrid, Spain, March 10-14, 2014. Proceedings, pages 453-465, 2014.
Robert McNaughton. Testing and generating infinite sequences by a finite
automaton. Information and Control, 9(5):521-530, 1966.

Andrzej W. Mostowski. Games with forbidden positions. Technical report,
University of Gdansk, 1991.

Nir Piterman and Amir Pnueli. Faster solutions of rabin and streett games.
In Logic in Computer Science (LICS), pages 275-284, 2006.

Michael Oser Rabin. Automata on Infinite Objects and Church’s Problem.
American Mathematical Society, Boston, MA, USA, 1972.

Robert S. Streett and E. Allen Emerson. An automata theoretic decision
procedure for the propositional mu-calculus. Information and Computation,
81(3):249-264, 1989.

Igor Walukiewicz. Monadic second-order logic on tree-like structures. The-
oretical Computer Science, 275(1-2):311-346, 2002.

	On Determinisation of Good-for-Games Automata

