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I’ll be quick, I promise
I’am being quick, aren’t I?

I’ve really been trying to be quick, sorry.

Question

Let us be given a curve in a parametric form

{

x(t) = t4 + 2t5 + 3t6 + 4t7

y(t) = t6 + 3t7 + 11t8 + 30t9 + 5t10
.

We ask what is the topological type of the singularity (Puiseux
expansion)

y = x3/2 + c1x
7/4 + c2x

8/4+

+ c3x
9/4 + c4x

10/4 + c5x
11/4 + . . .
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I’ll be quick, I promise
I’am being quick, aren’t I?

I’ve really been trying to be quick, sorry.

Standard approach

We write
x3/2 =

Therefore y − x3/2 is equal to

5t8 + 20t9 +
17

8
t10 + . . .

Hence c1 = 0,c2 = 5. Now we look at y − x3/2 − 5x2. After
”simple” computations we get

y − x3/2 − 5x2 = −
417

8
t10 −

821

8
t11 − . . . .

We get that c3 = 0, c4 6= 0 and c5 6= 0 (in the latter we have to
compute also y − x3/2 − 5x2 + 417

8
x5/2).
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I’ll be quick, I promise
I’am being quick, aren’t I?

I’ve really been trying to be quick, sorry.

Look at the order at zero

Write
y = c0x

q/p + c1x
(q+1)/p + c2x

(q+2)/p + . . . .

We divide both sides by xq/p. We get

where
P1 = ẏ x −

q

p
y ẋ .

If the order of P1 at zero is q + (p − 1) + r1, we know that
c1 = · · · = cr1−1 = 0 6= cr1 . In the above example
P1 = 10t11 + 65t12 + 35t13 − 85t14 − 165t15 − 10t16, so r1 = 2,
c1 = 0 and c2 = 5.
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ẋx (q+1)/p +

2c2

p
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Looking further at the order at zero

From the equation

P1(t) =
r1cr1

p
ẋx (q+r1)/p +

(r1 + 1)cr1+1

p
ẋx (q+r1+1)/p + . . .

we can go further dividing, differentiating and multiplying. We get

P2 = S2(r2)cr2 ẋ
3x (q+r2)/p+

S2(r2 + 1)cr2+1ẋ
3x (q+r2+1)/p + . . . ,

where

P2 = xẋP ′

1 − (q+r1
p

ẋ2 + xẍ)P1.
r2 is such that ordt=0 P2 = q + 3(p − 1) + r2
S2 is some coefficient depending on q, p and r1.

We see that again cr1+1 = · · · = cr2−1 = 0 6= cr2 . In our case

P2 = −1680t19 − 11520t20 − 39060t21 − . . . .

Hence c3 = 0, c4 6= 0.
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ẋ2 + xẍ)P1.
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ẋx (q+r1+1)/p + . . .

we can go further dividing, differentiating and multiplying. We get

P2 = S2(r2)cr2 ẋ
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3x (q+r2+1)/p + . . . ,

where

P2 = xẋP ′
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1 − (q+r1
p

ẋ2 + xẍ)P1.
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General formula

In general from the expression

Pk = Sk(rk)ẋ2k−1crk x
(q+rk )/p + . . .

upon applying the above procedure we get

Pk+1 = Sk+1(rk+1)ẋ
2k+1crk+1

x (q+rk+1)/p + . . . .

Where

Pk+1 = xẋP ′

k − Pk

(

q + rk

p
ẋ2 + (2k + 1)xẍ

)

.

Then, if rk+1 = ord Pk+1 − q − (2k + 1)(p − 1) we get that
crk+1 = · · · = crk+1−1 = 0 6= crk+1

.
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Advantages

Quick and elegant way to compute.

We can also get the Puiseux coefficients, not only whether
they are zero or no.

Hard-core example: x(t) = t12 + t13 + 37
28

t14,
y(t) = t18 + 3

2
t19 + 33

14
t20 + 13

14
t21 + 675

1568
t22 − 675

3136
t23.

While Puiseux coefficients do not behave well in deformations,
Pk do carry some information, on passing to the limit.
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Deformations

A deformation is a family xs(t) = ap(s)t
p + ap+1(s)t

p+1 + . . . ,
ys = bq(s)t

q + bq+1(s)t
q+1 + . . . , s ∈ B(0, 1);

If ap(s) 6= 0 for s 6= 0, the Puiseux coefficients cj(s) are
well-defined.

If ap(0) = 0, the limit lims→0 cj(s) might not exist, or loose its
topological meaning.

The polynomials Pk(t, s) behave well under passing to the
limit.

The orders of Pk(t, s) at t = 0 have a topological meaning
even for s = 0.
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