Finding a Puiseux expansion of a curve in parametric form Segovia, YMIS 2010

Maciej Borodzik

Institute of Mathematics, University of Warsaw

11 February 2010

Question

Let us be given a curve in a parametric form

Question

Let us be given a curve in a parametric form

$$
\left\{\begin{array}{l}
x(t)=t^{4}+2 t^{5}+3 t^{6}+4 t^{7} \\
y(t)=t^{6}+3 t^{7}+11 t^{8}+30 t^{9}+5 t^{10}
\end{array}\right.
$$

We ask what is the topological type of the singularity (Puiseux
expansion)

Question

Let us be given a curve in a parametric form

$$
\left\{\begin{array}{l}
x(t)=t^{4}+2 t^{5}+3 t^{6}+4 t^{7} \\
y(t)=t^{6}+3 t^{7}+11 t^{8}+30 t^{9}+5 t^{10}
\end{array}\right.
$$

We ask what is the topological type of the singularity (Puiseux expansion)

Question

Let us be given a curve in a parametric form

$$
\left\{\begin{array}{l}
x(t)=t^{4}+2 t^{5}+3 t^{6}+4 t^{7} \\
y(t)=t^{6}+3 t^{7}+11 t^{8}+30 t^{9}+5 t^{10}
\end{array}\right.
$$

We ask what is the topological type of the singularity (Puiseux expansion)

$$
\begin{aligned}
y=c_{0} x^{3 / 2}+c_{1} x^{7 / 4}+c_{2} x^{8 / 4} & + \\
& +c_{3} x^{9 / 4}+c_{4} x^{10 / 4}+c_{5} x^{11 / 4}+\ldots
\end{aligned}
$$

Standard approach

We write

Standard approach

We write

$$
x^{3 / 2}=\left(t^{4}+2 t^{5}+3 t^{6}+4 t^{7}\right)^{3 / 2}
$$

Standard approach

We write

$$
x^{3 / 2}=t^{6}\left(1+\left(2 t+3 t^{2}+4 t^{3}\right)\right)^{3 / 2}
$$

Standard approach

We write

$$
x^{3 / 2}=t^{6}\left(1+\frac{3}{2}\left(2 t+3 t^{2}+4 t^{3}\right)+\frac{3}{8}\left(2 t+3 t^{2}+4 t^{3}\right)+\ldots\right)
$$

Standard approach

We write

$$
x^{3 / 2}=t^{6}+3 t^{7}+11 t^{8}+30 t^{9}+\frac{457}{8} t^{10}+\frac{821}{8} t^{11}+\ldots
$$

Standard approach

We write

$$
x^{3 / 2}=t^{6}+3 t^{7}+11 t^{8}+30 t^{9}+\frac{457}{8} t^{10}+\frac{821}{8} t^{11}+\ldots
$$

Therefore $y-x^{3 / 2}$ is equal to

Hence $c_{1}=0, c_{2}=5$. Now we look at $y-x^{3 / 2}-5 x^{2}$. After

Standard approach

We write

$$
x^{3 / 2}=t^{6}+3 t^{7}+11 t^{8}+30 t^{9}+\frac{457}{8} t^{10}+\frac{821}{8} t^{11}+\ldots
$$

Therefore $y-x^{3 / 2}$ is equal to

$$
0 t^{7}+5 t^{8}+20 t^{9}+\frac{17}{8} t^{10}+\ldots
$$

Hence $c_{1}=0, c_{2}=5$. Now we look at $y-x^{3 / 2}-5 x^{2}$. After

Standard approach

We write

$$
x^{3 / 2}=t^{6}+3 t^{7}+11 t^{8}+30 t^{9}+\frac{457}{8} t^{10}+\frac{821}{8} t^{11}+\ldots
$$

Therefore $y-x^{3 / 2}$ is equal to

$$
5 t^{8}+20 t^{9}+\frac{17}{8} t^{10}+\ldots
$$

Hence $c_{1}=0, c_{2}=5$. Now we look at $y-x^{3 / 2}-5 x^{2}$. After "simple" computations we get

Standard approach

We write

$$
x^{3 / 2}=t^{6}+3 t^{7}+11 t^{8}+30 t^{9}+\frac{457}{8} t^{10}+\frac{821}{8} t^{11}+\ldots
$$

Therefore $y-x^{3 / 2}$ is equal to

$$
5 t^{8}+20 t^{9}+\frac{17}{8} t^{10}+\ldots
$$

Hence $c_{1}=0, c_{2}=5$. Now we look at $y-x^{3 / 2}-5 x^{2}$. After "simple" computations we get

$$
y-x^{3 / 2}-5 x^{2}=-\frac{417}{8} t^{10}-\frac{821}{8} t^{11}-\ldots
$$

We get that $c_{3}=0, c_{4} \neq 0$ and $c_{5} \neq 0$ (in the latter we have to
compute also $\left.y-x^{3 / 2}-5 x^{2}+\frac{417}{8} x^{5 / 2}\right)$.

Standard approach

We write

$$
x^{3 / 2}=t^{6}+3 t^{7}+11 t^{8}+30 t^{9}+\frac{457}{8} t^{10}+\frac{821}{8} t^{11}+\ldots
$$

Therefore $y-x^{3 / 2}$ is equal to

$$
5 t^{8}+20 t^{9}+\frac{17}{8} t^{10}+\ldots
$$

Hence $c_{1}=0, c_{2}=5$. Now we look at $y-x^{3 / 2}-5 x^{2}$. After "simple" computations we get

$$
y-x^{3 / 2}-5 x^{2}=-\frac{417}{8} t^{10}-\frac{821}{8} t^{11}-\ldots
$$

We get that $c_{3}=0, c_{4} \neq 0$ and $c_{5} \neq 0$ (in the latter we have to compute also $\left.y-x^{3 / 2}-5 x^{2}+\frac{417}{8} x^{5 / 2}\right)$.

Look at the order at zero

Write

$$
y=c_{0} x^{q / p}+c_{1} x^{(q+1) / p}+c_{2} x^{(q+2) / p}+\ldots
$$

We divide both sides by $x^{q / P}$. We get

Look at the order at zero

Write

$$
y=c_{0} x^{q / p}+c_{1} x^{(q+1) / p}+c_{2} x^{(q+2) / p}+\ldots .
$$

We divide both sides by $x^{q / p}$. We get

$$
\frac{y}{x^{q / p}}=c_{0}+c_{1} x^{1 / p}+c_{2} x^{2 / p}+\ldots
$$

Look at the order at zero

Write

$$
y=c_{0} x^{q / p}+c_{1} x^{(q+1) / p}+c_{2} x^{(q+2) / p}+\ldots
$$

We divide both sides by $x^{q / p}$, differentiate with respect to t. We get

$$
\begin{aligned}
& \frac{y}{x^{q / p}}=c_{0}+c_{1} x^{1 / p}+c_{2} x^{2 / p}+\ldots \\
& \frac{\dot{y} x-\frac{q}{p} y \dot{x}}{x^{q / p+1}}=c_{1} \frac{1}{p} \dot{x} x^{1 / p-1}+c_{2} \frac{2}{p} \dot{x} x^{2 / p-1}+\ldots
\end{aligned}
$$

Look at the order at zero

Write

$$
y=c_{0} x^{q / p}+c_{1} x^{(q+1) / p}+c_{2} x^{(q+2) / p}+\ldots .
$$

We divide both sides by $x^{q / p}$, differentiate with respect to t and multiply back by $x^{q / p+1}$. We get

$$
\begin{aligned}
& \frac{\dot{y} x-\frac{q}{p} y \dot{x}}{x^{q / p+1}}=c_{1} \frac{1}{p} \dot{x} x^{1 / p-1}+c_{2} \frac{2}{p} \dot{x} x^{2 / p-1}+\ldots \\
& \dot{y} x-\frac{q}{p} y \dot{x}=\frac{c_{1}}{p} \dot{x} x^{(q+1) / p}+\frac{2 c_{2}}{p} \dot{x} x^{(q+2) / p}+\ldots
\end{aligned}
$$

where

Look at the order at zero

Write

$$
y=c_{0} x^{q / p}+c_{1} x^{(q+1) / p}+c_{2} x^{(q+2) / p}+\ldots
$$

We divide both sides by $x^{q / p}$, differentiate with respect to t and multiply back by $x^{q / p+1}$. We get

$$
P_{1}(t)=\frac{c_{1}}{p} \dot{x} x^{(q+1) / p}+\frac{2 c_{2}}{p} \dot{x} x^{(q+2) / p}+\ldots,
$$

where

$$
P_{1}=\dot{y} x-\frac{q}{p} y \dot{x} .
$$

Look at the order at zero

Write

$$
y=c_{0} x^{q / p}+c_{1} x^{(q+1) / p}+c_{2} x^{(q+2) / p}+\ldots
$$

We divide both sides by $x^{q / p}$, differentiate with respect to t and multiply back by $x^{q / p+1}$. We get

$$
P_{1}(t)=\frac{c_{1}}{p} \underbrace{\dot{x} x^{(q+1) / p}}_{p-1+q+1}+\frac{2 c_{2}}{p} \underbrace{\dot{x} x^{(q+2) / p}}_{p-1+q+2}+\ldots,
$$

where

$$
P_{1}=\dot{y} x-\frac{q}{p} y \dot{x}
$$

If the order of P_{1} at zero is $q+(p-1)+r_{1}$, we know that

Look at the order at zero

Write

$$
y=c_{0} x^{q / p}+c_{1} x^{(q+1) / p}+c_{2} x^{(q+2) / p}+\ldots
$$

We divide both sides by $x^{q / p}$, differentiate with respect to t and multiply back by $x^{q / p+1}$. We get

$$
P_{1}(t)=\frac{c_{1}}{p} \dot{x} x^{(q+1) / p}+\frac{2 c_{2}}{p} \dot{x} x^{(q+2) / p}+\ldots,
$$

where

$$
P_{1}=\dot{y} x-\frac{q}{p} y \dot{x} .
$$

If the order of P_{1} at zero is $q+(p-1)+r_{1}$, we know that $c_{1}=\cdots=c_{r_{1}-1}=0 \neq c_{r_{1}}$.

Look at the order at zero

Write

$$
y=c_{0} x^{q / p}+c_{1} x^{(q+1) / p}+c_{2} x^{(q+2) / p}+\ldots
$$

We divide both sides by $x^{q / p}$, differentiate with respect to t and multiply back by $x^{q / p+1}$. We get

$$
P_{1}(t)=\frac{c_{1}}{p} \dot{x} x^{(q+1) / p}+\frac{2 c_{2}}{p} \dot{x} x^{(q+2) / p}+\ldots,
$$

where

$$
P_{1}=\dot{y} x-\frac{q}{p} y \dot{x}
$$

If the order of P_{1} at zero is $q+(p-1)+r_{1}$, we know that $c_{1}=\cdots=c_{r_{1}-1}=0 \neq c_{r_{1}}$. In the above example $P_{1}=10 t^{11}+65 t^{12}+35 t^{13}-85 t^{14}-165 t^{15}-10 t^{16}$, so $r_{1}=2$, $c_{1}=0$ and $c_{2}=5$.

Looking further at the order at zero

From the equation

Looking further at the order at zero

From the equation

$$
P_{1}(t)=\frac{r_{1} c_{r_{1}}}{p} \dot{x} x^{\left(q+r_{1}\right) / p}+\frac{\left(r_{1}+1\right) c_{r_{1}+1}}{p} \dot{x} x^{\left(q+r_{1}+1\right) / p}+\ldots
$$

we assume here that ord $P_{1}=q+(p-1)+r_{1}$ we can go further dividing, differentiating and multiplying. We get

Looking further at the order at zero

From the equation

$$
P_{1}(t)=\frac{r_{1} c_{r_{1}}}{p} \dot{x} x^{\left(q+r_{1}\right) / p}+\frac{\left(r_{1}+1\right) c_{r_{1}+1}}{p} \dot{x} x^{\left(q+r_{1}+1\right) / p}+\ldots
$$

we can go further dividing, differentiating and multiplying.

where

Looking further at the order at zero

From the equation

$$
P_{1}(t)=\frac{r_{1} c_{r_{1}}}{p} \dot{x} x^{\left(q+r_{1}\right) / p}+\frac{\left(r_{1}+1\right) c_{r_{1}+1}}{p} \dot{x} x^{\left(q+r_{1}+1\right) / p}+\ldots
$$

we can go further dividing, differentiating and multiplying. We get

$$
\begin{aligned}
& P_{2}=S_{2}\left(r_{2}\right) c_{r_{2}} \dot{x}^{3} x^{\left(q+r_{2}\right) / p}+ \\
& \\
& \quad S_{2}\left(r_{2}+1\right) c_{r_{2}+1} \dot{x}^{3} x^{\left(q+r_{2}+1\right) / p}+\ldots,
\end{aligned}
$$

where

Looking further at the order at zero

From the equation

$$
P_{1}(t)=\frac{r_{1} c_{r_{1}}}{p} \dot{x} x^{\left(q+r_{1}\right) / p}+\frac{\left(r_{1}+1\right) c_{r_{1}+1}}{p} \dot{x} x^{\left(q+r_{1}+1\right) / p}+\ldots
$$

we can go further dividing, differentiating and multiplying. We get

$$
\begin{aligned}
& P_{2}=S_{2}\left(r_{2}\right) c_{r_{2}} \dot{x}^{3} x^{\left(q+r_{2}\right) / p}+ \\
& \\
& \quad S_{2}\left(r_{2}+1\right) c_{r_{2}+1} \dot{x}^{3} x^{\left(q+r_{2}+1\right) / p}+\ldots,
\end{aligned}
$$

where

- $P_{2}=x \dot{x} P_{1}^{\prime}-\left(\frac{q+r_{1}}{p} \dot{x}^{2}+x \ddot{x}\right) P_{1}$.

Looking further at the order at zero

From the equation

$$
P_{1}(t)=\frac{r_{1} c_{r_{1}}}{p} \dot{x} x^{\left(q+r_{1}\right) / p}+\frac{\left(r_{1}+1\right) c_{r_{1}+1}}{p} \dot{x} x^{\left(q+r_{1}+1\right) / p}+\ldots
$$

we can go further dividing, differentiating and multiplying. We get

$$
\begin{aligned}
& P_{2}=S_{2}\left(r_{2}\right) c_{r_{2}} \dot{x}^{3} x^{\left(q+r_{2}\right) / p}+ \\
& \\
& \quad S_{2}\left(r_{2}+1\right) c_{r_{2}+1} \dot{x}^{3} x^{\left(q+r_{2}+1\right) / p}+\ldots,
\end{aligned}
$$

where

- $P_{2}=x \dot{x} P_{1}^{\prime}-\left(\frac{q+r_{1}}{p} \dot{x}^{2}+x \ddot{x}\right) P_{1}$.
- r_{2} is such that $\operatorname{ord}_{t=0} P_{2}=q+3(p-1)+r_{2}$

Looking further at the order at zero

From the equation

$$
P_{1}(t)=\frac{r_{1} c_{r_{1}}}{p} \dot{x} x^{\left(q+r_{1}\right) / p}+\frac{\left(r_{1}+1\right) c_{r_{1}+1}}{p} \dot{x} x^{\left(q+r_{1}+1\right) / p}+\ldots
$$

we can go further dividing, differentiating and multiplying. We get

$$
\begin{aligned}
& P_{2}=S_{2}\left(r_{2}\right) c_{r_{2}} \dot{x}^{3} x^{\left(q+r_{2}\right) / p}+ \\
& \\
& \quad S_{2}\left(r_{2}+1\right) c_{r_{2}+1} \dot{x}^{3} x^{\left(q+r_{2}+1\right) / p}+\ldots,
\end{aligned}
$$

where

- $P_{2}=x \dot{x} P_{1}^{\prime}-\left(\frac{q+r_{1}}{p} \dot{x}^{2}+x \ddot{x}\right) P_{1}$.
- r_{2} is such that $\operatorname{ord}_{t=0} P_{2}=q+3(p-1)+r_{2}$
- S_{2} is some coefficient depending on q, p and r_{1}.

We see that again $c_{r_{1}+1}=\cdots=c_{r_{2}-1}=0 \neq c_{r_{2}}$. In our case

Looking further at the order at zero

From the equation

$$
P_{1}(t)=\frac{r_{1} c_{r_{1}}}{p} \dot{x} x^{\left(q+r_{1}\right) / p}+\frac{\left(r_{1}+1\right) c_{r_{1}+1}}{p} \dot{x} x^{\left(q+r_{1}+1\right) / p}+\ldots
$$

we can go further dividing, differentiating and multiplying. We get

$$
\begin{aligned}
& P_{2}=S_{2}\left(r_{2}\right) c_{r_{2}} \dot{x}^{3} x^{\left(q+r_{2}\right) / p}+ \\
& \\
& S_{2}\left(r_{2}+1\right) c_{r_{2}+1} \dot{x}^{3} x^{\left(q+r_{2}+1\right) / p}+\ldots,
\end{aligned}
$$

where

- $P_{2}=x \dot{x} P_{1}^{\prime}-\left(\frac{q+r_{1}}{p} \dot{x}^{2}+x \ddot{x}\right) P_{1}$.
- r_{2} is such that $\operatorname{ord}_{t=0} P_{2}=q+3(p-1)+r_{2}$
- S_{2} is some coefficient depending on q, p and r_{1}.

We see that again $c_{r_{1}+1}=\cdots=c_{r_{2}-1}=0 \neq c_{r_{2}}$. In our case

Looking further at the order at zero

We get

$$
\begin{aligned}
& P_{2}=S_{2}\left(r_{2}\right) c_{r_{2}} \dot{x}^{3} x^{\left(q+r_{2}\right) / p}+ \\
& \\
& \quad S_{2}\left(r_{2}+1\right) c_{r_{2}+1} \dot{x}^{3} x^{\left(q+r_{2}+1\right) / p}+\ldots,
\end{aligned}
$$

where

- $P_{2}=x \dot{x} P_{1}^{\prime}-\left(\frac{q+r_{1}}{p} \dot{x}^{2}+x \ddot{x}\right) P_{1}$.
- r_{2} is such that $\operatorname{ord}_{t=0} P_{2}=q+3(p-1)+r_{2}$
- S_{2} is some coefficient depending on q, p and r_{1}.

We see that again $c_{r_{1}+1}=\cdots=c_{r_{2}-1}=0 \neq c_{r_{2}}$. In our case

$$
P_{2}=-1680 t^{19}-11520 t^{20}-39060 t^{21}-\ldots
$$

Hence $c_{3}=0, c_{4} \neq 0$.

General formula

In general from the expression

General formula

In general from the expression

$$
P_{k}=S_{k}\left(r_{k}\right) \dot{x}^{2 k-1} c_{r_{k}} x^{\left(q+r_{k}\right) / p}+\ldots
$$

upon applying the above procedure we get

Where

General formula

In general from the expression

$$
P_{k}=S_{k}\left(r_{k}\right) \dot{x}^{2 k-1} c_{r_{k}} x^{\left(q+r_{k}\right) / p}+\ldots
$$

upon applying the above procedure we get

$$
P_{k+1}=S_{k+1}\left(r_{k+1}\right) \dot{x}^{2 k+1} c_{r_{k+1}} x^{\left(q+r_{k+1}\right) / p}+\ldots
$$

Where

General formula

In general from the expression

$$
P_{k}=S_{k}\left(r_{k}\right) \dot{x}^{2 k-1} c_{r_{k}} x^{\left(q+r_{k}\right) / p}+\ldots
$$

upon applying the above procedure we get

$$
P_{k+1}=S_{k+1}\left(r_{k+1}\right) \dot{x}^{2 k+1} c_{r_{k+1}} x^{\left(q+r_{k+1}\right) / p}+\ldots
$$

Where

$$
P_{k+1}=x \dot{x} P_{k}^{\prime}-P_{k}\left(\frac{q+r_{k}}{p} \dot{x}^{2}+(2 k+1) x \ddot{x}\right) .
$$

Then, if $r_{k+1}=\operatorname{ord} P_{k+1}-q-(2 k+1)(p-1)$ we get that
$c_{r_{k}+1}=\cdots=c_{r_{k+1}-1}=0 \neq c_{r_{k+1}}$

General formula

In general from the expression

$$
P_{k}=S_{k}\left(r_{k}\right) \dot{x}^{2 k-1} c_{r_{k}} x^{\left(q+r_{k}\right) / p}+\ldots
$$

upon applying the above procedure we get

$$
P_{k+1}=S_{k+1}\left(r_{k+1}\right) \dot{x}^{2 k+1} c_{r_{k+1}} x^{\left(q+r_{k+1}\right) / p}+\ldots
$$

Where

$$
P_{k+1}=x \dot{x} P_{k}^{\prime}-P_{k}\left(\frac{q+r_{k}}{p} \dot{x}^{2}+(2 k+1) x \ddot{x}\right) .
$$

Then, if $r_{k+1}=$ ord $P_{k+1}-q-(2 k+1)(p-1)$ we get that $c_{r_{k}+1}=\cdots=c_{r_{k+1}-1}=0 \neq c_{r_{k+1}}$.

Advantages

- Quick and elegant way to compute.
- We can also get the Puiseux coefficients, not only whether they are zero or no.

Advantages

- Quick and elegant way to compute.
- We can also get the Puiseux coefficients, not only whether they are zero or no.

Advantages

- Quick and elegant way to compute.
- We can also get the Puiseux coefficients, not only whether they are zero or no.
- Hard-core example: $x(t)=t^{12}+t^{13}+\frac{37}{28} t^{14}$,

Advantages

- Quick and elegant way to compute.
- We can also get the Puiseux coefficients, not only whether they are zero or no.
- Hard-core example: $x(t)=t^{12}+t^{13}+\frac{37}{28} t^{14}$, $y(t)=t^{18}+\frac{3}{2} t^{19}+\frac{33}{14} t^{20}+\frac{13}{14} t^{21}+\frac{675}{1568} t^{22}-\frac{675}{3136} t^{23}$.
- While Puiseux coefficients do not behave well in deformations, P_{k} do carry some information, on passing to the limit.

Advantages

- Quick and elegant way to compute.
- We can also get the Puiseux coefficients, not only whether they are zero or no.
- Hard-core example: $x(t)=t^{12}+t^{13}+\frac{37}{28} t^{14}$, $y(t)=t^{18}+\frac{3}{2} t^{19}+\frac{33}{14} t^{20}+\frac{13}{14} t^{21}+\frac{675}{1568} t^{22}-\frac{675}{3136} t^{23}$.
- While Puiseux coefficients do not behave well in deformations, P_{k} do carry some information, on passing to the limit.

Advantages

- Quick and elegant way to compute.
- We can also get the Puiseux coefficients, not only whether they are zero or no.
- Hard-core example: $x(t)=t^{12}+t^{13}+\frac{37}{28} t^{14}$, $y(t)=t^{18}+\frac{3}{2} t^{19}+\frac{33}{14} t^{20}+\frac{13}{14} t^{21}+\frac{675}{1568} t^{22}-\frac{675}{3136} t^{23}$.
- While Puiseux coefficients do not behave well in deformations, P_{k} do carry some information, on passing to the limit.

Deformations

- A deformation is a family $x_{s}(t)=a_{p}(s) t^{p}+a_{p+1}(s) t^{p+1}+\ldots$, $y_{s}=b_{q}(s) t^{q}+b_{q+1}(s) t^{q+1}+\ldots, s \in B(0,1) ;$

- If $a_{p}(s) \neq 0$ for $s \neq 0$, the Puiseux coefficients $c_{j}(s)$ are well-defined.

Deformations

- A deformation is a family $x_{s}(t)=a_{p}(s) t^{p}+a_{p+1}(s) t^{p+1}+\ldots$, $y_{s}=b_{q}(s) t^{q}+b_{q+1}(s) t^{q+1}+\ldots, s \in B(0,1)$;
- If $a_{p}(s) \neq 0$ for $s \neq 0$, the Puiseux coefficients $c_{j}(s)$ are well-defined.
- If $a_{p}(0)=0$, the limit $\lim _{s \rightarrow 0} c_{j}(s)$ might not exist, or loose its topological meaning.

Deformations

- A deformation is a family $x_{s}(t)=a_{p}(s) t^{p}+a_{p+1}(s) t^{p+1}+\ldots$, $y_{s}=b_{q}(s) t^{q}+b_{q+1}(s) t^{q+1}+\ldots, s \in B(0,1)$;
- If $a_{p}(s) \neq 0$ for $s \neq 0$, the Puiseux coefficients $c_{j}(s)$ are well-defined.
- If $a_{p}(0)=0$, the limit $\lim _{s \rightarrow 0} c_{j}(s)$ might not exist, or loose its topological meaning.
- The polynomials $P_{k}(t, s)$ behave well under passing to the limit.

Deformations

- A deformation is a family $x_{s}(t)=a_{p}(s) t^{p}+a_{p+1}(s) t^{p+1}+\ldots$, $y_{s}=b_{q}(s) t^{q}+b_{q+1}(s) t^{q+1}+\ldots, s \in B(0,1)$;
- If $a_{p}(s) \neq 0$ for $s \neq 0$, the Puiseux coefficients $c_{j}(s)$ are well-defined.
- If $a_{p}(0)=0$, the limit $\lim _{s \rightarrow 0} c_{j}(s)$ might not exist, or loose its topological meaning.
- The polynomials $P_{k}(t, s)$ behave well under passing to the limit.
- The orders of $P_{k}(t, s)$ at $t=0$ have a topological meaning even for $s=0$.

Deformations

- A deformation is a family $x_{s}(t)=a_{p}(s) t^{p}+a_{p+1}(s) t^{p+1}+\ldots$, $y_{s}=b_{q}(s) t^{q}+b_{q+1}(s) t^{q+1}+\ldots, s \in B(0,1)$;
- If $a_{p}(s) \neq 0$ for $s \neq 0$, the Puiseux coefficients $c_{j}(s)$ are well-defined.
- If $a_{p}(0)=0$, the limit $\lim _{s \rightarrow 0} c_{j}(s)$ might not exist, or loose its topological meaning.
- The polynomials $P_{k}(t, s)$ behave well under passing to the limit.
- The orders of $P_{k}(t, s)$ at $t=0$ have a topological meaning even for $s=0$.

