Affine algebraic curves with zero Euler characteristics

Oberwolfach, 2007

Maciej Borodzik, Henryk Żołądek

Institute of Mathematics, University of Warsaw

• Curve $C \subset \mathbb{C}^2$.

- Curve $C \subset \mathbb{C}^2$.
- $\bar{C} \subset \mathbb{C}P^2$ its closure.

- Curve $C \subset \mathbb{C}^2$.
- $\bar{C} \subset \mathbb{C}P^2$ its closure.
- \overline{C} is rational.

- Curve $C \subset \mathbb{C}^2$.
- $\bar{C} \subset \mathbb{C}P^2$ its closure.
- \overline{C} is rational.
- $\chi(C) = 0.$

- Curve $C \subset \mathbb{C}^2$.
- $\bar{C} \subset \mathbb{C}P^2$ its closure.
- \overline{C} is rational.
- $\chi(C) = 0.$

It follows, that either

- Curve $C \subset \mathbb{C}^2$.
- $\bar{C} \subset \mathbb{C}P^2$ its closure.
- \overline{C} is rational.
- $\chi(C) = 0.$

It follows, that either

• $C \simeq \mathbb{C}^*$ and C has no finite self-intersections.

- Curve $C \subset \mathbb{C}^2$.
- $\bar{C} \subset \mathbb{C}P^2$ its closure.
- \overline{C} is rational.
- $\chi(C) = 0.$

It follows, that either

- $C \simeq \mathbb{C}^*$ and C has no finite self-intersections.
- C has one place at infinity and one finite self-intersection.

If $\chi(C) = 1$, then C is homeomorphic to a line.

If $\chi(C) = 1$, then C is homeomorphic to a line. Zajdenberg–Lin theorem: $C \simeq \{x^p = y^q\}$ with p, q coprime.

If $\chi(C) = 1$, then C is homeomorphic to a line. Zajdenberg–Lin theorem: $C \simeq \{x^p = y^q\}$ with p, q coprime.

Koras, Russell case $C \simeq \mathbb{C}^*$ and C smooth.

It is restricted to regular curves.

• Conjecture: All curves are regular.

- Conjecture: All curves are regular.
- Lots of evidence.

- Conjecture: All curves are regular.
- Lots of evidence.
- A gap in the proof.

• Equation

- Equation
- $C = \{(x, y) \in \mathbb{C}^2 : f(x, y) = 0\}$

- Equation
- $C = \{(x, y) \in \mathbb{C}^2 : f(x, y) = 0\}$
- Genus is difficult.

- Equation
- $C = \{(x, y) \in \mathbb{C}^2 : f(x, y) = 0\}$
- Genus is difficult.
- Singular points $f'_x(x_0, y_0) = f'_y(x_0, y_0) = 0$

- Equation
- $C = \{(x, y) \in \mathbb{C}^2 : f(x, y) = 0\}$
- Genus is difficult.
- Singular points $f'_x(x_0, y_0) = f'_y(x_0, y_0) = 0$
- Self-intersections are singular points.

- Equation
- $C = \{(x, y) \in \mathbb{C}^2 : f(x, y) = 0\}$
- Genus is difficult.
- Singular points $f'_x(x_0, y_0) = f'_y(x_0, y_0) = 0$
- Self-intersections are singular points.
- Parametrisation

- Equation
- $\bullet \bullet \ C = \{(x,y) \in \mathbb{C}^2 : f(x,y) = 0\}$
 - Genus is difficult.
 - Singular points $f'_x(x_0, y_0) = f'_y(x_0, y_0) = 0$
 - Self-intersections are singular points.
 - Parametrisation

 $\blacktriangleright \bullet \ C = \{(x(t), y(t)) \in \mathbb{C}^2, t \in \mathbb{C}P^1\}$

- Equation
- $C = \{(x, y) \in \mathbb{C}^2 : f(x, y) = 0\}$
- →• Genus is difficult.
 - Singular points $f'_x(x_0, y_0) = f'_y(x_0, y_0) = 0$
 - Self-intersections are singular points.
 - Parametrisation
 - $C = \{(x(t), y(t)) \in \mathbb{C}^2, t \in \mathbb{C}P^1\}$
- → e genus is zero.

- Equation
- $C = \{(x, y) \in \mathbb{C}^2 : f(x, y) = 0\}$
- Genus is difficult.
- Singular points $f'_x(x_0, y_0) = f'_y(x_0, y_0) = 0$
- Self-intersections are singular points.
- Parametrisation
 C = {(x(t), y(t)) ∈ C², t ∈ CP¹}
 genus is zero.

- Equation
- $C = \{(x, y) \in \mathbb{C}^2 : f(x, y) = 0\}$
- Genus is difficult.
- •• Singular points $f'_x(x_0, y_0) = f'_y(x_0, y_0) = 0$
 - Self-intersections are singular points.

Parametrisation

- $C = \{(x(t), y(t)) \in \mathbb{C}^2, t \in \mathbb{C}P^1\}$
- genus is zero.
- •• Singular points: $x'(t_0) = y'(t_0) = 0$

- Equation
- $C = \{(x, y) \in \mathbb{C}^2 : f(x, y) = 0\}$
- Genus is difficult.
- Singular points $f'_x(x_0, y_0) = f'_y(x_0, y_0) = 0$
- Self-intersections are singular points.

Parametrisation

- $C = \{(x(t), y(t)) \in \mathbb{C}^2, t \in \mathbb{C}P^1\}$
- genus is zero.
- Singular points: $x'(t_0) = y'(t_0) = 0$
- →• Self–intersections are difficult.

Rational curve C with one place at infinity is given by a polynomial

Rational curve C with one place at infinity is given by a polynomial

$$\begin{cases} x(t) = t^a + \alpha_1 t^{a-1} + \dots + \alpha_a \\ y(t) = t^c + \beta_1 t^{c-1} + \dots + \beta_c. \end{cases}$$

Rational curve C with one place at infinity is given by a polynomial

$$\begin{cases} x(t) &= t^a + \alpha_1 t^{a-1} + \dots + \alpha_a \\ y(t) &= t^c + \beta_1 t^{c-1} + \dots + \beta_c. \end{cases}$$

Any rational C with two branches at infinity is given by a polynomial in t and t^{-1} .

Rational curve C with one place at infinity is given by a polynomial

$$\begin{cases} x(t) &= t^{a} + \alpha_{1}t^{a-1} + \dots + \alpha_{a} \\ y(t) &= t^{c} + \beta_{1}t^{c-1} + \dots + \beta_{c}. \end{cases}$$

Any rational C with two branches at infinity is given by a polynomial in t and t^{-1} . so

$$\begin{cases} x(t) &= t^{a} + \alpha_{1}t^{a-1} + \dots + \alpha_{a+b}t^{-b} \\ y(t) &= t^{c} + \beta_{1}t^{c-1} + \dots + \beta_{c+d}t^{-d}. \end{cases}$$

δ invariant

For singular point with Milnor number μ and r branches set

δ invariant

For singular point with Milnor number μ and r branches set

$$2\delta = \mu + r - 1.$$

δ invariant

For singular point with Milnor number μ and r branches set

$$2\delta = \mu + r - 1.$$

If (x_0, y_0) is a singular point of (x(t), y(t)),
For singular point with Milnor number μ and r branches set

$$2\delta = \mu + r - 1.$$

If (x_0, y_0) is a singular point of (x(t), y(t)), 2δ is the number of solutions to

For singular point with Milnor number μ and r branches set

$$2\delta = \mu + r - 1.$$

If (x_0, y_0) is a singular point of (x(t), y(t)), 2δ is the number of solutions to

$$\begin{cases} \frac{x(s_1) - x(s_2)}{s_1 - s_2} &= 0\\ \frac{y(s_1) - y(s_2)}{s_1 - s_2} &= 0 \end{cases}$$

such that $x(s_1) = x_0$ i $y(s_1) = y_0$.

For singular point with Milnor number μ and r branches set

$$2\delta = \mu + r - 1.$$

If (x_0, y_0) is a singular point of (x(t), y(t)), 2δ is the number of solutions to

double point equation

$$\frac{\frac{x(s_1) - x(s_2)}{s_1 - s_2}}{\frac{y(s_1) - y(s_2)}{s_1 - s_2}} = 0$$

such that $x(s_1) = x_0$ i $y(s_1) = y_0$.

For singular point with Milnor number μ and r branches set

$$2\delta = \mu + r - 1.$$

If (x_0, y_0) is a singular point of (x(t), y(t)), 2δ is the number of solutions to

$$\begin{cases} \frac{x(s_1) - x(s_2)}{s_1 - s_2} &= 0\\ \frac{y(s_1) - y(s_2)}{s_1 - s_2} &= 0 \end{cases}$$

such that $x(s_1) = x_0$ i $y(s_1) = y_0$. For an ordinary double point we have $2\delta = 2$.

$$y^2 = x^3 + \lambda x^2,$$

 $y^2 = x^3 + \lambda x^2, \ \lambda = 2.$

 $y^2 = x^3 + \lambda x^2, \ \lambda = 1.$

 $y^2 = x^3 + \lambda x^2, \ \lambda = \frac{1}{2}.$

 $y^2 = x^3 + \lambda x^2, \ \lambda = 0.$

One double point ,,hides" in a singular point. $2\delta = 2$.

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^{3} - 15\lambda^{2}t \\ y_{\lambda}(t) &= t^{5} - 30\lambda^{2}t^{3} + 10\lambda^{3}t^{2} + 201\lambda^{4}t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

$\lambda = 1$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

$$\lambda = 0.93$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

$$\lambda = 0.92$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^{3} - 15\lambda^{2}t \\ y_{\lambda}(t) &= t^{5} - 30\lambda^{2}t^{3} + 10\lambda^{3}t^{2} + 201\lambda^{4}t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^{3} - 15\lambda^{2}t \\ y_{\lambda}(t) &= t^{5} - 30\lambda^{2}t^{3} + 10\lambda^{3}t^{2} + 201\lambda^{4}t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

$$\lambda = 0.7$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^{3} - 15\lambda^{2}t \\ y_{\lambda}(t) &= t^{5} - 30\lambda^{2}t^{3} + 10\lambda^{3}t^{2} + 201\lambda^{4}t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

Curves depend on λ .

$$\begin{cases} x_{\lambda}(t) &= t^3 - 15\lambda^2 t \\ y_{\lambda}(t) &= t^5 - 30\lambda^2 t^3 + 10\lambda^3 t^2 + 201\lambda^4 t, \end{cases}$$

 $\lambda = 0$

$$g = \frac{(d-1)(d-2)}{2} - \sum \delta_i$$

Serre formula II

We require g = 0. Thus

$$\sum 2\delta_i = (d-1)(d-2).$$

Serre formula II

We require g = 0. Thus

$$\sum 2\delta_i = (d-1)(d-2).$$

• For a typical curve δ_i correspond to ordinary double points.

We require g = 0. Thus

$$\sum 2\delta_i = (d-1)(d-2).$$

- For a typical curve δ_i correspond to ordinary double points.
- If C has no finite double points (or only one), all other points must be hidden in singular points.

We require g = 0. Thus

$$\sum 2\delta_i = (d-1)(d-2).$$

- For a typical curve δ_i correspond to ordinary double points.
- If C has no finite double points (or only one), all other points must be hidden in singular points.
- Maybe at infinity.

To control the deformations of a parametric curves we introduce

To control the deformations of a parametric curves we introduce the codimension.

To control the deformations of a parametric curves we introduce the codimension. Strongly resembles \overline{M} number of Orevkov.

To control the deformations of a parametric curves we introduce the codimension.

Parametrise locally $x(t) \sim t^p$, $y(t) \sim t^q + \dots$ Write

$$y = c_1 x^{1/p} + c_2 x^{2/p} + \dots + c_i x^{i/p} + \dots$$

To control the deformations of a parametric curves we introduce the codimension.

Parametrise locally $x(t) \sim t^p$, $y(t) \sim t^q + \dots$ Write

 $y = c_1 x^{1/p} + c_2 x^{2/p} + \dots + c_i x^{i/p} + \dots$ $c_1, c_2, \ldots, c_i, \ldots$ Puiseux coefficients

To control the deformations of a parametric curves we introduce the codimension.

Parametrise locally $x(t) \sim t^p$, $y(t) \sim t^q + \dots$ Write

$$y = c_1 x^{1/p} + c_2 x^{2/p} + \dots + c_i x^{i/p} + \dots$$

 $c_1, c_2, \ldots, c_i, \ldots$ — Puiseux coefficients

• The local *codimension* ν is the number of vanishing *essential* Puiseux coefficients.

To control the deformations of a parametric curves we introduce the codimension.

Parametrise locally $x(t) \sim t^p$, $y(t) \sim t^q + \dots$ Write

$$y = c_1 x^{1/p} + c_2 x^{2/p} + \dots + c_i x^{i/p} + \dots$$

 $c_1, c_2, \ldots, c_i, \ldots$ — Puiseux coefficients

- The local *codimension* ν is the number of vanishing *essential* Puiseux coefficients.
- ν is determined by the characteristic sequence and the order p.

If $x(t) \sim t^p$, $y(t) \sim t^q$ we have:

$$\mu \le p\nu.$$

If $x(t) \sim t^p$, $y(t) \sim t^q$ we have: $\mu \leq p\nu$.

If $x(t) \sim t^p$, $y(t) \sim t^q$ we have:

If $x(t) \sim t^p$, $y(t) \sim t^q$ we have:

where μ Milnor number (= 2δ), ν the local codimension

 $|\mu \leq p\nu$)

If $x(t) \sim t^p$, $y(t) \sim t^q$ we have:

$$\mu \leq p\nu.$$

where μ Milnor number (= 2δ), ν the local codimension

If $x(t) \sim t^p$, $y(t) \sim t^q$ we have:

$$\mu \leq p\nu.$$

where μ Milnor number (= 2δ), ν the local codimension

• One can find all cases with an equality.

If $x(t) \sim t^p$, $y(t) \sim t^q$ we have:

$$\mu \le p\nu.$$

where μ Milnor number (= 2δ), ν the local codimension

- One can find all cases with an equality.
- Direct calculations.

If $x(t) \sim t^p$, $y(t) \sim t^q$ we have:

$$\mu \leq p\nu.$$

where μ Milnor number (= 2δ), ν the local codimension

- One can find all cases with an equality.
- Direct calculations.
- Resembles Zajdenberg–Orevkov inequality.

$$\begin{cases} x = t^4, \\ y = 2t^4 + t^6 + 2t^8 + t^9 \end{cases}$$

$$\begin{cases} x = t^4, \\ y = 2t^4 + t^6 + 2t^8 + t^9 \end{cases}$$
$$y = 2x^{4/4} + x^{6/4} + 2x^{8/4} + x^{9/4}.$$

$$\begin{cases} x = t^4, \\ y = 2t^4 + t^6 + 2t^8 + t^9 \\ y = 2x + x^{3/2} + 2x^2 + x^{9/4}. \end{cases}$$
$$c_1 = c_2 = c_3 = c_5 = c_7 = 0.$$

$$\begin{cases} x = t^4, \\ y = 2t^4 + t^6 + 2t^8 + t^9 \\ y = 2x + x^{3/2} + 2x^2 + x^{9/4} \\ \hline c_1 = c_2 = c_3 = c_5 = c_7 = 0. \\ \hline \text{Hence } \nu = 5. \text{ Also} \\ \mu = 15 + 3 = 18 \le 4 \cdot 5 \end{cases}$$

$$\begin{cases} x = t^4, \\ y = 2t^4 + t^6 + 2t^8 + \cancel{9} \\ y = 2x + x^{3/2} + 2x^2 + \cancel{9}^{9/4}. \end{cases}$$
$$\frac{c_1 = c_2 = c_3 = c_5 = c_7 = 0. \\ \text{Hence } \nu = 5. \text{ Also} \\ \mu = 15 + 3 = 18 \le 4 \cdot 5 \end{cases}$$

Change 9 to 13.

$$\begin{cases} x = t^4, \\ y = 2t^4 + t^6 + 2t^8 + t^{13} \\ y = 2x + x^{3/2} + 2x^2 + x^{13/4} \\ \hline c_1 = c_2 = c_3 = c_5 = c_7 = 0. \\ \hline \text{Hence } \nu = 5. \text{ Also} \\ \mu = 15 + 3 = 18 \le 4 \cdot 5 \end{cases}$$

$$\begin{cases} x = t^4, \\ y = 2t^4 + t^6 + 2t^8 + t^{13} \\ y = 2x + x^{3/2} + 2x^2 + x^{13/4}, \\ \hline c_1 = c_2 = c_3 = c_5 = c_7 = c_9 = c_{11} = 0. \\ \hline \text{Now } \nu = 7. \text{ And} \\ \mu = 15 + 7 = 22 \le 4 \cdot 7 \end{cases}$$

$$\begin{cases} x = t^4, \\ y = 2t^4 + t^6 + 2t^8 + t^{13} \\ y = 2x + x^{3/2} + 2x^2 + x^{13/4}. \end{cases}$$
$$\frac{c_1 = c_2 = c_3 = c_5 = c_7 = c_9 = c_{11} = 0.}{\text{Now } \nu = 7. \text{ And}}$$
$$\mu = 15 + 7 = 22 \le 4 \cdot 7$$

The more complicated singularity, the less sharp is the inequality.

Tangent codimension

• Two branches at a singular point

$$y = c_1 x^{1/p_1} + c_2 x^{2/p_1} + \dots + c_k x^{k/p_1} + \dots$$
$$y = d_1 x^{1/p_2} + d_2 x^{2/p_2} + \dots + d_l x^{l/p_2} + \dots$$

Tangent codimension

• Two branches at a singular point

$$y = c_1 x^{1/p_1} + c_2 x^{2/p_1} + \dots + c_k x^{k/p_1} + \dots$$
$$y = d_1 x^{1/p_2} + d_2 x^{2/p_2} + \dots + d_l x^{l/p_2} + \dots$$

• The singularity is decribed by

Tangent codimension

• Two branches at a singular point

$$y = c_1 x^{1/p_1} + c_2 x^{2/p_1} + \dots + c_k x^{k/p_1} + \dots$$
$$y = d_1 x^{1/p_2} + d_2 x^{2/p_2} + \dots + d_l x^{l/p_2} + \dots$$

• The singularity is decribed by – vanishing of ν_1 *c*'s, ν_2 , *d*'s
Tangent codimension

• Two branches at a singular point

 $y = c_1 x^{1/p_1} + c_2 x^{2/p_1} + \dots + c_k x^{k/p_1} + \dots$ $y = d_1 x^{1/p_2} + d_2 x^{2/p_2} + \dots + d_l x^{l/p_2} + \dots$

- The singularity is decribed by
- vanishing of $\nu_1 c$'s, ν_2, d 's
- and possibly some equality relations between non–vanishing c's and d's.

Tangent codimension

• Two branches at a singular point

 $y = c_1 x^{1/p_1} + c_2 x^{2/p_1} + \dots + c_k x^{k/p_1} + \dots$ $y = d_1 x^{1/p_2} + d_2 x^{2/p_2} + \dots + d_l x^{l/p_2} + \dots$

- The singularity is decribed by
- vanishing of $\nu_1 c$'s, ν_2, d 's
 - and possibly some equality relations between non–vanishing c's and d's.
 - number of these relation ν_{tan} : the tangent codimension.

Branch I
$$\begin{cases} x &= t^4 \\ y &= t^8 + 3t^{10} + 2t^{14} + 5t^{15} \end{cases}$$

Branch II
$$\begin{cases} x &= u^6 \\ y &= u^{12} - 3u^{15} + 2u^{21} + 3t^{22} \end{cases}$$

Branch I
$$\begin{cases} x &= t^4 \\ y &= t^8 + 3t^{10} + 2t^{14} + 5t^{15} \end{cases}$$

Branch II
$$\begin{cases} x &= u^6 \\ y &= u^{12} - 3u^{15} + 2u^{21} + 3t^{22} \end{cases}$$

Consider Puiseux expansion

Branch I
$$\begin{cases} x &= t^4 \\ y &= t^8 + 3t^{10} + 2t^{14} + 5t^{15} \end{cases}$$

Branch II
$$\begin{cases} x &= u^6 \\ y &= u^{12} - 3u^{15} + 2u^{21} + 3t^{22} \end{cases}$$
$$y = x^2 + 3x^{5/2} + 2x^{7/2} + 5x^{15/4} \\ y = x^2 + 3x^{5/2} - 2x^{7/2} + 4x^{22/6}. \end{cases}$$

Branch I
$$\begin{cases} x &= t^4 \\ y &= t^8 + 3t^{10} + 2t^{14} + 5t^{15} \end{cases}$$

Branch II
$$\begin{cases} x &= u^6 \\ y &= u^{12} - 3u^{15} + 2u^{21} + 3t^{22} \end{cases}$$
$$y = x^2 + 3x^{5/2} + 2x^{7/2} + 5x^{15/4} \end{cases}$$
$$y = x^2 + 3x^{5/2} - 2x^{7/2} + 4x^{22/6}.$$

• The sign change results from chosing different root of unity of order 6.

Branch I
$$\begin{cases} x &= t^4 \\ y &= t^8 + 3t^{10} + 2t^{14} + 5t^{15} \end{cases}$$

Branch II
$$\begin{cases} x &= u^6 \\ y &= u^{12} - 3u^{15} + 2u^{21} + 3t^{22} \end{cases}$$
$$y = x^2 + 3x^{5/2} + 2x^{7/2} + 5x^{15/4} \\ y = x^2 + 3x^{5/2} - 2x^{7/2} + 4x^{22/6}. \end{cases}$$

Here terms at x, x^2 , $x^{5/2}$, x^3 agree.

Branch I
$$\begin{cases} x = t^4 \\ y = t^8 + 3t^{10} + 2t^{14} + 5t^{15} \end{cases}$$

Branch II
$$\begin{cases} x = u^6 \\ y = u^{12} - 3u^{15} + 2u^{21} + 3t^{22} \end{cases}$$
$$y = x^2 + 3x^{5/2} + 2x^{7/2} + 5x^{15/4}$$
$$y = x^2 + 3x^{5/2} - 2x^{7/2} + 4x^{22/6}.$$

In other words, $c_4 = d_6$, $c_8 = d_{12}$, $c_{10} = d_{15}$ and $c_{12} = d_{18}$.

Branch I
$$\begin{cases} x &= t^4 \\ y &= t^8 + 3t^{10} + 2t^{14} + 5t^{15} \end{cases}$$

Branch II
$$\begin{cases} x &= u^6 \\ y &= u^{12} - 3u^{15} + 2u^{21} + 3t^{22} \end{cases}$$
$$y = x^2 + 3x^{5/2} + 2x^{7/2} + 5x^{15/4}$$
$$y = x^2 + 3x^{5/2} - 2x^{7/2} + 4x^{22/6}.$$

 $\nu_{tan} = 4$

Branch I
$$\begin{cases} x &= t^4 \\ y &= t^8 + 3t^{10} + 2t^{14} + 5t^{15} \end{cases}$$

Branch II
$$\begin{cases} x &= u^6 \\ y &= u^{12} - 3u^{15} + 2t^{21} + 3t^{22} \end{cases}$$
$$y = x^2 + 3x^{5/2} + 2x^{7/2} + 5x^{15/4} \\ y = x^2 + 3x^{5/2} - 2x^{7/2} + 4x^{22/6}. \end{cases}$$

Note, that $c_{14} \neq d_{21}$

Branch I
$$\begin{cases} x &= t^4 \\ y &= t^8 + 3t^{10} + 2t^{14} + 5t^{15} \end{cases}$$

Branch II
$$\begin{cases} x &= u^6 \\ y &= u^{12} - 3u^{15} + 2u^{21} + 3t^{22} \end{cases}$$
$$y = x^2 + 3x^{5/2} + 2x^{7/2} + 5x^{15/4} \\ y = x^2 + 3x^{5/2} - 2x^{7/2} + 4x^{22/6}. \end{cases}$$

Note, that $c_{14} \neq d_{21}$

• Two branches.

- Two branches.
- p_1, p_2 orders of x.

- Two branches.
- p_1, p_2 orders of x.
- ν_1, ν_2 local codimensions.

- Two branches.
- p_1, p_2 orders of x.
- ν_1, ν_2 local codimensions.
- ν_{tan} tangent codimension.

- Two branches.
- p_1, p_2 orders of x.
- ν_1, ν_2 local codimensions.
- ν_{tan} tangent codimension.

 $2\delta \le (p_1 + p_2)(\nu_1 + \nu_2 + \nu_{tan} + 1).$

- Two branches.
- p_1, p_2 orders of x.
- ν_1, ν_2 local codimensions.
- ν_{tan} tangent codimension.

$$2\delta \le (p_1 + p_2)(\nu_1 + \nu_2 + \nu_{tak} + 1).$$

This +1 *is very inconvenient. We can get rid of it almost all cases.*

- Two branches.
- p_1, p_2 orders of x.
- ν_1, ν_2 local codimensions.
- ν_{tan} tangent codimension.

 $2\delta \le (p_1 + p_2)(\nu_1 + \nu_2 + \nu_{tan} + 1).$

• Assume q_1 and q_2 are orders of y.

- Two branches.
- p_1, p_2 orders of x.
- ν_1, ν_2 local codimensions.
- ν_{tan} tangent codimension.

 $2\delta \le (p_1 + p_2)(\nu_1 + \nu_2 + \nu_{tan} + 1).$

- Assume q_1 and q_2 are orders of y.
- For q₂p₁ ≠ q₁p₂, the intersection index of branches is fixed:

- Two branches.
- p_1, p_2 orders of x.
- ν_1, ν_2 local codimensions.
- ν_{tan} tangent codimension.

 $2\delta \le (p_1 + p_2)(\nu_1 + \nu_2 + \nu_{tan} + 1).$

- Assume q_1 and q_2 are orders of y.
- For q₂p₁ ≠ q₁p₂, the intersection index of branches is fixed:

it equals $\min(q_1p_2, q_2p_1)$ — leads to better estimate.

For the singularity with one branch

For the singularity with one branch

$$ext \ \nu = \nu + p - 2.$$

For the singularity with one branch

$$ext \ \nu = \nu + p - 2.$$

The subspace of curves with such singularity in the space curves $x = t^p + \cdots + a_0$, $y = t^q + b_1 t^{q-1} + \cdots$ for p, q sufficiently large has codimension ext ν .

For the singularity with one branch

$$ext \ \nu = \nu + p - 2.$$

• We have p - 1 condition on x, ν on y and can move parameter t.

For the singularity with one branch

$$ext \ \nu = \nu + p - 2.$$

• We have p - 1 condition on x, ν on y and can move parameter t.

If we swap x with y, the codimension may change.

For the singularity with one branch

$$ext \ \nu = \nu + p - 2.$$

• We have p - 1 condition on x, ν on y and can move parameter t.

For $x = t^4$, $y = t^8 + t^9$, we have $ext \ \nu = 8$. For $x = t^8 + t^9$, $y = t^4$ we have $ext \ \nu = 9$.

For the singularity with one branch

$$ext \ \nu = \nu + p - 2.$$

• We have p - 1 condition on x, ν on y and can move parameter t.

The codimension is minimal if $\operatorname{ord} x =$ multiplicity.

For the singularity with one branch

$$ext \ \nu = \nu + p - 2.$$

- We have p 1 condition on x, ν on y and can move parameter t.
- If we have 2 branches with ext ν_1 , ext ν_2 , ext $\nu = \text{ext } \nu_1 + \text{ext } \nu_2 + \nu_{tan}^{(12)} + 2.$

For the singularity with one branch

$$ext \ \nu = \nu + p - 2.$$

- We have p 1 condition on x, ν on y and can move parameter t.
- If we have 2 branches with ext ν_1 , ext ν_2 , ext $\nu = \text{ext } \nu_1 + \text{ext } \nu_2 + \nu_{tan}^{(12)} + 2.$

Additional 2 comes from the condition $x(t_0) = x(t_1), y(t_0) = y(t_1).$

For the singularity with one branch

$$ext \ \nu = \nu + p - 2.$$

- We have p 1 condition on x, ν on y and can move parameter t.
- If we have 2 branches with ext ν_1 , ext ν_2 , ext $\nu = \text{ext } \nu_1 + \text{ext } \nu_2 + \nu_{tan}^{(12)} + 2.$

For the singularity with one branch

$$ext \ \nu = \nu + p - 2.$$

- We have p 1 condition on x, ν on y and can move parameter t.
- If we have 2 branches with ext ν_1 , ext ν_2 , ext $\nu = \text{ext } \nu_1 + \text{ext } \nu_2 + \nu_{tan}^{(12)} + 2.$
- Definition for more branches is similar.

Setup

Setup

- (C, x_0) is a curve on a surface X.
- $\tilde{C} \subset \tilde{X}$ resolution of singular point x_0 .

Setup

- (C, x_0) is a curve on a surface X.
- $\tilde{C} \subset \tilde{X}$ resolution of singular point x_0 .

E the reduced exceptional divisor.

Setup

- (C, x_0) is a curve on a surface X.
- $\tilde{C} \subset \tilde{X}$ resolution of singular point x_0 . *K* is the projection of the canonical divisor onto the subgroup of $Pic(\tilde{X}) \otimes \mathbb{Q}$ spanned by components of *E*.
Setup

- (C, x_0) is a curve on a surface X.
- $\tilde{C} \subset \tilde{X}$ resolution of singular point x_0 .
- $D = \tilde{C} + E$.

Setup

- (C, x_0) is a curve on a surface X.
- $\tilde{C} \subset \tilde{X}$ resolution of singular point x_0 .
- $D = \tilde{C} + E$.
- Let $\bar{M} = K(K + D)$: modified Orevkov \bar{M} number.

Setup

- (C, x_0) is a curve on a surface X.
- $\tilde{C} \subset \tilde{X}$ resolution of singular point x_0 .
- $D = \tilde{C} + E$.
- Let $\overline{M} = K(K + D)$: modified Orevkov \overline{M} number.

In fact $\overline{M} = K(K+D) + \# branches - 1$.

Setup

- (C, x_0) is a curve on a surface X.
- $\tilde{C} \subset \tilde{X}$ resolution of singular point x_0 .
- $D = \tilde{C} + E$.
- Let $\bar{M} = K(K + D)$: modified Orevkov \bar{M} number.

Proposition. For a given singular curve $C \subset \mathbb{C}^2$, if orders of x at C all branches are multiplicities, then

 $ext \ \nu = K(K+D).$

Setup

- (C, x_0) is a curve on a surface X.
- $\tilde{C} \subset \tilde{X}$ resolution of singular point x_0 .
- $D = \tilde{C} + E$.
- Let $\overline{M} = K(K + D)$: modified Orevkov \overline{M} number.

Proposition. For a given singular curve $C \subset \mathbb{C}^2$, if orders of x at C all branches are multiplicities, then

 $ext \ \nu = K(K+D).$

The proof follows from calculating both quantities in terms of Eisenbud–Neumann diagrams.

• Space $Cur_{a,c}$ of curves with one place at infitity

• Space $Cur_{a,c}$ of curves with one place at infitity

$$\begin{cases} x = t^{a} + \alpha_{1}t^{a-1} + \alpha_{2}t^{a-2} + \dots + \alpha_{a} \\ y = t^{c} + \beta_{1}t^{c-1} + \dots + \beta_{c} \end{cases}$$

• Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity

$$\begin{cases} x = t^{a} + \alpha_{1}t^{a-1} + \alpha_{2}t^{a-2} + \dots + \alpha_{a+b}t^{-b} \\ y = t^{c} + \beta_{1}t^{c-1} + \dots + \beta_{c+d}t^{-d} \end{cases}$$

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity has dimension a + b + c + d.

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity has dimension a + b + c + d.

a, b, c and d need not be positive. We will discuss it later.

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity has dimension a + b + c + d.
- Let *g* be the dimension of the automorphism group.

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity has dimension a + b + c + d.
- Let *g* be the dimension of the automorphism group.
- This group consists, in first case, of changes

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity has dimension a + b + c + d.
- Let *g* be the dimension of the automorphism group.
- This group consists, in first case, of changes

•
$$y \to y + \alpha_k x^k$$
 for $c \ge ka$,

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity has dimension a + b + c + d.
- Let *g* be the dimension of the automorphism group.
- This group consists, in first case, of changes

•
$$y \to y + \alpha_k x^k$$
 for $c \ge ka$,

•
$$y \rightarrow y + const, x \rightarrow x + const,$$

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity has dimension a + b + c + d.
- Let *g* be the dimension of the automorphism group.
- This group consists, in first case, of changes

•
$$y \to y + \alpha_k x^k$$
 for $c \ge ka$,

- $y \rightarrow y + const, x \rightarrow x + const,$
- $t \to \lambda t$ followed by $x \to \lambda^{-a} x, y \to \lambda^{-c} y$,

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity has dimension a + b + c + d.
- Let *g* be the dimension of the automorphism group.
- This group consists, in first case, of changes

•
$$y \to y + \alpha_k x^k$$
 for $c \ge ka$,

- $y \rightarrow y + const, x \rightarrow x + const,$
- $t \to \lambda t$ followed by $x \to \lambda^{-a} x, y \to \lambda^{-c} y$,
- $t \rightarrow t + a$.

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity has dimension a + b + c + d.
- Let *g* be the dimension of the automorphism group.

In case of two branches the actual structure of the group depends heavily on a, *b*, *c and d*.

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity has dimension a + b + c + d.
- Let *g* be the dimension of the automorphism group.

For example if b < 0, the change $x \rightarrow x + const$ is not allowed.

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity has dimension a + b + c + d.
- Let *g* be the dimension of the automorphism group.
- The *regularity* means, that the space of curves with singularities of codimension
 ext ν₁,..., ext ν_k forms a subspace of the codimension at most ext ν₁ + ··· + ext ν_k. Thus

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity has dimension a + b + c + d.
- Let *g* be the dimension of the automorphism group.
- The *regularity* means, that the space of curves with singularities of codimension
 ext ν₁,..., ext ν_k forms a subspace of the codimension at most ext ν₁ + ··· + ext ν_k. Thus

$$\sum \text{ ext } \nu_i \le a + c - g$$

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity has dimension a + b + c + d.
- Let *g* be the dimension of the automorphism group.
- The *regularity* means, that the space of curves with singularities of codimension
 ext ν₁,..., ext ν_k forms a subspace of the codimension at most ext ν₁ + ··· + ext ν_k. Thus

ext $\nu_i \leq a + c - g$

Sum all singular points together with infinity.

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity has dimension a + b + c + d.
- Let *g* be the dimension of the automorphism group.
- The *regularity* means, that the space of curves with singularities of codimension
 ext ν₁,..., ext ν_k forms a subspace of the codimension at most ext ν₁ + ··· + ext ν_k. Thus

$$\sum_{i \in \mathcal{V}_i} ext \ \nu_i \leq a + c - g$$

 \leq ext ν_i external codimensions.

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity has dimension a + b + c + d.
- Let *g* be the dimension of the automorphism group.
- The *regularity* means, that the space of curves with singularities of codimension
 ext ν₁,..., ext ν_k forms a subspace of the codimension at most ext ν₁ + ··· + ext ν_k. Thus

$$\sum \text{ ext } \nu_i \leq a + c - g$$

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity has dimension a + b + c + d.
- Let *g* be the dimension of the automorphism group.
- The *regularity* means, that the space of curves with singularities of codimension
 ext ν₁,..., ext ν_k forms a subspace of the codimension at most ext ν₁ + ··· + ext ν_k. Thus

$$\sum \text{ ext } \nu_i \leq a + c \neq g$$

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity has dimension a + b + c + d.
- Let *g* be the dimension of the automorphism group.
- The *regularity* means, that the space of curves with singularities of codimension
 ext ν₁,..., ext ν_k forms a subspace of the codimension at most ext ν₁ + ··· + ext ν_k. Thus

$$\sum \text{ ext } \nu_i \leq a+b+c+d-g$$

- Space $Cur_{a,c}$ of curves with one place at infitity has dimension a + c.
- Space $Curv_{a,b,c,d}$ of curves with two branches at infinity has dimension a + b + c + d.
- Let *g* be the dimension of the automorphism group.
- The *regularity* means, that the space of curves with singularities of codimension
 ext ν₁,..., ext ν_k forms a subspace of the codimension at most ext ν₁ + ··· + ext ν_k. Thus

$$\sum \text{ ext } \nu_i \le a + b + c + d - g$$

Codimension is really a codimension.

• Regularity is stronger than the inequality $\sum \overline{M}_i \leq 3d - 4.$

- Regularity is stronger than the inequality $\sum \overline{M}_i \leq 3d 4.$
- The estimates will not follow directly from BMY.

- Regularity is stronger than the inequality $\sum \overline{M}_i \leq 3d 4.$
- The estimates will not follow directly from BMY.
- It would follow from unobstructedness of logarithmic deformations $(H^2(X, D) = 0)$.

- Regularity is stronger than the inequality $\sum \overline{M}_i \leq 3d 4.$
- The estimates will not follow directly from BMY.
- It would follow from unobstructedness of logarithmic deformations $(H^2(X, D) = 0)$.
- The most difficult part is that of one singular point. If we know that, we can apply induction.

- Regularity is stronger than the inequality $\sum \overline{M}_i \leq 3d 4.$
- The estimates will not follow directly from BMY.
- It would follow from unobstructedness of logarithmic deformations $(H^2(X, D) = 0)$.
- The most difficult part is that of one singular point. If we know that, we can apply induction.
- Evidence: all cases found by Koras and Russell turn out to be regular.

- Regularity is stronger than the inequality $\sum \overline{M}_i \leq 3d 4.$
- The estimates will not follow directly from BMY.
- It would follow from unobstructedness of logarithmic deformations $(H^2(X, D) = 0)$.
- The most difficult part is that of one singular point. If we know that, we can apply induction.
- Evidence: all cases found by Koras and Russell turn out to be regular.
- All our examples calculated by hand are regular.

- Regularity is stronger than the inequality $\sum \overline{M}_i \leq 3d 4.$
- The estimates will not follow directly from BMY.
- It would follow from unobstructedness of logarithmic deformations $(H^2(X, D) = 0)$.
- The most difficult part is that of one singular point. If we know that, we can apply induction.
- Evidence: all cases found by Koras and Russell turn out to be regular.
- All our examples calculated by hand are regular.
- Slightly more general regularity conjecture fail.

Genus formula revisited

Take curve C

$$\begin{cases} x(t) = t^a + \alpha_1 t^{a-1} + \dots + \alpha_a \\ y(t) = t^c + \beta_1 t^{c-1} + \dots + \beta_c. \end{cases}$$
Take curve C

$$\begin{cases} x(t) = t^a + \alpha_1 t^{a-1} + \dots + \alpha_a \\ y(t) = t^c + \beta_1 t^{c-1} + \dots + \beta_c. \end{cases}$$

Suppose a < c.

Take curve C

$$\begin{cases} x(t) = t^a + \alpha_1 t^{a-1} + \dots + \alpha_a \\ y(t) = t^c + \beta_1 t^{c-1} + \dots + \beta_c. \end{cases}$$

Suppose a < c. Then deg C = c and $\sum 2\delta_i + 2\delta_{\infty} = c(c-1)$.

$$\sum 2\delta_i + 2\delta_\infty = c(c-1).$$

Take curve C Suppose a < c. Then deg C = c and $\sum 2\delta_i + 2\delta_{\infty} = c(c-1)$. But $2\delta_{\infty} = (c-1)(c-a-1) + 2\delta'_{\infty}$. Hence $\sum 2\delta_i + 2\delta_{\infty} = c(c-1)$.

Now we plug the $2\delta'_{\infty}$.

$$\sum 2\delta_i + 2\delta'_{\infty} = (a-1)(c-1).$$

Take curve C Suppose a < c. Then deg C = c and $\sum 2\delta_i + 2\delta_\infty = c(c-1)$. But $2\delta_\infty = (c-1)(c-a-1) + 2\delta'_\infty$. Hence $\sum 2\delta_i + 2\delta'_\infty = (a-1)(c-1)$.

From this sum we exclude the only finite double point.

$$\sum' 2\delta_i + 2\delta_{dbl} + 2\delta'_{\infty} = (a-1)(c-1).$$

$$\sum' 2\delta_i + 2\delta_{dbl} + 2\delta'_{\infty} = (a-1)(c-1).$$

Take curve *C* Suppose a < c. Then deg C = c and $\sum 2\delta_i + 2\delta_{\infty} = c(c-1)$. But $2\delta_{\infty} = (c-1)(c-a-1) + 2\delta'_{\infty}$. Hence

$$\sum' (2\delta_i) + 2\delta_{dbl} + 2\delta'_{\infty} = (a-1)(c-1).$$

Use the inequality $2\delta_i \leq p_i \nu_i$ for singular point with one branch.

$$\sum p_i \nu_i + 2\delta_{dbl} + 2\delta'_{\infty} \le (a-1)(c-1).$$

$$\sum p_i \nu_i + 2\delta_{dbl} + 2\delta'_{\infty} \le (a-1)(c-1).$$

Take curve C Suppose a < c. Then deg C = c and $\sum 2\delta_i + 2\delta_{\infty} = c(c-1)$. But $2\delta_{\infty} = (c-1)(c-a-1) + 2\delta'_{\infty}$. Hence $\sum p_i \nu_i + 2\delta_{dbl} + 2\delta'_{\infty} \leq (a-1)(c-1)$.

The inequality for $2\delta'_{\infty}$ is similar. $2\delta'_{\infty} \leq a'\nu'_{\infty} + a' - 1$, where a' = gcd(a, c).

 $\sum p_i \nu_i + 2\delta_{dbi} + a'\nu_{\infty}' + a' - 1 \leq \sum$ $\leq (a-1)(c-1).$

$$\sum p_i \nu_i + 2\delta_{dbl} + a'\nu'_{\infty} + a' - 1 \le \le (a-1)(c-1).$$

Take curve C Suppose a < c. Then deg C = c and $\sum 2\delta_i + 2\delta_\infty = c(c-1)$. But $2\delta_\infty = (c-1)(c-a-1) + 2\delta'_\infty$. Hence $\sum p_i \nu_i + 2\delta_{dbl} + a'\nu'_\infty + a' - 1 \leq \leq (a-1)(c-1).$

Now we estimate $2\delta_{dbl}$.

Take curve *C* Suppose a < c. Then deg C = c and $\sum 2\delta_i + 2\delta_{\infty} = c(c-1)$. But $2\delta_{\infty} = (c-1)(c-a-1) + 2\delta'_{\infty}$. Hence

$$\sum p_i \nu_i + (p_{01} + p_{02})(\nu_{01} + \nu_{02} + \nu_{tan} + 1) + a' - 1 \le (a - 1)(c - 1).$$

 p_{01} and p_{02} are orders of x at two branches of the double locus.

For curve

For curve

$$\begin{cases} x = t^{a} + \alpha_{1}t^{a-1} + \alpha_{2}t^{a-2} + \dots + \alpha_{a+b}t^{-b} \\ y = t^{c} + \beta_{1}t^{c-1} + \dots + \beta_{c+d}t^{-d} \end{cases}$$

For curve

$$\begin{cases} x = t^{a} + \alpha_{1}t^{a-1} + \alpha_{2}t^{a-2} + \dots + \alpha_{a+b}t^{-b} \\ y = t^{c} + \beta_{1}t^{c-1} + \dots + \beta_{c+d}t^{-d} \end{cases}$$

if $ad - bc \neq 0$ and $a + b \leq c + d$ we get

For curve

$$\begin{cases} x = t^{a} + \alpha_{1}t^{a-1} + \alpha_{2}t^{a-2} + \dots + \alpha_{a+b}t^{-b} \\ y = t^{c} + \beta_{1}t^{c-1} + \dots + \beta_{c+d}t^{-d} \end{cases}$$

if $ad - bc \neq 0$ and $a + b \leq c + d$ we get

$$\sum p_i \nu_i \le (a+b-1)(c+d-1) + |ad-bc| - a' - b' + 1 - a'\nu_{\infty}' - b'\nu_0',$$

For curve

$$\begin{cases} x = t^{a} + \alpha_{1}t^{a-1} + \alpha_{2}t^{a-2} + \dots + \alpha_{a+b}t^{-b} \\ y = t^{c} + \beta_{1}t^{c-1} + \dots + \beta_{c+d}t^{-d} \end{cases}$$

if $ad - bc \neq 0$ and $a + b \leq c + d$ we get

$$\sum p_i \nu_i \le (a+b-1)(c+d-1) + |ad-bc| - a' - b' + 1 - a'\nu_{\infty}' - b'\nu_0',$$

where $a' = gcd(a, c), b' = gcd(b, d), \nu'_0, \nu'_\infty$ are codimensions at zero and infinity.

For curve

$$\begin{cases} x = t^{a} + \alpha_{1}t^{a-1} + \alpha_{2}t^{a-2} + \dots + \alpha_{a+b}t^{-b} \\ y = t^{c} + \beta_{1}t^{c-1} + \dots + \beta_{c+d}t^{-d} \end{cases}$$

if $ad - bc \neq 0$ and $a + b \leq c + d$ we get

$$\sum p_i \nu_i \le (a+b-1)(c+d-1) + |ad-bc| - a' - b' + 1 - a'\nu_{\infty}' - b'\nu_0',$$

If ad = bc we need to take into account the tangency of branches at infinity.

For curve

$$\begin{cases} x = t^{a} + \alpha_{1}t^{a-1} + \alpha_{2}t^{a-2} + \dots + \alpha_{a+b}t^{-b} \\ y = t^{c} + \beta_{1}t^{c-1} + \dots + \beta_{c+d}t^{-d} \end{cases}$$

if $ad - bc \neq 0$ and $a + b \leq c + d$ we get

$$\sum p_i \nu_i \le (a+b-1)(c+d-1) + -a'-b'+1 - (a'+b')(\nu'_{inf}+1),$$

If ad = bc we need to take into account the tangency of branches at infinity. The formula is suitably changed.

C annulus with $ad \neq bc$.

C annulus with $ad \neq bc$. Then $det' = |ad - bc| - a' - b' + 1 \ge 0$.

C annulus with $ad \neq bc$. Then $det' = |ad - bc| - a' - b' + 1 \ge 0.$

> • $\sum p_i \nu_i \le (a+b-1)(c+d-1)$ $-a'\nu'_{\infty} - b'\nu'_0 + \det'.$

C annulus with $ad \neq bc$. Then $det' = |ad - bc| - a' - b' + 1 \ge 0.$

> • $\sum p_i \nu_i \le (a+b-1)(c+d-1)$ $-a'\nu'_{\infty} - b'\nu'_0 + \det'.$ • $\sum (\nu_i + p_i - 2) + \nu'_0 + \nu'_{\infty} \le a+b+c+d-1-K-D$

C annulus with $ad \neq bc$. Then $det' = |ad - bc| - a' - b' + 1 \ge 0.$

• $\sum p_i \nu_i \le (a+b-1)(c+d-1) \\ -a'\nu'_{\infty} - b'\nu'_0 + \det'.$ • $\sum (\nu_i + p_i - 2) + \nu'_0 + \nu'_{\infty} \le \\ a+b+c+d-1-K-D$ • $\sum (p_i - 1) \le \begin{cases} a+b-1, & b \le 0 \\ a+b, & b > 0 \end{cases}$

C annulus with $ad \neq bc$. Then $det' = |ad - bc| - a' - b' + 1 \ge 0.$

> • $\sum p_i \nu_i \le (a+b-1)(c+d-1) \\ -a'\nu'_{\infty} - b'\nu'_0 + \det'.$ • $\sum (\nu_i + p_i - 2) + \nu'_0 + \nu'_{\infty} \le \\ a+b+c+d-1 - K - D$ • $\sum (p_i - 1) \le \begin{cases} a+b-1, & b \le 0 \\ a+b, & b > 0 \end{cases}$

→ •The genus formula.

C annulus with $ad \neq bc$. Then $det' = |ad - bc| - a' - b' + 1 \ge 0.$

• $\sum p_i \nu_i \leq (a+b-1)(c+d-1) -a'\nu'_{\infty} - b'\nu'_0 + \det'.$ • $\sum (\nu_i + p_i - 2) + \nu'_0 + \nu'_{\infty} \leq a+b+c+d-1-K-D$ • $\sum (p_i - 1) \leq \begin{cases} a+b-1, & b \leq 0 \\ a+b, & b > 0 \end{cases}$

The regularity condition.

C annulus with $ad \neq bc$. Then $det' = |ad - bc| - a' - b' + 1 \ge 0.$

• $\sum p_i \nu_i \le (a+b-1)(c+d-1)$ $-a'\nu'_{\infty} - b'\nu'_{0} + \det'.$ $\sum (\nu_i + p_i - 2) + \nu'_0 + \nu'_\infty \le$ a + b + c + d - 1 - K - D• $\sum (p_i - 1) \le \begin{cases} a + b - 1, & b \le 0\\ a + b, & b > 0 \end{cases}$ ζ • Counting zeros of $\frac{d}{dt}x(t)$.

C annulus with $ad \neq bc$. Then $det' = |ad - bc| - a' - b' + 1 \ge 0.$

• $\sum p_i \nu_i \le (a+b-1)(c+d-1) -a'\nu'_{\infty} - b'\nu'_0 + \det'.$ • $\sum (\nu_i + p_i - 2) + \nu'_0 + \nu'_{\infty} \le a+b+c+d-1 - K - D$ • $\sum (p_i - 1) \le \begin{cases} a+b-1, & b \le 0 \\ a+b, & b > 0 \end{cases}$

• *K* is maximal non–negative integer such that $Ka \leq c$ and $Kb \leq d$.

C annulus with $ad \neq bc$. Then $det' = |ad - bc| - a' - b' + 1 \ge 0.$

• $\sum p_i \nu_i \le (a+b-1)(c+d-1) -a'\nu'_{\infty} - b'\nu'_0 + \det'.$ • $\sum (\nu_i + p_i - 2) + \nu'_0 + \nu'_{\infty} \le a+b+c+d-1-K - D$ • $\sum (p_i - 1) \le \begin{cases} a+b-1, & b \le 0 \\ a+b, & b > 0 \end{cases}$

• $D \in \{0, 1, 2\}$ is the number of constants: if we can add a constant to x or y.

C annulus with $ad \neq bc$. Then $det' = |ad - bc| - a' - b' + 1 \ge 0.$

• $\sum p_i \nu_i \le (a+b-1)(c+d-1) \\ -a'\nu'_{\infty} - b'\nu'_0 + \det'.$ • $\sum (\nu_i + p_i - 2) + \nu'_0 + \nu'_{\infty} \le \\ a+b+c+d-1-K-D$ • $\sum (p_i - 1) \le \begin{cases} a+b-1, & b \le 0 \\ a+b, & b > 0 \end{cases}$

Different types.

• Appearance of *D* and *K*. Suggests different types.
- Appearance of *D* and *K*. Suggests different types.
- Type $\binom{+}{+}: 0 < a < c, 0 < b < d$. Then D = 2, $K \ge 1$. *K* is here very important.

- Appearance of *D* and *K*. Suggests different types.
- Type $\binom{+}{+}: 0 < a < c, 0 < b < d$. Then D = 2, $K \ge 1$. *K* is here very important.

- Appearance of *D* and *K*. Suggests different types.
- Type $\binom{+}{+}: 0 < a < c, 0 < b < d$. Then D = 2, $K \ge 1$. *K* is here very important.

In type $\binom{+}{+}$ distinguish $ad \neq bc$ and ad = bc.

- Appearance of *D* and *K*. Suggests different types.
- Type $\binom{+}{+}: 0 < a < c, 0 < b < d$. Then D = 2, $K \ge 1$. *K* is here very important.

If $ad \neq bc$, many singular cases.

- Appearance of *D* and *K*. Suggests different types.
- Type $\binom{+}{+}: 0 < a < c, 0 < b < d$. Then D = 2, $K \ge 1$. *K* is here very important.

ad = bc: strong condition on a, b, c and d.

- Appearance of *D* and *K*. Suggests different types.
- Type $\binom{+}{+}: 0 < a < c, 0 < b < d$. Then D = 2, $K \ge 1$. K is here very important.
- Type $\binom{-+}{+-}: 0 < a < c, 0 < d \le b, a + b \le c + d.$ D = 2 and K = 0.

- Appearance of *D* and *K*. Suggests different types.
- Type $\binom{+}{+}: 0 < a < c, 0 < b < d$. Then D = 2, $K \ge 1$. *K* is here very important.
- Type (⁻⁺₊₋): 0 < a < c, 0 < d ≤ b, a + b ≤ c + d.
 D = 2 and K = 0. |ad bc| is here large. Case does not even require regularity.

- Appearance of *D* and *K*. Suggests different types.
- Type $\binom{+}{+}: 0 < a < c, 0 < b < d$. Then D = 2, $K \ge 1$. *K* is here very important.
- Type $\binom{-+}{+-}: 0 < a < c, 0 < d \le b, a + b \le c + d.$ D = 2 and K = 0.
- Type $\binom{-}{+}$: $a, d > 0, bc < 0, a + b \le c + d$. D = 1, K varies.

- Appearance of *D* and *K*. Suggests different types.
- Type $\binom{+}{+}: 0 < a < c, 0 < b < d$. Then D = 2, $K \ge 1$. *K* is here very important.
- Type $\binom{-+}{+-}: 0 < a < c, 0 < d \le b, a + b \le c + d.$ D = 2 and K = 0.
- Type $\binom{-}{+}$: $a, d > 0, bc < 0, a + b \le c + d$. D = 1, K varies.
- Annoying type. Many subcases, i.e. a > c, a < c etc.

- Appearance of *D* and *K*. Suggests different types.
- Type $\binom{+}{+}: 0 < a < c, 0 < b < d$. Then D = 2, $K \ge 1$. *K* is here very important.
- Type $\binom{-+}{+-}: 0 < a < c, 0 < d \le b, a + b \le c + d.$ D = 2 and K = 0.
- Type $\binom{-}{+}$: $a, d > 0, bc < 0, a + b \le c + d$. D = 1, K varies.
- Type $\binom{-}{-}$: a, d > 0, b, c < 0. D = K = 0.

Here we do not need regularity neither.

- Appearance of *D* and *K*. Suggests different types.
- Type $\binom{+}{+}: 0 < a < c, 0 < b < d$. Then D = 2, $K \ge 1$. *K* is here very important.
- Type $\binom{-+}{+-}: 0 < a < c, 0 < d \le b, a + b \le c + d.$ D = 2 and K = 0.
- Type $\binom{-}{+}$: $a, d > 0, bc < 0, a + b \le c + d$. D = 1, K varies.
- Type $\binom{-}{-}$: a, d > 0, b, c < 0. D = K = 0.
- Most important. Contains all smooth cases.

Recall

 $\sum p_i \nu_i \le (a+b-1)(c+d-1) + |ad-bc| - a' - b' + 1 - a'\nu_{\infty}' - b'\nu_0'.$

Recall

 $\sum p_i \nu_i \le (a+b-1)(c+d-1) + |ad-bc| - a' - b' + 1 - a'\nu_{\infty}' - b'\nu_0'.$

• Assume a|c.

Recall

$$\sum p_i \nu_i \le (a+b-1)(c+d-1) + |ad-bc| - a' - b' + 1 - a'\nu_{\infty}' - b'\nu_0'.$$

• Assume a|c. Then a' = a is large.

$$\sum p_i \nu_i \le (a+b-1)(c+d-1) + |ad-bc| - a' - b' + 1 - (a'\nu'_{\infty}) - b'\nu'_0.$$

- Assume a|c. Then a' = a is large.
- The term $a'\nu'_{\infty}$ may dominate.

$$\sum p_i \nu_i \le (a+b-1)(c+d-1) + |ad-bc| - a' - b' + 1 - a'\nu_{\infty}' - b'\nu_0'.$$

- Assume a|c. Then a' = a is large.
- The term $a'\nu'_{\infty}$ may dominate. *Especially if* a + b *is small.*

$$\sum p_i \nu_i \le (a+b-1)(c+d-1) + |ad-bc| - a' - b' + 1 - a'\nu_{\infty}' - b'\nu_0'.$$

- Assume a|c. Then a' = a is large.
- The term $a'\nu'_{\infty}$ may dominate. It cannot happen, that a|c and b|d at the same time.

Recall

$$\sum p_i \nu_i \le (a+b-1)(c+d-1) + |ad-bc| - a' - b' + 1 - a'\nu_{\infty}' - b'\nu_0'.$$

• Assume a|c. Then a' = a is large.

 The term a'ν'_∞ may dominate. It cannot happen, that a|c and b|d at the same time. We can reduce the case by the suitable change y → y − const · x^{min(c/a,d/b)}.

Recall

$$\sum p_i \nu_i \le (a+b-1)(c+d-1) + |ad-bc| - a' - b' + 1 - a'\nu_{\infty}' - b'\nu_0'.$$

• Assume a|c. Then a' = a is large.

• The term $a'\nu'_{\infty}$ may dominate.

Recall

$$\sum p_i \nu_i \le (a+b-1)(c+d-1) + |ad-bc| - a' - b' + 1 - a'\nu_{\infty}' - b'\nu_0'.$$

• Assume a|c. Then a' = a is large.

The term a'ν'_∞ may dominate.
There are conditions on a, b, c and d solely such that
— one deals easily with case a|c.

Recall

$$\sum p_i \nu_i \le (a+b-1)(c+d-1) + |ad-bc| - a' - b' + 1 - a'\nu_{\infty}' - b'\nu_0'.$$

- Assume a|c. Then a' = a is large.
- The term $a'\nu'_{\infty}$ may dominate.

- one deals easily with case a|c.
- we can make each curve satisfy this condition.

Recall

$$\sum p_i \nu_i \le (a+b-1)(c+d-1) + |ad-bc| - a' - b' + 1 - a'\nu_{\infty}' - b'\nu_0'.$$

- Assume a|c. Then a' = a is large.
- The term $a'\nu'_{\infty}$ may dominate.

- one deals easily with case a|c.
- we can make each curve satisfy this condition.
- we call curve satisfying it handsome.

Recall

$$\sum p_i \nu_i \le (a+b-1)(c+d-1) + |ad-bc| - a' - b' + 1 - a'\nu_{\infty}' - b'\nu_0'.$$

- Assume a|c. Then a' = a is large.
- The term $a'\nu'_{\infty}$ may dominate.

- one deals easily with case a|c.
- we can make each curve satisfy this condition.
- each curve is isomorphic to a handsome curve.

Recall

$$\sum p_i \nu_i \le (a+b-1)(c+d-1) + |ad-bc| - a' - b' + 1 - a'\nu_{\infty}' - b'\nu_0'.$$

- Assume a|c. Then a' = a is large.
- The term $a'\nu'_{\infty}$ may dominate.

- one deals easily with case a|c.
- we can make each curve satisfy this condition.
- this provides a choice of coordinates on \mathbb{C}^2 .

Recall

$$\sum p_i \nu_i \le (a+b-1)(c+d-1) + |ad-bc| - a' - b' + 1 - a'\nu_{\infty}' - b'\nu_0'.$$

- Assume a|c. Then a' = a is large.
- The term $a'\nu'_{\infty}$ may dominate.

There are conditions on a, b, c and d solely such that

- one deals easily with case a|c.
- we can make each curve satisfy this condition.
- this provides a choice of coordinates on \mathbb{C}^2 .

The most difficult is then case $\binom{-}{-}$.

Instead of the definition of handsomeness.

Consider a curve

Consider a curve

$$\begin{cases} x = t^4 + t^{-2} \\ y = t + 2t^{-2} - t^{-4} + 3t^{-6}. \end{cases}$$

Consider a curve

$$\begin{cases} x = t^4 + t^{-2} \\ y = t + 2t^{-2} - t^{-4} + 3t^{-6}. \end{cases}$$

Consider a curve

$$\begin{cases} x = t^4 + t^{-2} \\ y = t + 2t^{-2} - t^{-4} + 3t^{-6}. \end{cases}$$

$$y \to y^{(1)} = -y/3 + x^3$$

Consider a curve

$$\begin{cases} x = t^4 + t^{-2} \\ y^{(1)} = t^{12} + 3t^6 - \frac{1}{3}t + 3 + \frac{2}{3}t^{-2} - \frac{1}{3}t^{-4} \end{cases}$$

$$y \to y^{(1)} = -y/3 + x^3$$

Consider a curve

$$\begin{cases} x = t^4 + t^{-2} \\ y^{(1)} = t^{12} + 3t^6 - \frac{1}{3}t + 3 + \frac{2}{3}t^{-2} - \frac{1}{3}t^{-4}. \end{cases}$$

$$y^{(1)} \to y^{(2)} = y^{(1)} + \frac{1}{3}x^2$$

Consider a curve

$$\begin{cases} x = t^4 + t^{-2} \\ y^{(2)} = t^{12} + \frac{1}{3}t^8 + 3t^6 + \frac{2}{3}t^2 - \frac{1}{3}t + 3 + \frac{2}{3}t^{-2}. \end{cases}$$

$$y^{(1)} \to y^{(2)} = y^{(1)} + \frac{1}{3}x^2$$

Consider a curve

$$\begin{cases} x = t^4 + t^{-2} \\ y^{(2)} = t^{12} + \frac{1}{3}t^8 + 3t^6 + \frac{2}{3}t^2 - \frac{1}{3}t + 3 + \frac{2}{3}t^{-2}. \end{cases}$$

$$y^{(2)} \to y^{(3)} = y^{(2)} - \frac{2}{3}x + 3$$

Consider a curve

$$\begin{cases} x = t^4 + t^{-2} \\ y^{(3)} = t^{12} + \frac{1}{3}t^8 + 3t^6 - \frac{2}{3}t^4 + \frac{2}{3}t^2 - \frac{1}{3}t^4 \end{cases}$$

$$y^{(2)} \to y^{(3)} = y^{(2)} - \frac{2}{3}x + 3$$
Consider a curve

$$\begin{cases} x = t^4 + t^{-2} \\ y^{(3)} = t^{12} + \frac{1}{3}t^8 + 3t^6 - \frac{2}{3}t^4 + \frac{2}{3}t^2 - \frac{1}{3}t. \end{cases}$$

We can apply different changes of type $y \to y - x^k$, $x \to x - y^l$ to that curve.

The same is with x. Return to previous y.

Consider a curve

$$\begin{cases} x = t^4 + t^{-2} \\ y = t + 2t^{-2} - t^{-4} + 3t^{-6}. \end{cases}$$

$$x \to x^{(1)} = \frac{1}{8}(y^4 - x).$$

Consider a curve

$$\begin{cases} x^{(1)} = t + t^{-1} - \frac{1}{8}t^{-2} + \dots + \frac{81}{8}t^{-24} \\ y = t + 2t^{-2} - t^{-4} + 3t^{-6}. \end{cases}$$

$$x \to x^{(1)} = \frac{1}{8}(x - y^4).$$

Consider a curve

$$\begin{cases} x^{(1)} = t + t^{-1} - \frac{1}{8}t^{-2} + \dots + \frac{81}{8}t^{-24} \\ y = t + 2t^{-2} - t^{-4} + 3t^{-6}. \end{cases}$$

$$x^{(1)} \to x^{(2)} = x^{(1)} - y.$$

Consider a curve

$$\begin{cases} x^{(2)} = t^{-1} - \frac{17}{8}t^{-2} + \dots + \frac{81}{8}t^{-24} \\ y = t + 2t^{-2} - t^{-4} + 3t^{-6}. \end{cases}$$

$$x^{(1)} \to x^{(2)} = x^{(1)} - y.$$

Consider a curve

$$\begin{cases} x^{(2)} = t^{-1} - \frac{17}{8}t^{-2} + \dots + \frac{81}{8}t^{-24} \\ y = t + 2t^{-2} - t^{-4} + 3t^{-6}. \end{cases}$$

Consider a curve

$$\begin{cases} x = t^4 + t^{-2} \\ y = t + 2t^{-2} - t^{-4} + 3t^{-6}. \end{cases}$$

We can apply different changes of type $y \to y - x^k$, $x \to x - y^l$ to that curve.

Which parametrisation is the best?

Consider a curve

$$\begin{cases} x = t^4 + t^{-2} \\ y = t + 2t^{-2} - t^{-4} + 3t^{-6} \end{cases}$$

We can apply different changes of type $y \to y - x^k$, $x \to x - y^l$ to that curve.

Handsomeness. This one!

Essentially three methods

Essentially three methods calculations,

Essentially three methods calculations, calculations,

Essentially three methods calculations, calculations, calculations, calculations,

More seriously. In all cases but $\binom{-}{-}$.

• exclude smooth curves.

- exclude smooth curves.
- order multiplicities of $x: p_1 \ge p_2 \ge p_3 \cdots \ge p_N$.

- exclude smooth curves.
- order multiplicities of $x: p_1 \ge p_2 \ge p_3 \cdots \ge p_N$.
 - N is the number of finite singular points.

- exclude smooth curves.
- order multiplicities of $x: p_1 \ge p_2 \ge p_3 \cdots \ge p_N$.
- exclude cases with $N\geq 2,3,4$ (depending on type).

- exclude smooth curves.
- order multiplicities of $x: p_1 \ge p_2 \ge p_3 \cdots \ge p_N$.
- exclude cases with $N \ge 2, 3, 4$ (depending on type).
- deal with cases with $N \ge 2$.

More seriously. In all cases but $\binom{-}{-}$.

- exclude smooth curves.
- order multiplicities of $x: p_1 \ge p_2 \ge p_3 \cdots \ge p_N$.
- exclude cases with $N \ge 2, 3, 4$ (depending on type).
- deal with cases with $N \ge 2$.

We are left with case N = 1.

More seriously. In all cases but $\binom{-}{-}$.

- exclude smooth curves.
- order multiplicities of $x: p_1 \ge p_2 \ge p_3 \cdots \ge p_N$.
- exclude cases with $N\geq 2,3,4$ (depending on type).
- deal with cases with $N \ge 2$.

Reject cases with $\nu'_0 + \nu'_\infty \ge 2$ (if $ad \neq bc$).

More seriously. In all cases but $\binom{-}{-}$.

- exclude smooth curves.
- order multiplicities of $x: p_1 \ge p_2 \ge p_3 \cdots \ge p_N$.
- exclude cases with $N\geq 2,3,4$ (depending on type).
- deal with cases with $N \ge 2$.

Left with something like $p_1(a+b+c+d-K-D-p_1+2) \leq (a+b-1)(c+d-1) + \det'.$

- exclude smooth curves.
- order multiplicities of $x: p_1 \ge p_2 \ge p_3 \cdots \ge p_N$.
- exclude cases with $N\geq 2,3,4$ (depending on type).
- deal with cases with $N \ge 2$.
 - Left with something like $p_1(a+b+c+d-K-D-p_1+2) \leq (a+b-1)(c+d-1) + \det'.$
- Now reject p₁ ≤ a + b − 2 and consider other cases.

In case of polynomial curves with one double locus there are

In case of polynomial curves with one double locus there are 16 series

In case of polynomial curves with one double locus there are 16 series and

In case of polynomial curves with one double locus there are 16 series and 5 special cases.

In case of polynomial curves with one double locus there are 16 series and 5 special cases.

For annuli we find

In case of polynomial curves with one double locus there are 16 series and 5 special cases.

For annuli we find 19 series

In case of polynomial curves with one double locus there are 16 series and 5 special cases.

For annuli we find 19 series and

In case of polynomial curves with one double locus there are 16 series and 5 special cases.

For annuli we find 19 series and 4 special cases,

In case of polynomial curves with one double locus there are 16 series and 5 special cases.

For annuli we find 19 series and 4 special cases, including one series with continuous parameters.

In case of polynomial curves with one double locus there are 16 series and 5 special cases.

For annuli we find 19 series and 4 special cases, including one series with continuous parameters. *namely*

$$\begin{cases} x = t^a \\ y = \lambda_1 t^{-a} + \lambda_2 t^{-2a} + \dots + \lambda_k t^{-ka} + t^{-c}, \end{cases}$$

with $a \not| c$.

In case of polynomial curves with one double locus there are 16 series and 5 special cases.

For annuli we find 19 series and 4 special cases, including one series with continuous parameters.

Moreover these 23 cases contain

In case of polynomial curves with one double locus there are 16 series and 5 special cases.

For annuli we find 19 series and 4 special cases, including one series with continuous parameters.

Moreover these 23 cases contain **7** series

In case of polynomial curves with one double locus there are 16 series and 5 special cases.

For annuli we find 19 series and 4 special cases, including one series with continuous parameters.

Moreover these 23 cases contain 7 series and

In case of polynomial curves with one double locus there are 16 series and 5 special cases.

For annuli we find 19 series and 4 special cases, including one series with continuous parameters.

Moreover these 23 cases contain 7 series and 2 special cases
Result

In case of polynomial curves with one double locus there are 16 series and 5 special cases.

For annuli we find 19 series and 4 special cases, including one series with continuous parameters.

Moreover these 23 cases contain 7 series and 2 special cases of smooth embeddings $\mathbb{C}^* \to \mathbb{C}^2$.

Maps $\mathbb{C} \to \mathbb{C}^2$ (a) $x = t^2$, $y = (t^2 - 1)^k t^{2l+1}$, k = 1, 2, ..., $l = 0, 1, \ldots;$

Maps $\mathbb{C} \to \mathbb{C}^2$ (a) $x = t^2, y = (t^2 - 1)^k t^{2l+1}, k = 1, 2, ...,$ $l = 0, 1, \ldots;$ (b) $x = t^3, y = t^{3k+2} - t^{3k+1}, k = 1, 2, ...;$

Maps $\mathbb{C} \to \mathbb{C}^2$ (a) $x = t^2, y = (t^2 - 1)^k t^{2l+1}, k = 1, 2, \dots,$ $l = 0, 1, \ldots;$ (b) $x = t^3, y = t^{3k+2} - t^{3k+1}, k = 1, 2, ...;$ (c) $x = t^4, y = t^{4k+2} - t^{4k+1}, k = 1, 2, ...;$

Maps $\mathbb{C} \to \mathbb{C}^2$ (a) $x = t^2, y = (t^2 - 1)^k t^{2l+1}, k = 1, 2, ...,$ $l = 0, 1, \ldots;$ (b) $x = t^3, y = t^{3k+2} - t^{3k+1}, k = 1, 2, ...;$ (c) $x = t^4, y = t^{4k+2} - t^{4k+1}, k = 1, 2, ...;$ (d) $x = t^4$, $y = t^{4k+3} - t^{4k+2}$, k = 0, 1, ...;

Maps $\mathbb{C} \to \mathbb{C}^2$ (a) $x = t^2, y = (t^2 - 1)^k t^{2l+1}, k = 1, 2, ...,$ $l = 0, 1, \ldots;$ (b) $x = t^3, y = t^{3k+2} - t^{3k+1}, k = 1, 2, ...;$ (c) $x = t^4, y = t^{4k+2} - t^{4k+1}, k = 1, 2, ...;$ (d) $x = t^4$, $y = t^{4k+3} - t^{4k+2}$, k = 0, 1, ...;(e) $x = t^6$, $y = t^{6k+3} - t^{6k+2}$, k = 1, 2, ...;

Maps $\mathbb{C} \to \mathbb{C}^2$ (a) $x = t^2, y = (t^2 - 1)^k t^{2l+1}, k = 1, 2, ...,$ $l = 0, 1, \ldots;$ (b) $x = t^3, y = t^{3k+2} - t^{3k+1}, k = 1, 2, ...;$ (c) $x = t^4$, $y = t^{4k+2} - t^{4k+1}$, k = 1, 2, ...;(d) $x = t^4$, $y = t^{4k+3} - t^{4k+2}$, k = 0, 1, ...;(e) $x = t^6, y = t^{6k+3} - t^{6k+2}, k = 1, 2, ...;$ (f) $x = t^6$, $y = t^{6k+4} - t^{6k+3}$, k = 0, 1, ...;

Maps $\mathbb{C} \to \mathbb{C}^2$ (a) $x = t^2, y = (t^2 - 1)^k t^{2l+1}, k = 1, 2, ...,$ $l = 0, 1, \ldots;$ (b) $x = t^3, y = t^{3k+2} - t^{3k+1}, k = 1, 2, ...;$ (c) $x = t^4, y = t^{4k+2} - t^{4k+1}, k = 1, 2, ...;$ (d) $x = t^4, y = t^{4k+3} - t^{4k+2}, k = 0, 1, ...;$ (e) $x = t^6$, $y = t^{6k+3} - t^{6k+2}$, k = 1, 2, ...;(f) $x = t^6, y = t^{6k+4} - t^{6k+3}, k = 0, 1, ...;$ (g) $x = t^a(t-1)^{kb}, y = t^c(t-1)^{kd},$ $\kappa = |ad - bc| = 1, k = 1, 2, \dots,$ 2 < a + kb < c + kd:

Maps $\mathbb{C} \to \mathbb{C}^2$ (h) $x = t^{2a}(t-1)^{2b}, y = t^{2c}(t-1)^{2d}, \kappa = 1,$ 2 < ka < kc;

Maps $\mathbb{C} \to \mathbb{C}^2$ (h) $x = t^{2a}(t-1)^{2b}, y = t^{2c}(t-1)^{2d}, \kappa = 1,$ 2 < ka < kc: (i) $x = t^{ka-b}(t-1)^b, y = t^{kc-d}(t-1)^d, \kappa = 1,$ $k = 1, 2, \ldots;$

Maps $\mathbb{C} \to \mathbb{C}^2$ (h) $x = t^{2a}(t-1)^{2b}, y = t^{2c}(t-1)^{2d}, \kappa = 1,$ 2 < ka < kc: (i) $x = t^{ka-b}(t-1)^b$, $y = t^{kc-d}(t-1)^d$, $\kappa = 1$, $k = 1, 2, \ldots;$ (j) $x = t^2(t-1), y = t^{2k+1}(t-1)^k(t-\frac{4}{2}),$ $k = 1, 2, \ldots;$

Maps $\mathbb{C} \to \mathbb{C}^2$ (h) $x = t^{2a}(t-1)^{2b}, y = t^{2c}(t-1)^{2d}, \kappa = 1,$ 2 < ka < kc: (i) $x = t^{ka-b}(t-1)^b, y = t^{kc-d}(t-1)^d, \kappa = 1,$ $k = 1, 2, \ldots;$ (j) $x = t^2(t-1), y = t^{2k+1}(t-1)^k(t-\frac{4}{2}),$ $k = 1, 2, \ldots;$ (k) $x = t^3(t-1), y = t^{3k+1}(t-1)^k(t-\frac{3}{2}),$ $k = 1, 2, \ldots;$

Maps $\mathbb{C} \to \mathbb{C}^2$ (h) $x = t^{2a}(t-1)^{2b}, y = t^{2c}(t-1)^{2d}, \kappa = 1,$ 2 < ka < kc: (i) $x = t^{ka-b}(t-1)^b, y = t^{kc-d}(t-1)^d, \kappa = 1,$ $k = 1, 2, \ldots;$ (j) $x = t^2(t-1), y = t^{2k+1}(t-1)^k(t-\frac{4}{2}),$ $k = 1, 2, \ldots;$ (k) $x = t^3(t-1), y = t^{3k+1}(t-1)^k(t-\frac{3}{2}),$ $k = 1, 2, \ldots;$ (l) $x = [t(t-1)]^{2k}, y = [t(t-1)]^{(2l+1)k}(t-\frac{1}{2}),$ $k = 1, 2, \ldots, l = 0, 1, \ldots;$

Maps $\mathbb{C} \to \mathbb{C}^2$ (m) $x = [t(t-1)]^{2k+1}, y = x^{l}[t(t-1)]^{k}(t-\frac{1}{2}),$ $k = 0, 1, \dots, l = 0, 1, \dots, (k, l) \neq (0, 0), (0, 1);$

Maps $\mathbb{C} \to \mathbb{C}^2$ (m) $x = [t(t-1)]^{2k+1}, y = x^{l}[t(t-1)]^{k}(t-\frac{1}{2}),$ $k = 0, 1, \dots, l = 0, 1, \dots, (k, l) \neq (0, 0), (0, 1);$ (n) $x = t^k (t-1)^{k+1} (t-\frac{1}{2}) y^l$, $y = t^{2k} (t-1)^{2k+2}$, $k = 1, 2, \ldots, l = 0, 1, \ldots;$

Maps $\mathbb{C} \to \mathbb{C}^2$ (m) $x = [t(t-1)]^{2k+1}, y = x^{l}[t(t-1)]^{k}(t-\frac{1}{2}),$ $k = 0, 1, \dots, l = 0, 1, \dots, (k, l) \neq (0, 0), (0, 1);$ (n) $x = t^k (t-1)^{k+1} (t-\frac{1}{2}) y^l$, $y = t^{2k} (t-1)^{2k+2}$, $k = 1, 2, \ldots, l = 0, 1, \ldots;$ (o) $x = t^{2k-1}(t-1)^{2k+1}, y = x^{l}t^{k-1}(t-1)^{k}(t-\frac{1}{2}),$ $k = 1, 2, \dots, l = 1, \dots;$

Maps $\mathbb{C} \to \mathbb{C}^2$ (m) $x = [t(t-1)]^{2k+1}, y = x^{l}[t(t-1)]^{k}(t-\frac{1}{2}),$ $k = 0, 1, \dots, l = 0, 1, \dots, (k, l) \neq (0, 0), (0, 1);$ (n) $x = t^k (t-1)^{k+1} (t-\frac{1}{2}) y^l$, $y = t^{2k} (t-1)^{2k+2}$, $k = 1, 2, \ldots, l = 0, 1, \ldots;$ (o) $x = t^{2k-1}(t-1)^{2k+1}, y = x^{l}t^{k-1}(t-1)^{k}(t-\frac{1}{2}),$ $k = 1, 2, \ldots, l = 1, \ldots;$ (p) $x = t^3(t-1)^3$, $y = t(t-1)(t-\frac{1}{2}-\frac{1}{6}i\sqrt{3})x^k$, $k=1,2,\ldots$

Maps $\mathbb{C} \to \mathbb{C}^2$ (q) $x = t^3 - 3t, y = t^4 - 2t^2;$

Maps $\mathbb{C} \to \mathbb{C}^2$ (q) $x = t^3 - 3t, y = t^4 - 2t^2;$ (r) $x = t^3 - 3t, y = t^5 - 2\sqrt{-2}t^4 + 11\sqrt{-2}t^2 - \frac{37}{4}t;$

Maps $\mathbb{C} \to \mathbb{C}^2$ (q) $x = t^3 - 3t, y = t^4 - 2t^2$; (r) $x = t^3 - 3t, y = t^5 - 2\sqrt{-2}t^4 + 11\sqrt{-2}t^2 - \frac{37}{4}t;$ (s) $x = t^3 - 3t$, $y = t^5 + 10t^4 + 80t^2 - 205t$;

Maps $\mathbb{C} \to \mathbb{C}^2$ (q) $x = t^3 - 3t$, $y = t^4 - 2t^2$; (r) $x = t^3 - 3t, y = t^5 - 2\sqrt{-2}t^4 + 11\sqrt{-2}t^2 - \frac{37}{4}t;$ (s) $x = t^3 - 3t$, $y = t^5 + 10t^4 + 80t^2 - 205t$: (t) $x = t^3 - 3t$, $y = t^5 - \frac{5}{2}t^4 + 5t^2 - 5t$;

Maps $\mathbb{C} \to \mathbb{C}^2$ (q) $x = t^3 - 3t, y = t^4 - 2t^2;$ (r) $x = t^3 - 3t, y = t^5 - 2\sqrt{-2}t^4 + 11\sqrt{-2}t^2 - \frac{37}{4}t;$ (s) $x = t^3 - 3t$, $y = t^5 + 10t^4 + 80t^2 - 205t$; (t) $x = t^3 - 3t$, $y = t^5 - \frac{5}{2}t^4 + 5t^2 - 5t$; (u) $x = t^3 - 3t, y = t^5 - \frac{7}{2}t^4 - t^2 + 11t.$

Maps $\mathbb{C}^* \to \mathbb{C}^2$

(a) $x = t^m$, $y = t^n + \gamma_1 t^{-m} + \gamma_2 t^{-2m} + \dots + \gamma_k t^{-mk}$, where m > 0, gcd(m, |n|) = 1, $k = 0, 1, \dots$, $\gamma_j \in \mathbb{C}$, $\gamma_k = 1$ (if k > 0) and k > 0 if n > 0. and at least one $\gamma_i \neq 0$ if m > 0.

Maps $\mathbb{C}^* \to \mathbb{C}^2$

- (a) $x = t^m$, $y = t^n + \gamma_1 t^{-m} + \gamma_2 t^{-2m} + \dots + \gamma_k t^{-mk}$, where m > 0, gcd(m, |n|) = 1, $k = 0, 1, \dots$, $\gamma_j \in \mathbb{C}$, $\gamma_k = 1$ (if k > 0) and k > 0 if n > 0. and at least one $\gamma_i \neq 0$ if m > 0.
- (b) $x = t(t-1), y = (x + \frac{1}{4})^m x^n R_l(1/t)$, where m, n = 0, 1, ... and R_l is a polynomial satisfying $R_l(1/t) - R_l(1/(1-t)) = (2t-1)t^{-l}(1-t)^{-l},$ l = 1, 2, ...

Maps $\mathbb{C}^* \to \mathbb{C}^2$

- (a) $x = t^m$, $y = t^n + \gamma_1 t^{-m} + \gamma_2 t^{-2m} + \dots + \gamma_k t^{-mk}$, where m > 0, gcd(m, |n|) = 1, $k = 0, 1, \dots$, $\gamma_j \in \mathbb{C}$, $\gamma_k = 1$ (if k > 0) and k > 0 if n > 0. and at least one $\gamma_i \neq 0$ if m > 0.
- (b) $x = t(t-1), y = (x + \frac{1}{4})^m x^n R_l(1/t)$, where $m, n = 0, 1, \dots$ and R_l is a polynomial satisfying $R_l(1/t) - R_l(1/(1-t)) = (2t-1)t^{-l}(1-t)^{-l},$ $l = 1, 2, \dots$
- (c) $x = t^{mn}(t-1), y = S_k^+(1/t)$, where $mn \ge 2$, $k = 1, 2, ..., S_k$ are polynomials defined recursively by $S_0^+(u) = u^n$, $S_{k+1}^+(u) = [S_k^+(u) - S_k^+(1)]u^{mn+1}/(u-1)$.

Maps $\mathbb{C}^* \to \mathbb{C}^2$ (d) $x = t^{mn-1}(t-1), y = T_k^+(1/t)$, where $mn \ge 2$, $k = 1, 2, \ldots, T_k^+$ are polynomials satisfying $T_0^+(u) = u^{mn},$ $T_{k+1}^+(u) = [T_k^+(u) - T_k^+(1)]u^{mn}/(u-1).$

Maps C* → C²
(d)
$$x = t^{mn-1}(t-1), y = T_k^+(1/t)$$
, where $mn \ge k = 1, 2, ..., T_k^+$ are polynomials satisfying $T_0^+(u) = u^{mn}, T_{k+1}^+(u) = [T_k^+(u) - T_k^+(1)]u^{mn}/(u-1).$
(e) $x = t^{mn}(t-1), y = S_k^-(1/t)$, where $mn \ge 2$
 $k = 1, ..., \text{and } S_m^-$ is a polynomial such that $S_0^-(u) = u^{-mn}, S_{k+1}^-(u) = [S_k^-(u) - S_k^-(1)]u^{mn+1}/(u-1).$

2,

Maps
$$\mathbb{C}^* \to \mathbb{C}^2$$

(d) $x = t^{mn-1}(t-1), y = T_k^+(1/t)$, where $mn \ge 2$,
 $k = 1, 2, \dots, T_k^+$ are polynomials satisfying
 $T_0^+(u) = u^{mn},$
 $T_{k+1}^+(u) = [T_k^+(u) - T_k^+(1)]u^{mn}/(u-1).$
(e) $x = t^{mn}(t-1), y = S_k^-(1/t)$, where $mn \ge 2$,
 $k = 1, \dots$, and S_m^- is a polynomial such that
 $S_0^-(u) = u^{-mn},$
 $S_{k+1}^-(u) = [S_k^-(u) - S_k^-(1)]u^{mn+1}/(u-1).$
(f) $x = t^{mn-1}(t-1), y = T_k^-(1/t)$, where $mn \ge 2$,
 $k = 1, 2, \dots$ and T_m^- is a polynomial given by
 $T_0^-(u) = u^{-mn},$
 $T_{k+1}^-(u) = [T_k^-(u) - T_k^-(1)]u^{mn}/(u-1).$

Maps $\mathbb{C}^* \to \mathbb{C}^2$ (g) $x = t^2(t-1), y = U_k(1/t), k = 1, 2, ...,$ $U_1(u) = 3u + u^2$, $U_{k+1}(u) = [U_k(u) - U_k(1)]u^3/(u-1).$

Maps $\mathbb{C}^* \to \mathbb{C}^2$ (g) $x = t^2(t-1), y = U_k(1/t), k = 1, 2, ...,$ $U_1(u) = 3u + u^2$, $U_{k+1}(u) = [U_k(u) - U_k(1)]u^3/(u-1).$ (h) $x = t^3(t-1), y = V_k(1/t), V_1(u) = 2u^2 - u^3$, $V_{k+1}(u) = [V_k(u) - V_k(1)]u^4/(u-1).$

Maps $\mathbb{C}^* \to \mathbb{C}^2$ (g) $x = t^2(t-1), y = U_k(1/t), k = 1, 2, ...,$ $U_1(u) = 3u + u^2$, $U_{k+1}(u) = [U_k(u) - U_k(1)]u^3/(u-1).$ (h) $x = t^3(t-1), y = V_k(1/t), V_1(u) = 2u^2 - u^3$, $V_{k+1}(u) = [V_k(u) - V_k(1)]u^4/(u-1).$ (i) $x = t^3(t-1), y = W_k(1/t)$, where k = 1, 2, ..., $W_1(u) = 2u^2 + u^3$, $W_{k+1}(u) = [W_k(u) - W_k(1)]u^4/(u-1).$

Maps $\mathbb{C}^* \to \mathbb{C}^2$ (g) $x = t^2(t-1), y = U_k(1/t), k = 1, 2, ...,$ $U_1(u) = 3u + u^2$, $U_{k+1}(u) = [U_k(u) - U_k(1)]u^3/(u-1).$ (h) $x = t^3(t-1), y = V_k(1/t), V_1(u) = 2u^2 - u^3,$ $V_{k+1}(u) = [V_k(u) - V_k(1)]u^4/(u-1).$ (i) $x = t^3(t-1), y = W_k(1/t)$, where k = 1, 2, ..., $W_1(u) = 2u^2 + u^3$, $W_{k+1}(u) = [W_k(u) - W_k(1)]u^4/(u-1).$ (j) $x = t + t^{-1}$, y = Z(t) is a polynomial satisfying $y(t) + y(1/t) = (t-1)^{2m+1}(t+1)^{n+1}/t^{m+n+1},$ where 0 < m < n i m + n > 0.

Maps $\mathbb{C}^* \to \mathbb{C}^2$ (k) $x = (t-1)^3 t^{-2}, y = x^k (t-1)(t-4)t^{-1},$ $k=1,2,\ldots$

Maps $\mathbb{C}^* \to \mathbb{C}^2$

(k)
$$x = (t-1)^3 t^{-2}, y = x^k (t-1)(t-4)t^{-1}, k = 1, 2, \dots$$

(l)
$$x = (t-1)^m t^{-pn}, y = (t-1)^k t^{-pl},$$

 $ml - nk = 1, p = 1, 2, \dots$

Maps $\mathbb{C}^* \to \mathbb{C}^2$ (\mathbf{k}) (1 (m)

)
$$x = (t-1)^{3}t^{-2}, y = x^{k}(t-1)(t-4)t^{-1},$$

 $k = 1, 2, ...$
) $x = (t-1)^{m}t^{-pn}, y = (t-1)^{k}t^{-pl},$
 $ml - nk = 1, p = 1, 2, ...$
) $x = (t-1)^{pm}t^{-n}, y = (t-1)^{pk}t^{-l},$
 $ml - nk = 1, p = 1, 2, ...$

Maps $\mathbb{C}^* \to \mathbb{C}^2$ (k) $x = (t-1)^3 t^{-2}, y = x^k (t-1)(t-4)t^{-1},$ $k=1,2,\ldots$ (1) $x = (t-1)^m t^{-pn}, y = (t-1)^k t^{-pl},$ $ml - nk = 1, p = 1, 2, \ldots$ (m) $x = (t-1)^{pm} t^{-n}, y = (t-1)^{pk} t^{-l},$ $ml - nk = 1, p = 1, 2, \ldots$ (n) $x = (t-1)^{2m} t^{-2n}$, $y = (t-1)^{2k} t^{-2l}$. ml - nk = 1.
Maps $\mathbb{C}^* \to \mathbb{C}^2$ (k) $x = (t-1)^3 t^{-2}, y = x^k (t-1)(t-4)t^{-1},$ $k=1,2,\ldots$ (1) $x = (t-1)^m t^{-pn}, y = (t-1)^k t^{-pl},$ $ml - nk = 1, p = 1, 2, \ldots$ (m) $x = (t-1)^{pm} t^{-n}, y = (t-1)^{pk} t^{-l},$ $ml - nk = 1, p = 1, 2, \ldots$ (n) $x = (t-1)^{2m} t^{-2n}$, $y = (t-1)^{2k} t^{-2l}$, ml - nk = 1.(o) $x = (t-1)^{4l} t^{1-2l}, y = x^k (t-1)^{2l} (t+1) t^{-l},$ $k = 0, 1, \ldots, l = 1, 2, 3, \ldots$

Maps $\mathbb{C}^* \to \mathbb{C}^2$ (k) $x = (t-1)^3 t^{-2}, y = x^k (t-1)(t-4)t^{-1},$ $k=1,2,\ldots$ (1) $x = (t-1)^m t^{-pn}, y = (t-1)^k t^{-pl},$ $ml - nk = 1, p = 1, 2, \ldots$ (m) $x = (t-1)^{pm}t^{-n}, y = (t-1)^{pk}t^{-l},$ $ml - nk = 1, p = 1, 2, \ldots$ (n) $x = (t-1)^{2m} t^{-2n}, y = (t-1)^{2k} t^{-2l},$ ml - nk = 1.(o) $x = (t-1)^{4l} t^{1-2l}, y = x^k (t-1)^{2l} (t+1) t^{-l},$ $k = 0, 1, \ldots, l = 1, 2, 3, \ldots$ (p) $x = (t-1)^4 t^{-3}, y = x^k (t-1)^2 (t-3) t^{-2},$ $k=1,2,\ldots$

Maps $\mathbb{C}^* \to \mathbb{C}^2$

(q)
$$x = (t-1)^{4m-2}t^{1-2m}$$
,
 $y = x^k \cdot (t-1)^{2m-1}(t+3)t^{-m}$, $m = 2, 3, ...,$
 $k = 0, 1, ...$

Maps $\mathbb{C}^* \to \mathbb{C}^2$

(q)
$$x = (t-1)^{4m-2}t^{1-2m}$$
,
 $y = x^k \cdot (t-1)^{2m-1}(t+3)t^{-m}$, $m = 2, 3, ...,$
 $k = 0, 1, ...,$

(r)
$$x = (t-1)^3 (t+e^{i\pi/3})t^{-2}y^k, y = (t-1)^6 t^{-3}, k = 0, 1, \dots$$

Maps $\mathbb{C}^* \to \mathbb{C}^2$ (q) $x = (t-1)^{4m-2}t^{1-2m}$, $y = x^k \cdot (t-1)^{2m-1}(t+3)t^{-m}, m = 2, 3, \dots,$ $k=0,1,\ldots$ (r) $x = (t-1)^3 (t+e^{i\pi/3})t^{-2}y^k, y = (t-1)^6 t^{-3},$ $k=0,1,\ldots$ (s) $x = t^6 + t^5 + \frac{2}{3}t^4$, $y = t^{-6} - t^{-7} + \frac{1}{3}t^{-8}$.

Maps $\mathbb{C}^* \to \mathbb{C}^2$ (q) $x = (t-1)^{4m-2}t^{1-2m}$. $y = x^k \cdot (t-1)^{2m-1}(t+3)t^{-m}, m = 2, 3, \dots,$ $k=0,1,\ldots$ (r) $x = (t-1)^3 (t+e^{i\pi/3})t^{-2}y^k, y = (t-1)^6 t^{-3},$ $k=0,1,\ldots$ (s) $x = t^6 + t^5 + \frac{2}{3}t^4$, $y = t^{-6} - t^{-7} + \frac{1}{3}t^{-8}$. (t) $x = (t^4 - \sqrt{2}t^3 + t^2)t^{4k}$, $y = (t^{-4} + \sqrt{2}t^{-5} + t^{-6})t^{-4k}, k = 0, 1, 2, \dots$

Maps $\mathbb{C}^* \to \mathbb{C}^2$ (q) $x = (t-1)^{4m-2}t^{1-2m}$. $y = x^k \cdot (t-1)^{2m-1}(t+3)t^{-m}, m = 2, 3, \dots,$ $k = 0, 1, \ldots$ (r) $x = (t-1)^3 (t+e^{i\pi/3})t^{-2}y^k, y = (t-1)^6 t^{-3},$ $k = 0, 1, \ldots$ (s) $x = t^6 + t^5 + \frac{2}{3}t^4$, $y = t^{-6} - t^{-7} + \frac{1}{3}t^{-8}$. (t) $x = (t^4 - \sqrt{2}t^3 + t^2)t^{4k}$, $y = (t^{-4} + \sqrt{2}t^{-5} + t^{-6})t^{-4k}, k = 0, 1, 2, \dots$ (u) $x = (t-1)^2(t+2)t^{-1}, y = (t-1)^4(t+\frac{1}{2})t^{-2}.$

Maps $\mathbb{C}^* \to \mathbb{C}^2$ (v) $x = (t-1)^2(t+4+2\sqrt{5})t^{-1}$, $y = (t-1)^4 (t + \frac{1}{4}(11 + 5\sqrt{5}))t^{-2}.$

Maps $\mathbb{C}^* \to \mathbb{C}^2$

(v) $x = (t-1)^2(t+4+2\sqrt{5})t^{-1}$, $y = (t-1)^4 (t + \frac{1}{4}(11 + 5\sqrt{5}))t^{-2}.$ (w) $x = (t-1)^2(t+2)t^{-1}, y = (t-1)^2(t+\frac{1}{2})t^{-2}.$

• Prove regularity conjecture.

- Prove regularity conjecture.
- For curves with lower Euler characteristics continuous families are expected

- Prove regularity conjecture.
- For curves with lower Euler characteristics continuous families are expected
- ... and lots of calculations.

- Prove regularity conjecture.
- For curves with lower Euler characteristics continuous families are expected
- ... and lots of calculations.
 - The parametrisation may be less efficient in case of higher genus (moduli appear).

- Prove regularity conjecture.
- For curves with lower Euler characteristics continuous families are expected
- ... and lots of calculations.
 - The parametrisation may be less efficient in case of higher genus (moduli appear).
 - Analysis of cuspidal curves seems beyond that method.

- Prove regularity conjecture.
- For curves with lower Euler characteristics continuous families are expected
- ... and lots of calculations.
 - The parametrisation may be less efficient in case of higher genus (moduli appear).
 - Analysis of cuspidal curves seems beyond that method.
 - Study intersections on the space of curves $Cur_{a,c}$ and $Cur_{a,b,c,d}$.

- Prove regularity conjecture.
- For curves with lower Euler characteristics continuous families are expected
- ... and lots of calculations.
 - The parametrisation may be less efficient in case of higher genus (moduli appear).
 - Analysis of cuspidal curves seems beyond that method.
 - Study intersections on the space of curves $Cur_{a,c}$ and $Cur_{a,b,c,d}$.
 - Applications to XVI Hilbert problem (Liénard vector fields).

THANK YOU