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« Curve(C c C=2.
- O c CP?its closure.
« C'is rational.

* x(C) =0.

It follows, that either
e (' ~ C* and(C has no finite self—intersections.

e (' has one place at infinity and one finite
self—intersection.
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Known results

If x(C) =1, thenC'is homeomorphic to a line.
Zajdenberg—Lirtheorem:C' ~ {zP = y4} with p, q
coprime.

Koras, RusseltaseC ~ C* andC smooth.
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It IS restricted to regular curves.
« ConjectureAll curves are regular.
 Lots of evidence.
* A gap In the proof.
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Two points of view
« Equation
» O ={(z,y) € C*: f(z,y) = 0}
« Genus Is difficult.
+ Singular pointsf’ (o, yo) = f(x0,y0) = 0
» Self-intersections are singular points.

« Parametrisation

e C={(z(t),y(t)) € C:t € CP'}

e genus is zero.

 Singular pointsz’(ty) = y'(ty) = 0
« Self-Intersections are difficult.



Parametric curves

Rational curveC with oneplace at infinity is given b
a polynomial



Parametric curves

Rational curveC with oneplace at infinity is given b
a polynomial

{x(t) =1+ gt + -+ aq
y(t) =+ Gt + -+ B




Parametric curves

Rational curveC with oneplace at infinity is given b
a polynomial

y(t) =t+ 0t + -+ G

{x(t) =1+ gt + -+ aq

Any rationalC' with two branches at infinity is given
by a polynomial int andt .



Parametric curves

Rational curveC with oneplace at infinity is given b

a polynomial

{x(t) =1+ gt + -+ aq

y(t) =1+ Bt

Be.

Any rationalC' with two branches at infinity is given

by a polynomial int andt .
SO

r(t) =t + it gt
y(t) =+ Pt + o+ Porat ™
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0 Invariant
For singular point with Milnor number and

r branches set
‘25 =+ 71— 1.|

If (z0,10) IS @ singular point ofz(t), y(t)), 20 is the
number of solutions to

(

x(s1)—x(s2) —0
| y(sli_y%SZ) —

\ S§1—S52

such thate(sy) = xo 1 y(s1) = yo.
For an ordinary double point we haue = 2.


















Example
y* =2 + Mx?, A= 0.

One double point ,hides” in a singular poir# = 2.
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Another example

Curves depend oA.

{

L\ (t)
ya(t)

t3 — 15)\%t
2 — 3022 + 10382 + 201)\*¢,
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Another example

Curves depend oA.

ry(t) =13 — 15\t
() =2 — 30A* % + 10Nt + 2014,

A=0

Four double points hide in a singular point, ¢°).
Thus2o = &.
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g:
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2

5(8)

A

_

g — genus
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Serre formula
For a curveC' of degreel we have

BRI RN
g — genus J
d — e

/ — o Invariant of a singular point.

— sum over all singular points and double
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Serre formula Il
We requireg = 0. Thus

Y 20, = (d—1)(d - 2).

 For a typical curve); correspond to ordinary
double points.

 If C' has no finite double points (or only one), ¢
other points must beiddenin singular points.

« Maybe at Infinity.
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To control the deformations of a parametric curves
Introducethe codimension.

Parametrise locally:(t) ~ t?, y(t) ~ t9 4+ .... Write

y=c1z? + cz®P + - P 4.

c1,Co,...,Ci, ... — Puiseux coefficients

 The localcodimensiornv is the number of
vanishingessentiaPuiseux coefficients.

« v Is determined by the characteristic sequence
and the ordep.



Codimension inequality
If x(t) ~tP, y(t) ~ t? we have:

Q=< pu.



Codimension inequality

If z(t) ~ @)y(t) ~ t? we have:

IEG]




Codimension inequality
If x(t) ~tP, y(t) ~ t? we have:

pU.

wher IInor number & 29),




Codimension inequality
If x(t) ~tP, y(t) ~ t? we have:

< fr
wheren Milnor number & 29), (v the local

codimension




Codimension inequality
If x(t) ~tP, y(t) ~ t? we have:

\uépul

wheren Milnor number & 20), v the local
codimension




Codimension inequality
If x(t) ~tP, y(t) ~ t? we have:

\uépul

wheren Milnor number & 20), v the local
codimension

* One can find all cases with an equality.



Codimension inequality
If x(t) ~tP, y(t) ~ t? we have:

\uépul

wheren Milnor number & 20), v the local
codimension

* One can find all cases with an equality.
 Direct calculations.



Codimension inequality
If x(t) ~tP, y(t) ~ t? we have:

\uépul

wheren Milnor number & 20), v the local
codimension

* One can find all cases with an equality.
 Direct calculations.
 Resembles Zajdenberg—Orevkov inequality.
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Hencer = 5. Also

p=154+3=18<4-5
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X :t4,
y =2+ 2P

y = 20 + 22?4222 4 21

Now r = 7. And
w=15+7=22<4.7

The more complicated singularity, the less sharp s
Inequality.
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« Two branches at a singular point

y =12 P P - P

y =iz’ + doz?P -+ dizt/Pr 4

« The singularity is decribed by
— vanishing ofv; ¢’s, vy, d’s

— and possibly some equality relations between
non-vanishing’s andd’s.

* number of these relation,,,,: the tangent
codimension.
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e The sign change results from chosing different rc
of unity of order 6.
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Vtan — 4
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Codimension inequality II.

Two branches.

1, po — orders ofx.

V1, Vo — local codimensions.
Vian, — tangent codimension.

20 < (p1 + p2)(v1 + Vo + Vg + 1).
Assumey, andg, are orders of.

For ¢g.p1 # q1p2, the Intersection index of
branches is fixed:

it equalsmin(qps, ¢2p1) — leads to better
estimate.
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the space curves = t¥ + - - - + ay,

y =14+ bt + ... for p, ¢ sufficiently large
has codimensioaxt v.
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For the singularity with one branch
ext v=v-+p—2.
* We havep — 1 condition onz, ¥ ony and can
move parameter.
» |If we have 2 branches wittxt v, ext 1o,
ext v = ext v; +ext vp + Vt(;s) 4= i

Additional 2 comes from the condition
x(to) = x(t1), y(to) = y(t1).
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External codimension
For the singularity with one branch

ext v=v-+p-—2.
* We havep — 1 condition onz, ¥ ony and can

move parameter.

» |f we have 2 branches wittxt v, ext 1o,

ext v = ext v; +ext vp + Vt(ii) 4= i

e Definition for more branches is similar.
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- C' C X resolution of singular point;.
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External codimension Il
Setup
« (C,xy)is acurve on a surfack.

- C' C X resolution of singular point;.

e D=C+E.

» Let M = K(K + D): modified Orevkovl/
number.

Proposition. For a given singular curv€' c C?, if
orders ofr at C all branches are multiplicities, then

ext v=K(K + D).

The proof follows from calculating both quantities |
terms of Eisenbud—Neumann diagrams.
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a, b, c andd need not be positive. We will discu
it later.
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» SpaceC'ur, . of curves with one place at infitity
has dimension + c.

» SpaceC'urv, . q Of curves with two branches a
Infinity has dimensiom + b + ¢ + d.

 Let g be the dimension of the automorphism
group.

« This group consists, In first case, of changes

y — y + apz” for ¢ > ka,

Yy — Yy + const, r — x -+ const,

t — Xt followed byx — A%z, y — A%,

t — 1+ a.
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 Let g be the dimension of the automorphism
group.

In case of two branches the actual structure of
group depends heavily an b, c andd.
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const
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» SpaceC'urv, . q Of curves with two branches a
Infinity has dimensiom + b + ¢ + d.

 Let g be the dimension of the automorphism
group.

« Thereqgularity means, that the space of curves
with singularities of codimension

ext 11, ...,ext v, forms a subspace of the
codimension at mosikt v; + - - - + ext v,. Thus

@ext v, <a-+c—g

Sum all singular points together with infinity.
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» SpaceC'ur, . of curves with one place at infitity
has dimension + c.

» SpaceC'urv, . q Of curves with two branches a
Infinity has dimensiom + b + ¢ + d.

 Let g be the dimension of the automorphism
group.

« Thereqgularity means, that the space of curves
with singularities of codimension

ext 11, ...,ext v, forms a subspace of the
codimension at mosixt v; + - - - + ext v,. Thus

Z ext v, <a+b+c+d—g

Codimension is really a codimension.
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Regularity Is stronger than the inequality
> M; < 3d— 4.
The estimates will not follow directly from BMY

It would follow from unobstructedness of
logarithmic deformationsi{*(X, D) = 0).

The most difficult part is that of one singular
point. If we know that, we can apply induction.

Evidence: all cases found by Koras and Russt
turn out to be regular.

All our examples calculated by hand are reguls
Slightly more general regularity conjecture fail
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Genus formula revisited
Take curvel' Suppose: < c.

Thendeg C = cand) _20; + 20, = c(c — 1). But
2000 = (c—1)(c—a— 1)+ 24, . Hence

Z@pm + po2) (Vo1 + Vo2 + Vign + 1D
ta —1< (a — 1)(6— 1).

po1 andpy, are orders of: at two branches of the
double locus.
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Genus formula for annull.
For curve

=1+ a1t T+t %+ - + oza+bt_b
y =1+t + o+ Boyat™®

If ad — bc ## 0 anda + b < c + d we get

szuz_ a+b—1)(c+d—1)+
—a' =V +1-(a' + ) (v, + 1),

If ad = bc we need to take Iinto account the tangen
of branches at infinity. The formula is suitably
changed.
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o Y pwi<(atb—1)(c+d—1)
—a'vl, — by, + det’.
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a+b—1, 6<0

_ 1) < ) —
DI EI R

e The regularity condition.




Estimates for annull.

C annulus withad # bc. Then
det’ = lad — bc| —a' — V' +1 > 0.

o Y pwi<(atb—1)(c+d—1)
—a'vl, — by, + det’.

. Y (it pi—2)+ v+ <
a+b+c+d—1—K—D

a+b—1, b<0
_ 1) < ) —
/. Z(pz 1)_{ab, b> 0
e Counting zeros of.z(t).




Estimates for annull.

C annulus withad # bc. Then
det’ = lad — bc| —a' — V' +1 > 0.

o sz-uz- <(a+b—1)(c+d—1)
—a'vl, — by, + det’.

. Z(Vi+pz—2)+V6+Véo§

e K Is maximal non—negative integer such that
Ka <candKb <d.
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C annulus withad # bc. Then
det’ = lad — bc| —a' — V' +1 > 0.

o Y py<(atb—1)(c+d—1)
—a'vl, — by, + det’.

. Y (it pi—2)+ v+ <
a+b+c+d=

a+b—1, b<0
a+ b, b>0

e D e{0,1,2}isthe number of constants: if we
can add a constant toor y.
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Different types.

« Appearance of) and K. Suggests different
types.

» Type(7):0<a<c0<b<d ThenD =2,
K > 1. K Is here very important.

« Type ([ "):0<a<¢0<d<ba+b<c+d.
D =2andK = 0.

» Type():a,d>0,bc<0,a+b<c+d.
D =1, K varies.

- Type(Z): a,d > 0,b,c<0. D =K =0.
* Most important. Contains all smooth cases.
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Recall
szyz <(a+b—1)(c+d—1)+
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Choice of presentation.

Recall

szyz <(a+b—1)(c+d—1)+
+ lad —be] —a' = b +1—d'v — by

* Assumea|c. Thend' = a is large.

« The terma’v, . may dominate.
There are conditions o b, ¢ andd solely such that
— one deals easily with casex.
— we can make each curve satisfy this condition
— this provides a choice of coordinates Gh

The most difficult is then casg ).
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We can apply different changes of type— y — 2",
r — x — ¢’ to that curve.
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We can apply different changes of type— y — 2",
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r — x — ¢’ to that curve.
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Example

Consider a curve

r=t*+1°
y=t+2t2—t*4+3t7°.

We can apply different changes of type— y — 2",
r — x — ¢ to that curve.

Handsomeness. This onel!
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Dealing with inequalities

More seriously. In all cases b{).

« exclude smooth curves.
« order multiplicities ofz: p; > ps > p3--- > pn.

» exclude cases with/ > 2, 3, 4 (depending on
type).

 deal with cases witliv > 2.
Left with something like
pla+b+c+d—K—-—D—p+2) <
(a+b—1)(c+d—1)+det’”.

* Now rejectp; < a + b — 2 and consider other
cases.
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Result
In case of polynomial curves with one double locu:

there are 16 series anc 5 special cases.

For annuli we find 19 series anc 4 special cases
Including one series with continuous parameters.

Moreover these 23 cases cont( 7 series an( 2
special cases of smooth embeddifitis— C-.
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wherem > 0, ged(m, |n|) =1,k =0,1,...,
v € C,v, =1(f k> 0)andk > 01f n > 0. and
at leastone; # 0 1If m > 0.
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m,n =0,1,... andR; Is a polynomial satisfyin
Ri(1/t) — Ry(1/(1 —¢)) = (2t — Dt7Y(1 — ),
[=1.2,....
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k=12 ....5 are polynomials defined
recursively byS; (u) = u”,

S (W) =[Sy (u) = Sy (D™ (u - 1).



Maps C* — C*

d) z =¢"""Yt—1),y =T, (1/t), wheremn > 2,
k=1,2,.... T, are polynomials satisfying
Ty (u) = u™,
T, (w) = [T} () = T (D)™ (u — 1).



Maps C* — C*

d) z =¢"""Yt—1),y =T, (1/t), wheremn > 2,
k=1,2,.... T, are polynomials satisfying
Ty (u) = u™,
T, (w) = [T} () = T (D)™ (u — 1).

) z=t""(t—-1),y=.95,(1/t), wheremn > 2,
k=1,...,andS,  Is a polynomial such that
Sy (u) =u™"",
S () = [y (u) = S (W]um™+ /(u — 1),



Maps C* — C*

d) z =¢"""Yt—1),y =T, (1/t), wheremn > 2,
k=1,2,.... T, are polynomials satisfying
Ty (u) = u™,
Ty (1) = [T} (u) = T (D)]u™/ (u — 1),

) z=t""(t—-1),y=.95,(1/t), wheremn > 2,
k=1,...,andS,  Is a polynomial such that
So (u) = u™™,
Sa (1) = [y (u) = Sy (Va1 /(u—1).

f) x=t""1(t—-1),y =T, (1/t), wheremn > 2,
k=1,2,... andT  Is a polynomial given by
Ty (u) =u™™",
T (u) = [T (u) = T (1)]u™"/(u = 1).
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Viga(u) = [Vi(u) = Vi(D)]u*/(u - 1).

(i) = =18(t — 1) y = Wi(1/t), wherek = 1,2, ...,

Wi(u) = 2u® + v’
Wia(u) = W) — We(D)Ju?/(u—1).
() x=t+t1 y=Z(t)is apolynomial satisfying

y(t) T y(l/t) — (t — 1)2m+1(t —+ 1)n+1/t’m—|—n+1’
where0 < m<nim+n>0.
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What next?

* Prove reqgularity conjecture.

» For curves with lower Euler characteristics
continuous families are expected

. and lots of calculations.

« The parametrisation may be less efficient in ce
of higher genus (moduli appear).

« Analysis of cuspidal curves seems beyond tha
method.

» Study intersections on the space of curgés-, .
andCurgp.c.q.

« Applications to XVI Hilbert problem (Liénard
vector fields).
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