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• CurveC ⊂ C2.
• C̄ ⊂ CP 2 its closure.
• C̄ is rational.
• χ(C) = 0.

It follows, that either

• C ≃ C∗ andC has no finite self–intersections.

• C has one place at infinity and one finite
self–intersection.
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Known results
If χ(C) = 1, thenC is homeomorphic to a line.
Zajdenberg–Lintheorem:C ≃ {xp = yq} with p, q
coprime.
Koras, RussellcaseC ≃ C∗ andC smooth.
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• Conjecture:All curves are regular.
• Lots of evidence.
• A gap in the proof.
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x(x0, y0) = f ′
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• Parametrisation
• C = {(x(t), y(t)) ∈ C2,t ∈ CP 1}
• genus is zero.
• Singular points:x′(t0) = y′(t0) = 0

• Self–intersections are difficult.
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Parametric curves
Rational curveC with oneplace at infinity is given by
a polynomial

{

x(t) = ta + α1t
a−1 + · · · + αa

y(t) = tc + β1t
c−1 + · · · + βc.

Any rationalC with two branches at infinity is given
by a polynomial int andt−1.
so

{

x(t) = ta + α1t
a−1 + · · · + αa+bt

−b

y(t) = tc + β1t
c−1 + · · · + βc+dt

−d.
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2δ = µ + r − 1.

If (x0, y0) is a singular point of(x(t), y(t)), 2δ is the
number of solutions to

{

x(s1)−x(s2)
s1−s2

= 0
y(s1)−y(s2)

s1−s2

= 0

such thatx(s1) = x0 i y(s1) = y0.
For an ordinary double point we have2δ = 2.



Example



Example
y2 = x3 + λx2,



Example
y2 = x3 + λx2, λ = 2.



Example
y2 = x3 + λx2, λ = 1.



Example
y2 = x3 + λx2, λ = 1

2 .



Example
y2 = x3 + λx2, λ = 0.

One double point „hides” in a singular point.2δ = 2.
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{

xλ(t) = t3 − 15λ2t

yλ(t) = t5 − 30λ2t3 + 10λ3t2 + 201λ4t,

λ = 0.4



Another example
Curves depend onλ.

{

xλ(t) = t3 − 15λ2t

yλ(t) = t5 − 30λ2t3 + 10λ3t2 + 201λ4t,

λ = 0

Four double points hide in a singular point(t3, t5).
Thus2δ = 8.



Serre formula
For a curveC of degreed we have



Serre formula
For a curveC of degreed we have

g =
(d − 1)(d − 2)

2
−

∑

δi



Serre formula
For a curveC of degreed we have

g =
(d − 1)(d − 2)

2
−

∑

δi

g — genus.



Serre formula
For a curveC of degreed we have

g =
(d − 1)(d − 2)

2
−

∑

δi

g — genus.

d — degree.



Serre formula
For a curveC of degreed we have

g =
(d − 1)(d − 2)

2
−

∑

δi

g — genus.

d — degree.

δi — δ invariant of a singular point.



Serre formula
For a curveC of degreed we have

g =
(d − 1)(d − 2)

2
−

∑

δi

g — genus.

d — degree.

δi — δ invariant of a singular point.
∑

— sum over all singular points and double

points.
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Serre formula II
We requireg = 0. Thus

∑

2δi = (d − 1)(d − 2).

• For a typical curveδi correspond to ordinary
double points.

• If C has no finite double points (or only one), all
other points must behiddenin singular points.

• Maybe at infinity.



Codimension of a singular point.
To control the deformations of a parametric curves we
introduce



Codimension of a singular point.
To control the deformations of a parametric curves we
introducethe codimension.



Codimension of a singular point.
To control the deformations of a parametric curves we
introducethe codimension.
Strongly resembles̄M number of Orevkov.



Codimension of a singular point.
To control the deformations of a parametric curves we
introducethe codimension.
Parametrise locallyx(t) ∼ tp, y(t) ∼ tq + . . . . Write

y = c1x
1/p + c2x

2/p + · · · + cix
i/p + . . . .



Codimension of a singular point.
To control the deformations of a parametric curves we
introducethe codimension.
Parametrise locallyx(t) ∼ tp, y(t) ∼ tq + . . . . Write

y = c1x
1/p + c2x

2/p + · · · + cix
i/p + . . . .

c1, c2, . . . , ci, . . . — Puiseux coefficients



Codimension of a singular point.
To control the deformations of a parametric curves we
introducethe codimension.
Parametrise locallyx(t) ∼ tp, y(t) ∼ tq + . . . . Write

y = c1x
1/p + c2x

2/p + · · · + cix
i/p + . . . .

c1, c2, . . . , ci, . . . — Puiseux coefficients

• The localcodimensionν is the number of
vanishingessentialPuiseux coefficients.
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To control the deformations of a parametric curves we
introducethe codimension.
Parametrise locallyx(t) ∼ tp, y(t) ∼ tq + . . . . Write

y = c1x
1/p + c2x

2/p + · · · + cix
i/p + . . . .

c1, c2, . . . , ci, . . . — Puiseux coefficients

• The localcodimensionν is the number of
vanishingessentialPuiseux coefficients.

• ν is determined by the characteristic sequence
and the orderp.



Codimension inequality
If x(t) ∼ tp, y(t) ∼ tq we have:

µ ≤ pν.



Codimension inequality
If x(t) ∼ tp, y(t) ∼ tq we have:

µ ≤ pν.



Codimension inequality
If x(t) ∼ tp, y(t) ∼ tq we have:

µ ≤ pν.

whereµ Milnor number (= 2δ),



Codimension inequality
If x(t) ∼ tp, y(t) ∼ tq we have:

µ ≤ pν.

whereµ Milnor number (= 2δ), ν the local
codimension



Codimension inequality
If x(t) ∼ tp, y(t) ∼ tq we have:

µ ≤ pν.

whereµ Milnor number (= 2δ), ν the local
codimension



Codimension inequality
If x(t) ∼ tp, y(t) ∼ tq we have:

µ ≤ pν.

whereµ Milnor number (= 2δ), ν the local
codimension

• One can find all cases with an equality.



Codimension inequality
If x(t) ∼ tp, y(t) ∼ tq we have:

µ ≤ pν.

whereµ Milnor number (= 2δ), ν the local
codimension

• One can find all cases with an equality.
• Direct calculations.



Codimension inequality
If x(t) ∼ tp, y(t) ∼ tq we have:

µ ≤ pν.

whereµ Milnor number (= 2δ), ν the local
codimension

• One can find all cases with an equality.
• Direct calculations.
• Resembles Zajdenberg–Orevkov inequality.
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Example
{

x = t4,

y = 2t4 + t6 + 2t8 + t13

y = 2x + x3/2 + 2x2 + x13/4.

c1 = c2 = c3 = c5 = c7 = c9 = c11 = 0.

Now ν = 7. And

µ = 15 + 7 = 22 ≤ 4 · 7

The more complicated singularity, the less sharp is the
inequality.
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2/p1 + · · · + ckx
k/p1 + . . .

y = d1x
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• The singularity is decribed by

— vanishing ofν1 c’s, ν2, d’s

— and possibly some equality relations between
non–vanishingc’s andd’s.

• number of these relationνtan: the tangent
codimension.
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• Two branches.
• p1, p2 — orders ofx.
• ν1, ν2 — local codimensions.
• νtan — tangent codimension.

2δ ≤ (p1 + p2)(ν1 + ν2 + νtan + 1).

• Assumeq1 andq2 are orders ofy.
• For q2p1 6= q1p2, the intersection index of

branches is fixed:

it equalsmin(q1p2, q2p1) — leads to better
estimate.
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The subspace of curves with such singularity in
the space curvesx = tp + · · · + a0,
y = tq + b1t

q−1 + . . . for p, q sufficiently large
has codimensionext ν.
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External codimension
For the singularity with one branch

ext ν = ν + p − 2.

• We havep − 1 condition onx, ν ony and can
move parametert.

• If we have 2 branches withext ν1, ext ν2,
ext ν = ext ν1 + ext ν2 + ν

(12)
tan + 2.

• Definition for more branches is similar.
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the subgroup ofPic(X̃) ⊗ Q spanned by
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External codimension II
Setup

• (C, x0) is a curve on a surfaceX.

• C̃ ⊂ X̃ resolution of singular pointx0.

• D = C̃ + E.
• Let M̄ = K(K + D): modified OrevkovM̄

number.

Proposition. For a given singular curveC ⊂ C2, if
orders ofx atC all branches are multiplicities, then

ext ν = K(K + D).

The proof follows from calculating both quantities in
terms of Eisenbud–Neumann diagrams.
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x = ta + α1t
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−b

y = tc + β1t
c−1 + · · · + βc+dt

−d
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a, b, c andd need not be positive. We will discuss
it later.
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Regularity I
• SpaceCura,c of curves with one place at infitity

has dimensiona + c.
• SpaceCurva,b,c,d of curves with two branches at

infinity has dimensiona + b + c + d.
• Let g be the dimension of the automorphism

group.
• Theregularity means, that the space of curves

with singularities of codimension
ext ν1, . . . , ext νk forms a subspace of the
codimension at mostext ν1 + · · · + ext νk. Thus

∑

ext νi ≤ a + b + c + d − g

Codimension is really a codimension.
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Regularity II
• Regularity is stronger than the inequality

∑

M̄i ≤ 3d − 4.
• The estimates will not follow directly from BMY.
• It would follow from unobstructedness of

logarithmic deformations (H2(X,D) = 0).
• The most difficult part is that of one singular

point. If we know that, we can apply induction.
• Evidence: all cases found by Koras and Russell

turn out to be regular.
• All our examples calculated by hand are regular.
• Slightly more general regularity conjecture fail.
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point.
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Genus formula revisited
Take curveC Supposea < c.

Thendeg C = c and
∑

2δi + 2δ∞ = c(c − 1). But
2δ∞ = (c − 1)(c − a − 1) + 2δ′∞. Hence

∑

piνi + (p01 + p02)(ν01 + ν02 + νtan + 1)+

+a′ − 1 ≤ (a − 1)(c − 1).

p01 andp02 are orders ofx at two branches of the
double locus.
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0, ν ′

∞ are
codimensions at zero and infinity.
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Genus formula for annuli.
For curve

{

x = ta + α1t
a−1 + α2t

a−2 + · · · + αa+bt
−b

y = tc + β1t
c−1 + · · · + βc+dt

−d

if ad − bc 6= 0 anda + b ≤ c + d we get

∑

piνi ≤ (a + b − 1)(c + d − 1)+

− a′ − b′ + 1−(a′ + b′)(ν ′
inf + 1),

If ad = bc we need to take into account the tangency
of branches at infinity. The formula is suitably
changed.
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Estimates for annuli.
C annulus withad 6= bc. Then
det′ = |ad − bc| − a′ − b′ + 1 ≥ 0.

•
∑
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• D ∈ {0, 1, 2} is the number of constants: if we
can add a constant tox or y.
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• Appearance ofD andK. Suggests different
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• Type
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: 0 < a < c, 0 < b < d. ThenD = 2,
K ≥ 1. K is here very important.

• Type
(−+
+−

)

: 0 < a < c, 0 < d ≤ b, a + b ≤ c + d.
D = 2 andK = 0.

• Type
(−
+

)

: a, d > 0, bc < 0, a + b ≤ c + d.
D = 1, K varies.

• Type
(−
−
)

: a, d > 0, b, c < 0. D = K = 0.

• Most important. Contains all smooth cases.
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Choice of presentation.
Recall

∑

piνi ≤ (a + b − 1)(c + d − 1)+

+ |ad − bc| − a′ − b′ + 1 − a′ν ′
∞ − b′ν ′

0.

• Assumea|c. Thena′ = a is large.
• The terma′ν ′

∞ may dominate.

There are conditions ona, b, c andd solely such that

— one deals easily with casea|c.
— we can make each curve satisfy this condition.

— this provides a choice of coordinates onC2.

The most difficult is then case
(−
−
)

.
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{

x = t4 + t−2

y = t + 2t−2 − t−4 + 3t−6.

We can apply different changes of typey → y − xk,
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Example
Consider a curve

{

x = t4 + t−2

y = t + 2t−2 − t−4 + 3t−6.

We can apply different changes of typey → y − xk,
x → x − yl to that curve.

Handsomeness. This one!



Dealing with inequalities
Essentially three methods



Dealing with inequalities
Essentially three methods

calculations,



Dealing with inequalities
Essentially three methods

calculations,

calculations,



Dealing with inequalities
Essentially three methods

calculations,

calculations,

calculations.



Dealing with inequalities
More seriously. In all cases but

(−
−
)

.



Dealing with inequalities
More seriously. In all cases but

(−
−
)

.

• exclude smooth curves.



Dealing with inequalities
More seriously. In all cases but

(−
−
)

.

• exclude smooth curves.
• order multiplicities ofx: p1 ≥ p2 ≥ p3 · · · ≥ pN .



Dealing with inequalities
More seriously. In all cases but

(−
−
)

.

• exclude smooth curves.
• order multiplicities ofx: p1 ≥ p2 ≥ p3 · · · ≥ pN .

N is the number of finite singular points.



Dealing with inequalities
More seriously. In all cases but

(−
−
)

.

• exclude smooth curves.
• order multiplicities ofx: p1 ≥ p2 ≥ p3 · · · ≥ pN .
• exclude cases withN ≥ 2, 3, 4 (depending on

type).



Dealing with inequalities
More seriously. In all cases but

(−
−
)

.

• exclude smooth curves.
• order multiplicities ofx: p1 ≥ p2 ≥ p3 · · · ≥ pN .
• exclude cases withN ≥ 2, 3, 4 (depending on

type).
• deal with cases withN ≥ 2.



Dealing with inequalities
More seriously. In all cases but

(−
−
)

.

• exclude smooth curves.
• order multiplicities ofx: p1 ≥ p2 ≥ p3 · · · ≥ pN .
• exclude cases withN ≥ 2, 3, 4 (depending on

type).
• deal with cases withN ≥ 2.

We are left with caseN = 1.



Dealing with inequalities
More seriously. In all cases but

(−
−
)

.

• exclude smooth curves.
• order multiplicities ofx: p1 ≥ p2 ≥ p3 · · · ≥ pN .
• exclude cases withN ≥ 2, 3, 4 (depending on

type).
• deal with cases withN ≥ 2.

Reject cases withν ′
0 + ν ′

∞ ≥ 2 (if ad 6= bc).



Dealing with inequalities
More seriously. In all cases but

(−
−
)

.

• exclude smooth curves.
• order multiplicities ofx: p1 ≥ p2 ≥ p3 · · · ≥ pN .
• exclude cases withN ≥ 2, 3, 4 (depending on

type).
• deal with cases withN ≥ 2.

Left with something like
p1(a + b + c + d − K − D − p1 + 2) ≤
(a + b − 1)(c + d − 1) + det ′.



Dealing with inequalities
More seriously. In all cases but

(−
−
)

.

• exclude smooth curves.
• order multiplicities ofx: p1 ≥ p2 ≥ p3 · · · ≥ pN .
• exclude cases withN ≥ 2, 3, 4 (depending on

type).
• deal with cases withN ≥ 2.

Left with something like
p1(a + b + c + d − K − D − p1 + 2) ≤
(a + b − 1)(c + d − 1) + det ′.

• Now rejectp1 ≤ a + b − 2 and consider other
cases.
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namely

{

x = ta

y = λ1t
−a + λ2t

−2a + · · · + λkt
−ka + t−c,

with a 6 |c.
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Result
In case of polynomial curves with one double locus

there are16 series and 5 special cases.

For annuli we find 19 series and 4 special cases,
including one series with continuous parameters.

Moreover these 23 cases contain7 series and2
special cases of smooth embeddingsC∗ → C2.
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Maps C → C2

(a) x = t2, y = (t2 − 1)kt2l+1, k = 1, 2, . . . ,
l = 0, 1, . . . ;

(b) x = t3, y = t3k+2 − t3k+1, k = 1, 2, . . . ;

(c) x = t4, y = t4k+2 − t4k+1, k = 1, 2, . . . ;



Maps C → C2

(a) x = t2, y = (t2 − 1)kt2l+1, k = 1, 2, . . . ,
l = 0, 1, . . . ;

(b) x = t3, y = t3k+2 − t3k+1, k = 1, 2, . . . ;

(c) x = t4, y = t4k+2 − t4k+1, k = 1, 2, . . . ;

(d) x = t4, y = t4k+3 − t4k+2, k = 0, 1, . . . ;



Maps C → C2

(a) x = t2, y = (t2 − 1)kt2l+1, k = 1, 2, . . . ,
l = 0, 1, . . . ;

(b) x = t3, y = t3k+2 − t3k+1, k = 1, 2, . . . ;

(c) x = t4, y = t4k+2 − t4k+1, k = 1, 2, . . . ;

(d) x = t4, y = t4k+3 − t4k+2, k = 0, 1, . . . ;

(e) x = t6, y = t6k+3 − t6k+2, k = 1, 2, . . . ;



Maps C → C2

(a) x = t2, y = (t2 − 1)kt2l+1, k = 1, 2, . . . ,
l = 0, 1, . . . ;

(b) x = t3, y = t3k+2 − t3k+1, k = 1, 2, . . . ;

(c) x = t4, y = t4k+2 − t4k+1, k = 1, 2, . . . ;

(d) x = t4, y = t4k+3 − t4k+2, k = 0, 1, . . . ;

(e) x = t6, y = t6k+3 − t6k+2, k = 1, 2, . . . ;

(f) x = t6, y = t6k+4 − t6k+3, k = 0, 1, . . . ;



Maps C → C2

(a) x = t2, y = (t2 − 1)kt2l+1, k = 1, 2, . . . ,
l = 0, 1, . . . ;

(b) x = t3, y = t3k+2 − t3k+1, k = 1, 2, . . . ;

(c) x = t4, y = t4k+2 − t4k+1, k = 1, 2, . . . ;

(d) x = t4, y = t4k+3 − t4k+2, k = 0, 1, . . . ;

(e) x = t6, y = t6k+3 − t6k+2, k = 1, 2, . . . ;

(f) x = t6, y = t6k+4 − t6k+3, k = 0, 1, . . . ;

(g) x = ta(t − 1)kb, y = tc(t − 1)kd,
κ = |ad − bc| = 1, k = 1, 2, . . . ,
2 < a + kb < c + kd;



Maps C → C2

(h) x = t2a(t − 1)2b, y = t2c(t − 1)2d, κ = 1,
2 < ka < kc;



Maps C → C2

(h) x = t2a(t − 1)2b, y = t2c(t − 1)2d, κ = 1,
2 < ka < kc;

(i) x = tka−b(t − 1)b, y = tkc−d(t − 1)d, κ = 1,
k = 1, 2, . . . ;



Maps C → C2

(h) x = t2a(t − 1)2b, y = t2c(t − 1)2d, κ = 1,
2 < ka < kc;

(i) x = tka−b(t − 1)b, y = tkc−d(t − 1)d, κ = 1,
k = 1, 2, . . . ;

(j) x = t2(t − 1), y = t2k+1(t − 1)k(t − 4
3),

k = 1, 2, . . . ;



Maps C → C2

(h) x = t2a(t − 1)2b, y = t2c(t − 1)2d, κ = 1,
2 < ka < kc;

(i) x = tka−b(t − 1)b, y = tkc−d(t − 1)d, κ = 1,
k = 1, 2, . . . ;

(j) x = t2(t − 1), y = t2k+1(t − 1)k(t − 4
3),

k = 1, 2, . . . ;

(k) x = t3(t − 1), y = t3k+1(t − 1)k(t − 3
2),

k = 1, 2, . . . ;



Maps C → C2

(h) x = t2a(t − 1)2b, y = t2c(t − 1)2d, κ = 1,
2 < ka < kc;

(i) x = tka−b(t − 1)b, y = tkc−d(t − 1)d, κ = 1,
k = 1, 2, . . . ;

(j) x = t2(t − 1), y = t2k+1(t − 1)k(t − 4
3),

k = 1, 2, . . . ;

(k) x = t3(t − 1), y = t3k+1(t − 1)k(t − 3
2),

k = 1, 2, . . . ;

(l) x = [t(t − 1)]2k, y = [t(t − 1)](2l+1)k(t − 1
2),

k = 1, 2, . . . , l = 0, 1, . . . ;



Maps C → C2

(m) x = [t(t − 1)]2k+1, y = xl[t(t − 1)]k(t − 1
2),

k = 0, 1, . . . , l = 0, 1, . . . , (k, l) 6= (0, 0), (0, 1);



Maps C → C2

(m) x = [t(t − 1)]2k+1, y = xl[t(t − 1)]k(t − 1
2),

k = 0, 1, . . . , l = 0, 1, . . . , (k, l) 6= (0, 0), (0, 1);

(n) x = tk(t − 1)k+1(t − 1
2)y

l, y = t2k(t − 1)2k+2,
k = 1, 2, . . . , l = 0, 1, . . . ;



Maps C → C2

(m) x = [t(t − 1)]2k+1, y = xl[t(t − 1)]k(t − 1
2),

k = 0, 1, . . . , l = 0, 1, . . . , (k, l) 6= (0, 0), (0, 1);

(n) x = tk(t − 1)k+1(t − 1
2)y

l, y = t2k(t − 1)2k+2,
k = 1, 2, . . . , l = 0, 1, . . . ;

(o) x = t2k−1(t − 1)2k+1, y = xltk−1(t − 1)k(t − 1
2),

k = 1, 2, . . . , l = 1, . . . ;



Maps C → C2

(m) x = [t(t − 1)]2k+1, y = xl[t(t − 1)]k(t − 1
2),

k = 0, 1, . . . , l = 0, 1, . . . , (k, l) 6= (0, 0), (0, 1);

(n) x = tk(t − 1)k+1(t − 1
2)y

l, y = t2k(t − 1)2k+2,
k = 1, 2, . . . , l = 0, 1, . . . ;

(o) x = t2k−1(t − 1)2k+1, y = xltk−1(t − 1)k(t − 1
2),

k = 1, 2, . . . , l = 1, . . . ;

(p) x = t3(t − 1)3, y = t(t − 1)(t − 1
2 − 1

6i
√

3)xk,
k = 1, 2, . . . .



Maps C → C2

(q) x = t3 − 3t, y = t4 − 2t2;



Maps C → C2

(q) x = t3 − 3t, y = t4 − 2t2;

(r) x = t3 − 3t, y = t5 − 2
√
−2t4 + 11

√
−2t2 − 37

4 t;



Maps C → C2

(q) x = t3 − 3t, y = t4 − 2t2;

(r) x = t3 − 3t, y = t5 − 2
√
−2t4 + 11
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(s) x = t3 − 3t, y = t5 + 10t4 + 80t2 − 205t;
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(q) x = t3 − 3t, y = t4 − 2t2;

(r) x = t3 − 3t, y = t5 − 2
√
−2t4 + 11

√
−2t2 − 37

4 t;

(s) x = t3 − 3t, y = t5 + 10t4 + 80t2 − 205t;

(t) x = t3 − 3t, y = t5 − 5
2t

4 + 5t2 − 5t;



Maps C → C2

(q) x = t3 − 3t, y = t4 − 2t2;

(r) x = t3 − 3t, y = t5 − 2
√
−2t4 + 11

√
−2t2 − 37

4 t;

(s) x = t3 − 3t, y = t5 + 10t4 + 80t2 − 205t;

(t) x = t3 − 3t, y = t5 − 5
2t

4 + 5t2 − 5t;

(u) x = t3 − 3t, y = t5 − 7
2t

4 − t2 + 11t.



Maps C∗ → C2

(a) x = tm, y = tn + γ1t
−m + γ2t

−2m + · · ·+ γkt
−mk,

wherem > 0, gcd(m, |n|) = 1, k = 0, 1, . . . ,
γj ∈ C, γk = 1 (if k > 0) andk > 0 if n > 0. and
at least oneγi 6= 0 if m > 0.
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−2m + · · ·+ γkt
−mk,

wherem > 0, gcd(m, |n|) = 1, k = 0, 1, . . . ,
γj ∈ C, γk = 1 (if k > 0) andk > 0 if n > 0. and
at least oneγi 6= 0 if m > 0.

(b) x = t(t − 1), y = (x + 1
4)

mxnRl(1/t), where
m,n = 0, 1, . . . andRl is a polynomial satisfying
Rl(1/t) − Rl(1/(1 − t)) = (2t − 1)t−l(1 − t)−l,
l = 1, 2, . . . .



Maps C∗ → C2

(a) x = tm, y = tn + γ1t
−m + γ2t

−2m + · · ·+ γkt
−mk,

wherem > 0, gcd(m, |n|) = 1, k = 0, 1, . . . ,
γj ∈ C, γk = 1 (if k > 0) andk > 0 if n > 0. and
at least oneγi 6= 0 if m > 0.

(b) x = t(t − 1), y = (x + 1
4)

mxnRl(1/t), where
m,n = 0, 1, . . . andRl is a polynomial satisfying
Rl(1/t) − Rl(1/(1 − t)) = (2t − 1)t−l(1 − t)−l,
l = 1, 2, . . . .

(c) x = tmn(t − 1), y = S+
k (1/t), wheremn ≥ 2,

k = 1, 2, . . . . Sk are polynomials defined
recursively byS+

0 (u) = un,
S+

k+1(u) = [S+
k (u) − S+

k (1)]umn+1/(u − 1).



Maps C∗ → C2

(d) x = tmn−1(t − 1), y = T+
k (1/t), wheremn ≥ 2,

k = 1, 2, . . . . T+
k are polynomials satisfying

T+
0 (u) = umn,

T+
k+1(u) = [T+

k (u) − T+
k (1)]umn/(u − 1).



Maps C∗ → C2

(d) x = tmn−1(t − 1), y = T+
k (1/t), wheremn ≥ 2,

k = 1, 2, . . . . T+
k are polynomials satisfying

T+
0 (u) = umn,

T+
k+1(u) = [T+

k (u) − T+
k (1)]umn/(u − 1).

(e) x = tmn(t − 1), y = S−
k (1/t), wheremn ≥ 2,

k = 1, . . . , andS−
m is a polynomial such that

S−
0 (u) = u−mn,

S−
k+1(u) = [S−

k (u) − S−
k (1)]umn+1/(u − 1).



Maps C∗ → C2

(d) x = tmn−1(t − 1), y = T+
k (1/t), wheremn ≥ 2,

k = 1, 2, . . . . T+
k are polynomials satisfying

T+
0 (u) = umn,

T+
k+1(u) = [T+

k (u) − T+
k (1)]umn/(u − 1).

(e) x = tmn(t − 1), y = S−
k (1/t), wheremn ≥ 2,

k = 1, . . . , andS−
m is a polynomial such that

S−
0 (u) = u−mn,

S−
k+1(u) = [S−

k (u) − S−
k (1)]umn+1/(u − 1).

(f) x = tmn−1(t − 1), y = T−
k (1/t), wheremn ≥ 2,

k = 1, 2, . . . andT−
m is a polynomial given by

T−
0 (u) = u−mn,

T−
k+1(u) = [T−

k (u) − T−
k (1)]umn/(u − 1).



Maps C∗ → C2

(g) x = t2(t − 1), y = Uk(1/t), k = 1, 2, . . . ,
U1(u) = 3u + u2,
Uk+1(u) = [Uk(u) − Uk(1)]u

3/(u − 1).



Maps C∗ → C2

(g) x = t2(t − 1), y = Uk(1/t), k = 1, 2, . . . ,
U1(u) = 3u + u2,
Uk+1(u) = [Uk(u) − Uk(1)]u

3/(u − 1).

(h) x = t3(t − 1), y = Vk(1/t), V1(u) = 2u2 − u3,
Vk+1(u) = [Vk(u) − Vk(1)]u

4/(u − 1).



Maps C∗ → C2

(g) x = t2(t − 1), y = Uk(1/t), k = 1, 2, . . . ,
U1(u) = 3u + u2,
Uk+1(u) = [Uk(u) − Uk(1)]u

3/(u − 1).

(h) x = t3(t − 1), y = Vk(1/t), V1(u) = 2u2 − u3,
Vk+1(u) = [Vk(u) − Vk(1)]u

4/(u − 1).

(i) x = t3(t − 1), y = Wk(1/t), wherek = 1, 2, . . . ,
W1(u) = 2u2 + u3,
Wk+1(u) = [Wk(u) − Wk(1)]u

4/(u − 1).



Maps C∗ → C2

(g) x = t2(t − 1), y = Uk(1/t), k = 1, 2, . . . ,
U1(u) = 3u + u2,
Uk+1(u) = [Uk(u) − Uk(1)]u

3/(u − 1).

(h) x = t3(t − 1), y = Vk(1/t), V1(u) = 2u2 − u3,
Vk+1(u) = [Vk(u) − Vk(1)]u

4/(u − 1).

(i) x = t3(t − 1), y = Wk(1/t), wherek = 1, 2, . . . ,
W1(u) = 2u2 + u3,
Wk+1(u) = [Wk(u) − Wk(1)]u

4/(u − 1).

(j) x = t + t−1, y = Z(t) is a polynomial satisfying
y(t) + y(1/t) = (t − 1)2m+1(t + 1)n+1/tm+n+1,
where0 ≤ m ≤ n i m + n > 0.



Maps C∗ → C2

(k) x = (t − 1)3t−2, y = xk(t − 1)(t − 4)t−1,
k = 1, 2, . . . .



Maps C∗ → C2

(k) x = (t − 1)3t−2, y = xk(t − 1)(t − 4)t−1,
k = 1, 2, . . . .

(l) x = (t − 1)mt−pn, y = (t − 1)kt−pl,
ml − nk = 1, p = 1, 2, . . . .
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(k) x = (t − 1)3t−2, y = xk(t − 1)(t − 4)t−1,
k = 1, 2, . . . .

(l) x = (t − 1)mt−pn, y = (t − 1)kt−pl,
ml − nk = 1, p = 1, 2, . . . .

(m) x = (t − 1)pmt−n, y = (t − 1)pkt−l,
ml − nk = 1, p = 1, 2, . . . .



Maps C∗ → C2

(k) x = (t − 1)3t−2, y = xk(t − 1)(t − 4)t−1,
k = 1, 2, . . . .

(l) x = (t − 1)mt−pn, y = (t − 1)kt−pl,
ml − nk = 1, p = 1, 2, . . . .

(m) x = (t − 1)pmt−n, y = (t − 1)pkt−l,
ml − nk = 1, p = 1, 2, . . . .

(n) x = (t − 1)2mt−2n, y = (t − 1)2kt−2l,
ml − nk = 1.



Maps C∗ → C2

(k) x = (t − 1)3t−2, y = xk(t − 1)(t − 4)t−1,
k = 1, 2, . . . .

(l) x = (t − 1)mt−pn, y = (t − 1)kt−pl,
ml − nk = 1, p = 1, 2, . . . .

(m) x = (t − 1)pmt−n, y = (t − 1)pkt−l,
ml − nk = 1, p = 1, 2, . . . .

(n) x = (t − 1)2mt−2n, y = (t − 1)2kt−2l,
ml − nk = 1.

(o) x = (t − 1)4lt1−2l, y = xk(t − 1)2l(t + 1)t−l,
k = 0, 1, . . . , l = 1, 2, 3, . . . .



Maps C∗ → C2

(k) x = (t − 1)3t−2, y = xk(t − 1)(t − 4)t−1,
k = 1, 2, . . . .

(l) x = (t − 1)mt−pn, y = (t − 1)kt−pl,
ml − nk = 1, p = 1, 2, . . . .

(m) x = (t − 1)pmt−n, y = (t − 1)pkt−l,
ml − nk = 1, p = 1, 2, . . . .

(n) x = (t − 1)2mt−2n, y = (t − 1)2kt−2l,
ml − nk = 1.

(o) x = (t − 1)4lt1−2l, y = xk(t − 1)2l(t + 1)t−l,
k = 0, 1, . . . , l = 1, 2, 3, . . . .

(p) x = (t − 1)4t−3, y = xk(t − 1)2(t − 3)t−2,
k = 1, 2, . . . .



Maps C∗ → C2

(q) x = (t − 1)4m−2t1−2m,
y = xk · (t − 1)2m−1(t + 3)t−m, m = 2, 3, . . . ,
k = 0, 1, . . . .



Maps C∗ → C2

(q) x = (t − 1)4m−2t1−2m,
y = xk · (t − 1)2m−1(t + 3)t−m, m = 2, 3, . . . ,
k = 0, 1, . . . .

(r) x = (t − 1)3(t + eiπ/3)t−2yk, y = (t − 1)6t−3,
k = 0, 1, . . . .



Maps C∗ → C2

(q) x = (t − 1)4m−2t1−2m,
y = xk · (t − 1)2m−1(t + 3)t−m, m = 2, 3, . . . ,
k = 0, 1, . . . .

(r) x = (t − 1)3(t + eiπ/3)t−2yk, y = (t − 1)6t−3,
k = 0, 1, . . . .

(s) x = t6 + t5 + 2
3t

4, y = t−6 − t−7 + 1
3t

−8.



Maps C∗ → C2

(q) x = (t − 1)4m−2t1−2m,
y = xk · (t − 1)2m−1(t + 3)t−m, m = 2, 3, . . . ,
k = 0, 1, . . . .

(r) x = (t − 1)3(t + eiπ/3)t−2yk, y = (t − 1)6t−3,
k = 0, 1, . . . .

(s) x = t6 + t5 + 2
3t

4, y = t−6 − t−7 + 1
3t

−8.

(t) x = (t4 −
√

2t3 + t2)t4k,
y = (t−4 +

√
2t−5 + t−6)t−4k, k = 0, 1, 2, . . . .



Maps C∗ → C2

(q) x = (t − 1)4m−2t1−2m,
y = xk · (t − 1)2m−1(t + 3)t−m, m = 2, 3, . . . ,
k = 0, 1, . . . .

(r) x = (t − 1)3(t + eiπ/3)t−2yk, y = (t − 1)6t−3,
k = 0, 1, . . . .

(s) x = t6 + t5 + 2
3t

4, y = t−6 − t−7 + 1
3t

−8.

(t) x = (t4 −
√

2t3 + t2)t4k,
y = (t−4 +

√
2t−5 + t−6)t−4k, k = 0, 1, 2, . . . .

(u) x = (t − 1)2(t + 2)t−1, y = (t − 1)4(t + 1
2)t

−2.



Maps C∗ → C2

(v) x = (t − 1)2(t + 4 + 2
√

5)t−1,
y = (t − 1)4(t + 1

4(11 + 5
√

5))t−2.



Maps C∗ → C2

(v) x = (t − 1)2(t + 4 + 2
√

5)t−1,
y = (t − 1)4(t + 1

4(11 + 5
√

5))t−2.

(w) x = (t − 1)2(t + 2)t−1, y = (t − 1)2(t + 1
2)t

−2.



What next?
• Prove regularity conjecture.
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What next?
• Prove regularity conjecture.
• For curves with lower Euler characteristics

continuous families are expected

. . . and lots of calculations.
• The parametrisation may be less efficient in case

of higher genus (moduli appear).
• Analysis of cuspidal curves seems beyond that

method.
• Study intersections on the space of curvesCura,c

andCura,b,c,d.
• Applications to XVI Hilbert problem (Liénard

vector fields).
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