Gromov-Witten invariants

introduction to results of A. Okounkov

Maciej Borodzik

Instytut Matematyki, Uniwersytet Warszawski

The moduli problem

Consider the flat family of smooth n-pointed curves of fixed genus g,

The moduli problem

Consider the flat family of smooth n-pointed curves of fixed genus g, so a typical member is a curve C with pairway distinct points $p_{1}, \ldots, p_{n} \in C$.

The moduli problem

Consider the flat family of smooth n-pointed curves of fixed genus g, so a typical member is a curve C with pairway distinct points $p_{1}, \ldots, p_{n} \in C$. A family can be written as

$$
\begin{gathered}
C \longrightarrow \mathcal{F} \\
\\
\\
\\
B
\end{gathered}
$$

The moduli problem

Consider the flat family of smooth n-pointed curves of fixed genus g, so a typical member is a curve C with pairway distinct points $p_{1}, \ldots, p_{n} \in C$. A family can be written as

$$
\begin{aligned}
& C \longrightarrow \mathcal{F} \\
& \\
& \\
& B
\end{aligned}
$$

The moduli problem

The moduli problem

Consider the flat family of smooth n-pointed curves of fixed genus g, so a typical member is a curve C with pairway distinct points $p_{1}, \ldots, p_{n} \in C$. A family can be written as

The moduli problem consist of finding a universal \measuredangle family of curves

The moduli problem

Consider the flat family of smooth n-pointed curves of fixed genus g, so a typical member is a curve C with pairway distinct points $p_{1}, \ldots, p_{n} \in C$. A family can be written as

The moduli problem consist of finding a anniversal family of curves such that any other family $>$

The moduli problem

Consider the flat family of smooth n-pointed curves of fixed genus g, so a typical member is a curve C with pairway distinct points $p_{1}, \ldots, p_{n} \in C$. A family can be written as

The moduli problem consist of finding a universal family of curves such that any other family is induced from \mathcal{M} by a unique morphism b.

Moduli space. Abstract properties.
Consider a functor

Moduli space. Abstract properties.

Consider a functor

$$
F: \text { Schemes } \rightarrow \text { Set }
$$

$F(B)$ is set of all flat families over B (modulo isomorphisms).

Moduli space. Abstract properties.

Consider a functor

$$
F: \text { Schemes } \rightarrow \text { Set }
$$

$F(B)$ is set of all flat families over B (modulo isomorphisms). If there exists a scheme \mathcal{M}, such that

$$
F(B)=\operatorname{Mor}(B, \mathcal{M})
$$

Moduli space. Abstract properties.

Consider a functor

$$
F: \text { Schemes } \rightarrow \text { Set }
$$

$F(B)$ is set of all flat families over B (modulo isomorphisms). If there exists a scheme \mathcal{M}, such that

$$
F(B)=M o r(B, \mathcal{M})
$$

then it is exactly a moduli space.

Moduli space. Abstract properties.

Consider a functor

$$
F: \text { Schemes } \rightarrow \text { Set }
$$

$F(B)$ is set of all flat families over B (modulo isomorphisms). If there exists a scheme \mathcal{M}, such that

$$
F(B)=M o r(B, \mathcal{M})
$$

then it is exactly a moduli space.
Problems:

Moduli space. Abstract properties.

Consider a functor

$$
F: \text { Schemes } \rightarrow \text { Set }
$$

$F(B)$ is set of all flat families over B (modulo isomorphisms). If there exists a scheme \mathcal{M}, such that

$$
F(B)=\operatorname{Mor}(B, \mathcal{M})
$$

then it is exactly a moduli space.
Problems:

- In order to make it exists, you have to allow singular curves.

Moduli space. Abstract properties.

Consider a functor

$$
F: \text { Schemes } \rightarrow \text { Set }
$$

$F(B)$ is set of all flat families over B (modulo isomorphisms). If there exists a scheme \mathcal{M}, such that

$$
F(B)=\operatorname{Mor}(B, \mathcal{M})
$$

then it is exactly a moduli space.
Problems:

- In order to make it exists, you have to allow singular curves.
- In most cases it does not exists in the category of schemes (need to use stacks)

Examples

$\mathcal{M}_{0,3}$ is obviously a point.

Examples

Now $\mathcal{M}_{0,4}$.

Examples

Now $\mathcal{M}_{0,4}$.

Examples

Now $\mathcal{M}_{0,4}$.

Examples

Now $\mathcal{M}_{0,4}$.

Blow up the green points.

Examples

Now $\mathcal{M}_{0,4}$.

Blow up the green points. Hence
$\mathcal{M}_{0,4}=\mathbb{P}^{1} \backslash\{0,1, \infty\} . \overline{\mathcal{M}}_{0,4}=\mathbb{P}^{1}$.

Examples

Now $\mathcal{M}_{0,4}$.

Blow up the green points. Hence
$\mathcal{M}_{0,4}=\mathbb{P}^{1} \backslash\{0,1, \infty\} . \overline{\mathcal{M}}_{0,4}=\mathbb{P}^{1}$.

Examples

The boundary divisor $\delta=\overline{\mathcal{M}}_{0,4} \backslash \mathcal{M}_{0,4}$ consists of three points.

Examples

The boundary divisor $\delta=\overline{\mathcal{M}}_{0,4} \backslash \mathcal{M}_{0,4}$ consists of three points.
Each point corresponds to splitting $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}=\left\{p_{i_{1}}, p_{i_{2}}\right\} \cup\left\{p_{i_{3}}, p_{i_{4}}\right\}$.

Examples

The boundary divisor $\delta=\overline{\mathcal{M}}_{0,4} \backslash \mathcal{M}_{0,4}$ consists of three points.
Each point corresponds to splitting $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}=\left\{p_{i_{1}}, p_{i_{2}}\right\} \cup\left\{p_{i_{3}}, p_{i_{4}}\right\}$.
Over a point $\left\{p_{1}, p_{2}\right\} \cup\left\{p_{3}, p_{4}\right\}$ the fibre of the previous diagram looks like

Examples

The boundary divisor $\delta=\overline{\mathcal{M}}_{0,4} \backslash \mathcal{M}_{0,4}$ consists of three points.
Each point corresponds to splitting $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}=\left\{p_{i_{1}}, p_{i_{2}}\right\} \cup\left\{p_{i_{3}}, p_{i_{4}}\right\}$. Over a point $\left\{p_{1}, p_{2}\right\} \cup\left\{p_{3}, p_{4}\right\}$ the fibre of the previous diagram looks like

Examples

The boundary divisor $\delta=\overline{\mathcal{M}}_{0,4} \backslash \mathcal{M}_{0,4}$ consists of three points.
Each point corresponds to splitting $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}=\left\{p_{i_{1}}, p_{i_{2}}\right\} \cup\left\{p_{i_{3}}, p_{i_{4}}\right\}$. Over a point $\left\{p_{1}, p_{2}\right\} \cup\left\{p_{3}, p_{4}\right\}$ the fibre of the previous diagram looks like

Examples

The boundary divisor $\delta=\overline{\mathcal{M}}_{0,4} \backslash \mathcal{M}_{0,4}$ consists of three points.
Each point corresponds to splitting $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}=\left\{p_{i_{1}}, p_{i_{2}}\right\} \cup\left\{p_{i_{3}}, p_{i_{4}}\right\}$.
Over a point $\left\{p_{1}, p_{2}\right\} \cup\left\{p_{3}, p_{4}\right\}$ the fibre of the previous diagram looks like

Important, albeit trivial! All divisors corresponding to different splittings are linearly equivalent.

(Counter) examples

Consider $\mathcal{M}_{0,2}$.

(Counter) examples

Consider $\mathcal{M}_{0,2}$.

(Counter) examples

Consider $\mathcal{M}_{0,2}$.

(Counter) examples

Consider $\mathcal{M}_{0,2}$.

All curves corresponing to different values of $\lambda \neq p_{1}$ are equivalent.

(Counter) examples

Consider $\mathcal{M}_{0,2}$.

Blow up the green point. We get a family of identical curves tending to a different curve.

(Counter) examples

Consider $\mathcal{M}_{0,2}$.

The space of curves with such topology is not Hausdorff.

Stable curves

- Problem: a curve \mathbb{P}^{1} has a continuous (i.e. not zero-dimensional) group of automorphisms fixing given two points p_{1}, p_{2}.

Stable curves

- Problem: a curve \mathbb{P}^{1} has a continuous (i.e. not zero-dimensional) group of automorphisms fixing given two points p_{1}, p_{2}.
- The pointed curve $C,\left\{p_{1}, \ldots, p_{n}\right\}$ is called stable if it has only finitely many automorphisms.

Stable curves

- Problem: a curve \mathbb{P}^{1} has a continuous (i.e. not zero-dimensional) group of automorphisms fixing given two points p_{1}, p_{2}.
- The pointed curve $C,\left\{p_{1}, \ldots, p_{n}\right\}$ is called stable if it has only finitely many automorphisms.
- Exercise.

Stable curves

- Problem: a curve \mathbb{P}^{1} has a continuous (i.e. not zero-dimensional) group of automorphisms fixing given two points p_{1}, p_{2}.
- The pointed curve $C,\left\{p_{1}, \ldots, p_{n}\right\}$ is called stable if it has only finitely many automorphisms.
- Exercise. A smooth curve of genus g is stable if $3 g-3+n \geq 0$.

Stable curves

- Problem: a curve \mathbb{P}^{1} has a continuous (i.e. not zero-dimensional) group of automorphisms fixing given two points p_{1}, p_{2}.
- The pointed curve $C,\left\{p_{1}, \ldots, p_{n}\right\}$ is called stable if it has only finitely many automorphisms.
- Exercise. A smooth curve of genus g is stable if $3 g-3+n \geq 0$.
- A curve is called nodal (or, misleadingly, cuspidal) if it has only double points as its singularities.

Geometric point of view.

C smooth of genus $g . p_{1}, \ldots, p_{n}$ points.

Geometric point of view.

C smooth of genus $g . p_{1}, \ldots, p_{n}$ points. $C_{0}=C \backslash\left\{p_{1}, \ldots, p_{n}\right\}$.

Geometric point of view.

C smooth of genus $g . p_{1}, \ldots, p_{n}$ points. $C_{0}=C \backslash\left\{p_{1}, \ldots, p_{n}\right\}$.
stability $\rightarrow \chi\left(C_{0}\right)<0$.

Geometric point of view.

C smooth of genus $g . p_{1}, \ldots, p_{n}$ points.
$C_{0}=C \backslash\left\{p_{1}, \ldots, p_{n}\right\}$.

- C_{0} has only one topological (and differential) model.

Geometric point of view.

C smooth of genus $g . p_{1}, \ldots, p_{n}$ points.
$C_{0}=C \backslash\left\{p_{1}, \ldots, p_{n}\right\}$.

- C_{0} has only one topological (and differential) model.
- Complex (algebraic) structures on C_{0} are in $1-1$ correspondence with -1 complete metrics on C_{0}.

Geometric point of view.

C smooth of genus $g . p_{1}, \ldots, p_{n}$ points.
$C_{0}=C \backslash\left\{p_{1}, \ldots, p_{n}\right\}$.

- C_{0} has only one topological (and differential) model.
- Complex (algebraic) structures on C_{0} are in $1-1$ correspondence with -1 complete metrics on C_{0}.
- The space \mathcal{G} of such metrics is non-compact.

Geometric point of view.

C smooth of genus $g . p_{1}, \ldots, p_{n}$ points.
$C_{0}=C \backslash\left\{p_{1}, \ldots, p_{n}\right\}$.

- C_{0} has only one topological (and differential) model.
- Complex (algebraic) structures on C_{0} are in $1-1$ correspondence with -1 complete metrics on C_{0}.
- The space \mathcal{G} of such metrics is non-compact.
- Injectivity radius r_{i} - lenght of the shortest closed non-contractible geodesic.

Geometric point of view.

C smooth of genus $g . p_{1}, \ldots, p_{n}$ points.
$C_{0}=C \backslash\left\{p_{1}, \ldots, p_{n}\right\}$.

- C_{0} has only one topological (and differential) model.
- Complex (algebraic) structures on C_{0} are in $1-1$ correspondence with -1 complete metrics on C_{0}.
- The space \mathcal{G} of such metrics is non-compact.
- Injectivity radius r_{i} - lenght of the shortest closed non-contractible geodesic.
- For $\delta>0$ space \mathcal{G}_{δ} is compact (relatively easy).

Degenerations of -1 metrics.

Consider a sequence of metrics g_{n} on C_{0} with $r_{i}^{(n)} \rightarrow 0$.

Degenerations of -1 metrics.

Consider a sequence of metrics g_{n} on C_{0} with $r_{i}^{(n)} \rightarrow 0$.

- Split C_{0} in two parts $C_{0}^{\text {thick }}$ and $C_{0}^{\text {thin }}$.

Degenerations of -1 metrics.

Consider a sequence of metrics g_{n} on C_{0} with $r_{i}^{(n)} \rightarrow 0$.

- Split C_{0} in two parts $C_{0}^{\text {thick }}$ and $C_{0}^{\text {thin }}$.
- $C_{0}^{\text {thin }}$ - points through which there exists a short non-contractible loop.

Degenerations of -1 metrics.

Consider a sequence of metrics g_{n} on C_{0} with $r_{i}^{(n)} \rightarrow 0$.

- Split C_{0} in two parts $C_{0}^{\text {thick }}$ and $C_{0}^{\text {thin }}$.
- $C_{0}^{\text {thin }}$ - points through which there exists a short non-contractible loop.
- If this

Degenerations of -1 metrics.

Consider a sequence of metrics g_{n} on C_{0} with $r_{i}^{(n)} \rightarrow 0$.

- Split C_{0} in two parts $C_{0}^{\text {thick }}$ and $C_{0}^{\text {thin }}$.
- $C_{0}^{\text {thin }}$ - points through which there exists a short non-contractible loop.
- If this short is sufficiently short, $C_{0}^{\text {thin }}$ is the sum of annuli.

Degenerations of -1 metrics.

Consider a sequence of metrics g_{n} on C_{0} with $r_{i}^{(n)} \rightarrow 0$.

- Split C_{0} in two parts $C_{0}^{\text {thick }}$ and $C_{0}^{\text {thin }}$.
- $C_{0}^{\text {thin }}$ - points through which there exists a short non-contractible loop.
- If this short is sufficiently short, $C_{0}^{\text {thin }}$ is the sum of annuli.
- The metrics are convergent on $C_{0}^{\text {thick }}$.

Degenerations of -1 metrics.

Consider a sequence of metrics g_{n} on C_{0} with $r_{i}^{(n)} \rightarrow 0$.

- Split C_{0} in two parts $C_{0}^{\text {thick }}$ and $C_{0}^{\text {thin }}$.
- $C_{0}^{\text {thin }}$ - points through which there exists a short non-contractible loop.
- If this short is sufficiently short, $C_{0}^{\text {thin }}$ is the sum of annuli.
- The metrics are convergent on $C_{0}^{t h i c k}$.
- Annulus. Small r_{i} - large modulus (ratio $\frac{R}{r}$).

Degeneration of annuli

The shape of an annulus is uniquely determined by its modulus.

Degeneration of annuli

The shape of an annulus is uniquely determined by its modulus.

Degeneration of annuli

The shape of an annulus is uniquely determined by its modulus.

Degeneration of annuli

The shape of an annulus is uniquely determined by its modulus.

Degeneration of annuli

The shape of an annulus is uniquely determined by its modulus.

Degeneration of annuli

The shape of an annulus is uniquely determined by its modulus.

Degeneration of annuli

The shape of an annulus is uniquely determined by its modulus.

Degeneration of annuli

The shape of an annulus is uniquely determined by its modulus.

Annuli degenerate to two discs with one common point.

Structure of $\overline{\mathcal{M}}_{g, n}$.

Structure of $\overline{\mathcal{M}}_{g, n}$.

- $\overline{\mathcal{M}}_{g, n}$ is a smooth compact orbifold of dimension $3 g-3+n$.

Structure of $\overline{\mathcal{M}}_{g, n}$.

- $\overline{\mathcal{M}}_{g, n}$ is a smooth compact orbifold of dimension $3 g-3+n$.
- the orbifold means that localy the space looks like the quotient of $\mathbb{C}^{3 g-3+n} / G$. G finite group.

Structure of $\overline{\mathcal{M}}_{g, n}$.

- $\overline{\mathcal{M}}_{g, n}$ is a smooth compact orbifold of dimension $3 g-3+n$.
- the orbifold means that localy the space looks like the quotient of $\mathbb{C}^{3 g-3+n} / G$. G finite group.
- the orbifold is the most basic non-trivial example of a stack.

Structure of $\overline{\mathcal{M}}_{g, n}$.

- $\overline{\mathcal{M}}_{g, n}$ is a smooth compact orbifold of dimension $3 g-3+n$.
- the orbifold means that localy the space looks like the quotient of $\mathbb{C}^{3 g-3+n} / G$. G finite group.
- the group G is $\operatorname{Aut}\left(C,\left\{p_{1}, \ldots, p_{n}\right\}\right)$ generically trivial.

Structure of $\overline{\mathcal{M}}_{g, n}$.

- $\overline{\mathcal{M}}_{g, n}$ is a smooth compact orbifold of dimension $3 g-3+n$.
- the orbifold means that localy the space looks like the quotient of $\mathbb{C}^{3 g-3+n} / G$. G finite group.
- for $g=0, G$ is always trivial, so $\overline{\mathcal{M}}_{g, n}$ is a smooth manifold.

Structure of $\overline{\mathcal{M}}_{g, n}$.

- $\overline{\mathcal{M}}_{g, n}$ is a smooth compact orbifold of dimension $3 g-3+n$.
- the orbifold means that localy the space looks like the quotient of $\mathbb{C}^{3 g-3+n} / G$. G finite group.
- the set $\mathcal{M}_{g, n} \subset \overline{\mathcal{M}}_{g, n}$ is open dense.
$\Delta_{g, n}=\overline{\mathcal{M}}_{g, n} \backslash \mathcal{M}_{g, n}$ is a divisor.

Structure of $\overline{\mathcal{M}}_{g, n}$.

- $\overline{\mathcal{M}}_{g, n}$ is a smooth compact orbifold of dimension $3 g-3+n$.
- the orbifold means that localy the space looks like the quotient of $\mathbb{C}^{3 g-3+n} / G$. G finite group.
- the set $\mathcal{M}_{g, n} \subset \overline{\mathcal{M}}_{g, n}$ is open dense. $\Delta_{g, n}=\overline{\mathcal{M}}_{g, n} \backslash \mathcal{M}_{g, n}$ is a divisor. for $g=0$, $n=4, \Delta_{0,4}$ consists of three points.

Structure of $\overline{\mathcal{M}}_{g, n}$.

- $\overline{\mathcal{M}}_{g, n}$ is a smooth compact orbifold of dimension $3 g-3+n$.
- the orbifold means that localy the space looks like the quotient of $\mathbb{C}^{3 g-3+n} / G$. G finite group.
- the set $\mathcal{M}_{g, n} \subset \overline{\mathcal{M}}_{g, n}$ is open dense.
$\Delta_{g, n}=\overline{\mathcal{M}}_{g, n} \backslash \mathcal{M}_{g, n}$ is a divisor.
- Consider $\mathcal{M}_{g, I}, \# I=n$. Let $g=g_{1}+g_{2}$, $I=I_{1} \cup I_{2}$.

Structure of $\overline{\mathcal{M}}_{g, n}$.

- $\overline{\mathcal{M}}_{g, n}$ is a smooth compact orbifold of dimension $3 g-3+n$.
- the orbifold means that localy the space looks like the quotient of $\mathbb{C}^{3 g-3+n} / G$. G finite group.
- the set $\mathcal{M}_{g, n} \subset \overline{\mathcal{M}}_{g, n}$ is open dense.
$\Delta_{g, n}=\overline{\mathcal{M}}_{g, n} \backslash \mathcal{M}_{g, n}$ is a divisor.
- Consider $\mathcal{M}_{g, I}, \# I=n$. Let $g=g_{1}+g_{2}$, $I=I_{1} \cup I_{2}$.
- Glueing map: $\overline{\mathcal{M}}_{g_{1}, I_{1} \cup p} \times \overline{\mathcal{M}}_{g_{2}, I_{2} \cup q} \rightarrow \mathcal{M}_{g, I}$. Glue p with q.

Forgetting map.

- The $\operatorname{map} \mathcal{M}_{g, n} \rightarrow \mathcal{M}_{g, n-1}$

Forgetting map.

- The map $\mathcal{M}_{g, n} \rightarrow \mathcal{M}_{g, n-1}$
- prolonges to boundary $\overline{\mathcal{M}}_{g, n} \rightarrow \overline{\mathcal{M}}_{g, n-1}$.

Forgetting map.

- The map $\mathcal{M}_{g, n} \rightarrow \mathcal{M}_{g, n-1}$
- prolonges to boundary $\overline{\mathcal{M}}_{g, n} \rightarrow \overline{\mathcal{M}}_{g, n-1}$.
- For $\mathcal{M}_{0,5} \rightarrow \mathcal{M}_{0,4}$ we get

Forgetting map.

- The map $\mathcal{M}_{g, n} \rightarrow \mathcal{M}_{g, n-1}$
- prolonges to boundary $\overline{\mathcal{M}}_{g, n} \rightarrow \overline{\mathcal{M}}_{g, n-1}$.
- For $\mathcal{M}_{0,5} \rightarrow \mathcal{M}_{0,4}$ we get

Forgetting map.

- The map $\mathcal{M}_{g, n} \rightarrow \mathcal{M}_{g, n-1}$
- prolonges to boundary $\overline{\mathcal{M}}_{g, n} \rightarrow \overline{\mathcal{M}}_{g, n-1}$.
- For $\mathcal{M}_{0,5} \rightarrow \mathcal{M}_{0,4}$ we get

Forgetting map.

- The map $\mathcal{M}_{g, n} \rightarrow \mathcal{M}_{g, n-1}$
- prolonges to boundary $\overline{\mathcal{M}}_{g, n} \rightarrow \overline{\mathcal{M}}_{g, n-1}$.
- For $\mathcal{M}_{0,5} \rightarrow \mathcal{M}_{0,4}$ we get

Forgetting map.

- The map $\mathcal{M}_{g, n} \rightarrow \mathcal{M}_{g, n-1}$
- prolonges to boundary $\overline{\mathcal{M}}_{g, n} \rightarrow \overline{\mathcal{M}}_{g, n-1}$.
- For $\mathcal{M}_{0,5} \rightarrow \mathcal{M}_{0,4}$ we get

Boundary relations in $\overline{\mathcal{M}}_{0, n}$.

- Consider a forgetting map

$$
\pi=\pi_{\{i, j, k, l\}}: \overline{\mathcal{M}}_{0, n} \rightarrow \dot{\mathcal{M}}_{0,4}
$$

Boundary relations in $\overline{\mathcal{M}}_{0, n}$.

- Consider a forgetting map

$$
\pi=\pi_{\{i, j, k, l\}}: \overline{\mathcal{M}}_{0, n} \rightarrow \dot{\mathcal{M}}_{0,4}
$$

- A, B - partition of $[1, \ldots, n]$.

Boundary relations in $\overline{\mathcal{M}}_{0, n}$.

- Consider a forgetting map

$$
\pi=\pi_{\{i, j, k, l\}}: \overline{\mathcal{M}}_{0, n} \rightarrow \stackrel{\underline{\mathcal{M}}}{0,4}
$$

- A, B - partition of $[1, \ldots, n]$.
- $D(A \mid B)$ image of the glueing map $\overline{\mathcal{M}}_{0, A \cup p} \times \overline{\mathcal{M}}_{0, B \cup q} \rightarrow \overline{\mathcal{M}}_{0, n}$.

Boundary relations in $\overline{\mathcal{M}}_{0, n}$.

- Consider a forgetting map

$$
\pi=\pi_{\{i, j, k, l\}}: \overline{\mathcal{M}}_{0, n} \rightarrow \overline{\mathcal{M}}_{0,4}
$$

- A, B - partition of $[1, \ldots, n]$.
- $D(A \mid B)$ image of the glueing map $\overline{\mathcal{M}}_{0, A \cup p} \times \overline{\mathcal{M}}_{0, B \cup q} \rightarrow \overline{\mathcal{M}}_{0, n}$.
- Then $\pi^{-1}(\{i, j\} \cup\{k, l\})$ is the sum of all $D(A \mid B)$ for partitions $\{i, j\} \subset A,\{k, l\} \subset B$.

Boundary relations in $\overline{\mathcal{M}}_{0, n}$.

- Consider a forgetting map

$$
\pi=\pi_{\{i, j, k, l\}}: \overline{\mathcal{M}}_{0, n} \rightarrow \overline{\mathcal{M}}_{0,4}
$$

- A, B - partition of $[1, \ldots, n]$.
- $D(A \mid B)$ image of the glueing map $\overline{\mathcal{M}}_{0, A \cup p} \times \overline{\mathcal{M}}_{0, B \cup q} \rightarrow \overline{\mathcal{M}}_{0, n}$.
- Then $\pi^{-1}(\{i, j\} \cup\{k, l\})$ is the sum of all $D(A \mid B)$ for partitions $\{i, j\} \subset A,\{k, l\} \subset B$.
- The divisors $\{i, j\} \cup\{k, l\},\{i, k\} \cup\{j, l\}$ and $\{i, l\} \cup\{j, k\}$ are linearly equivalent.

Boundary relations in $\overline{\mathcal{M}}_{0, n}$.

$$
\sum_{i, j \in A k, l \in B} D(A \mid B) \sim \sum_{i, k \in A A, l \in B} D(A \mid B) .
$$

Boundary relations in $\overline{\mathcal{M}}_{0, n}$.

$$
\sum_{i, j \in A}{ }_{k, l \in B} D(A \mid B) \sim \sum_{i, k \in A} D(A \mid B) .
$$

Kontsewich formula

$$
\begin{aligned}
N_{d}= & \sum_{\substack{d_{1}+d_{2}=d \\
d_{1}, d_{2}>0}} N_{d_{1}} N_{d_{2}} . \\
& \left(d_{1}^{2} d_{2}^{2}\binom{3 d-4}{3 d_{1}-2}-d_{1}^{3} d_{2}\binom{3 d-4}{3 d_{1}-1}\right) .
\end{aligned}
$$

Boundary relations in $\overline{\mathcal{M}}_{0, n}$.

$$
\sum_{i, j \in A k, l \in B} D(A \mid B) \sim \sum_{i, k \in A} D(A \mid B) .
$$

Kontsewich formula

$$
\begin{aligned}
N_{d}= & \sum_{\substack{d_{1}+d_{2}=d \\
d_{1}, d_{2}>0}} N_{d_{1}} N_{d_{2}} . \\
& \left(d_{1}^{2} d_{2}^{2}\binom{3 d-4}{3 d_{1}-2}-d_{1}^{3} d_{2}\binom{3 d-4}{3 d_{1}-1}\right) .
\end{aligned}
$$

N_{d} number of plane rational curves going through $3 d-1$ points.

Tautological bundles over $\overline{\mathcal{M}}_{g, n}$

- L_{i} has the fiber $T_{p_{i}}^{*} C$.

Tautological bundles over $\overline{\mathcal{M}}_{g, n}$

- L_{i} has the fiber $T_{p_{i}}^{*} C$.
- $\Lambda_{g, n}$ - Hodge line bundle. Fiber $H^{0}\left(C, \omega_{C}\right)$.

Tautological bundles over $\overline{\mathcal{M}}_{g, n}$

- L_{i} has the fiber $T_{p_{i}}^{*} C$.
- $\Lambda_{g, n}$ - Hodge line bundle. Fiber $H^{0}\left(C, \omega_{C}\right)$.
- $\Lambda_{g, n}=\pi_{*} \omega_{\mathcal{C} / \mathcal{M}}$ relative dualising sheaf.

Tautological bundles over $\overline{\mathcal{M}}_{g, n}$

- L_{i} has the fiber $T_{p_{i}}^{*} C$.
- $\Lambda_{g, n}$ - Hodge line bundle. Fiber $H^{0}\left(C, \omega_{C}\right)$.
- $\Lambda_{g, n}=\pi_{*} \omega_{\mathcal{C} / \mathcal{M}}$ relative dualising sheaf.
- $\psi_{i}=c_{1}\left(L_{i}\right), c\left(\Lambda_{g, n}\right)=1+\lambda_{1}+\lambda_{2}+\cdots+\lambda_{g}$.

Tautological bundles over $\overline{\mathcal{M}}_{g, n}$

- L_{i} has the fiber $T_{p_{i}}^{*} C$.
- $\Lambda_{g, n}$ - Hodge line bundle. Fiber $H^{0}\left(C, \omega_{C}\right)$.
- $\Lambda_{g, n}=\pi_{*} \omega_{\mathcal{C} / \mathcal{M}}$ relative dualising sheaf.
- $\psi_{i}=c_{1}\left(L_{i}\right), c\left(\Lambda_{g, n}\right)=1+\lambda_{1}+\lambda_{2}+\cdots+\lambda_{g}$.
- $\pi: \overline{\mathcal{M}}_{g, n+1} \rightarrow \overline{\mathcal{M}}_{g, n} . \psi_{g, n+1, i}=\pi^{*}\left(\psi_{g, n, i}\right)+[D]$.

Tautological bundles over $\overline{\mathcal{M}}_{g, n}$

- L_{i} has the fiber $T_{p_{i}}^{*} C$.
- $\Lambda_{g, n}$ - Hodge line bundle. Fiber $H^{0}\left(C, \omega_{C}\right)$.
- $\Lambda_{g, n}=\pi_{*} \omega_{\mathcal{C} / \mathcal{M}}$ relative dualising sheaf.
- $\psi_{i}=c_{1}\left(L_{i}\right), c\left(\Lambda_{g, n}\right)=1+\lambda_{1}+\lambda_{2}+\cdots+\lambda_{g}$.
- $\pi: \overline{\mathcal{M}}_{g, n+1} \rightarrow \overline{\mathcal{M}}_{g, n} . \psi_{g, n+1, i}=\pi^{*}\left(\psi_{g, n, i}\right)+[D]$.
- $D \simeq \overline{\mathcal{M}}_{0,\left\{p_{i}\right\} \cup\left\{p_{n+1}\right\} \cup\{p\}} \times \overline{\mathcal{M}}_{g,[n] \backslash\left\{p_{i}\right\} \cup\{q\}}$.

Intersections on $\overline{\mathcal{M}}_{g, n}$

$$
\left\langle\tau_{k_{1}} \tau_{k_{2}} \ldots \tau_{k_{n}}\right\rangle=\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{k_{1}} \psi_{2}^{k_{2}} \ldots \psi_{n}^{k_{n}}
$$

Intersections on $\overline{\mathcal{M}}_{g, n}$

$$
\left\langle\tau_{k_{1}} \tau_{k_{2}} \ldots \tau_{k_{n}}\right\rangle=\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{k_{1}} \psi_{2}^{k_{2}} \ldots \psi_{n}^{k_{n}}
$$

- defined for $k_{1}+\cdots+k_{n}=3 g-3+n$, otherwise 0 .

Intersections on $\overline{\mathcal{M}}_{g, n}$

$$
\left\langle\tau_{k_{1}} \tau_{k_{2}} \ldots \tau_{k_{n}}\right\rangle=\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{k_{1}} \psi_{2}^{k_{2}} \ldots \psi_{n}^{k_{n}}
$$

- defined for $k_{1}+\cdots+k_{n}=3 g-3+n$, otherwise 0 .
- the number can be rational, for $\overline{\mathcal{M}}_{g, n}$ is an orbifold

Intersections on $\overline{\mathcal{M}}_{g, n}$

$$
\left\langle\tau_{k_{1}} \tau_{k_{2}} \ldots \tau_{k_{n}}\right\rangle=\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{k_{1}} \psi_{2}^{k_{2}} \ldots \psi_{n}^{k_{n}}
$$

- defined for $k_{1}+\cdots+k_{n}=3 g-3+n$, otherwise 0 .
- the pull-back property of ψ_{i} gives

Intersections on $\overline{\mathcal{M}}_{g, n}$

$$
\left\langle\tau_{k_{1}} \tau_{k_{2}} \ldots \tau_{k_{n}}\right\rangle=\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{k_{1}} \psi_{2}^{k_{2}} \ldots \psi_{n}^{k_{n}}
$$

- defined for $k_{1}+\cdots+k_{n}=3 g-3+n$, otherwise 0 .
- the pull-back property of ψ_{i} gives string equation

Intersections on $\overline{\mathcal{M}}_{g, n}$

$$
\left\langle\tau_{k_{1}} \tau_{k_{2}} \ldots \tau_{k_{n}}\right\rangle=\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{k_{1}} \psi_{2}^{k_{2}} \ldots \psi_{n}^{k_{n}}
$$

- defined for $k_{1}+\cdots+k_{n}=3 g-3+n$, otherwise 0 .
- the pull-back property of ψ_{i} gives string equation

$$
\left\langle\tau_{0} \prod_{i=1}^{n} \tau_{k_{i}}\right\rangle_{g}=\sum_{j=1}^{n}\left\langle\tau_{k_{j}-1} \prod_{i \neq j} \tau_{k_{i}}\right\rangle_{g}
$$

Intersections on $\overline{\mathcal{M}}_{g, n}$

$$
\left\langle\tau_{k_{1}} \tau_{k_{2}} \ldots \tau_{k_{n}}\right\rangle=\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{k_{1}} \psi_{2}^{k_{2}} \ldots \psi_{n}^{k_{n}}
$$

- defined for $k_{1}+\cdots+k_{n}=3 g-3+n$, otherwise 0 .
- the pull-back property of ψ_{i} gives string equation and dilaton equation

$$
\left\langle\tau_{0} \prod_{i=1}^{n} \tau_{k_{i}}\right\rangle_{g}=\sum_{j=1}^{n}\left\langle\tau_{k_{j}-1} \prod_{i \neq j} \tau_{k_{i}}\right\rangle_{g}
$$

Intersections on $\overline{\mathcal{M}}_{g, n}$

$$
\left\langle\tau_{k_{1}} \tau_{k_{2}} \ldots \tau_{k_{n}}\right\rangle=\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{k_{1}} \psi_{2}^{k_{2}} \ldots \psi_{n}^{k_{n}}
$$

- defined for $k_{1}+\cdots+k_{n}=3 g-3+n$, otherwise 0 .
- the pull-back property of ψ_{i} gives string equation and dilaton equation

$$
\begin{gathered}
\left\langle\tau_{0} \prod_{i=1}^{n} \tau_{k_{i}}\right\rangle_{g}=\sum_{j=1}^{n}\left\langle\tau_{k_{j}-1} \prod_{i \neq j} \tau_{k_{i}}\right\rangle_{g} . \\
\left\langle\tau_{1} \prod_{i=1}^{n} \tau_{k_{i}}\right\rangle_{g}=(2 g-2+n)\left\langle\prod_{i=1}^{n} \tau_{k_{i}}\right\rangle_{g} .
\end{gathered}
$$

Intersection cd.

- For $g=0$ - string equation and $\left\langle\tau_{0}^{3}\right\rangle_{0}=1$

Intersection cd.

- For $g=0$ - string equation and $\left\langle\tau_{0}^{3}\right\rangle_{0}=1$

$$
\left\langle\prod_{i=1}^{n} \tau_{k_{i}}\right\rangle_{0}=\frac{(n-3)!}{\prod_{i=1}^{n} k_{i}!} .
$$

Intersection cd.

- For $g=0$ - string equation and $\left\langle\tau_{0}^{3}\right\rangle_{0}=1$

$$
\left\langle\prod_{i=1}^{n} \tau_{k_{i}}\right\rangle_{0}=\frac{(n-3)!}{\prod_{i=1}^{n} k_{i}!} .
$$

- $\left\langle\tau_{1}\right\rangle_{1}=\frac{1}{24}$.

Intersection cd.

- For $g=0$ - string equation and $\left\langle\tau_{0}^{3}\right\rangle_{0}=1$

$$
\left\langle\prod_{i=1}^{n} \tau_{k_{i}}\right\rangle_{0}=\frac{(n-3)!}{\prod_{i=1}^{n} k_{i}!} .
$$

- $\left\langle\tau_{1}\right\rangle_{1}=\frac{1}{24}$.
- string and dilaton equation give products for $g=1$.

Intersection cd.

- For $g=0$ - string equation and $\left\langle\tau_{0}^{3}\right\rangle_{0}=1$

$$
\left\langle\prod_{i=1}^{n} \tau_{k_{i}}\right\rangle_{0}=\frac{(n-3)!}{\prod_{i=1}^{n} k_{i}!} .
$$

- $\left\langle\tau_{1}\right\rangle_{1}=\frac{1}{24}$.
- string and dilaton equation give products for $g=1$.
- $\mathbf{t}=\left(t_{0}, t_{1}, \ldots, t_{i}, \ldots\right)$ variable vector.

Intersection cd.

- For $g=0$ - string equation and $\left\langle\tau_{0}^{3}\right\rangle_{0}=1$

$$
\left\langle\prod_{i=1}^{n} \tau_{k_{i}}\right\rangle_{0}=\frac{(n-3)!}{\prod_{i=1}^{n} k_{i}!} .
$$

- $\left\langle\tau_{1}\right\rangle_{1}=\frac{1}{24}$.
- string and dilaton equation give products for $g=1$.
- $\mathbf{t}=\left(t_{0}, t_{1}, \ldots, t_{i}, \ldots\right)$ variable vector.
- $\gamma=\sum_{i=0}^{\infty} t_{i} \tau_{i}$.

Intersection cd.

- For $g=0$ - string equation and $\left\langle\tau_{0}^{3}\right\rangle_{0}=1$

$$
\left\langle\prod_{i=1}^{n} \tau_{k_{i}}\right\rangle_{0}=\frac{(n-3)!}{\prod_{i=1}^{n} k_{i}!} .
$$

- $\left\langle\tau_{1}\right\rangle_{1}=\frac{1}{24}$.
- string and dilaton equation give products for $g=1$.
- $\mathbf{t}=\left(t_{0}, t_{1}, \ldots, t_{i}, \ldots\right)$ variable vector.
- $\gamma=\sum_{i=0}^{\infty} t_{i} \tau_{i}$.

$$
F_{g}(\mathbf{t}) \stackrel{\text { def }}{=} \sum_{n=0}^{\infty} \frac{\left\langle\gamma^{n}\right\rangle_{g}}{n!}
$$

Intersection cd.

- For $g=0$ - string equation and $\left\langle\tau_{0}^{3}\right\rangle_{0}=1$

$$
\left\langle\prod_{i=1}^{n} \tau_{k_{i}}\right\rangle_{0}=\frac{(n-3)!}{\prod_{i=1}^{n} k_{i}!} .
$$

- $\left\langle\tau_{1}\right\rangle_{1}=\frac{1}{24}$.
- string and dilaton equation give products for $g=1$.
- $\mathbf{t}=\left(t_{0}, t_{1}, \ldots, t_{i}, \ldots\right)$ variable vector.
- $\gamma=\sum_{i=0}^{\infty} t_{i} \tau_{i}$.

$$
F_{g}(\mathbf{t})=\sum_{n_{i}}\left(\prod_{i=1}^{\infty} \frac{t_{i}^{n_{i}}}{n_{i}!}\right)\left\langle\tau_{0}^{n_{0}} \tau_{1}^{n_{1}} \ldots\right\rangle_{g}
$$

Intersection cd.

- For $g=0$ - string equation and $\left\langle\tau_{0}^{3}\right\rangle_{0}=1$

$$
\left\langle\prod_{i=1}^{n} \tau_{k_{i}}\right\rangle_{0}=\frac{(n-3)!}{\prod_{i=1}^{n} k_{i}!} .
$$

- $\left\langle\tau_{1}\right\rangle_{1}=\frac{1}{24}$.
- string and dilaton equation give products for $g=1$.
- $\mathbf{t}=\left(t_{0}, t_{1}, \ldots, t_{i}, \ldots\right)$ variable vector.
- $\gamma=\sum_{i=0}^{\infty} t_{i} \tau_{i}$.

$$
F_{g}(\mathbf{t})=\sum_{n=0}^{\infty} \frac{\left\langle\gamma^{n}\right\rangle_{g}}{n!}
$$

Witten-Kontsewich formula

- Now consider $F=\sum_{g=0}^{\infty} F_{g}$.

Witten-Kontsewich formula

- Now consider $F=\sum_{g=0}^{\infty} F_{g}$.
- Witten's conjecture

Witten-Kontsewich formula

- Now consider $F=\sum_{g=0}^{\infty} F_{g}$.
- Kontsevich theorem

Witten-Kontsewich formula

- Now consider $F=\sum_{g=0}^{\infty} F_{g}$.
- Kontsevich theorem
- F satisfies KdV hierarchy.

Witten-Kontsewich formula

- Now consider $F=\sum_{g=0}^{\infty} F_{g}$.
- Kontsevich theorem
- F satisfies KdV hierarchy.
- KdV equation reads $u_{t}^{\prime}=u_{x x x}^{(3)}+6 u u_{x}^{\prime}$.

Witten-Kontsewich formula

- Now consider $F=\sum_{g=0}^{\infty} F_{g}$.
- Kontsevich theorem
- F satisfies KdV hierarchy.
- KdV equation reads $u_{t}^{\prime}=u_{x x x}^{(3)}+6 u u_{x}^{\prime}$.
- Consider $L=\partial^{2}+u$.

Witten-Kontsewich formula

- Now consider $F=\sum_{g=0}^{\infty} F_{g}$.
- Kontsevich theorem
- F satisfies KdV hierarchy.
- KdV equation reads $u_{t}^{\prime}=u_{x x x}^{(3)}+6 u u_{x}^{\prime}$.
- Consider $L=\partial^{2}+u$.
- $L^{k / 2}=D^{k}+a_{k-1} D^{k-1}+\cdots+a_{-1} D^{-1}+\ldots$ is $\Psi D O$.

Witten-Kontsewich formula

- Now consider $F=\sum_{g=0}^{\infty} F_{g}$.
- Kontsevich theorem
- F satisfies KdV hierarchy.
- KdV equation reads $u_{t}^{\prime}=u_{x x x}^{(3)}+6 u u_{x}^{\prime}$.
- Consider $L=\partial^{2}+u$.
- $L^{k / 2}=D^{k}+a_{k-1} D^{k-1}+\cdots+a_{-1} D^{-1}+\ldots$ is $\Psi D O$.
- $D^{-1} r(x)=\sum_{j=0}^{\infty}(-1)^{j} r^{(j)} D^{-1-j}$.

Witten-Kontsewich formula

- Now consider $F=\sum_{g=0}^{\infty} F_{g}$.
- Kontsevich theorem
- F satisfies KdV hierarchy.
- KdV equation reads $u_{t}^{\prime}=u_{x x x}^{(3)}+6 u u_{x}^{\prime}$.
- Consider $L=\partial^{2}+u$.
- $L^{k / 2}=D^{k}+a_{k-1} D^{k-1}+\cdots+a_{-1} D^{-1}+\ldots$ is $\Psi D O$.
- $D^{-1} r(x)=\sum_{j=0}^{\infty}(-1)^{j} r^{(j)} D^{-1-j}$.
- $\frac{\partial L}{\partial t_{k}}=\left[L_{+}^{k / 2}, L\right]$.

Witten-Kontsewich formula

- Now consider $F=\sum_{g=0}^{\infty} F_{g}$.
- Kontsevich theorem
- F satisfies KdV hierarchy.
- KdV equation reads $u_{t}^{\prime}=u_{x x x}^{(3)}+6 u u_{x}^{\prime}$.
- Consider $L=\partial^{2}+u$.
- $L^{k / 2}=D^{k}+a_{k-1} D^{k-1}+\cdots+a_{-1} D^{-1}+\ldots$ is $\Psi D O$.
- $D^{-1} r(x)=\sum_{j=0}^{\infty}(-1)^{j} r^{(j)} D^{-1-j}$.
- $\frac{\partial L}{\partial t_{k}}=\left[L_{+}^{k / 2}, L\right]$.
- Exercise for $k=1$ obtain KdV.

Hurwitz numbers I.

- Ekedahl, Lando, Shapiro, Vainstein.

Hurwitz numbers I.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K=k_{1}+\cdots+k_{n}$. Maps $C \rightarrow S^{2}$, degree K, branched over $\{\infty\}$.

Hurwitz numbers I.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K=k_{1}+\cdots+k_{n}$. Maps $C \rightarrow S^{2}$, degree K, branched over $\{\infty\}$.
- finite ramifications $2 g-2+n+K$.

Hurwitz numbers I.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K=k_{1}+\cdots+k_{n}$. Maps $C \rightarrow S^{2}$, degree K, branched over $\{\infty\}$.
- $\mathcal{M}_{g, n}$. Space of principal parts of order k_{i}. $f=a_{k_{i}}\left(t-p_{i}\right)^{-p_{i}}+\cdots+a_{1}\left(t-p_{i}\right)^{-1}$.

Hurwitz numbers I.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K=k_{1}+\cdots+k_{n}$. Maps $C \rightarrow S^{2}$, degree K, branched over $\{\infty\}$.
- $\mathcal{M}_{g, n}$. Space of principal parts of order k_{i}. $f=a_{k_{i}}\left(t-p_{i}\right)^{-p_{i}}+\cdots+a_{1}\left(t-p_{i}\right)^{-1}$.
- Not linear space.

Hurwitz numbers I.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K=k_{1}+\cdots+k_{n}$. Maps $C \rightarrow S^{2}$, degree K, branched over $\{\infty\}$.
- $\mathcal{M}_{g, n}$. Space of principal parts of order k_{i}.

$$
f=a_{k_{i}}\left(t-p_{i}\right)^{-p_{i}}+\cdots+a_{1}\left(t-p_{i}\right)^{-1}
$$

- Not linear space. Complete it to cone P_{i}.

Hurwitz numbers I.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K=k_{1}+\cdots+k_{n}$. Maps $C \rightarrow S^{2}$, degree K, branched over $\{\infty\}$.
- $\mathcal{M}_{g, n}$. Space of principal parts of order k_{i}.

$$
f=a_{k_{i}}\left(t-p_{i}\right)^{-p_{i}}+\cdots+a_{1}\left(t-p_{i}\right)^{-1}
$$

- Not linear space. Complete it to cone P_{i}.
- $P=P_{1} \oplus \cdots \oplus P_{n}$ is a cone over $\overline{\mathcal{M}}_{g, n}$.

Hurwitz numbers I.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K=k_{1}+\cdots+k_{n}$. Maps $C \rightarrow S^{2}$, degree K, branched over $\{\infty\}$.
- $\mathcal{M}_{g, n}$. Space of principal parts of order k_{i}.

$$
f=a_{k_{i}}\left(t-p_{i}\right)^{-p_{i}}+\cdots+a_{1}\left(t-p_{i}\right)^{-1}
$$

- Not linear space. Complete it to cone P_{i}.
- $P=P_{1} \oplus \cdots \oplus P_{n}$ is a cone over $\overline{\mathcal{M}}_{g, n}$.
- $s(P)=\prod_{i=1}^{n} \frac{k_{i}!}{k_{i}^{k_{i}}} \frac{1}{1-k_{i} \psi_{i}}$.

Hurwitz numbers I.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K=k_{1}+\cdots+k_{n}$. Maps $C \rightarrow S^{2}$, degree K, branched over $\{\infty\}$.
- $\mathcal{M}_{g, n}$. Space of principal parts of order k_{i}.

$$
f=a_{k_{i}}\left(t-p_{i}\right)^{-p_{i}}+\cdots+a_{1}\left(t-p_{i}\right)^{-1}
$$

- Not linear space. Complete it to cone P_{i}.
- $P=P_{1} \oplus \cdots \oplus P_{n}$ is a cone over $\overline{\mathcal{M}}_{g, n}$.
- $s(P)=\prod_{i=1}^{n} \frac{k_{i}!}{k_{i}^{k_{i}}} \frac{1}{1-k_{i} \psi_{i}}$.
- Mittag-Leffler problem.

Hurwitz numbers I.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K=k_{1}+\cdots+k_{n}$. Maps $C \rightarrow S^{2}$, degree K, branched over $\{\infty\}$.
- $\mathcal{M}_{g, n}$. Space of principal parts of order k_{i}.

$$
f=a_{k_{i}}\left(t-p_{i}\right)^{-p_{i}}+\cdots+a_{1}\left(t-p_{i}\right)^{-1}
$$

- Not linear space. Complete it to cone P_{i}.
- $P=P_{1} \oplus \cdots \oplus P_{n}$ is a cone over $\overline{\mathcal{M}}_{g, n}$.
- $s(P)=\prod_{i=1}^{n} \frac{k_{i}!}{k_{i}^{k_{i}}} \frac{1}{1-k_{i} \psi_{i}}$.
- Mittag-Leffler problem. Take $P \times \Lambda_{g, n} \rightarrow \mathbb{C}$.

Hurwitz numbers I.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K=k_{1}+\cdots+k_{n}$. Maps $C \rightarrow S^{2}$, degree K, branched over $\{\infty\}$.
- $\mathcal{M}_{g, n}$. Space of principal parts of order k_{i}.

$$
f=a_{k_{i}}\left(t-p_{i}\right)^{-p_{i}}+\cdots+a_{1}\left(t-p_{i}\right)^{-1}
$$

- Not linear space. Complete it to cone P_{i}.
- $P=P_{1} \oplus \cdots \oplus P_{n}$ is a cone over $\overline{\mathcal{M}}_{g, n}$.
- $s(P)=\prod_{i=1}^{n} \frac{k_{i}!}{k_{i}^{k_{i}}} \frac{1}{1-k_{i} \psi_{i}}$.
- Mittag-Leffler problem. Take $P \rightarrow \Lambda_{g, n}^{*}$.

Hurwitz numbers I.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K=k_{1}+\cdots+k_{n}$. Maps $C \rightarrow S^{2}$, degree K, branched over $\{\infty\}$.
- $\mathcal{M}_{g, n}$. Space of principal parts of order k_{i}.

$$
f=a_{k_{i}}\left(t-p_{i}\right)^{-p_{i}}+\cdots+a_{1}\left(t-p_{i}\right)^{-1} .
$$

- Not linear space. Complete it to cone P_{i}.
- $P=P_{1} \oplus \cdots \oplus P_{n}$ is a cone over $\overline{\mathcal{M}}_{g, n}$.
- $s(P)=\prod_{i=1}^{n} \frac{k_{i}!}{k_{i}^{k_{i}}} \frac{1}{1-k_{i} \psi_{i}}$.
- Mittag-Leffler problem. Take $P \rightarrow \Lambda_{g, n}^{*}$.
- $\left(f_{1}, \ldots, f_{n}\right) \rightarrow \sum_{i=1}^{n} \operatorname{res}_{p_{i}} f_{i} \omega$.

Hurwitz numbers II.

- Integrate the top Segre class of the cone ker res.

Hurwitz numbers II.

- Integrate the top Segre class of the cone ker res.

$$
h_{g ; k_{1}, \ldots, k_{n}}=\frac{(K+n+2 g-2)!}{\# A u t\left(k_{1}, \ldots, k_{n}\right)} \prod_{i=1}^{n} \frac{k_{i}^{k_{i}}}{k_{i}!}
$$

Hurwitz numbers II.

- Integrate the top Segre class of the cone ker res.

$$
\begin{aligned}
h_{g ; k_{1}, \ldots, k_{n}} & =\frac{(K+n+2 g-2)!}{\# A u t\left(k_{1}, \ldots, k_{n}\right)} \prod_{i=1}^{n} \frac{k_{i}^{k_{i}}}{k_{i}!} \\
& \int_{\overline{\mathcal{M}}_{g, n}} \frac{c\left(\Lambda_{g, n}^{*}\right)}{\left(1-k_{1} \psi_{1}\right) \ldots\left(1-k_{n} \psi_{n}\right)} .
\end{aligned}
$$

Hurwitz numbers II.

- Integrate the top Segre class of the cone ker res.

$$
\begin{aligned}
h_{g ; k_{1}, \ldots, k_{n}} & =\frac{(K+n+2 g-2)!}{\# \operatorname{Aut}\left(k_{1}, \ldots, k_{n}\right)} \prod_{i=1}^{n} \frac{k_{i}^{k_{i}}}{k_{i}!} \\
& \int_{\overline{\mathcal{M}}_{g, n}} \frac{c\left(\Lambda_{g, n}^{*}\right)}{\left(1-k_{1} \psi_{1}\right) \ldots\left(1-k_{n} \psi_{n}\right)} .
\end{aligned}
$$

- For $g=0$ we get

Hurwitz numbers II.

- Integrate the top Segre class of the cone ker res.

$$
\begin{aligned}
h_{g ; k_{1}, \ldots, k_{n}} & =\frac{(K+n+2 g-2)!}{\# A u t\left(k_{1}, \ldots, k_{n}\right)} \prod_{i=1}^{n} \frac{k_{i}^{k_{i}}}{k_{i}!} \\
& \int_{\overline{\mathcal{M}}_{g, n}} \frac{c\left(\Lambda_{g, n}^{*}\right)}{\left(1-k_{1} \psi_{1}\right) \ldots\left(1-k_{n} \psi_{n}\right)} .
\end{aligned}
$$

- For $g=0$ we get

$$
h_{0, k_{1}, \ldots, k_{n}}=\frac{(K+n-2)!}{\# A u t\left(k_{1}, \ldots, k_{n}\right)} \prod_{i=1}^{n} \frac{k_{i}^{k_{i}}}{k_{i}!} K^{n-3} .
$$

Hurwitz numbers II.

- Integrate the top Segre class of the cone ker res.

$$
\begin{aligned}
h_{g ; k_{1}, \ldots, k_{n}} & =\frac{(K+n+2 g-2)!}{\# A u t\left(k_{1}, \ldots, k_{n}\right)} \prod_{i=1}^{n} \frac{k_{i}^{k_{i}}}{k_{i}!} \\
& \int_{\overline{\mathcal{M}}_{g, n}} \frac{c\left(\Lambda_{g, n}^{*}\right)}{\left(1-k_{1} \psi_{1}\right) \ldots\left(1-k_{n} \psi_{n}\right)} .
\end{aligned}
$$

- For $g=0$ we get

$$
h_{0, k_{1}, \ldots, k_{n}}=\frac{(K+n-2)!}{\# \operatorname{Aut}\left(k_{1}, \ldots, k_{n}\right)} \prod_{i=1}^{n} \frac{k_{i}^{k_{i}}}{k_{i}!} K^{n-3}
$$

- Classical formula of Hurwitz.

Hurwitz numbers III.

- If $g=1$

Hurwitz numbers III.

- If $g=1$

$$
\begin{aligned}
h_{1, k_{1}, \ldots, k_{n}} & =\frac{(K+n)!}{24 \# \operatorname{Aut}\left(k_{1}, \ldots, k_{n}\right)} \\
& \prod_{i=1}^{n} \frac{k_{i}^{k_{i}}}{k_{i}!}\left(K^{n}-\sum_{i=2}^{n}(i-2)!e_{i} K^{n-i}-K^{n-1}\right) .
\end{aligned}
$$

Hurwitz numbers III.

- If $g=1$

$$
\begin{aligned}
& h_{1, k_{1}, \ldots, k_{n}}=\frac{(K+n)!}{24 \# \operatorname{Aut}\left(k_{1}, \ldots, k_{n}\right)} \\
& \prod_{i=1}^{n} \frac{k_{i}^{k_{i}}}{k_{i}!}\left(K^{n}-\sum_{i=2}^{n}(i-2) e_{i} K^{n-i}-K^{n-1}\right) .
\end{aligned}
$$

- e_{i} are elementary symmetric polynomials on k_{1}, \ldots, k_{n}

Hurwitz numbers III.

- If $g=1$

$$
\begin{aligned}
h_{1, k_{1}, \ldots, k_{n}} & =\frac{(K+n)!}{24 \# \operatorname{Aut}\left(k_{1}, \ldots, k_{n}\right)} \\
& \prod_{i=1}^{n} \frac{k_{i}^{k_{i}}}{k_{i}!}\left(K^{n}-\sum_{i=2}^{n}(i-2)!e_{i} K^{n-i}-K^{n-1}\right) .
\end{aligned}
$$

- e_{i} are elementary symmetric polynomials on k_{1}, \ldots, k_{n}

Moduli spaces of maps

- $\overline{\mathcal{M}}_{g, n}(X, \beta)$ maps $f: C \rightarrow X, f_{*}[C]=\beta$.

Moduli spaces of maps

- $\overline{\mathcal{M}}_{g, n}(X, \beta)$ maps $f: C \rightarrow X, f_{*}[C]=\beta$.
- Stable map no non-trivial automorphism.

Moduli spaces of maps

- $\overline{\mathcal{M}}_{g, n}(X, \beta)$ maps $f: C \rightarrow X, f_{*}[C]=\beta$.
- Stable map no non-trivial automorphism.
- Each contracted component of C is a stable curve.

Moduli spaces of maps

- $\overline{\mathcal{M}}_{g, n}(X, \beta)$ maps $f: C \rightarrow X, f_{*}[C]=\beta$.
- Stable map no non-trivial automorphism.
- Each contracted component of C is a stable curve.
- Compactness - now classical.

Moduli spaces of maps

- $\overline{\mathcal{M}}_{g, n}(X, \beta)$ maps $f: C \rightarrow X, f_{*}[C]=\beta$.
- Stable map no non-trivial automorphism.
- Each contracted component of C is a stable curve.
- Compactness - now classical.
- Expected dimension

Moduli spaces of maps

- $\overline{\mathcal{M}}_{g, n}(X, \beta)$ maps $f: C \rightarrow X, f_{*}[C]=\beta$.
- Stable map no non-trivial automorphism.
- Each contracted component of C is a stable curve.
- Compactness - now classical.
- Expected dimension
$h^{0}\left(C, N_{C / X}\right)-h^{1}\left(C, N_{C / X}\right)=$

Moduli spaces of maps

- $\overline{\mathcal{M}}_{g, n}(X, \beta)$ maps $f: C \rightarrow X, f_{*}[C]=\beta$.
- Stable map no non-trivial automorphism.
- Each contracted component of C is a stable curve.
- Compactness - now classical.
- Expected dimension

$$
\begin{aligned}
& h^{0}\left(C, N_{C / X}\right)-h^{1}\left(C, N_{C / X}\right)= \\
& \quad \stackrel{R R}{=} C^{2}+(\operatorname{dim} X-1)(1-g)
\end{aligned}
$$

Moduli spaces of maps

- $\overline{\mathcal{M}}_{g, n}(X, \beta)$ maps $f: C \rightarrow X, f_{*}[C]=\beta$.
- Stable map no non-trivial automorphism.
- Each contracted component of C is a stable curve.
- Compactness - now classical.
- Expected dimension

$$
\left.\begin{array}{l}
h^{0}\left(C, N_{C / X}\right)-h^{1}\left(C, N_{C / X}\right)= \\
\quad \stackrel{R R}{=} C^{2}+(\operatorname{dim} X-1)(1-g) \\
\quad \text { genus }
\end{array} 2 g-2-K \cdot C+(\operatorname{dim} X-1)(1-g)\right) .
$$

Moduli spaces of maps

- $\overline{\mathcal{M}}_{g, n}(X, \beta)$ maps $f: C \rightarrow X, f_{*}[C]=\beta$.
- Stable map no non-trivial automorphism.
- Each contracted component of C is a stable curve.
- Compactness - now classical.
- Expected dimension

$$
\operatorname{dim}(X)(1-g)+\int_{\beta} c_{1}(T X)+n+3 g-3
$$

Moduli spaces of maps

- $\overline{\mathcal{M}}_{g, n}(X, \beta)$ maps $f: C \rightarrow X, f_{*}[C]=\beta$.
- Stable map no non-trivial automorphism.
- Each contracted component of C is a stable curve.
- Compactness - now classical.
- Expected dimension

$$
\operatorname{dim}(X)(1-g)+\int_{\beta} c_{1}(T X)+n+3 g-3
$$

- $\overline{\mathcal{M}}_{g, n}(X, \beta)$ is very nasty.

Virtual cycle

- Consider $\overline{\mathcal{M}}_{2,0}\left(\mathbb{P}^{1}, 2 L\right)$.

Virtual cycle

- Consider $\overline{\mathcal{M}}_{2,0}\left(\mathbb{P}^{1}, 2 L\right)$.
- Hyperelliptic curves

Virtual cycle

- Consider $\overline{\mathcal{M}}_{2,0}\left(\mathbb{P}^{1}, 2 L\right)$.
- Hyperelliptic curves
- Irreducible component $\operatorname{dim}=6$.

Virtual cycle

- Consider $\overline{\mathcal{M}}_{2,0}\left(\mathbb{P}^{1}, 2 L\right)$.
- Hyperelliptic curves
- Irreducible component $\operatorname{dim}=6$.
- Maps $f: C \cup \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}, f(C)=p t .,\left.f\right|_{\mathbb{P}^{1}}$ is $2-1$. Dimension 7.

Virtual cycle

- Consider $\overline{\mathcal{M}}_{2,0}\left(\mathbb{P}^{1}, 2 L\right)$.
- Hyperelliptic curves
- Irreducible component $\operatorname{dim}=6$.
- Maps $f: C \cup \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}, f(C)=p t .,\left.f\right|_{\mathbb{P}^{1}}$ is $2-1$. Dimension 7.
- If $h^{1}\left(C, \pi^{*} T X\right)=0$, then (C, π) is non-singular point of $\overline{\mathcal{M}}_{g, n}(X, \beta)$.

Virtual cycle

- Consider $\overline{\mathcal{M}}_{2,0}\left(\mathbb{P}^{1}, 2 L\right)$.
- Hyperelliptic curves
- Irreducible component $\operatorname{dim}=6$.
- Maps $f: C \cup \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}, f(C)=p t .,\left.f\right|_{\mathbb{P}^{1}}$ is $2-1$. Dimension 7.
- If $h^{1}\left(C, \pi^{*} T X\right)=0$, then (C, π) is non-singular point of $\overline{\mathcal{M}}_{g, n}(X, \beta)$.
- Geometrically: construct $\overline{\mathcal{M}}_{g, n}(X, \beta)$ as the zero set of a section.

Virtual cycle

- Consider $\overline{\mathcal{M}}_{2,0}\left(\mathbb{P}^{1}, 2 L\right)$.
- Hyperelliptic curves
- Irreducible component $\operatorname{dim}=6$.
- Maps $f: C \cup \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}, f(C)=p t .,\left.f\right|_{\mathbb{P}^{1}}$ is $2-1$. Dimension 7.
- If $h^{1}\left(C, \pi^{*} T X\right)=0$, then (C, π) is non-singular point of $\overline{\mathcal{M}}_{g, n}(X, \beta)$.
- Geometrically: construct $\overline{\mathcal{M}}_{g, n}(X, \beta)$ as the zero set of a section.
- This is not transverse. Can't use IFT.

Virtual cycle

- Consider $\overline{\mathcal{M}}_{2,0}\left(\mathbb{P}^{1}, 2 L\right)$.
- Hyperelliptic curves
- Irreducible component $\operatorname{dim}=6$.
- Maps $f: C \cup \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}, f(C)=p t .,\left.f\right|_{\mathbb{P}^{1}}$ is $2-1$. Dimension 7.
- If $h^{1}\left(C, \pi^{*} T X\right)=0$, then (C, π) is non-singular point of $\overline{\mathcal{M}}_{g, n}(X, \beta)$.
- Geometrically: construct $\overline{\mathcal{M}}_{g, n}(X, \beta)$ as the zero set of a section.
- This is not transverse. Can't use IFT.
- Define virtual class $\left[\overline{\mathcal{M}}_{g, n}(X, \beta)\right]$ in $A_{v d i m}\left(\overline{\mathcal{M}}_{g, n}(X, \beta)\right)$.

Classes on $\overline{\mathcal{M}}_{g, n}(X, \beta)$

- For $\left(C,\left\{p_{1}, \ldots, p_{n}\right\}, \pi\right)$ put $e v_{i}=\pi\left(p_{i}\right) \in X$.

Classes on $\overline{\mathcal{M}}_{g, n}(X, \beta)$

- For $\left(C,\left\{p_{1}, \ldots, p_{n}\right\}, \pi\right)$ put $e v_{i}=\pi\left(p_{i}\right) \in X$.
- $\mathrm{A} \operatorname{map} \overline{\mathcal{M}}_{g, n}(X, \beta) \rightarrow X$.

Classes on $\overline{\mathcal{M}}_{g, n}(X, \beta)$

- For $\left(C,\left\{p_{1}, \ldots, p_{n}\right\}, \pi\right)$ put $e v_{i}=\pi\left(p_{i}\right) \in X$.
- A map $\overline{\mathcal{M}}_{g, n}(X, \beta) \rightarrow X$.
- Class $e v_{i}^{*}(\omega)$ for any $\omega \in A^{*}(X)$.

Classes on $\overline{\mathcal{M}}_{g, n}(X, \beta)$

- For $\left(C,\left\{p_{1}, \ldots, p_{n}\right\}, \pi\right)$ put $e v_{i}=\pi\left(p_{i}\right) \in X$.
- A $\operatorname{map} \overline{\mathcal{M}}_{g, n}(X, \beta) \rightarrow X$.
- Class $e v_{i}^{*}(\omega)$ for any $\omega \in A^{*}(X)$.
- Classes ψ_{i} and λ_{j} as in $\overline{\mathcal{M}}_{g, n}$.

Classes on $\overline{\mathcal{M}}_{g, n}(X, \beta)$

- For $\left(C,\left\{p_{1}, \ldots, p_{n}\right\}, \pi\right)$ put $e v_{i}=\pi\left(p_{i}\right) \in X$.
- A $\operatorname{map} \overline{\mathcal{M}}_{g, n}(X, \beta) \rightarrow X$.
- Class $e v_{i}^{*}(\omega)$ for any $\omega \in A^{*}(X)$.
- Classes ψ_{i} and λ_{j} as in $\overline{\mathcal{M}}_{g, n}$.
- Integrate them against $\left[\overline{\mathcal{M}}_{g, n}(X, \beta)\right]$.

Classes on $\overline{\mathcal{M}}_{g, n}(X, \beta)$

- For $\left(C,\left\{p_{1}, \ldots, p_{n}\right\}, \pi\right)$ put $e v_{i}=\pi\left(p_{i}\right) \in X$.
- A $\operatorname{map} \overline{\mathcal{M}}_{g, n}(X, \beta) \rightarrow X$.
- Class $e v_{i}^{*}(\omega)$ for any $\omega \in A^{*}(X)$.
- Classes ψ_{i} and λ_{j} as in $\overline{\mathcal{M}}_{g, n}$.
- Integrate them against $\left[\overline{\mathcal{M}}_{g, n}(X, \beta)\right]$.
- Interpretation. $\left\langle e v_{1}\left(\omega_{1}\right), \ldots, e v_{n}\left(\omega_{n}\right)\right\rangle$ counts curves on X intersecting $\omega_{1}, \ldots, \omega_{n}$.

Works of Okounkov

- No idea how to calculate.

Works of Okounkov

- No idea how to calculate.
- $\overline{\mathcal{M}}_{g, n}(X, 0)$ is product.

Works of Okounkov

- No idea how to calculate.
- $\overline{\mathcal{M}}_{g, n}(X, 0)$ is product.
- \mathbb{P}^{1} should be related to Hurwitz numbers.

Works of Okounkov

- No idea how to calculate.
- $\overline{\mathcal{M}}_{g, n}(X, 0)$ is product.
- \mathbb{P}^{1} should be related to Hurwitz numbers.
- Okounkov-Pandharipande: class of \mathbb{P}^{1} through localisations,

Works of Okounkov

- No idea how to calculate.
- $\overline{\mathcal{M}}_{g, n}(X, 0)$ is product.
- \mathbb{P}^{1} should be related to Hurwitz numbers.
- Okounkov-Pandharipande: class of \mathbb{P}^{1} through localisations,
- Another proof of Kontsevich-Witten theorem

Works of Okounkov

- No idea how to calculate.
- $\overline{\mathcal{M}}_{g, n}(X, 0)$ is product.
- \mathbb{P}^{1} should be related to Hurwitz numbers.
- Okounkov-Pandharipande: class of \mathbb{P}^{1} through localisations,
- Another proof of Kontsevich-Witten theorem
- Toda equation for gravitational classes.

