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The moduli problem
Consider the flat family of smooth n−pointed curves
of fixed genus g,

so a typical member is a curve C
with pairway distinct points p1, . . . , pn ∈ C. A family
can be written as

C F

B

The moduli problem consist of finding a universal
family of curves such that any other family is induced
from M by a unique morphism b.

∃!bb∗

Such a space, if
exists, is called a moduli space of pointed curves.
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Moduli space. Abstract proper-
ties.
Consider a functor

F : Schemes → Set

F (B) is set of all flat families over B (modulo
isomorphisms). If there exists a scheme M, such that

F (B) = Mor(B,M),

then it is exactly a moduli space.
Problems:

• In order to make it exists, you have to allow
singular curves.

• In most cases it does not exists in the category of
schemes (need to use stacks)
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M0,3 is obviously a point.

Now M0,4.
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1 \ {0, 1,∞}. M̄0,4 = P
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Examples
The boundary divisor δ = M̄0,4 \M0,4 consists of
three points.

Each point corresponds to splitting
{p1, p2, p3, p4} = {pi1, pi2} ∪ {pi3, pi4}.
Over a point {p1, p2} ∪ {p3, p4} the fibre of the
previous diagram looks like

P
1
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p2 p3

p4

Important, albeit trivial! All divisors corresponding to
different splittings are linearly equivalent.
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All curves corresponing to different values of λ 6= p1

are equivalent.
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The space of curves with such topology is not
Hausdorff.



Stable curves
• Problem: a curve P

1 has a continuous (i.e. not
zero–dimensional) group of automorphisms
fixing given two points p1, p2.

• The pointed curve C, {p1, . . . , pn} is called stable
if it has only finitely many automorphisms.

• Exercise.A smooth curve of genus g is stable if
3g − 3 + n ≥ 0.

• A curve is called nodal (or, misleadingly,
cuspidal) if it has only double points as its
singularities.



Stable curves
• Problem: a curve P

1 has a continuous (i.e. not
zero–dimensional) group of automorphisms
fixing given two points p1, p2.

• The pointed curve C, {p1, . . . , pn} is called stable
if it has only finitely many automorphisms.

• Exercise.A smooth curve of genus g is stable if
3g − 3 + n ≥ 0.

• A curve is called nodal (or, misleadingly,
cuspidal) if it has only double points as its
singularities.



Stable curves
• Problem: a curve P

1 has a continuous (i.e. not
zero–dimensional) group of automorphisms
fixing given two points p1, p2.

• The pointed curve C, {p1, . . . , pn} is called stable
if it has only finitely many automorphisms.

• Exercise.

A smooth curve of genus g is stable if
3g − 3 + n ≥ 0.

• A curve is called nodal (or, misleadingly,
cuspidal) if it has only double points as its
singularities.



Stable curves
• Problem: a curve P

1 has a continuous (i.e. not
zero–dimensional) group of automorphisms
fixing given two points p1, p2.

• The pointed curve C, {p1, . . . , pn} is called stable
if it has only finitely many automorphisms.

• Exercise. A smooth curve of genus g is stable if
3g − 3 + n ≥ 0.

• A curve is called nodal (or, misleadingly,
cuspidal) if it has only double points as its
singularities.



Stable curves
• Problem: a curve P

1 has a continuous (i.e. not
zero–dimensional) group of automorphisms
fixing given two points p1, p2.

• The pointed curve C, {p1, . . . , pn} is called stable
if it has only finitely many automorphisms.

• Exercise. A smooth curve of genus g is stable if
3g − 3 + n ≥ 0.

• A curve is called nodal (or, misleadingly,
cuspidal) if it has only double points as its
singularities.



Geometric point of view.
C smooth of genus g. p1, . . . , pn points.

C0 = C \ {p1, . . . , pn}.
• C0 has only one topological (and differential)

model.
• Complex (algebraic) structures on C0 are in 1—1

correspondence with −1 complete metrics on C0.
• The space G of such metrics is non–compact.
• Injectivity radius ri — lenght of the shortest

closed non-contractible geodesic.
• For δ > 0 space Gδ is compact (relatively easy).
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Degenerations of −1 metrics.
Consider a sequence of metrics gn on C0 with

r
(n)
i → 0.

• Split C0 in two parts C thick
0 and Cthin

0 .

• Cthin
0 — points through which there exists a short

non–contractible loop.

• If this is sufficiently short, C thin
0 is the sum of

annuli.
• The metrics are convergent on C thick

0 .

• Annulus. Small ri — large modulus (ratio R
r ).
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Annuli degenerate to two discs with one common
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Structure of M̄g,n.

• M̄g,nis a smooth compact orbifold of dimension
3g − 3 + n.

• the orbifold means that localy the space looks
like the quotient of C

3g−3+n/G. G finite group.

• the set Mg,n ⊂ M̄g,n is open dense.
∆g,n = M̄g,n \Mg,n is a divisor.

• Consider Mg,I , #I = n. Let g = g1 + g2,
I = I1 ∪ I2.

• Glueing map: M̄g1,I1∪p × M̄g2,I2∪q → Mg,I .
Glue p with q.
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Boundary relations in M̄0,n.
• Consider a forgetting map
π = π{i,j,k,l} : M̄0,n → M̄0,4

• A,B — partition of [1, . . . , n].
• D(A|B) image of the glueing map
M̄0,A∪p × M̄0,B∪q → M̄0,n.

• Then π−1({i, j} ∪ {k, l}) is the sum of all
D(A|B) for partitions {i, j} ⊂ A, {k, l} ⊂ B.

• The divisors {i, j} ∪ {k, l}, {i, k} ∪ {j, l} and
{i, l} ∪ {j, k} are linearly equivalent.
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Boundary relations in M̄0,n.
∑

i,j∈A k,l∈B

D(A|B) ∼
∑

i,k∈A j,l∈B

D(A|B).

Kontsewich formula

Nd =
∑

d1+d2=d
d1,d2>0

Nd1
Nd2

·

(

d2
1d

2
2

(

3d− 4

3d1 − 2

)

− d3
1d2

(

3d− 4

3d1 − 1

))

.

Nd number of plane rational curves going through
3d− 1 points.
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Tautological bundles over M̄g,n

• Li has the fiber T ∗
pi
C.

• Λg,n — Hodge line bundle. Fiber H0(C, ωC).
• Λg,n = π∗ωC/M relative dualising sheaf.

• ψi = c1(Li), c(Λg,n) = 1 + λ1 + λ2 + · · · + λg.

• π : M̄g,n+1 → M̄g,n. ψg,n+1,i = π∗(ψg,n,i) + [D].

• D ' M̄0,{pi}∪{pn+1}∪{p} × M̄g,[n]\{pi}∪{q}.
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Intersections on M̄g,n

〈τk1
τk2

. . . τkn
〉 =

∫

M̄g,n

ψk1

1 ψ
k2

2 . . . ψkn

n .

• defined for k1 + · · ·+ kn = 3g− 3 + n, otherwise
0.

• the pull-back property of ψi gives string equation
and dilaton equation

〈τ0

n
∏

i=1

τki
〉g =

n
∑

j=1

〈τkj−1

∏

i6=j

τki
〉g.

〈τ1

n
∏

i=1

τki
〉g = (2g − 2 + n)〈

n
∏

i=1

τki
〉g.
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Intersection cd.
• For g = 0 — string equation and 〈τ 3

0 〉0 = 1

〈

n
∏

i=1

τki
〉0 =

(n− 3)!
∏n

i=1 ki!
.

• 〈τ1〉1 = 1
24 .

• string and dilaton equation give products for
g = 1.

• t = (t0, t1, . . . , ti, . . . ) variable vector.

• γ =
∑∞

i=0 tiτi.
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Witten–Kontsewich formula
• Now consider F =

∑∞
g=0 Fg.

• Kontsevich theorem
• F satisfies KdV hierarchy.

• KdV equation reads u′t = u
(3)
xxx + 6uu′x.

• Consider L = ∂2 + u.
• Lk/2 = Dk + ak−1D

k−1 + · · · + a−1D
−1 + . . . is

ΨDO.
• D−1r(x) =

∑∞
j=0(−1)jr(j)D−1−j.

• ∂L
∂tk

= [L
k/2
+ , L].

• Exercise for k = 1 obtain KdV.
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Hurwitz numbers I.
• Ekedahl, Lando, Shapiro, Vainstein.

• K = k1 + · · · + kn. Maps C → S2, degree K,
branched over {∞}.

• Mg,n. Space of principal parts of order ki.
f = aki

(t− pi)
−pi + · · · + a1(t− pi)

−1.
• Not linear space. Complete it to cone Pi.

• P = P1 ⊕ · · · ⊕ Pn is a cone over M̄g,n.

• s(P ) =
∏n

i=1
ki!

k
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1
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.

• Mittag–Leffler problem. Take .

• (f1, . . . , fn) →
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Moduli spaces of maps
• M̄g,n(X, β) maps f : C → X , f∗[C] = β.

• Stable map no non–trivial automorphism.
• Each contracted component of C is a stable

curve.
• Compactness — now classical.
• Expected dimension

h0(C,NC/X) − h1(C,NC/X) =

• M̄g,n(X, β) is very nasty.



Moduli spaces of maps
• M̄g,n(X, β) maps f : C → X , f∗[C] = β.
• Stable map no non–trivial automorphism.

• Each contracted component of C is a stable
curve.

• Compactness — now classical.
• Expected dimension

h0(C,NC/X) − h1(C,NC/X) =

• M̄g,n(X, β) is very nasty.



Moduli spaces of maps
• M̄g,n(X, β) maps f : C → X , f∗[C] = β.
• Stable map no non–trivial automorphism.
• Each contracted component of C is a stable

curve.

• Compactness — now classical.
• Expected dimension

h0(C,NC/X) − h1(C,NC/X) =

• M̄g,n(X, β) is very nasty.



Moduli spaces of maps
• M̄g,n(X, β) maps f : C → X , f∗[C] = β.
• Stable map no non–trivial automorphism.
• Each contracted component of C is a stable

curve.
• Compactness — now classical.

• Expected dimension

h0(C,NC/X) − h1(C,NC/X) =

• M̄g,n(X, β) is very nasty.



Moduli spaces of maps
• M̄g,n(X, β) maps f : C → X , f∗[C] = β.
• Stable map no non–trivial automorphism.
• Each contracted component of C is a stable

curve.
• Compactness — now classical.
• Expected dimension

h0(C,NC/X) − h1(C,NC/X) =

• M̄g,n(X, β) is very nasty.



Moduli spaces of maps
• M̄g,n(X, β) maps f : C → X , f∗[C] = β.
• Stable map no non–trivial automorphism.
• Each contracted component of C is a stable

curve.
• Compactness — now classical.
• Expected dimension

h0(C,NC/X) − h1(C,NC/X) =

• M̄g,n(X, β) is very nasty.



Moduli spaces of maps
• M̄g,n(X, β) maps f : C → X , f∗[C] = β.
• Stable map no non–trivial automorphism.
• Each contracted component of C is a stable

curve.
• Compactness — now classical.
• Expected dimension

h0(C,NC/X) − h1(C,NC/X) =

RR
= C2 + (dimX − 1)(1 − g)

• M̄g,n(X, β) is very nasty.



Moduli spaces of maps
• M̄g,n(X, β) maps f : C → X , f∗[C] = β.
• Stable map no non–trivial automorphism.
• Each contracted component of C is a stable

curve.
• Compactness — now classical.
• Expected dimension

h0(C,NC/X) − h1(C,NC/X) =

RR
= C2 + (dimX − 1)(1 − g)

genus
= 2g − 2 −K · C + (dimX − 1)(1 − g)

• M̄g,n(X, β) is very nasty.



Moduli spaces of maps
• M̄g,n(X, β) maps f : C → X , f∗[C] = β.
• Stable map no non–trivial automorphism.
• Each contracted component of C is a stable

curve.
• Compactness — now classical.
• Expected dimension

dim(X)(1 − g) +
∫

β c1(TX) + n+ 3g − 3.

• M̄g,n(X, β) is very nasty.



Moduli spaces of maps
• M̄g,n(X, β) maps f : C → X , f∗[C] = β.
• Stable map no non–trivial automorphism.
• Each contracted component of C is a stable

curve.
• Compactness — now classical.
• Expected dimension

dim(X)(1 − g) +
∫

β c1(TX) + n+ 3g − 3.

• M̄g,n(X, β) is very nasty.



Virtual cycle
• Consider M̄2,0(P

1, 2L).

• Hyperelliptic curves
• Irreducible component dim = 6.

• Maps f : C ∪ P
1 → P

1, f(C) = pt., f |P1 is 2− 1.
Dimension 7.

• If h1(C, π∗TX) = 0, then (C, π) is non–singular
point of M̄g,n(X, β).

• Geometrically: construct M̄g,n(X, β) as the zero
set of a section.

• This is not transverse. Can’t use IFT.
• Define virtual class [M̄g,n(X, β)] in
Avdim(M̄g,n(X, β)).
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• Define virtual class [M̄g,n(X, β)] in
Avdim(M̄g,n(X, β)).



Virtual cycle
• Consider M̄2,0(P

1, 2L).
• Hyperelliptic curves
• Irreducible component dim = 6.
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Dimension 7.
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Classes on M̄g,n(X, β)

• For (C, {p1, . . . , pn}, π) put evi = π(pi) ∈ X .

• A map M̄g,n(X, β) → X .

• Class ev∗i (ω) for any ω ∈ A∗(X).

• Classes ψi and λj as in M̄g,n.

• Integrate them against [M̄g,n(X, β)].

• Interpretation. 〈ev1(ω1), . . . , evn(ωn)〉 curves on
X intersecting ω1, . . . , ωn.
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• A map M̄g,n(X, β) → X .

• Class ev∗i (ω) for any ω ∈ A∗(X).

• Classes ψi and λj as in M̄g,n.

• Integrate them against [M̄g,n(X, β)].

• Interpretation. 〈ev1(ω1), . . . , evn(ωn)〉 counts
curves on X intersecting ω1, . . . , ωn.



Works of Okounkov
• No idea how to calculate.

• M̄g,n(X, 0) is product.

• P
1 should be related to Hurwitz numbers.

• Okounkov–Pandharipande: class of P
1 through

localisations,
• Another proof of Kontsevich–Witten theorem
• Toda equation for gravitational classes.
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