Gromov—Witten invariants *introduction to results of A. Okounkov*

Maciej Borodzik

Instytut Matematyki, Uniwersytet Warszawski

Consider the flat family of smooth n-pointed curves of fixed genus g,

Consider the flat family of smooth n-pointed curves of fixed genus g, so a typical member is a curve Cwith pairway distinct points $p_1, \ldots, p_n \in C$.

Consider the flat family of smooth n-pointed curves of fixed genus g, so a typical member is a curve Cwith pairway distinct points $p_1, \ldots, p_n \in C$. A family can be written as

Consider the flat family of smooth n-pointed curves of fixed genus g, so a typical member is a curve Cwith pairway distinct points $p_1, \ldots, p_n \in C$. A family can be written as

The moduli problem

Consider the flat family of smooth n-pointed curves of fixed genus g, so a typical member is a curve Cwith pairway distinct points $p_1, \ldots, p_n \in C$. A family can be written as

The moduli problem consist of finding a universal family of curves

Consider the flat family of smooth n-pointed curves of fixed genus g, so a typical member is a curve Cwith pairway distinct points $p_1, \ldots, p_n \in C$. A family can be written as

The moduli problem consist of finding a universal family of curves such that any other family

Consider the flat family of smooth n-pointed curves of fixed genus g, so a typical member is a curve Cwith pairway distinct points $p_1, \ldots, p_n \in C$. A family can be written as

The moduli problem consist of finding a universal family of curves such that any other family is induced from \mathcal{M} by a unique morphism b.

Consider a functor

Consider a functor

 $F: \mathbf{Schemes} \to \mathbf{Set}$

F(B) is set of all flat families over B (modulo isomorphisms).

Consider a functor

F:Schemes \rightarrow Set

F(B) is set of all flat families over B (modulo isomorphisms). If there exists a scheme \mathcal{M} , such that

$$F(B) = Mor(B, \mathcal{M}),$$

Consider a functor

F:Schemes \rightarrow Set

F(B) is set of all flat families over B (modulo isomorphisms). If there exists a scheme \mathcal{M} , such that

$$F(B) = Mor(B, \mathcal{M}),$$

then it is exactly a moduli space.

Consider a functor

F:Schemes \rightarrow Set

F(B) is set of all flat families over B (modulo isomorphisms). If there exists a scheme \mathcal{M} , such that

$$F(B) = Mor(B, \mathcal{M}),$$

then it is exactly a moduli space. Problems:

Consider a functor

F:Schemes \rightarrow Set

F(B) is set of all flat families over B (modulo isomorphisms). If there exists a scheme \mathcal{M} , such that

$$F(B) = Mor(B, \mathcal{M}),$$

then it is exactly a moduli space. Problems:

• In order to make it exists, you have to allow singular curves.

Consider a functor

F:Schemes \rightarrow Set

F(B) is set of all flat families over B (modulo isomorphisms). If there exists a scheme \mathcal{M} , such that

$$F(B) = Mor(B, \mathcal{M}),$$

then it is exactly a moduli space. Problems:

- In order to make it exists, you have to allow singular curves.
- In most cases it does not exists in the category of schemes (need to use stacks)

 $\mathcal{M}_{0,3}$ is obviously a point.

Now $\mathcal{M}_{0,4}$.

 \mathbb{P}^1

 p_1

 p_2

 p_3

Now $\mathcal{M}_{0,4}$.

Blow up the green points.

 \mathbb{P}^1

 p_1

 p_2

 p_3

Blow up the green points. Hence $\mathcal{M}_{0,4} = \mathbb{P}^1 \setminus \{0, 1, \infty\}. \ \overline{\mathcal{M}}_{0,4} = \mathbb{P}^1.$

 \mathbb{P}^1

 p_1

 p_2

 p_3

Blow up the green points. Hence $\mathcal{M}_{0,4} = \mathbb{P}^1 \setminus \{0, 1, \infty\}. \ \overline{\mathcal{M}}_{0,4} = \mathbb{P}^1.$

The boundary divisor $\delta = \overline{\mathcal{M}}_{0,4} \setminus \mathcal{M}_{0,4}$ consists of three points.

The boundary divisor $\delta = \overline{\mathcal{M}}_{0,4} \setminus \mathcal{M}_{0,4}$ consists of three points. Each point corresponds to splitting $\{p_1, p_2, p_3, p_4\} = \{p_{i_1}, p_{i_2}\} \cup \{p_{i_3}, p_{i_4}\}.$

The boundary divisor $\delta = \overline{\mathcal{M}}_{0,4} \setminus \mathcal{M}_{0,4}$ consists of three points. Each point corresponds to splitting $\{p_1, p_2, p_3, p_4\} = \{p_{i_1}, p_{i_2}\} \cup \{p_{i_3}, p_{i_4}\}.$ Over a point $\{p_1, p_2\} \cup \{p_3, p_4\}$ the fibre of the previous diagram looks like

The boundary divisor $\delta = \overline{\mathcal{M}}_{0,4} \setminus \mathcal{M}_{0,4}$ consists of three points. Each point corresponds to splitting $\{p_1, p_2, p_3, p_4\} = \{p_{i_1}, p_{i_2}\} \cup \{p_{i_3}, p_{i_4}\}.$ Over a point $\{p_1, p_2\} \cup \{p_3, p_4\}$ the fibre of the previous diagram looks like

The boundary divisor $\delta = \overline{\mathcal{M}}_{0,4} \setminus \mathcal{M}_{0,4}$ consists of three points. Each point corresponds to splitting $\{p_1, p_2, p_3, p_4\} = \{p_{i_1}, p_{i_2}\} \cup \{p_{i_3}, p_{i_4}\}.$ Over a point $\{p_1, p_2\} \cup \{p_3, p_4\}$ the fibre of the previous diagram looks like

The boundary divisor $\delta = \overline{\mathcal{M}}_{0,4} \setminus \mathcal{M}_{0,4}$ consists of three points. Each point corresponds to splitting $\{p_1, p_2, p_3, p_4\} = \{p_{i_1}, p_{i_2}\} \cup \{p_{i_3}, p_{i_4}\}.$ Over a point $\{p_1, p_2\} \cup \{p_3, p_4\}$ the fibre of the previous diagram looks like

Important, albeit trivial! All divisors corresponding to different splittings are linearly equivalent.

(Counter) examples

Consider $\mathcal{M}_{0,2}$.

(Counter) examples

Consider $\mathcal{M}_{0,2}$.

All curves corresponding to different values of $\lambda \neq p_1$ are equivalent.

Blow up the green point. We get a family of identical curves tending to a different curve.

The space of curves with such topology is not Hausdorff.

Stable curves

Problem: a curve P¹ has a continuous (i.e. not zero-dimensional) group of automorphisms fixing given two points p₁, p₂.

Stable curves

- Problem: a curve P¹ has a continuous (i.e. not zero-dimensional) group of automorphisms fixing given two points p₁, p₂.
- The pointed curve $C, \{p_1, \ldots, p_n\}$ is called stable if it has only finitely many automorphisms.
Stable curves

- Problem: a curve P¹ has a continuous (i.e. not zero-dimensional) group of automorphisms fixing given two points p₁, p₂.
- The pointed curve $C, \{p_1, \ldots, p_n\}$ is called stable if it has only finitely many automorphisms.
- Exercise.

Stable curves

- Problem: a curve P¹ has a continuous (i.e. not zero-dimensional) group of automorphisms fixing given two points p₁, p₂.
- The pointed curve $C, \{p_1, \ldots, p_n\}$ is called stable if it has only finitely many automorphisms.
- Exercise. A smooth curve of genus g is stable if $3g 3 + n \ge 0$.

Stable curves

- Problem: a curve P¹ has a continuous (i.e. not zero-dimensional) group of automorphisms fixing given two points p₁, p₂.
- The pointed curve $C, \{p_1, \ldots, p_n\}$ is called stable if it has only finitely many automorphisms.
- Exercise. A smooth curve of genus g is stable if $3g 3 + n \ge 0$.
- A curve is called nodal (or, misleadingly, cuspidal) if it has only double points as its singularities.

C smooth of genus $g. p_1, \ldots, p_n$ points.

C smooth of genus $g. p_1, \ldots, p_n$ points. $C_0 = C \setminus \{p_1, \ldots, p_n\}.$

C smooth of genus $g. p_1, \ldots, p_n$ points. $C_0 = C \setminus \{p_1, \ldots, p_n\}.$

stability $\rightarrow \chi(C_0) < 0$.

C smooth of genus $g. p_1, \ldots, p_n$ points. $C_0 = C \setminus \{p_1, \ldots, p_n\}.$

• C₀ has only one topological (and differential) model.

- C smooth of genus $g. p_1, \ldots, p_n$ points. $C_0 = C \setminus \{p_1, \ldots, p_n\}.$
 - C₀ has only one topological (and differential) model.
 - Complex (algebraic) structures on C_0 are in 1—1 correspondence with -1 complete metrics on C_0 .

- C smooth of genus $g. p_1, \ldots, p_n$ points. $C_0 = C \setminus \{p_1, \ldots, p_n\}.$
 - C₀ has only one topological (and differential) model.
 - Complex (algebraic) structures on C_0 are in 1—1 correspondence with -1 complete metrics on C_0 .
 - The space \mathcal{G} of such metrics is non-compact.

- C smooth of genus $g. p_1, \ldots, p_n$ points. $C_0 = C \setminus \{p_1, \ldots, p_n\}.$
 - C₀ has only one topological (and differential) model.
 - Complex (algebraic) structures on C_0 are in 1—1 correspondence with -1 complete metrics on C_0 .
 - The space \mathcal{G} of such metrics is non-compact.
 - Injectivity radius r_i lenght of the shortest closed non-contractible geodesic.

- C smooth of genus $g. p_1, \ldots, p_n$ points. $C_0 = C \setminus \{p_1, \ldots, p_n\}.$
 - C₀ has only one topological (and differential) model.
 - Complex (algebraic) structures on C_0 are in 1—1 correspondence with -1 complete metrics on C_0 .
 - The space \mathcal{G} of such metrics is non-compact.
 - Injectivity radius r_i lenght of the shortest closed non-contractible geodesic.
 - For $\delta > 0$ space \mathcal{G}_{δ} is compact (relatively easy).

Consider a sequence of metrics g_n on C_0 with $r_i^{(n)} \rightarrow 0$.

• Split C_0 in two parts C_0^{thick} and C_0^{thin} .

- Split C_0 in two parts C_0^{thick} and C_0^{thin} .
- C_0^{thin} points through which there exists a short non-contractible loop.

- Split C_0 in two parts C_0^{thick} and C_0^{thin} .
- C_0^{thin} points through which there exists a short non-contractible loop.
- If this

- Split C_0 in two parts C_0^{thick} and C_0^{thin} .
- C_0^{thin} points through which there exists a short non-contractible loop.
- If this short is sufficiently short, C_0^{thin} is the sum of annuli.

- Split C_0 in two parts C_0^{thick} and C_0^{thin} .
- C_0^{thin} points through which there exists a short non-contractible loop.
- If this short is sufficiently short, C_0^{thin} is the sum of annuli.
- The metrics are convergent on C_0^{thick} .

- Split C_0 in two parts C_0^{thick} and C_0^{thin} .
- C_0^{thin} points through which there exists a short non-contractible loop.
- If this short is sufficiently short, C_0^{thin} is the sum of annuli.
- The metrics are convergent on C_0^{thick} .
- Annulus. Small r_i large modulus (ratio $\frac{R}{r}$).

The shape of an annulus is uniquely determined by its modulus.

Annuli degenerate to two discs with one common point.

• $\overline{\mathcal{M}}_{g,n}$ is a smooth compact orbifold of dimension 3g-3+n.

- $\overline{\mathcal{M}}_{g,n}$ is a smooth compact orbifold of dimension 3g-3+n.
- the orbifold means that localy the space looks like the quotient of \mathbb{C}^{3g-3+n}/G . *G* finite group.

- $\overline{\mathcal{M}}_{g,n}$ is a smooth compact orbifold of dimension 3g-3+n.
- the orbifold means that localy the space looks like the quotient of \mathbb{C}^{3g-3+n}/G . *G* finite group.
- the orbifold is the most basic non-trivial example of a stack.

- $\overline{\mathcal{M}}_{g,n}$ is a smooth compact orbifold of dimension 3g-3+n.
- the orbifold means that localy the space looks like the quotient of \mathbb{C}^{3g-3+n}/G . *G* finite group.
- the group G is $Aut(C, \{p_1, \ldots, p_n\})$ generically trivial.

- $\overline{\mathcal{M}}_{g,n}$ is a smooth compact orbifold of dimension 3g-3+n.
- the orbifold means that localy the space looks like the quotient of \mathbb{C}^{3g-3+n}/G . *G* finite group.
- for g = 0, G is always trivial, so $\overline{\mathcal{M}}_{g,n}$ is a smooth manifold.

- $\overline{\mathcal{M}}_{g,n}$ is a smooth compact orbifold of dimension 3g-3+n.
- the orbifold means that localy the space looks like the quotient of \mathbb{C}^{3g-3+n}/G . *G* finite group.
- the set $\mathcal{M}_{g,n} \subset \overline{\mathcal{M}}_{g,n}$ is open dense. $\Delta_{g,n} = \overline{\mathcal{M}}_{g,n} \setminus \mathcal{M}_{g,n}$ is a divisor.

- $\overline{\mathcal{M}}_{g,n}$ is a smooth compact orbifold of dimension 3g-3+n.
- the orbifold means that localy the space looks like the quotient of \mathbb{C}^{3g-3+n}/G . *G* finite group.
- the set M_{g,n} ⊂ M
 _{g,n} is open dense.
 Δ_{g,n} = M
 {g,n} \ M{g,n} is a divisor. for g = 0, n = 4, Δ_{0,4} consists of three points.

- $\overline{\mathcal{M}}_{g,n}$ is a smooth compact orbifold of dimension 3g-3+n.
- the orbifold means that localy the space looks like the quotient of \mathbb{C}^{3g-3+n}/G . *G* finite group.
- the set $\mathcal{M}_{g,n} \subset \overline{\mathcal{M}}_{g,n}$ is open dense. $\Delta_{g,n} = \overline{\mathcal{M}}_{g,n} \setminus \mathcal{M}_{g,n}$ is a divisor.
- Consider $\mathcal{M}_{g,I}$, #I = n. Let $g = g_1 + g_2$, $I = I_1 \cup I_2$.

- $\overline{\mathcal{M}}_{g,n}$ is a smooth compact orbifold of dimension 3g 3 + n.
- the orbifold means that localy the space looks like the quotient of \mathbb{C}^{3g-3+n}/G . *G* finite group.
- the set $\mathcal{M}_{g,n} \subset \overline{\mathcal{M}}_{g,n}$ is open dense. $\Delta_{g,n} = \overline{\mathcal{M}}_{g,n} \setminus \mathcal{M}_{g,n}$ is a divisor.
- Consider $\mathcal{M}_{g,I}$, #I = n. Let $g = g_1 + g_2$, $I = I_1 \cup I_2$.
- Glueing map: $\overline{\mathcal{M}}_{g_1,I_1\cup p} \times \overline{\mathcal{M}}_{g_2,I_2\cup q} \to \mathcal{M}_{g,I}$. Glue p with q.
• The map $\mathcal{M}_{g,n} \to \mathcal{M}_{g,n-1}$

- The map $\mathcal{M}_{g,n} \to \mathcal{M}_{g,n-1}$
- prolonges to boundary $\overline{\mathcal{M}}_{g,n} \to \overline{\mathcal{M}}_{g,n-1}$.

- The map $\mathcal{M}_{g,n} \to \mathcal{M}_{g,n-1}$
- prolonges to boundary $\overline{\mathcal{M}}_{g,n} \to \overline{\mathcal{M}}_{g,n-1}$.
- For $\mathcal{M}_{0,5} \to \mathcal{M}_{0,4}$ we get

- The map $\mathcal{M}_{g,n} \to \mathcal{M}_{g,n-1}$
- prolonges to boundary $\overline{\mathcal{M}}_{g,n} \to \overline{\mathcal{M}}_{g,n-1}$.
- For $\mathcal{M}_{0,5} \to \mathcal{M}_{0,4}$ we get

- The map $\mathcal{M}_{g,n} \to \mathcal{M}_{g,n-1}$
- prolonges to boundary $\overline{\mathcal{M}}_{g,n} \to \overline{\mathcal{M}}_{g,n-1}$.
- For $\mathcal{M}_{0,5} \to \mathcal{M}_{0,4}$ we get

- The map $\mathcal{M}_{g,n} \to \mathcal{M}_{g,n-1}$
- prolonges to boundary $\overline{\mathcal{M}}_{g,n} \to \overline{\mathcal{M}}_{g,n-1}$.
- For $\mathcal{M}_{0,5} \to \mathcal{M}_{0,4}$ we get

- The map $\mathcal{M}_{g,n} \to \mathcal{M}_{g,n-1}$
- prolonges to boundary $\overline{\mathcal{M}}_{g,n} \to \overline{\mathcal{M}}_{g,n-1}$.
- For $\mathcal{M}_{0,5} \to \mathcal{M}_{0,4}$ we get

• Consider a forgetting map $\pi = \pi_{\{i,j,k,l\}} : \bar{\mathcal{M}}_{0,n} \to \bar{\mathcal{M}}_{0,4}$

- Consider a forgetting map $\pi = \pi_{\{i,j,k,l\}} : \bar{\mathcal{M}}_{0,n} \to \bar{\mathcal{M}}_{0,4}$
- A, B partition of $[1, \ldots, n]$.

- Consider a forgetting map $\pi = \pi_{\{i,j,k,l\}} : \overline{\mathcal{M}}_{0,n} \to \overline{\mathcal{M}}_{0,4}$
- A, B partition of [1, ..., n].
- D(A|B) image of the glueing map $\overline{\mathcal{M}}_{0,A\cup p} \times \overline{\mathcal{M}}_{0,B\cup q} \to \overline{\mathcal{M}}_{0,n}.$

- Consider a forgetting map $\pi = \pi_{\{i,j,k,l\}} : \overline{\mathcal{M}}_{0,n} \to \overline{\mathcal{M}}_{0,4}$
- A, B partition of $[1, \ldots, n]$.
- D(A|B) image of the glueing map $\overline{\mathcal{M}}_{0,A\cup p} \times \overline{\mathcal{M}}_{0,B\cup q} \to \overline{\mathcal{M}}_{0,n}.$
- Then $\pi^{-1}(\{i, j\} \cup \{k, l\})$ is the sum of all D(A|B) for partitions $\{i, j\} \subset A, \{k, l\} \subset B$.

- Consider a forgetting map $\pi = \pi_{\{i,j,k,l\}} : \bar{\mathcal{M}}_{0,n} \to \bar{\mathcal{M}}_{0,4}$
- A, B partition of $[1, \ldots, n]$.
- D(A|B) image of the glueing map $\overline{\mathcal{M}}_{0,A\cup p} \times \overline{\mathcal{M}}_{0,B\cup q} \to \overline{\mathcal{M}}_{0,n}.$
- Then $\pi^{-1}(\{i, j\} \cup \{k, l\})$ is the sum of all D(A|B) for partitions $\{i, j\} \subset A, \{k, l\} \subset B$.
- The divisors $\{i, j\} \cup \{k, l\}, \{i, k\} \cup \{j, l\}$ and $\{i, l\} \cup \{j, k\}$ are linearly equivalent.

 $\sum D(A|B) \sim \sum D(A|B).$ $i,j \in A \ k,l \in B$ $i,k \in A \ j,l \in B$

$$\sum_{i,j\in A} D(A|B) \sim \sum_{i,k\in A} D(A|B).$$

Kontsewich formula

$$V_{d} = \sum_{\substack{d_{1}+d_{2}=d\\d_{1},d_{2}>0}} N_{d_{1}}N_{d_{2}} \cdot \left(\frac{d_{1}^{2}d_{2}^{2}}{\binom{3d-4}{3d_{1}-2}} - d_{1}^{3}d_{2}\binom{3d-4}{3d_{1}-1} \right)$$

$$\sum_{i,j\in A} D(A|B) \sim \sum_{i,k\in A} D(A|B).$$

Kontsewich formula

$$N_{d} = \sum_{\substack{d_{1}+d_{2}=d\\d_{1},d_{2}>0}} N_{d_{1}}N_{d_{2}} \cdot \left(\frac{d_{1}^{2}d_{2}^{2}}{\binom{3d-4}{3d_{1}-2}} - d_{1}^{3}d_{2}\binom{3d-4}{3d_{1}-1} \right)$$

 N_d number of plane rational curves going through 3d - 1 points.

Tautological bundles over $\mathcal{M}_{q,n}$ • L_i has the fiber $T_{p_i}^*C$.

- L_i has the fiber $T_{p_i}^*C$.
- $\Lambda_{g,n}$ Hodge line bundle. Fiber $H^0(C, \omega_C)$.

- L_i has the fiber $T_{p_i}^*C$.
- $\Lambda_{g,n}$ Hodge line bundle. Fiber $H^0(C, \omega_C)$.
- $\Lambda_{g,n} = \pi_* \omega_{C/M}$ relative dualising sheaf.

- L_i has the fiber $T_{p_i}^*C$.
- $\Lambda_{g,n}$ Hodge line bundle. Fiber $H^0(C, \omega_C)$.
- $\Lambda_{g,n} = \pi_* \omega_{C/M}$ relative dualising sheaf.
- $\psi_i = c_1(L_i), c(\Lambda_{g,n}) = 1 + \lambda_1 + \lambda_2 + \dots + \lambda_g.$

- L_i has the fiber $T_{p_i}^*C$.
- $\Lambda_{g,n}$ Hodge line bundle. Fiber $H^0(C, \omega_C)$.
- $\Lambda_{g,n} = \pi_* \omega_{C/M}$ relative dualising sheaf.
- $\psi_i = c_1(L_i), c(\Lambda_{g,n}) = 1 + \lambda_1 + \lambda_2 + \dots + \lambda_g.$

•
$$\pi: \overline{\mathcal{M}}_{g,n+1} \to \overline{\mathcal{M}}_{g,n}$$
. $\psi_{g,n+1,i} = \pi^*(\psi_{g,n,i}) + [D]$.

- L_i has the fiber $T_{p_i}^*C$.
- $\Lambda_{g,n}$ Hodge line bundle. Fiber $H^0(C, \omega_C)$.
- $\Lambda_{g,n} = \pi_* \omega_{\mathcal{C}/\mathcal{M}}$ relative dualising sheaf.
- $\psi_i = c_1(L_i), c(\Lambda_{g,n}) = 1 + \lambda_1 + \lambda_2 + \dots + \lambda_g.$
- $\pi: \overline{\mathcal{M}}_{g,n+1} \to \overline{\mathcal{M}}_{g,n}, \psi_{g,n+1,i} = \pi^*(\psi_{g,n,i}) + [D].$
- $D \simeq \overline{\mathcal{M}}_{0,\{p_i\}\cup\{p_{n+1}\}\cup\{p\}} \times \overline{\mathcal{M}}_{g,[n]\setminus\{p_i\}\cup\{q\}}.$

Intersections on $\overline{\mathcal{M}}_{g,n}$

 $\langle \tau_{k_1} \tau_{k_2} \dots \tau_{k_n} \rangle = \int_{\bar{\mathcal{M}}_{q,n}} \psi_1^{k_1} \psi_2^{k_2} \dots \psi_n^{k_n}.$

Intersections on $\bar{\mathcal{M}}_{g,n}$

$$\langle \tau_{k_1} \tau_{k_2} \dots \tau_{k_n} \rangle = \int_{\bar{\mathcal{M}}_{g,n}} \psi_1^{k_1} \psi_2^{k_2} \dots \psi_n^{k_n}.$$

• defined for $k_1 + \cdots + k_n = 3g - 3 + n$, otherwise 0.

Intersections on $\overline{\mathcal{M}}_{g,n}$

$$\langle \tau_{k_1} \tau_{k_2} \dots \tau_{k_n} \rangle = \int_{\bar{\mathcal{M}}_{g,n}} \psi_1^{k_1} \psi_2^{k_2} \dots \psi_n^{k_n}$$

- defined for $k_1 + \cdots + k_n = 3g 3 + n$, otherwise 0.
- the number can be rational, for $\bar{\mathcal{M}}_{g,n}$ is an orbifold

Intersections on $\bar{\mathcal{M}}_{g,n}$

$$\langle \tau_{k_1} \tau_{k_2} \dots \tau_{k_n} \rangle = \int_{\bar{\mathcal{M}}_{g,n}} \psi_1^{k_1} \psi_2^{k_2} \dots \psi_n^{k_n}.$$

- defined for $k_1 + \cdots + k_n = 3g 3 + n$, otherwise 0.
- the pull-back property of ψ_i gives

Intersections on $\bar{\mathcal{M}}_{g,n}$

$$\langle \tau_{k_1} \tau_{k_2} \dots \tau_{k_n} \rangle = \int_{\bar{\mathcal{M}}_{g,n}} \psi_1^{k_1} \psi_2^{k_2} \dots \psi_n^{k_n}.$$

- defined for $k_1 + \cdots + k_n = 3g 3 + n$, otherwise 0.
- the pull-back property of ψ_i gives string equation

Intersections on $\overline{\mathcal{M}}_{g,n}$

$$\langle \tau_{k_1} \tau_{k_2} \dots \tau_{k_n} \rangle = \int_{\bar{\mathcal{M}}_{g,n}} \psi_1^{k_1} \psi_2^{k_2} \dots \psi_n^{k_n}$$

- defined for $k_1 + \cdots + k_n = 3g 3 + n$, otherwise 0.
- the pull-back property of ψ_i gives string equation

$$\langle \tau_0 \prod_{i=1}^n \tau_{k_i} \rangle_g = \sum_{j=1}^n \langle \tau_{k_j-1} \prod_{i \neq j} \tau_{k_i} \rangle_g.$$

Intersections on $\bar{\mathcal{M}}_{g,n}$

$$\langle \tau_{k_1} \tau_{k_2} \dots \tau_{k_n} \rangle = \int_{\bar{\mathcal{M}}_{g,n}} \psi_1^{k_1} \psi_2^{k_2} \dots \psi_n^{k_n}.$$

- defined for $k_1 + \cdots + k_n = 3g 3 + n$, otherwise 0.
- the pull-back property of ψ_i gives string equation and dilaton equation

$$\langle \tau_0 \prod_{i=1}^n \tau_{k_i} \rangle_g = \sum_{j=1}^n \langle \tau_{k_j-1} \prod_{i \neq j} \tau_{k_i} \rangle_g.$$

Intersections on $\bar{\mathcal{M}}_{g,n}$

$$\langle \tau_{k_1} \tau_{k_2} \dots \tau_{k_n} \rangle = \int_{\bar{\mathcal{M}}_{g,n}} \psi_1^{k_1} \psi_2^{k_2} \dots \psi_n^{k_n}.$$

- defined for $k_1 + \cdots + k_n = 3g 3 + n$, otherwise 0.
- the pull-back property of ψ_i gives string equation and dilaton equation

$$\langle \tau_0 \prod_{i=1}^n \tau_{k_i} \rangle_g = \sum_{j=1}^n \langle \tau_{k_j-1} \prod_{i \neq j} \tau_{k_i} \rangle_g.$$

$$n \qquad n$$

$$\langle \tau_1 \prod_{i=1} \tau_{k_i} \rangle_g = (2g - 2 + n) \langle \prod_{i=1} \tau_{k_i} \rangle_g.$$

$$\langle \prod_{i=1}^{n} \tau_{k_i} \rangle_0 = \frac{(n-3)!}{\prod_{i=1}^{n} k_i!}.$$

$$\langle \prod_{i=1}^{n} \tau_{k_i} \rangle_0 = \frac{(n-3)!}{\prod_{i=1}^{n} k_i!}.$$
$$\langle \tau_1 \rangle_1 = \frac{1}{24}.$$

• For g = 0 — string equation and $\langle \tau_0^3 \rangle_0 = 1$

$$\langle \prod_{i=1}^{n} \tau_{k_i} \rangle_0 = \frac{(n-3)!}{\prod_{i=1}^{n} k_i!}.$$

•
$$\langle \tau_1 \rangle_1 = \frac{1}{24}$$
.

• string and dilaton equation give products for g = 1.

$$\langle \prod_{i=1}^{n} \tau_{k_i} \rangle_0 = \frac{(n-3)!}{\prod_{i=1}^{n} k_i!}.$$

•
$$\langle \tau_1 \rangle_1 = \frac{1}{24}$$
.

- string and dilaton equation give products for g = 1.
- $\mathbf{t} = (t_0, t_1, \dots, t_i, \dots)$ variable vector.

$$\langle \prod_{i=1}^{n} \tau_{k_i} \rangle_0 = \frac{(n-3)!}{\prod_{i=1}^{n} k_i!}.$$

•
$$\langle \tau_1 \rangle_1 = \frac{1}{24}$$
.

- string and dilaton equation give products for g = 1.
- $\mathbf{t} = (t_0, t_1, \dots, t_i, \dots)$ variable vector.

•
$$\gamma = \sum_{i=0}^{\infty} t_i \tau_i$$
.

$$\langle \prod_{i=1}^{n} \tau_{k_i} \rangle_0 = \frac{(n-3)!}{\prod_{i=1}^{n} k_i!}.$$

•
$$\langle \tau_1 \rangle_1 = \frac{1}{24}$$
.

- string and dilaton equation give products for g = 1.
- $\mathbf{t} = (t_0, t_1, \dots, t_i, \dots)$ variable vector.

•
$$\gamma = \sum_{i=0}^{\infty} t_i \tau_i$$
.

$$F_g(\mathbf{t}) \stackrel{def}{=} \sum_{n=0}^{\infty} \frac{\langle \gamma^n \rangle_g}{n!}.$$
Intersection cd.

• For g = 0 — string equation and $\langle \tau_0^3 \rangle_0 = 1$

$$\langle \prod_{i=1}^{n} \tau_{k_i} \rangle_0 = \frac{(n-3)!}{\prod_{i=1}^{n} k_i!}.$$

•
$$\langle \tau_1 \rangle_1 = \frac{1}{24}$$
.

- string and dilaton equation give products for g = 1.
- $\mathbf{t} = (t_0, t_1, \dots, t_i, \dots)$ variable vector.

•
$$\gamma = \sum_{i=0}^{\infty} t_i \tau_i$$
.

$$F_g(\mathbf{t}) = \sum_{n_i} \left(\prod_{i=1}^{\infty} \frac{t_i^{n_i}}{n_i!} \right) \langle \tau_0^{n_0} \tau_1^{n_1} \dots \rangle_g.$$

Intersection cd.

• For g = 0 — string equation and $\langle \tau_0^3 \rangle_0 = 1$

$$\langle \prod_{i=1}^{n} \tau_{k_i} \rangle_0 = \frac{(n-3)!}{\prod_{i=1}^{n} k_i!}.$$

•
$$\langle \tau_1 \rangle_1 = \frac{1}{24}$$
.

- string and dilaton equation give products for g = 1.
- $\mathbf{t} = (t_0, t_1, \dots, t_i, \dots)$ variable vector.

•
$$\gamma = \sum_{i=0}^{\infty} t_i \tau_i$$
.

$$F_g(\mathbf{t}) = \sum_{n=0}^{\infty} \frac{\langle \gamma^n \rangle_g}{n!}.$$

• Now consider $F = \sum_{g=0}^{\infty} F_g$.

• Now consider $F = \sum_{g=0}^{\infty} F_g$.

• Witten's conjecture

- Now consider $F = \sum_{g=0}^{\infty} F_g$.
- Kontsevich theorem

- Now consider $F = \sum_{g=0}^{\infty} F_g$.
- Kontsevich theorem
- F satisfies KdV hierarchy.

- Now consider $F = \sum_{g=0}^{\infty} F_g$.
- Kontsevich theorem
- F satisfies KdV hierarchy.
- KdV equation reads $u'_t = u^{(3)}_{xxx} + 6uu'_x$.

- Now consider $F = \sum_{g=0}^{\infty} F_g$.
- Kontsevich theorem
- F satisfies KdV hierarchy.
- KdV equation reads $u'_t = u^{(3)}_{xxx} + 6uu'_x$.
- Consider $L = \partial^2 + u$.

- Now consider $F = \sum_{g=0}^{\infty} F_g$.
- Kontsevich theorem
- F satisfies KdV hierarchy.
- KdV equation reads $u'_t = u^{(3)}_{xxx} + 6uu'_x$.
- Consider $L = \partial^2 + u$.
- $L^{k/2} = D^k + a_{k-1}D^{k-1} + \dots + a_{-1}D^{-1} + \dots$ is ΨDO .

- Now consider $F = \sum_{g=0}^{\infty} F_g$.
- Kontsevich theorem
- F satisfies KdV hierarchy.
- KdV equation reads $u'_t = u^{(3)}_{xxx} + 6uu'_x$.
- Consider $L = \partial^2 + u$.
- $L^{k/2} = D^k + a_{k-1}D^{k-1} + \dots + a_{-1}D^{-1} + \dots$ is ΨDO .
- $D^{-1}r(x) = \sum_{j=0}^{\infty} (-1)^j r^{(j)} D^{-1-j}$.

- Now consider $F = \sum_{g=0}^{\infty} F_g$.
- Kontsevich theorem
- F satisfies KdV hierarchy.
- KdV equation reads $u'_t = u^{(3)}_{xxx} + 6uu'_x$.
- Consider $L = \partial^2 + u$.
- $L^{k/2} = D^k + a_{k-1}D^{k-1} + \dots + a_{-1}D^{-1} + \dots$ is ΨDO .
- $D^{-1}r(x) = \sum_{j=0}^{\infty} (-1)^j r^{(j)} D^{-1-j}$.

•
$$\frac{\partial L}{\partial t_k} = [L_+^{k/2}, L].$$

- Now consider $F = \sum_{g=0}^{\infty} F_g$.
- Kontsevich theorem
- F satisfies KdV hierarchy.
- KdV equation reads $u'_t = u^{(3)}_{xxx} + 6uu'_x$.
- Consider $L = \partial^2 + u$.
- $L^{k/2} = D^k + a_{k-1}D^{k-1} + \dots + a_{-1}D^{-1} + \dots$ is ΨDO .
- $D^{-1}r(x) = \sum_{j=0}^{\infty} (-1)^j r^{(j)} D^{-1-j}$.
- $\frac{\partial L}{\partial t_k} = [L_+^{k/2}, L].$
- **Exercise** for k = 1 obtain KdV.

• Ekedahl, Lando, Shapiro, Vainstein.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K = k_1 + \cdots + k_n$. Maps $C \to S^2$, degree K, branched over $\{\infty\}$.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K = k_1 + \cdots + k_n$. Maps $C \to S^2$, degree K, branched over $\{\infty\}$.
- finite ramifications 2g 2 + n + K.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K = k_1 + \cdots + k_n$. Maps $C \to S^2$, degree K, branched over $\{\infty\}$.
- $\mathcal{M}_{g,n}$. Space of principal parts of order k_i . $f = a_{k_i}(t - p_i)^{-p_i} + \dots + a_1(t - p_i)^{-1}$.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K = k_1 + \cdots + k_n$. Maps $C \to S^2$, degree K, branched over $\{\infty\}$.
- $\mathcal{M}_{g,n}$. Space of principal parts of order k_i . $f = a_{k_i}(t - p_i)^{-p_i} + \dots + a_1(t - p_i)^{-1}$.
- Not linear space.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K = k_1 + \cdots + k_n$. Maps $C \to S^2$, degree K, branched over $\{\infty\}$.
- $\mathcal{M}_{g,n}$. Space of principal parts of order k_i . $f = a_{k_i}(t - p_i)^{-p_i} + \dots + a_1(t - p_i)^{-1}$.
- Not linear space. Complete it to cone P_i .

- Ekedahl, Lando, Shapiro, Vainstein.
- $K = k_1 + \cdots + k_n$. Maps $C \to S^2$, degree K, branched over $\{\infty\}$.
- $\mathcal{M}_{g,n}$. Space of principal parts of order k_i . $f = a_{k_i}(t - p_i)^{-p_i} + \dots + a_1(t - p_i)^{-1}$.
- Not linear space. Complete it to cone P_i .
- $P = P_1 \oplus \cdots \oplus P_n$ is a cone over $\overline{\mathcal{M}}_{g,n}$.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K = k_1 + \cdots + k_n$. Maps $C \to S^2$, degree K, branched over $\{\infty\}$.
- $\mathcal{M}_{g,n}$. Space of principal parts of order k_i . $f = a_{k_i}(t - p_i)^{-p_i} + \dots + a_1(t - p_i)^{-1}$.
- Not linear space. Complete it to cone P_i .
- $P = P_1 \oplus \cdots \oplus P_n$ is a cone over $\overline{\mathcal{M}}_{g,n}$.

•
$$s(P) = \prod_{i=1}^{n} \frac{k_i!}{k_i^{k_i}} \frac{1}{1 - k_i \psi_i}$$
.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K = k_1 + \cdots + k_n$. Maps $C \to S^2$, degree K, branched over $\{\infty\}$.
- $\mathcal{M}_{g,n}$. Space of principal parts of order k_i . $f = a_{k_i}(t - p_i)^{-p_i} + \dots + a_1(t - p_i)^{-1}$.
- Not linear space. Complete it to cone P_i .
- $P = P_1 \oplus \cdots \oplus P_n$ is a cone over $\overline{\mathcal{M}}_{g,n}$.
- $s(P) = \prod_{i=1}^{n} \frac{k_i!}{k_i^{k_i}} \frac{1}{1 k_i \psi_i}$.
- Mittag–Leffler problem.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K = k_1 + \cdots + k_n$. Maps $C \to S^2$, degree K, branched over $\{\infty\}$.
- $\mathcal{M}_{g,n}$. Space of principal parts of order k_i . $f = a_{k_i}(t - p_i)^{-p_i} + \dots + a_1(t - p_i)^{-1}$.
- Not linear space. Complete it to cone P_i .
- $P = P_1 \oplus \cdots \oplus P_n$ is a cone over $\overline{\mathcal{M}}_{g,n}$.
- $s(P) = \prod_{i=1}^{n} \frac{k_i!}{k_i^{k_i}} \frac{1}{1 k_i \psi_i}$.
- Mittag–Leffler problem. Take $P \times \Lambda_{g,n} \to \mathbb{C}$.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K = k_1 + \cdots + k_n$. Maps $C \to S^2$, degree K, branched over $\{\infty\}$.
- $\mathcal{M}_{g,n}$. Space of principal parts of order k_i . $f = a_{k_i}(t - p_i)^{-p_i} + \dots + a_1(t - p_i)^{-1}$.
- Not linear space. Complete it to cone P_i .
- $P = P_1 \oplus \cdots \oplus P_n$ is a cone over $\overline{\mathcal{M}}_{g,n}$.
- $s(P) = \prod_{i=1}^{n} \frac{k_i!}{k_i^{k_i}} \frac{1}{1 k_i \psi_i}$.
- Mittag–Leffler problem. Take $P \to \Lambda_{g,n}^*$.

- Ekedahl, Lando, Shapiro, Vainstein.
- $K = k_1 + \cdots + k_n$. Maps $C \to S^2$, degree K, branched over $\{\infty\}$.
- $\mathcal{M}_{g,n}$. Space of principal parts of order k_i . $f = a_{k_i}(t - p_i)^{-p_i} + \dots + a_1(t - p_i)^{-1}$.
- Not linear space. Complete it to cone P_i .
- $P = P_1 \oplus \cdots \oplus P_n$ is a cone over $\overline{\mathcal{M}}_{g,n}$.
- $s(P) = \prod_{i=1}^{n} \frac{k_i!}{k_i^{k_i}} \frac{1}{1 k_i \psi_i}$.
- Mittag–Leffler problem. Take $P \to \Lambda_{g,n}^*$.

•
$$(f_1,\ldots,f_n) \to \sum_{i=1}^n res_{p_i} f_i \omega.$$

• Integrate the top Segre class of the cone $\ker res.$

• Integrate the top Segre class of the cone ker res.

$$h_{g;k_1,\dots,k_n} = \frac{(K+n+2g-2)!}{\#Aut(k_1,\dots,k_n)} \prod_{i=1}^n \frac{k_i^{k_i}}{k_i!}$$

• Integrate the top Segre class of the cone ker res.

$$h_{g;k_1,...,k_n} = \frac{(K+n+2g-2)!}{\#Aut(k_1,...,k_n)} \prod_{i=1}^n \frac{k_i^{k_i}}{k_i!}$$
$$\int_{\bar{\mathcal{M}}_{g,n}} \frac{c(\Lambda_{g,n}^*)}{(1-k_1\psi_1)\dots(1-k_n\psi_n)}.$$

• Integrate the top Segre class of the cone ker res.

$$h_{g;k_1,...,k_n} = \frac{(K+n+2g-2)!}{\#Aut(k_1,...,k_n)} \prod_{i=1}^n \frac{k_i^{k_i}}{k_i!}$$
$$\int_{\bar{\mathcal{M}}_{g,n}} \frac{c(\Lambda_{g,n}^*)}{(1-k_1\psi_1)\dots(1-k_n\psi_n)}.$$

• For g = 0 we get

• Integrate the top Segre class of the cone ker res.

$$h_{g;k_1,...,k_n} = \frac{(K+n+2g-2)!}{\#Aut(k_1,...,k_n)} \prod_{i=1}^n \frac{k_i^{k_i}}{k_i!}$$
$$\int_{\bar{\mathcal{M}}_{g,n}} \frac{c(\Lambda_{g,n}^*)}{(1-k_1\psi_1)\dots(1-k_n\psi_n)}.$$

• For g = 0 we get

$$h_{0,k_1,\dots,k_n} = \frac{(K+n-2)!}{\#Aut(k_1,\dots,k_n)} \prod_{i=1}^n \frac{k_i^{k_i}}{k_i!} K^{n-3}.$$

• Integrate the top Segre class of the cone ker res.

$$h_{g;k_1,...,k_n} = \frac{(K+n+2g-2)!}{\#Aut(k_1,...,k_n)} \prod_{i=1}^n \frac{k_i^{k_i}}{k_i!}$$
$$\int_{\bar{\mathcal{M}}_{g,n}} \frac{c(\Lambda_{g,n}^*)}{(1-k_1\psi_1)\dots(1-k_n\psi_n)}.$$

• For g = 0 we get

$$h_{0,k_1,\dots,k_n} = \frac{(K+n-2)!}{\#Aut(k_1,\dots,k_n)} \prod_{i=1}^n \frac{k_i^{k_i}}{k_i!} K^{n-3}.$$

• Classical formula of Hurwitz.

• If g = 1

• If g = 1

$$a_{1,k_1,\dots,k_n} = \frac{(K+n)!}{24 \# Aut(k_1,\dots,k_n)}$$
$$\prod_{i=1}^n \frac{k_i^{k_i}}{k_i!} (K^n - \sum_{i=2}^n (i-2)! e_i K^{n-i} - K^{n-1}).$$

• If g = 1

$$h_{1,k_1,\dots,k_n} = \frac{(K+n)!}{24 \# Aut(k_1,\dots,k_n)}$$

$$\prod_{i=1}^n \frac{k_i^{k_i}}{k_i!} (K^n - \sum_{i=2}^n (i-2)! e_i K^{n-i} - K^{n-1}).$$
• e_i are elementary symmetric polynomials on k_1,\dots,k_n

• If g = 1

$$n_{1,k_1,\dots,k_n} = \frac{(K+n)!}{24\#Aut(k_1,\dots,k_n)}$$
$$\prod_{i=1}^n \frac{k_i^{k_i}}{k_i!} (K^n - \sum_{i=2}^n (i-2)! e_i K^{n-i} - K^{n-1}).$$

• e_i are elementary symmetric polynomials on k_1, \ldots, k_n

Moduli spaces of maps

• $\overline{\mathcal{M}}_{g,n}(X,\beta)$ maps $f: C \to X, f_*[C] = \beta$.

Moduli spaces of maps

- $\overline{\mathcal{M}}_{g,n}(X,\beta)$ maps $f: C \to X, f_*[C] = \beta$.
- Stable map no non-trivial automorphism.
- $\overline{\mathcal{M}}_{g,n}(X,\beta)$ maps $f: C \to X, f_*[C] = \beta$.
- Stable map no non-trivial automorphism.
- Each contracted component of C is a stable curve.

- $\overline{\mathcal{M}}_{g,n}(X,\beta)$ maps $f: C \to X, f_*[C] = \beta$.
- Stable map no non-trivial automorphism.
- Each contracted component of C is a stable curve.
- Compactness now classical.

- $\overline{\mathcal{M}}_{g,n}(X,\beta)$ maps $f: C \to X$, $f_*[C] = \beta$.
- Stable map no non-trivial automorphism.
- Each contracted component of C is a stable curve.
- Compactness now classical.
- Expected dimension

- $\overline{\mathcal{M}}_{g,n}(X,\beta)$ maps $f: C \to X, f_*[C] = \beta$.
- Stable map no non-trivial automorphism.
- Each contracted component of C is a stable curve.
- Compactness now classical.
- Expected dimension

 $h^0(C, N_{C/X}) - h^1(C, N_{C/X}) =$

- $\overline{\mathcal{M}}_{g,n}(X,\beta)$ maps $f: C \to X, f_*[C] = \beta$.
- Stable map no non-trivial automorphism.
- Each contracted component of C is a stable curve.
- Compactness now classical.
- Expected dimension

$$h^{0}(C, N_{C/X}) - h^{1}(C, N_{C/X}) =$$

 $\stackrel{RR}{=} C^{2} + (dimX - 1)(1 - g)$

- $\overline{\mathcal{M}}_{g,n}(X,\beta)$ maps $f: C \to X$, $f_*[C] = \beta$.
- Stable map no non-trivial automorphism.
- Each contracted component of C is a stable curve.
- Compactness now classical.
- Expected dimension

$$h^{0}(C, N_{C/X}) - h^{1}(C, N_{C/X}) =$$

 $\stackrel{RR}{=} C^{2} + (dimX - 1)(1 - g)$
 $\stackrel{genus}{=} 2g - 2 - K \cdot C + (dimX - 1)(1 - g)$

- $\overline{\mathcal{M}}_{g,n}(X,\beta)$ maps $f: C \to X$, $f_*[C] = \beta$.
- Stable map no non-trivial automorphism.
- Each contracted component of C is a stable curve.
- Compactness now classical.
- Expected dimension $\dim(X)(1-g) + \int_{\beta} c_1(TX) + n + 3g - 3.$

- $\overline{\mathcal{M}}_{g,n}(X,\beta)$ maps $f: C \to X, f_*[C] = \beta$.
- Stable map no non-trivial automorphism.
- Each contracted component of C is a stable curve.
- Compactness now classical.
- Expected dimension $\dim(X)(1-g) + \int_{\beta} c_1(TX) + n + 3g - 3.$
- $\bar{\mathcal{M}}_{g,n}(X,\beta)$ is very nasty.

• Consider $\overline{\mathcal{M}}_{2,0}(\mathbb{P}^1, 2L)$.

- Consider $\overline{\mathcal{M}}_{2,0}(\mathbb{P}^1, 2L)$.
- Hyperelliptic curves

- Consider $\overline{\mathcal{M}}_{2,0}(\mathbb{P}^1, 2L)$.
- Hyperelliptic curves
- Irreducible component $\dim = 6$.

- Consider $\overline{\mathcal{M}}_{2,0}(\mathbb{P}^1, 2L)$.
- Hyperelliptic curves
- Irreducible component $\dim = 6$.
- Maps $f: C \cup \mathbb{P}^1 \to \mathbb{P}^1$, $f(C) = pt., f|_{\mathbb{P}^1}$ is 2-1. Dimension 7.

- Consider $\overline{\mathcal{M}}_{2,0}(\mathbb{P}^1, 2L)$.
- Hyperelliptic curves
- Irreducible component $\dim = 6$.
- Maps $f: C \cup \mathbb{P}^1 \to \mathbb{P}^1$, $f(C) = pt., f|_{\mathbb{P}^1}$ is 2-1. Dimension 7.
- If $h^1(C, \pi^*TX) = 0$, then (C, π) is non-singular point of $\bar{\mathcal{M}}_{g,n}(X, \beta)$.

- Consider $\overline{\mathcal{M}}_{2,0}(\mathbb{P}^1, 2L)$.
- Hyperelliptic curves
- Irreducible component $\dim = 6$.
- Maps $f: C \cup \mathbb{P}^1 \to \mathbb{P}^1$, $f(C) = pt., f|_{\mathbb{P}^1}$ is 2-1. Dimension 7.
- If $h^1(C, \pi^*TX) = 0$, then (C, π) is non-singular point of $\bar{\mathcal{M}}_{g,n}(X, \beta)$.
- Geometrically: construct $\overline{\mathcal{M}}_{g,n}(X,\beta)$ as the zero set of a section.

- Consider $\overline{\mathcal{M}}_{2,0}(\mathbb{P}^1, 2L)$.
- Hyperelliptic curves
- Irreducible component $\dim = 6$.
- Maps $f: C \cup \mathbb{P}^1 \to \mathbb{P}^1$, $f(C) = pt., f|_{\mathbb{P}^1}$ is 2-1. Dimension 7.
- If $h^1(C, \pi^*TX) = 0$, then (C, π) is non-singular point of $\bar{\mathcal{M}}_{g,n}(X, \beta)$.
- Geometrically: construct $\overline{\mathcal{M}}_{g,n}(X,\beta)$ as the zero set of a section.
- This is not transverse. Can't use IFT.

- Consider $\overline{\mathcal{M}}_{2,0}(\mathbb{P}^1, 2L)$.
- Hyperelliptic curves
- Irreducible component $\dim = 6$.
- Maps $f: C \cup \mathbb{P}^1 \to \mathbb{P}^1$, $f(C) = pt., f|_{\mathbb{P}^1}$ is 2-1. Dimension 7.
- If $h^1(C, \pi^*TX) = 0$, then (C, π) is non-singular point of $\bar{\mathcal{M}}_{g,n}(X, \beta)$.
- Geometrically: construct $\overline{\mathcal{M}}_{g,n}(X,\beta)$ as the zero set of a section.
- This is not transverse. Can't use IFT.
- Define virtual class $[\overline{\mathcal{M}}_{g,n}(X,\beta)]$ in $A_{vdim}(\overline{\mathcal{M}}_{g,n}(X,\beta)).$

Classes on $\overline{\mathcal{M}}_{g,n}(X,\beta)$

• For $(C, \{p_1, \ldots, p_n\}, \pi)$ put $ev_i = \pi(p_i) \in X$.

- For $(C, \{p_1, \ldots, p_n\}, \pi)$ put $ev_i = \pi(p_i) \in X$.
- A map $\overline{\mathcal{M}}_{g,n}(X,\beta) \to X$.

Classes on $\bar{\mathcal{M}}_{g,n}(X,\beta)$

- For $(C, \{p_1, \ldots, p_n\}, \pi)$ put $ev_i = \pi(p_i) \in X$.
- A map $\overline{\mathcal{M}}_{g,n}(X,\beta) \to X$.
- Class $ev_i^*(\omega)$ for any $\omega \in A^*(X)$.

Classes on $\bar{\mathcal{M}}_{g,n}(X,\beta)$

- For $(C, \{p_1, \ldots, p_n\}, \pi)$ put $ev_i = \pi(p_i) \in X$.
- A map $\overline{\mathcal{M}}_{g,n}(X,\beta) \to X$.
- Class $ev_i^*(\omega)$ for any $\omega \in A^*(X)$.
- Classes ψ_i and λ_j as in $\overline{\mathcal{M}}_{g,n}$.

Classes on $\bar{\mathcal{M}}_{g,n}(X,\beta)$

- For $(C, \{p_1, \ldots, p_n\}, \pi)$ put $ev_i = \pi(p_i) \in X$.
- A map $\overline{\mathcal{M}}_{g,n}(X,\beta) \to X.$
- Class $ev_i^*(\omega)$ for any $\omega \in A^*(X)$.
- Classes ψ_i and λ_j as in $\overline{\mathcal{M}}_{g,n}$.
- Integrate them against $[\overline{\mathcal{M}}_{g,n}(X,\beta)]$.

Classes on $\overline{\mathcal{M}}_{g,n}(X,\beta)$

- For $(C, \{p_1, \ldots, p_n\}, \pi)$ put $ev_i = \pi(p_i) \in X$.
- A map $\overline{\mathcal{M}}_{g,n}(X,\beta) \to X.$
- Class $ev_i^*(\omega)$ for any $\omega \in A^*(X)$.
- Classes ψ_i and λ_j as in $\overline{\mathcal{M}}_{g,n}$.
- Integrate them against $[\overline{\mathcal{M}}_{g,n}(X,\beta)]$.
- Interpretation. $\langle ev_1(\omega_1), \ldots, ev_n(\omega_n) \rangle$ counts curves on X intersecting $\omega_1, \ldots, \omega_n$.

• No idea how to calculate.

- No idea how to calculate.
- $\bar{\mathcal{M}}_{g,n}(X,0)$ is product.

- No idea how to calculate.
- $\bar{\mathcal{M}}_{g,n}(X,0)$ is product.
- \mathbb{P}^1 should be related to Hurwitz numbers.

- No idea how to calculate.
- $\bar{\mathcal{M}}_{g,n}(X,0)$ is product.
- \mathbb{P}^1 should be related to Hurwitz numbers.
- Okounkov–Pandharipande: class of ℙ¹ through localisations,

- No idea how to calculate.
- $\bar{\mathcal{M}}_{g,n}(X,0)$ is product.
- \mathbb{P}^1 should be related to Hurwitz numbers.
- Okounkov–Pandharipande: class of ℙ¹ through localisations,
- Another proof of Kontsevich–Witten theorem

- No idea how to calculate.
- $\bar{\mathcal{M}}_{g,n}(X,0)$ is product.
- \mathbb{P}^1 should be related to Hurwitz numbers.
- Okounkov–Pandharipande: class of ℙ¹ through localisations,
- Another proof of Kontsevich–Witten theorem
- Toda equation for gravitational classes.