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Semigroups of singular points

For a singularity xp − yq = 0 with p,q coprime, the
semigroup is generated by p and q.

If p = 4, q = 7, the semigroup is
S4,7 := (0,4,7,8,11,12,14,15,16,18,19,20,21, . . .).
The gap sequence is G4,7 = {1,2,3,5,6,9,10,13,17}.
We have #G4,7 = µ/2 and max{x ∈ G4,7} = 17 = µ− 1.
The gap function is defined as

I(m) := #{x ∈ Z, x ≥ m, x 6∈ S4,7}.

We have

I4,7(5) = #{5,6,9,10,13,17} = 6.

Always I(0) = µ/2, I(x) = 0 for x ≥ µ and I(−n) = n + µ/2
for n > 0.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves



Semigroups of singular points

For a singularity xp − yq = 0 with p,q coprime, the
semigroup is generated by p and q.
If p = 4, q = 7, the semigroup is
S4,7 := (0,4,7,8,11,12,14,15,16,18,19,20,21, . . .).

The gap sequence is G4,7 = {1,2,3,5,6,9,10,13,17}.
We have #G4,7 = µ/2 and max{x ∈ G4,7} = 17 = µ− 1.
The gap function is defined as

I(m) := #{x ∈ Z, x ≥ m, x 6∈ S4,7}.

We have

I4,7(5) = #{5,6,9,10,13,17} = 6.

Always I(0) = µ/2, I(x) = 0 for x ≥ µ and I(−n) = n + µ/2
for n > 0.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves



Semigroups of singular points

For a singularity xp − yq = 0 with p,q coprime, the
semigroup is generated by p and q.
If p = 4, q = 7, the semigroup is
S4,7 := (0,4,7,8,11,12,14,15,16,18,19,20,21, . . .).
The gap sequence is G4,7 = {1,2,3,5,6,9,10,13,17}.

We have #G4,7 = µ/2 and max{x ∈ G4,7} = 17 = µ− 1.
The gap function is defined as

I(m) := #{x ∈ Z, x ≥ m, x 6∈ S4,7}.

We have

I4,7(5) = #{5,6,9,10,13,17} = 6.

Always I(0) = µ/2, I(x) = 0 for x ≥ µ and I(−n) = n + µ/2
for n > 0.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves



Semigroups of singular points

For a singularity xp − yq = 0 with p,q coprime, the
semigroup is generated by p and q.
If p = 4, q = 7, the semigroup is
S4,7 := (0,4,7,8,11,12,14,15,16,18,19,20,21, . . .).
The gap sequence is G4,7 = {1,2,3,5,6,9,10,13,17}.
We have #G4,7 = µ/2 and max{x ∈ G4,7} = 17 = µ− 1.

The gap function is defined as

I(m) := #{x ∈ Z, x ≥ m, x 6∈ S4,7}.

We have

I4,7(5) = #{5,6,9,10,13,17} = 6.

Always I(0) = µ/2, I(x) = 0 for x ≥ µ and I(−n) = n + µ/2
for n > 0.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves



Semigroups of singular points

For a singularity xp − yq = 0 with p,q coprime, the
semigroup is generated by p and q.
If p = 4, q = 7, the semigroup is
S4,7 := (0,4,7,8,11,12,14,15,16,18,19,20,21, . . .).
The gap sequence is G4,7 = {1,2,3,5,6,9,10,13,17}.
We have #G4,7 = µ/2 and max{x ∈ G4,7} = 17 = µ− 1.
this is a special property of semigroups of singular points!

The gap function is defined as

I(m) := #{x ∈ Z, x ≥ m, x 6∈ S4,7}.

We have

I4,7(5) = #{5,6,9,10,13,17} = 6.

Always I(0) = µ/2, I(x) = 0 for x ≥ µ and I(−n) = n + µ/2
for n > 0.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves



Semigroups of singular points

For a singularity xp − yq = 0 with p,q coprime, the
semigroup is generated by p and q.
If p = 4, q = 7, the semigroup is
S4,7 := (0,4,7,8,11,12,14,15,16,18,19,20,21, . . .).
The gap sequence is G4,7 = {1,2,3,5,6,9,10,13,17}.
We have #G4,7 = µ/2 and max{x ∈ G4,7} = 17 = µ− 1.
The gap function is defined as

I(m) := #{x ∈ Z, x ≥ m, x 6∈ S4,7}.

We have

I4,7(5) = #{5,6,9,10,13,17} = 6.

Always I(0) = µ/2, I(x) = 0 for x ≥ µ and I(−n) = n + µ/2
for n > 0.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves



Semigroups of singular points

For a singularity xp − yq = 0 with p,q coprime, the
semigroup is generated by p and q.
If p = 4, q = 7, the semigroup is
S4,7 := (0,4,7,8,11,12,14,15,16,18,19,20,21, . . .).
The gap sequence is G4,7 = {1,2,3,5,6,9,10,13,17}.
We have #G4,7 = µ/2 and max{x ∈ G4,7} = 17 = µ− 1.
The gap function is defined as

I(m) := #{x ∈ Z, x ≥ m, x 6∈ S4,7}.

We have

I4,7(5) = #{5,6,9,10,13,17} = 6.

Always I(0) = µ/2, I(x) = 0 for x ≥ µ and I(−n) = n + µ/2
for n > 0.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves



Semigroups of singular points

For a singularity xp − yq = 0 with p,q coprime, the
semigroup is generated by p and q.
If p = 4, q = 7, the semigroup is
S4,7 := (0,4,7,8,11,12,14,15,16,18,19,20,21, . . .).
The gap sequence is G4,7 = {1,2,3,5,6,9,10,13,17}.
We have #G4,7 = µ/2 and max{x ∈ G4,7} = 17 = µ− 1.
The gap function is defined as

I(m) := #{x ∈ Z, x ≥ m, x 6∈ S4,7}.

We have

I4,7(5) = #{5,6,9,10,13,17} = 6.

Always I(0) = µ/2, I(x) = 0 for x ≥ µ and I(−n) = n + µ/2
for n > 0.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves



The Alexander polynomial

For a semigroup S with a gap sequence G we define

∆S(t) = 1 + (t − 1)
∑
j∈G

t j .

For the semigroup S4,7, the gap sequence is
{1,2,3,5,6,9,10,13,17}, so we have

∆4,7(t) = 1 + (t −1)
(

t + t2 + t3 + t5 + t6 + t9 + t10 + t13 + t17
)

or:

∆4,7 = 1− t + t4 − t5 + t7 − t9 + t11 − t13 + t14 − t17 + t18.

This is the Alexander polynomial of the knot of the singularity.
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The staircase

∆4,7 = t18 − t17 + t14 − t13 + t11 − t9 + t7 − t5 + t4 − t + 1.

9 = g(T4,7)

18− 17 = 1
17− 14 = 3
14− 13 = 1
13− 11 = 2
. . . and so on
Symmetry
reflects
symmetry of ∆
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The staircase complex

Place Z2 for each
vertex.
Differential is given
by lines as
depicted.
Type A vertices.
Type B vertices.
Bifiltration is given
by coordinates.
Absolute grading
of a type A vertex
is 0, of type B is 1.
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Now there comes something really scary

We will tensor the staircase complex by Z2[U,U−1].

Are you ready for the challenge?
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Tensoring

Tensor St(K ) by
Z2[U,U−1].

U changes the
filtration level by
(−1,−1) and the
absolute grading by
−2.
The resulting
complex is
CFK∞(K ) if K is an
algebraic knot.
Actually, it is
enough that K is so
called an L–space
knot.
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(0)

(−2)

(−4)

(−6)
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The function J(m)

J(m) = min
(v1,v2)∈VertA

max(v1, v2 −m)

m ∈ Z. Here
m = 1.

The subcomplex
C(i < 0, j < m).
Look at the
quotient C+.
Define J(m) as
the minimal
absolute grading
of an element
non-trivial in
homology of the
quotient.
J(m) = I(m − g).
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Question

Now you may start wondering:

Oh where, oh where has the true
mathematics gone?

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves



Question

Now you may start wondering:

Oh where, oh where has the true
mathematics gone?

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves



d-invariants of Ozsváth and Szabó

Proposition
Let K be an L–space knot.

Let q > 2g(K ) and
m ∈ [−q/2,q/2]. Then

d(S3
q(K ), sm) =

(q − 2m)2 − q
4q

− 2I(m + g).

Theorem
If M3 bounds a smooth negative definite manifold W 4 and s is a
spinc structure on M3, that is a restriction of a spinc structure t
on W, then

d(M, s) ≥
c2

1(t)− 2χ(W )− 3σ(W )

4
.
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Applications. The FLMN conjecture.

C degree d rational cuspidal curve in CP2.

N neighbourhood of C, M = ∂N, W = CP2 \ N. W is
rational homology ball.
Then M = S3

d2(K ), K is connected sum of links of
singularities.

Suppose that C is unicuspidal.

The spinc structures that extend over W are those with
m = kd for d odd or kd/2 for d even, k ∈ Z.
By Ozsváth and Szabó, d–invariant must vanish for sm.

Theorem (—,Livingston, 2013)
If I is the gap function associated with the single singular point,
j = 0, . . . ,d − 3. Then

I(jd + 1) =
(d − j − 1)(d − j − 2)

2
.

Generalizations apply for many singular points.
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Applications. Semigroup semicontinuity.

K1,K2 two knots. Suppose there is a PSI cobordism from
K1 to K2 with k double points.

Wq is a cobordism between S3
q(K1) and S3

q+4k (K2).

Theorem (—,Livingston 2013)
If K1 and K2 are two L–space knots, g1 and g2 their genera, I1
and I2 gap functions, then for any m ∈ Z:

I2(m + g2 + k) ≤ I1(m + g1).

Example
Set K1 unknot, K2 = Tp,q, m = 0, k = g2 − 1. Then
I2(2g2 − 1) = 1 6≤ I1(g1) = 0.

This detects the unknotting number of torus knots.
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Applications. Semigroup semicontinuity.

In the case of δ–constant deformation, k = g2 − g1.

We get #Γ2 ∩ [0,m) ≤ #Γ1 ∩ [0,m). Semigroup
semicontinuity property.
First obtained by Gorsky–Némethi in January 2013
(without δ–constant assumption).
Another proof by Javier Fernandez de Bobadilla.
In general weak, but it uses smooth structure, unlike
semicontinuity of spectrum.
(6; 7) cannot be perturbed to (4; 9), even though the
spectrum allows it.
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Perspectives

Generalize for curves with higher genus (joint project with
Ch. Livingston).
Generalize for curves in Hirzebruch surfaces (joint project
with K. Moe).
Relate staircases to lattice homology by András Némethi.
Can one classify all the rational unicuspidal curves in CP2?
For many cusps other tools are more useful.
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