Heegaard Floer homologies and rational cuspidal curves joint with Ch. Livingston

Maciej Borodzik
www.mimuw.edu.pl/~mcboro
Institute of Mathematics, University of Warsaw

Edinburgh, September 2013

Semigroups of singular points

- For a singularity $x^{p}-y^{q}=0$ with p, q coprime, the semigroup is generated by p and q.

Semigroups of singular points

- For a singularity $x^{p}-y^{q}=0$ with p, q coprime, the semigroup is generated by p and q.
- If $p=4, q=7$, the semigroup is

$$
S_{4,7}:=(0,4,7,8,11,12,14,15,16,18,19,20,21, \ldots)
$$

Semigroups of singular points

- For a singularity $x^{p}-y^{q}=0$ with p, q coprime, the semigroup is generated by p and q.
- If $p=4, q=7$, the semigroup is
$S_{4,7}:=(0,4,7,8,11,12,14,15,16,18,19,20,21, \ldots)$.
- The gap sequence is $G_{4,7}=\{1,2,3,5,6,9,10,13,17\}$.

Semigroups of singular points

- For a singularity $x^{p}-y^{q}=0$ with p, q coprime, the semigroup is generated by p and q.
- If $p=4, q=7$, the semigroup is $S_{4,7}:=(0,4,7,8,11,12,14,15,16,18,19,20,21, \ldots)$.
- The gap sequence is $G_{4,7}=\{1,2,3,5,6,9,10,13,17\}$.
- We have $\# G_{4,7}=\mu / 2$ and $\max \left\{x \in G_{4,7}\right\}=17=\mu-1$.

Semigroups of singular points

- For a singularity $x^{p}-y^{q}=0$ with p, q coprime, the semigroup is generated by p and q.
- If $p=4, q=7$, the semigroup is

$$
S_{4,7}:=(0,4,7,8,11,12,14,15,16,18,19,20,21, \ldots)
$$

- The gap sequence is $G_{4,7}=\{1,2,3,5,6,9,10,13,17\}$.
- We have $\# G_{4,7}=\mu / 2$ and $\max \left\{x \in G_{4,7}\right\}=17=\mu-1$. this is a special property of semigroups of singular points!

Semigroups of singular points

- For a singularity $x^{p}-y^{q}=0$ with p, q coprime, the semigroup is generated by p and q.
- If $p=4, q=7$, the semigroup is $S_{4,7}:=(0,4,7,8,11,12,14,15,16,18,19,20,21, \ldots)$.
- The gap sequence is $G_{4,7}=\{1,2,3,5,6,9,10,13,17\}$.
- We have $\# G_{4,7}=\mu / 2$ and $\max \left\{x \in G_{4,7}\right\}=17=\mu-1$.
- The gap function is defined as

$$
I(m):=\#\left\{x \in \mathbb{Z}, x \geq m, x \notin S_{4,7}\right\}
$$

Semigroups of singular points

- For a singularity $x^{p}-y^{q}=0$ with p, q coprime, the semigroup is generated by p and q.
- If $p=4, q=7$, the semigroup is

$$
S_{4,7}:=(0,4,7,8,11,12,14,15,16,18,19,20,21, \ldots) .
$$

- The gap sequence is $G_{4,7}=\{1,2,3,5,6,9,10,13,17\}$.
- We have $\# G_{4,7}=\mu / 2$ and $\max \left\{x \in G_{4,7}\right\}=17=\mu-1$.
- The gap function is defined as

$$
I(m):=\#\left\{x \in \mathbb{Z}, x \geq m, x \notin S_{4,7}\right\}
$$

- We have

$$
I_{4,7}(5)=\#\{5,6,9,10,13,17\}=6
$$

Semigroups of singular points

- For a singularity $x^{p}-y^{q}=0$ with p, q coprime, the semigroup is generated by p and q.
- If $p=4, q=7$, the semigroup is

$$
S_{4,7}:=(0,4,7,8,11,12,14,15,16,18,19,20,21, \ldots)
$$

- The gap sequence is $G_{4,7}=\{1,2,3,5,6,9,10,13,17\}$.
- We have $\# G_{4,7}=\mu / 2$ and $\max \left\{x \in G_{4,7}\right\}=17=\mu-1$.
- The gap function is defined as

$$
I(m):=\#\left\{x \in \mathbb{Z}, x \geq m, x \notin S_{4,7}\right\}
$$

- We have

$$
I_{4,7}(5)=\#\{5,6,9,10,13,17\}=6
$$

- Always $I(0)=\mu / 2, I(x)=0$ for $x \geq \mu$ and $I(-n)=n+\mu / 2$ for $n>0$.

The Alexander polynomial

For a semigroup S with a gap sequence G we define

The Alexander polynomial

For a semigroup S with a gap sequence G we define

$$
\Delta_{S}(t)=1+(t-1) \sum_{j \in G} t^{j}
$$

The Alexander polynomial

For a semigroup S with a gap sequence G we define

$$
\Delta_{S}(t)=1+(t-1) \sum_{j \in G} t^{j}
$$

For the semigroup $S_{4,7}$, the gap sequence is
$\{1,2,3,5,6,9,10,13,17\}$, so we have

The Alexander polynomial

For a semigroup S with a gap sequence G we define

$$
\Delta_{S}(t)=1+(t-1) \sum_{j \in G} t^{j} .
$$

For the semigroup $S_{4,7}$, the gap sequence is
$\{1,2,3,5,6,9,10,13,17\}$, so we have
$\Delta_{4,7}(t)=1+(t-1)\left(t+t^{2}+t^{3}+t^{5}+t^{6}+t^{9}+t^{10}+t^{13}+t^{17}\right)$

The Alexander polynomial

For a semigroup S with a gap sequence G we define

$$
\Delta_{S}(t)=1+(t-1) \sum_{j \in G} t^{j}
$$

For the semigroup $S_{4,7}$, the gap sequence is
$\{1,2,3,5,6,9,10,13,17\}$, so we have
$\Delta_{4,7}(t)=1+(t-1)\left(t+t^{2}+t^{3}+t^{5}+t^{6}+t^{9}+t^{10}+t^{13}+t^{17}\right)$
or:

$$
\Delta_{4,7}=1-t+t^{4}-t^{5}+t^{7}-t^{9}+t^{11}-t^{13}+t^{14}-t^{17}+t^{18}
$$

The Alexander polynomial

For a semigroup S with a gap sequence G we define

$$
\Delta_{S}(t)=1+(t-1) \sum_{j \in G} t^{j} .
$$

For the semigroup $S_{4,7}$, the gap sequence is
$\{1,2,3,5,6,9,10,13,17\}$, so we have
$\Delta_{4,7}(t)=1+(t-1)\left(t+t^{2}+t^{3}+t^{5}+t^{6}+t^{9}+t^{10}+t^{13}+t^{17}\right)$
or:

$$
\Delta_{4,7}=1-t+t^{4}-t^{5}+t^{7}-t^{9}+t^{11}-t^{13}+t^{14}-t^{17}+t^{18} .
$$

This is the Alexander polynomial of the knot of the singularity.

The staircase

$$
\Delta_{4,7}=t^{18}-t^{17}+t^{14}-t^{13}+t^{11}-t^{9}+t^{7}-t^{5}+t^{4}-t+1
$$

The staircase

$$
\Delta_{4,7}=t^{18}-t^{17}+t^{14}-t^{13}+t^{11}-t^{9}+t^{7}-t^{5}+t^{4}-t+1
$$

(09)		
-		

- $9=18 / 2$

The staircase

$$
\Delta_{4,7}=t^{18}-t^{17}+t^{14}-t^{13}+t^{11}-t^{9}+t^{7}-t^{5}+t^{4}-t+1
$$

- $9=g\left(T_{4,7}\right)$

The staircase

$$
\Delta_{4,7}=t^{18}-t^{17}+t^{14}-t^{13}+t^{11}-t^{9}+t^{7}-t^{5}+t^{4}-t+1
$$

- $9=g\left(T_{4,7}\right)$
- $18-17=1$

The staircase

$$
\Delta_{4,7}=t^{18}-t^{17}+t^{14}-t^{13}+t^{11}-t^{9}+t^{7}-t^{5}+t^{4}-t+1
$$

- $9=g\left(T_{4,7}\right)$
- $18-17=1$
- $17-14=3$

The staircase

$$
\Delta_{4,7}=t^{18}-t^{17}+t^{14}-t^{13}+t^{11}-t^{9}+t^{7}-t^{5}+t^{4}-t+1
$$

- $9=g\left(T_{4,7}\right)$
- $18-17=1$
- $17-14=3$
- $14-13=1$

The staircase

$$
\Delta_{4,7}=t^{18}-t^{17}+t^{14}-t^{13}+t^{11}-t^{9}+t^{7}-t^{5}+t^{4}-t+1
$$

- $9=g\left(T_{4,7}\right)$
- $18-17=1$
- $17-14=3$
- $14-13=1$
- $13-11=2$

The staircase

$$
\Delta_{4,7}=t^{18}-t^{17}+t^{14}-t^{13}+t^{11}-t^{9}+t^{7}-t^{5}+t^{4}-t+1
$$

- $9=g\left(T_{4,7}\right)$
- $18-17=1$
- $17-14=3$
- $14-13=1$
- $13-11=2$
- ... and so on

The staircase

$$
\Delta_{4,7}=t^{18}-t^{17}+t^{14}-t^{13}+t^{11}-t^{9}+t^{7}-t^{5}+t^{4}-t+1
$$

- $9=g\left(T_{4,7}\right)$
- $18-17=1$
- $17-14=3$
- $14-13=1$
- $13-11=2$
- ... and so on
- Symmetry
reflects
symmetry of Δ

The staircase complex

The staircase complex

- Place \mathbb{Z}_{2} for each vertex.

The staircase complex

- Place \mathbb{Z}_{2} for each vertex.
- Differential is given by lines as depicted.

The staircase complex

- Place \mathbb{Z}_{2} for each vertex.
- Differential is given
by lines as depicted.
- Type A vertices.

The staircase complex

- Place \mathbb{Z}_{2} for each vertex.
- Differential is given
by lines as depicted.
- Type A vertices.
- Type B vertices.

The staircase complex

- Place \mathbb{Z}_{2} for each vertex.
- Differential is given
by lines as depicted.
- Type A vertices.
- Type B vertices.
- Bifiltration is given by coordinates.

The staircase complex

- Place \mathbb{Z}_{2} for each vertex.
- Differential is given by lines as depicted.
- Type A vertices.
- Type B vertices.
- Bifiltration is given by coordinates.
- Absolute grading of a type A vertex is 0 , of type B is 1 .

Now there comes something really scary

We will tensor the staircase complex by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$.

Now there comes something really scary

We will tensor the staircase complex by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$. Are you ready for the challenge?

Tensoring

- Tensor St(K) by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$.

Tensoring

- Tensor St (K) by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$.
- U changes the filtration level by $(-1,-1)$ and the absolute grading by -2.

Tensoring

- Tensor St (K) by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$.
- U changes the filtration level by $(-1,-1)$ and the absolute grading by -2.

Tensoring

- Tensor St(K) by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$.
- U changes the filtration level by $(-1,-1)$ and the absolute grading by -2 .
- The resulting complex is $C F K^{\infty}(K)$ if K is an algebraic knot.

Tensoring

- Tensor St (K) by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$.
- U changes the filtration level by $(-1,-1)$ and the absolute grading by -2.
- The resulting complex is $C F K^{\infty}(K)$ if K is an algebraic knot.
- Actually, it is enough that K is so called an L-space knot.

The function $J(m)$

- $m \in \mathbb{Z}$. Here $m=1$.

The function $J(m)$

- $m \in \mathbb{Z}$. Here $m=1$.
- The subcomplex $C(i<0, j<m)$. Look at the quotient C_{+}.

The function $J(m)$

- $m \in \mathbb{Z}$. Here $m=1$.
- The subcomplex $C(i<0, j<m)$. Look at the quotient C_{+}.
- Define $J(m)$ as the minimal absolute grading of an element non-trivial in homology of the quotient.

The function $J(m)$

- $m \in \mathbb{Z}$. Here $m=1$.
- The subcomplex $C(i<0, j<m)$. Look at the quotient C_{+}.
- Define $J(m)$ as the minimal absolute grading of an element non-trivial in homology of the quotient.

The function $J(m)$

- $m \in \mathbb{Z}$. Here $m=1$.
- The subcomplex $C(i<0, j<m)$. Look at the quotient C_{+}.
- Define $J(m)$ as the minimal absolute grading of an element non-trivial in homology of the quotient.

The function $J(m)$

- $m \in \mathbb{Z}$. Here $m=1$.
- The subcomplex $C(i<0, j<m)$. Look at the quotient C_{+}.
- Define $J(m)$ as the minimal absolute grading of an element non-trivial in homology of the quotient.

$$
J(m)=\min _{\left(v_{1}, v_{2}\right) \in \operatorname{Vert}_{A}} \max \left(v_{1}, v_{2}-m\right)
$$

The function $J(m)$

$$
J(m)=\min _{\left(v_{1}, v_{2}\right) \in \operatorname{Vert}_{A}} \max \left(v_{1}, v_{2}-m\right)
$$

- $m \in \mathbb{Z}$. Here $m=1$.
- The subcomplex $C(i<0, j<m)$. Look at the quotient C_{+}.
- Define $J(m)$ as the minimal absolute grading of an element non-trivial in homology of the quotient.

The function $J(m)$

$J(m)=\min _{\left(v_{1}, v_{2}\right) \in \operatorname{Vert}_{A}} \max \left(v_{1}, v_{2}-m\right)$

- $m \in \mathbb{Z}$. Here $m=1$.
- The subcomplex $C(i<0, j<m)$. Look at the quotient C_{+}.
- Define $J(m)$ as the minimal absolute grading of an element non-trivial in homology of the quotient.
- $J(m)=I(m-g)$.

Question

Now you may start wondering:

Question

Now you may start wondering:
Oh where, oh where has the true
mathematics gone?

d-invariants of Ozsváth and Szabó

Proposition

Let K be an L-space knot.

d-invariants of Ozsváth and Szabó

Proposition

Let K be an algebraic knot.

d-invariants of Ozsváth and Szabó

Proposition

Let K be an L-space knot. Let $q>2 g(K)$ and $m \in[-q / 2, q / 2]$. Then

$$
d\left(S_{q}^{3}(K), \mathfrak{s}_{m}\right)=\frac{(q-2 m)^{2}-q}{4 q}-2 J(m) .
$$

d-invariants of Ozsváth and Szabó

Proposition

Let K be an L-space knot. Let $q>2 g(K)$ and $m \in[-q / 2, q / 2]$. Then

$$
d\left(S_{q}^{3}(K), s_{m}\right)=\frac{(q-2 m)^{2}-q}{4 q}-2 l(m+g) .
$$

Theorem

If M^{3} bounds a smooth negative definite manifold W^{4} and \mathfrak{s} is a spin c structure on M^{3}, that is a restriction of a spin ${ }^{c}$ structure t on W, then

$$
d(M, \mathfrak{s}) \geq \frac{c_{1}^{2}(\mathfrak{t})-2 \chi(W)-3 \sigma(W)}{4}
$$

Applications. The FLMN conjecture.

- C degree d rational cuspidal curve in $\mathbb{C} P^{2}$.

Applications. The FLMN conjecture.

- C degree d rational cuspidal curve in $\mathbb{C} P^{2}$.
- N neighbourhood of $C, M=\partial N, W=\mathbb{C} P^{2} \backslash N$. W is rational homology ball.

Applications. The FLMN conjecture.

- C degree d rational cuspidal curve in $\mathbb{C} P^{2}$.
- N neighbourhood of $C, M=\partial N, W=\mathbb{C} P^{2} \backslash N$. W is rational homology ball.
- Then $M=S_{d^{2}}^{3}(K), K$ is connected sum of links of singularities.

Applications. The FLMN conjecture.

- C degree d rational cuspidal curve in $\mathbb{C} P^{2}$.
- N neighbourhood of $C, M=\partial N, W=\mathbb{C} P^{2} \backslash N$. W is rational homology ball.
- Then $M=S_{d^{2}}^{3}(K), K$ is connected sum of links of singularities. Suppose that C is unicuspidal.

Applications. The FLMN conjecture.

- C degree d rational cuspidal curve in $\mathbb{C} P^{2}$.
- N neighbourhood of $C, M=\partial N, W=\mathbb{C} P^{2} \backslash N$. W is rational homology ball.
- Then $M=S_{d^{2}}^{3}(K), K$ is connected sum of links of singularities. Suppose that C is unicuspidal.
- The spin ${ }^{c}$ structures that extend over W are those with $m=k d$ for d odd or $k d / 2$ for d even, $k \in \mathbb{Z}$.

Applications. The FLMN conjecture.

- C degree d rational cuspidal curve in $\mathbb{C} P^{2}$.
- N neighbourhood of $C, M=\partial N, W=\mathbb{C} P^{2} \backslash N$. W is rational homology ball.
- Then $M=S_{d^{2}}^{3}(K), K$ is connected sum of links of singularities. Suppose that C is unicuspidal.
- The spin c structures that extend over W are those with $m=k d$ for d odd or $k d / 2$ for d even, $k \in \mathbb{Z}$.
- By Ozsváth and Szabó, d-invariant must vanish for $\mathfrak{s}_{\mathrm{m}}$.

Theorem (—,Livingston, 2013)

If I is the gap function associated with the single singular point, $j=0, \ldots, d-3$. Then

$$
I(j d+1)=\frac{(d-j-1)(d-j-2)}{2}
$$

Applications. The FLMN conjecture.

- C degree d rational cuspidal curve in $\mathbb{C} P^{2}$.
- N neighbourhood of $C, M=\partial N, W=\mathbb{C} P^{2} \backslash N$. W is rational homology ball.
- Then $M=S_{d^{2}}^{3}(K), K$ is connected sum of links of singularities. Suppose that C is unicuspidal.
- The spin c structures that extend over W are those with $m=k d$ for d odd or $k d / 2$ for d even, $k \in \mathbb{Z}$.
- By Ozsváth and Szabó, d-invariant must vanish for $\mathfrak{s}_{\mathrm{m}}$.

Theorem (—,Livingston, 2013)

If I is the gap function associated with the single singular point, $j=0, \ldots, d-3$. Then

$$
I(j d+1)=\frac{(d-j-1)(d-j-2)}{2}
$$

Generalizations apply for many singular points.

Applications. Semigroup semicontinuity.

- K_{1}, K_{2} two knots. Suppose there is a PSI cobordism from K_{1} to K_{2} with k double points.

Applications. Semigroup semicontinuity.

- K_{1}, K_{2} two knots. Suppose there is a PSI cobordism from K_{1} to K_{2} with k double points.
- W_{q} is a cobordism between $S_{q}^{3}\left(K_{1}\right)$ and $S_{q+4 k}^{3}\left(K_{2}\right)$.

Applications. Semigroup semicontinuity.

- K_{1}, K_{2} two knots. Suppose there is a PSI cobordism from K_{1} to K_{2} with k double points.
- W_{q} is a cobordism between $S_{q}^{3}\left(K_{1}\right)$ and $S_{q+4 k}^{3}\left(K_{2}\right)$.

Theorem (—,Livingston 2013)

If K_{1} and K_{2} are two L-space knots, g_{1} and g_{2} their genera, I_{1} and l_{2} gap functions, then for any $m \in \mathbb{Z}$:

$$
I_{2}\left(m+g_{2}+k\right) \leq I_{1}\left(m+g_{1}\right)
$$

Applications. Semigroup semicontinuity.

- K_{1}, K_{2} two knots. Suppose there is a PSI cobordism from K_{1} to K_{2} with k double points.
- W_{q} is a cobordism between $S_{q}^{3}\left(K_{1}\right)$ and $S_{q+4 k}^{3}\left(K_{2}\right)$.

Theorem (—,Livingston 2013)

If K_{1} and K_{2} are two L-space knots, g_{1} and g_{2} their genera, I_{1} and l_{2} gap functions, then for any $m \in \mathbb{Z}$:

$$
I_{2}\left(m+g_{2}+k\right) \leq I_{1}\left(m+g_{1}\right)
$$

Example

Set K_{1} unknot, $K_{2}=T_{p, q}, m=0, k=g_{2}-1$. Then $I_{2}\left(2 g_{2}-1\right)=1 \not \leq I_{1}\left(g_{1}\right)=0$.

Applications. Semigroup semicontinuity.

- K_{1}, K_{2} two knots. Suppose there is a PSI cobordism from K_{1} to K_{2} with k double points.
- W_{q} is a cobordism between $S_{q}^{3}\left(K_{1}\right)$ and $S_{q+4 k}^{3}\left(K_{2}\right)$.

Theorem (—,Livingston 2013)

If K_{1} and K_{2} are two L-space knots, g_{1} and g_{2} their genera, l_{1} and l_{2} gap functions, then for any $m \in \mathbb{Z}$:

$$
I_{2}\left(m+g_{2}+k\right) \leq I_{1}\left(m+g_{1}\right)
$$

Example

Set K_{1} unknot, $K_{2}=T_{p, q}, m=0, k=g_{2}-1$. Then $I_{2}\left(2 g_{2}-1\right)=1 \not \leq I_{1}\left(g_{1}\right)=0$.

This detects the unknotting number of torus knots.

Applications. Semigroup semicontinuity.

- In the case of δ-constant deformation, $k=g_{2}-g_{1}$.

Applications. Semigroup semicontinuity.

- In the case of δ-constant deformation, $k=g_{2}-g_{1}$.
- We get $\# \Gamma_{2} \cap[0, m) \leq \# \Gamma_{1} \cap[0, m)$. Semigroup semicontinuity property.

Applications. Semigroup semicontinuity.

- In the case of δ-constant deformation, $k=g_{2}-g_{1}$.
- We get $\# \Gamma_{2} \cap[0, m) \leq \# \Gamma_{1} \cap[0, m)$. Semigroup semicontinuity property.
- First obtained by Gorsky-Némethi in January 2013 (without δ-constant assumption).

Applications. Semigroup semicontinuity.

- In the case of δ-constant deformation, $k=g_{2}-g_{1}$.
- We get $\# \Gamma_{2} \cap[0, m) \leq \# \Gamma_{1} \cap[0, m)$. Semigroup semicontinuity property.
- First obtained by Gorsky-Némethi in January 2013 (without δ-constant assumption).
- Another proof by Javier Fernandez de Bobadilla.

Applications. Semigroup semicontinuity.

- In the case of δ-constant deformation, $k=g_{2}-g_{1}$.
- We get $\# \Gamma_{2} \cap[0, m) \leq \# \Gamma_{1} \cap[0, m)$. Semigroup semicontinuity property.
- First obtained by Gorsky-Némethi in January 2013 (without δ-constant assumption).
- Another proof by Javier Fernandez de Bobadilla.
- In general weak, but it uses smooth structure, unlike semicontinuity of spectrum.

Applications. Semigroup semicontinuity.

- In the case of δ-constant deformation, $k=g_{2}-g_{1}$.
- We get $\# \Gamma_{2} \cap[0, m) \leq \# \Gamma_{1} \cap[0, m)$. Semigroup semicontinuity property.
- First obtained by Gorsky-Némethi in January 2013 (without δ-constant assumption).
- Another proof by Javier Fernandez de Bobadilla.
- In general weak, but it uses smooth structure, unlike semicontinuity of spectrum.
- $(6 ; 7)$ cannot be perturbed to $(4 ; 9)$, even though the spectrum allows it.

... you must have been waiting long time for this slide.

... you must have been waiting long time for this slide.

Thank you!

... you must have been waiting long time for this slide.

Thank you!

... you must have been waiting long time for this slide.

Thank you!

... you must have been waiting long time for this slide.

Thank you!

... you must have been waiting long time for this slide.

Thank you!

Perspectives

- Generalize for curves with higher genus (joint project with Ch. Livingston).
- Generalize for curves in Hirzebruch surfaces (joint project with K. Moe).
- Relate staircases to lattice homology by András Némethi.
- Can one classify all the rational unicuspidal curves in $\mathbb{C} P^{2}$? For many cusps other tools are more useful.

