Heegaard Floer homologies and rational cuspidal curves joint with Ch. Livingston

Maciej Borodzik www.mimuw.edu.pl/~mcboro

Institute of Mathematics, University of Warsaw

Edinburgh, September 2013

◆□▶ ◆□▶ ◆注▶ ◆注▶ - 注

For a singularity x^p − y^q = 0 with p, q coprime, the semigroup is generated by p and q.

イロト イポト イヨト

-

- For a singularity $x^p y^q = 0$ with p, q coprime, the semigroup is generated by p and q.
- If p = 4, q = 7, the semigroup is $S_{4,7} := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, ...).$

◆ロ ▶ ◆ □ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ▶ ◆ □ ▶

- For a singularity x^p − y^q = 0 with p, q coprime, the semigroup is generated by p and q.
- If p = 4, q = 7, the semigroup is $S_{4,7} := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, ...).$
- The gap sequence is $G_{4,7} = \{1, 2, 3, 5, 6, 9, 10, 13, 17\}.$

◆ロト ◆帰 ト ◆ 臣 ト ◆ 臣 ト ● 回 ● の Q @

- For a singularity $x^p y^q = 0$ with p, q coprime, the semigroup is generated by p and q.
- If p = 4, q = 7, the semigroup is $S_{4,7} := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, ...).$
- The gap sequence is $G_{4,7} = \{1, 2, 3, 5, 6, 9, 10, 13, 17\}.$
- We have $\#G_{4,7} = \mu/2$ and max{ $x \in G_{4,7}$ } = 17 = $\mu 1$.

<ロト < 同ト < 三ト < 三ト = 三 の < ○</p>

- For a singularity $x^p y^q = 0$ with p, q coprime, the semigroup is generated by p and q.
- If p = 4, q = 7, the semigroup is $S_{4,7} := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, ...).$
- The gap sequence is $G_{4,7} = \{1, 2, 3, 5, 6, 9, 10, 13, 17\}.$
- We have #G_{4,7} = μ/2 and max{x ∈ G_{4,7}} = 17 = μ − 1. this is a special property of semigroups of singular points!

◆ロト ◆帰 ト ◆ 臣 ト ◆ 臣 ト ● 回 ● の Q @

- For a singularity $x^p y^q = 0$ with p, q coprime, the semigroup is generated by p and q.
- If p = 4, q = 7, the semigroup is $S_{4,7} := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, ...).$
- The gap sequence is $G_{4,7} = \{1, 2, 3, 5, 6, 9, 10, 13, 17\}.$
- We have $\#G_{4,7} = \mu/2$ and max{ $x \in G_{4,7}$ } = 17 = $\mu 1$.
- The gap function is defined as

$$I(m) := \#\{x \in \mathbb{Z}, x \ge m, x \notin S_{4,7}\}.$$

<ロト < 同ト < 三ト < 三ト = 三 の < ○</p>

- For a singularity x^p − y^q = 0 with p, q coprime, the semigroup is generated by p and q.
- If p = 4, q = 7, the semigroup is $S_{4,7} := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, ...).$
- The gap sequence is $G_{4,7} = \{1, 2, 3, 5, 6, 9, 10, 13, 17\}.$
- We have $\#G_{4,7} = \mu/2$ and max{ $x \in G_{4,7}$ } = 17 = $\mu 1$.
- The gap function is defined as

$$I(m) := \#\{x \in \mathbb{Z}, x \ge m, x \notin S_{4,7}\}.$$

We have

$$I_{4,7}(5) = \#\{5, 6, 9, 10, 13, 17\} = 6.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

- For a singularity $x^p y^q = 0$ with p, q coprime, the semigroup is generated by p and q.
- If p = 4, q = 7, the semigroup is $S_{4,7} := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, ...).$
- The gap sequence is $G_{4,7} = \{1, 2, 3, 5, 6, 9, 10, 13, 17\}.$
- We have $\#G_{4,7} = \mu/2$ and $\max\{x \in G_{4,7}\} = 17 = \mu 1$.
- The gap function is defined as

$$I(m) := \#\{x \in \mathbb{Z}, x \ge m, x \notin S_{4,7}\}.$$

We have

$$I_{4,7}(5) = \#\{5, 6, 9, 10, 13, 17\} = 6.$$

• Always $I(0) = \mu/2$, I(x) = 0 for $x \ge \mu$ and $I(-n) = n + \mu/2$ for n > 0.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

→ E > < E</p>

$$\Delta_{\mathcal{S}}(t) = 1 + (t-1) \sum_{j \in G} t^j.$$

→ E > < E</p>

$$\Delta_{\mathcal{S}}(t) = 1 + (t-1) \sum_{j \in G} t^j.$$

For the semigroup $S_{4,7}$, the gap sequence is $\{1, 2, 3, 5, 6, 9, 10, 13, 17\}$, so we have

< 🗇 🕨

$$\Delta_{\mathcal{S}}(t) = 1 + (t-1)\sum_{j\in G} t^j.$$

For the semigroup $S_{4,7}$, the gap sequence is $\{1, 2, 3, 5, 6, 9, 10, 13, 17\}$, so we have

$$\Delta_{4,7}(t) = 1 + (t-1)\left(t + t^2 + t^3 + t^5 + t^6 + t^9 + t^{10} + t^{13} + t^{17}\right)$$

< 🗇 🕨

$$\Delta_{\mathcal{S}}(t) = 1 + (t-1) \sum_{j \in G} t^j.$$

For the semigroup $S_{4,7}$, the gap sequence is $\{1, 2, 3, 5, 6, 9, 10, 13, 17\}$, so we have

$$\Delta_{4,7}(t) = 1 + (t-1)\left(t + t^2 + t^3 + t^5 + t^6 + t^9 + t^{10} + t^{13} + t^{17}\right)$$

or:

$$\Delta_{4,7} = 1 - t + t^4 - t^5 + t^7 - t^9 + t^{11} - t^{13} + t^{14} - t^{17} + t^{18}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\Delta_{\mathcal{S}}(t) = 1 + (t-1) \sum_{j \in G} t^j.$$

For the semigroup $S_{4,7}$, the gap sequence is $\{1, 2, 3, 5, 6, 9, 10, 13, 17\}$, so we have

$$\Delta_{4,7}(t) = 1 + (t-1)\left(t + t^2 + t^3 + t^5 + t^6 + t^9 + t^{10} + t^{13} + t^{17}\right)$$

or:

$$\Delta_{4,7} = 1 - t + t^4 - t^5 + t^7 - t^9 + t^{11} - t^{13} + t^{14} - t^{17} + t^{18}.$$

This is the Alexander polynomial of the knot of the singularity.

$$\Delta_{4,7} = t^{18} - t^{17} + t^{14} - t^{13} + t^{11} - t^9 + t^7 - t^5 + t^4 - t + 1.$$

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

ъ

æ

$$\Delta_{4,7} = t^{18} - t^{17} + t^{14} - t^{13} + t^{11} - t^9 + t^7 - t^5 + t^4 - t + 1.$$

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

토 🕨 🗉 🖻

$$\Delta_{4,7} = t^{18} - t^{17} + t^{14} - t^{13} + t^{11} - t^9 + t^7 - t^5 + t^4 - t + 1.$$

• 9 =
$$g(T_{4,7})$$

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

ъ

æ

$$\Delta_{4,7} = t^{18} - t^{17} + t^{14} - t^{13} + t^{11} - t^9 + t^7 - t^5 + t^4 - t + 1.$$

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

ъ

э

$$\Delta_{4,7} = t^{18} - t^{17} + t^{14} - t^{13} + t^{11} - t^9 + t^7 - t^5 + t^4 - t + 1.$$

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

э

$$\Delta_{4,7} = t^{18} - t^{17} + t^{14} - t^{13} + t^{11} - t^9 + t^7 - t^5 + t^4 - t + 1.$$

$$\Delta_{4,7} = t^{18} - t^{17} + t^{14} - t^{13} + t^{11} - t^9 + t^7 - t^5 + t^4 - t + 1.$$

$$\Delta_{4,7} = t^{18} - t^{17} + t^{14} - t^{13} + t^{11} - t^9 + t^7 - t^5 + t^4 - t + 1.$$

$$\Delta_{4,7} = t^{18} - t^{17} + t^{14} - t^{13} + t^{11} - t^9 + t^7 - t^5 + t^4 - t + 1.$$

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

ъ

э

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

э

э

- Place Z₂ for each vertex.
- Differential is given by lines as depicted.

- Place Z₂ for each vertex.
- Differential is given by lines as depicted.
- Type A vertices.

- Place Z₂ for each vertex.
- Differential is given by lines as depicted.
- Type A vertices.
- Type B vertices.

- Place Z₂ for each vertex.
- Differential is given by lines as depicted.
- Type A vertices.
- Type B vertices.
- Bifiltration is given by coordinates.

- Place Z₂ for each vertex.
- Differential is given by lines as depicted.
- Type A vertices.
- Type B vertices.
- Bifiltration is given by coordinates.
- Absolute grading of a type A vertex is 0, of type B is 1.

We will tensor the staircase complex by $\mathbb{Z}_2[U, U^{-1}]$.

*日ト * ヨト * ヨト

We will tensor the staircase complex by $\mathbb{Z}_2[U, U^{-1}]$. Are you ready for the challenge?

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

< 🗇 🕨

Tensoring

• Tensor St(K) by $\mathbb{Z}_2[U, U^{-1}]$.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

 $< \Xi \rightarrow$

э

Tensoring

- Tensor St(K) by $\mathbb{Z}_2[U, U^{-1}]$.
- U changes the filtration level by (-1,-1) and the absolute grading by -2.

Tensoring

- Tensor St(K) by $\mathbb{Z}_2[U, U^{-1}]$.
- U changes the filtration level by (-1,-1) and the absolute grading by -2.
Tensoring

- Tensor St(K) by $\mathbb{Z}_2[U, U^{-1}]$.
- U changes the filtration level by (-1,-1) and the absolute grading by -2.
- The resulting complex is CFK[∞](K) if K is an algebraic knot.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

Tensoring

- Tensor St(K) by $\mathbb{Z}_2[U, U^{-1}]$.
- U changes the filtration level by (-1, -1) and the absolute grading by -2.
- The resulting complex is CFK[∞](K) if K is an algebraic knot.
- Actually, it is enough that K is so called an L-space knot.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

★ E > < E >

ъ

m ∈ ℤ. Here
 m = 1.

The subcomplex C(i < 0, j < m).
 Look at the quotient C₊.

∃ → < ∃ →</p>

э

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

- *m* ∈ ℤ. Here
 m = 1.
- The subcomplex C(i < 0, j < m). Look at the quotient C_+ .
- Define J(m) as the minimal absolute grading of an element non-trivial in homology of the quotient.

- *m* ∈ ℤ. Here
 m = 1.
- The subcomplex C(i < 0, j < m). Look at the quotient C_+ .
- Define J(m) as the minimal absolute grading of an element non-trivial in homology of the quotient.

- $m \in \mathbb{Z}$. Here m = 1.
- The subcomplex C(i < 0, j < m). Look at the quotient C_+ .
- Define J(m) as the minimal absolute grading of an element non-trivial in homology of the quotient.

- *m* ∈ ℤ. Here
 m = 1.
- The subcomplex C(i < 0, j < m). Look at the quotient C_+ .
- Define J(m) as the minimal absolute grading of an element non-trivial in homology of the quotient.

$$J(m) = \min_{(v_1, v_2) \in \mathsf{Vert}_A} \max(v_1, v_2 - m)$$

- *m* ∈ ℤ. Here
 m = 1.
- The subcomplex C(i < 0, j < m). Look at the quotient C_+ .
- Define J(m) as the minimal absolute grading of an element non-trivial in homology of the quotient.

$$J(m) = \min_{(v_1, v_2) \in \mathsf{Vert}_A} \max(v_1, v_2 - m)$$

- *m* ∈ ℤ. Here
 m = 1.
- The subcomplex C(i < 0, j < m). Look at the quotient C_+ .
- Define J(m) as the minimal absolute grading of an element non-trivial in homology of the quotient.

•
$$J(m) = I(m-g)$$
.

Now you may start wondering:

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

イロト イポト イヨト イヨト

Now you may start wondering: Oh where, oh where has the true mathematics gone?

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

Proposition

Let K be an L-space knot.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

< 🗇 🕨

→ E > < E >

ъ

Proposition

Let K be an algebraic knot.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

< 🗇 🕨

→ E → < E →</p>

Proposition

Let K be an L–space knot. Let q > 2g(K) and $m \in [-q/2, q/2]$. Then

$$d(S_q^3(K),\mathfrak{s}_m)=\frac{(q-2m)^2-q}{4q}-2J(m).$$

・回り ・ヨト ・ヨト

æ

Proposition

Let K be an L–space knot. Let q > 2g(K) and $m \in [-q/2, q/2]$. Then

$$d(S^3_q(K),\mathfrak{s}_m)=rac{(q-2m)^2-q}{4q}-2I(m+g).$$

Theorem

If M^3 bounds a smooth negative definite manifold W^4 and \mathfrak{s} is a spin^c structure on M^3 , that is a restriction of a spin^c structure \mathfrak{t} on W, then

$$d(M,\mathfrak{s}) \geq rac{c_1^2(\mathfrak{t}) - 2\chi(W) - 3\sigma(W)}{4}.$$

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

• C degree d rational cuspidal curve in $\mathbb{C}P^2$.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

→ E > < E</p>

4 日 .

- C degree d rational cuspidal curve in $\mathbb{C}P^2$.
- *N* neighbourhood of *C*, $M = \partial N$, $W = \mathbb{C}P^2 \setminus N$. *W* is rational homology ball.

- C degree d rational cuspidal curve in $\mathbb{C}P^2$.
- *N* neighbourhood of *C*, $M = \partial N$, $W = \mathbb{C}P^2 \setminus N$. *W* is rational homology ball.
- Then $M = S^3_{d^2}(K)$, K is connected sum of links of singularities.

- C degree d rational cuspidal curve in $\mathbb{C}P^2$.
- *N* neighbourhood of *C*, $M = \partial N$, $W = \mathbb{C}P^2 \setminus N$. *W* is rational homology ball.
- Then $M = S^3_{d^2}(K)$, K is connected sum of links of singularities. Suppose that C is unicuspidal.

- C degree d rational cuspidal curve in $\mathbb{C}P^2$.
- *N* neighbourhood of *C*, $M = \partial N$, $W = \mathbb{C}P^2 \setminus N$. *W* is rational homology ball.
- Then $M = S^3_{d^2}(K)$, K is connected sum of links of singularities. Suppose that C is unicuspidal.
- The *spin^c* structures that extend over *W* are those with m = kd for *d* odd or kd/2 for *d* even, $k \in \mathbb{Z}$.

- C degree d rational cuspidal curve in $\mathbb{C}P^2$.
- *N* neighbourhood of *C*, $M = \partial N$, $W = \mathbb{C}P^2 \setminus N$. *W* is rational homology ball.
- Then $M = S^3_{d^2}(K)$, K is connected sum of links of singularities. Suppose that C is unicuspidal.
- The *spin^c* structures that extend over *W* are those with m = kd for *d* odd or kd/2 for *d* even, $k \in \mathbb{Z}$.
- By Ozsváth and Szabó, *d*-invariant must vanish for *s_m*.

Theorem (—,Livingston, 2013)

If I is the gap function associated with the single singular point, j = 0, ..., d - 3. Then

$$I(jd+1) = \frac{(d-j-1)(d-j-2)}{2}$$

- C degree d rational cuspidal curve in $\mathbb{C}P^2$.
- *N* neighbourhood of *C*, $M = \partial N$, $W = \mathbb{C}P^2 \setminus N$. *W* is rational homology ball.
- Then $M = S^3_{d^2}(K)$, K is connected sum of links of singularities. Suppose that C is unicuspidal.
- The *spin^c* structures that extend over *W* are those with m = kd for *d* odd or kd/2 for *d* even, $k \in \mathbb{Z}$.
- By Ozsváth and Szabó, *d*-invariant must vanish for *s_m*.

Theorem (—,Livingston, 2013)

If I is the gap function associated with the single singular point, j = 0, ..., d - 3. Then

$$I(jd+1) = \frac{(d-j-1)(d-j-2)}{2}.$$

Generalizations apply for many singular points.

• *K*₁, *K*₂ two knots. Suppose there is a PSI cobordism from *K*₁ to *K*₂ with *k* double points.

- *K*₁, *K*₂ two knots. Suppose there is a PSI cobordism from *K*₁ to *K*₂ with *k* double points.
- W_q is a cobordism between $S_q^3(K_1)$ and $S_{q+4k}^3(K_2)$.

- *K*₁, *K*₂ two knots. Suppose there is a PSI cobordism from *K*₁ to *K*₂ with *k* double points.
- W_q is a cobordism between $S_q^3(K_1)$ and $S_{q+4k}^3(K_2)$.

Theorem (—, Livingston 2013)

If K_1 and K_2 are two L-space knots, g_1 and g_2 their genera, I_1 and I_2 gap functions, then for any $m \in \mathbb{Z}$:

$$I_2(m+g_2+k) \leq I_1(m+g_1).$$

- *K*₁, *K*₂ two knots. Suppose there is a PSI cobordism from *K*₁ to *K*₂ with *k* double points.
- W_q is a cobordism between $S_q^3(K_1)$ and $S_{q+4k}^3(K_2)$.

Theorem (—,Livingston 2013)

If K_1 and K_2 are two L-space knots, g_1 and g_2 their genera, I_1 and I_2 gap functions, then for any $m \in \mathbb{Z}$:

$$I_2(m+g_2+k) \leq I_1(m+g_1).$$

Example

Set K_1 unknot, $K_2 = T_{p,q}$, m = 0, $k = g_2 - 1$. Then $I_2(2g_2 - 1) = 1 \leq I_1(g_1) = 0$.

イロト イポト イヨト イヨト

- *K*₁, *K*₂ two knots. Suppose there is a PSI cobordism from *K*₁ to *K*₂ with *k* double points.
- W_q is a cobordism between $S_q^3(K_1)$ and $S_{q+4k}^3(K_2)$.

Theorem (—, Livingston 2013)

If K_1 and K_2 are two L-space knots, g_1 and g_2 their genera, I_1 and I_2 gap functions, then for any $m \in \mathbb{Z}$:

$$I_2(m+g_2+k) \leq I_1(m+g_1).$$

Example

Set K_1 unknot, $K_2 = T_{p,q}$, m = 0, $k = g_2 - 1$. Then $I_2(2g_2 - 1) = 1 \leq I_1(g_1) = 0$.

This detects the unknotting number of torus knots.

• In the case of δ -constant deformation, $k = g_2 - g_1$.

イロト (過) (注) (日)

æ

- In the case of δ -constant deformation, $k = g_2 g_1$.
- We get #Γ₂ ∩ [0, m) ≤ #Γ₁ ∩ [0, m). Semigroup semicontinuity property.

イロト 不得 トイヨト イヨト

-

- In the case of δ -constant deformation, $k = g_2 g_1$.
- We get #Γ₂ ∩ [0, m) ≤ #Γ₁ ∩ [0, m). Semigroup semicontinuity property.
- First obtained by Gorsky–Némethi in January 2013 (without δ–constant assumption).

イロト イポト イヨト

- In the case of δ -constant deformation, $k = g_2 g_1$.
- We get #Γ₂ ∩ [0, m) ≤ #Γ₁ ∩ [0, m). Semigroup semicontinuity property.
- First obtained by Gorsky–Némethi in January 2013 (without δ–constant assumption).
- Another proof by Javier Fernandez de Bobadilla.

ヘロト 人間 ト 人 ヨ ト 一

- In the case of δ -constant deformation, $k = g_2 g_1$.
- We get #Γ₂ ∩ [0, m) ≤ #Γ₁ ∩ [0, m). Semigroup semicontinuity property.
- First obtained by Gorsky–Némethi in January 2013 (without δ–constant assumption).
- Another proof by Javier Fernandez de Bobadilla.
- In general weak, but it uses smooth structure, unlike semicontinuity of spectrum.

ヘロト 人間ト 人団ト 人団ト

- In the case of δ -constant deformation, $k = g_2 g_1$.
- We get #Γ₂ ∩ [0, m) ≤ #Γ₁ ∩ [0, m). Semigroup semicontinuity property.
- First obtained by Gorsky–Némethi in January 2013 (without δ–constant assumption).
- Another proof by Javier Fernandez de Bobadilla.
- In general weak, but it uses smooth structure, unlike semicontinuity of spectrum.
- (6; 7) cannot be perturbed to (4; 9), even though the spectrum allows it.

イロト イポト イヨト イヨト

... you must have been waiting long time for this slide.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

・ロト ・ 同ト ・ ヨト ・ ヨト

... you must have been waiting long time for this slide.

Thank you!

イロト イポト イヨト イヨト

э
Thank you!

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

イロト イポト イヨト イヨト

Thank you!

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

(신문) (신문)

< 🗇 🕨

Thank you!

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

< 🗇 🕨

→ E → < E →</p>

Thank you!

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves

< 🗇 🕨

→ Ξ → → Ξ

- Generalize for curves with higher genus (joint project with Ch. Livingston).
- Generalize for curves in Hirzebruch surfaces (joint project with K. Moe).
- Relate staircases to lattice homology by András Némethi.
- Can one classify all the rational unicuspidal curves in CP²?
 For many cusps other tools are more useful.