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Semigroups of singular points

@ For a singularity x° — y9 = 0 with p, g coprime, the
semigroup is generated by p and g.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves



Semigroups of singular points

@ For a singularity x° — y9 = 0 with p, g coprime, the
semigroup is generated by p and g.

e If p=4, qg=7,the semigroup is
S47:=(0,4,7,8,11,12,14,15,16,18,19,20,21, . ..).

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves



Semigroups of singular points

@ For a singularity x° — y9 = 0 with p, g coprime, the
semigroup is generated by p and g.

e If p=4,q=7,the semigroup is
Sy7:=(0,4,7,8,11,12,14,15,16,18,19,20,21,...).

@ The gap sequenceis G47 = {1,2,3,5,6,9,10,13,17}.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves



Semigroups of singular points

@ For a singularity x° — y9 = 0 with p, g coprime, the
semigroup is generated by p and g.

e If p=4,q=7,the semigroup is
Sy7:=(0,4,7,8,11,12,14,15,16,18,19,20,21,...).

@ The gap sequenceis G47 = {1,2,3,5,6,9,10,13,17}.

@ We have #Gy7 = p/2and max{x € G47} =17 = p — 1.
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Semigroups of singular points

@ For a singularity x° — y9 = 0 with p, g coprime, the
semigroup is generated by p and g.

e If p=4, g =7, the semigroup is
S47:=(0,4,7,8,11,12,14,15,16,18,19,20,21,...).

@ The gap sequence is G47 = {1,2,3,5,6,9,10,13,17}.

@ We have #G,7 = p/2and max{x € G47} =17 = p— 1.
this is a special property of semigroups of singular points!
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Semigroups of singular points

@ For a singularity x° — y9 = 0 with p, g coprime, the
semigroup is generated by p and g.

e If p=4,q=7,the semigroup is
Si7:=(0,4,7,8,11,12,14,15,16,18,19,20,21,...).

@ The gap sequenceis G47 = {1,2,3,5,6,9,10,13,17}.

@ We have #Gy7 = p/2and max{x € G47} =17 = p — 1.

@ The gap function is defined as

I(m) :=#{x €Z, x> m, x & S47}.
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Semigroups of singular points

@ For a singularity x° — y9 = 0 with p, g coprime, the
semigroup is generated by p and g.

e If p=4,q=7,the semigroup is
Si7:=(0,4,7,8,11,12,14,15,16,18,19,20,21,...).

@ The gap sequenceis G47 = {1,2,3,5,6,9,10,13,17}.

@ We have #Gy7 = p/2and max{x € G47} =17 = p — 1.

@ The gap function is defined as

I(m) :=#{x €Z, x> m, x & S47}.
@ We have

ls7(5) = #{5,6,9,10,13,17} = 6.
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Semigroups of singular points

@ For a singularity x° — y9 = 0 with p, g coprime, the
semigroup is generated by p and g.

e If p=4,q=7,the semigroup is
Si7:=(0,4,7,8,11,12,14,15,16,18,19,20,21,...).

@ The gap sequenceis G47 = {1,2,3,5,6,9,10,13,17}.

@ We have #Gy7 = p/2and max{x € G47} =17 = p — 1.

@ The gap function is defined as

I(m) :=#{x €Z, x> m, x & S47}.
@ We have
ls7(5) = #{5,6,9,10,13,17} = 6.

@ Always /(0) = p/2, I(x) =0for x > pand I(—n) = n+ u/2
forn> 0.
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The Alexander polynomial

For a semigroup S with a gap sequence G we define
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The Alexander polynomial
For a semigroup S with a gap sequence G we define

As()y=1+(t-1)> 1.

jeG
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The Alexander polynomial

For a semigroup S with a gap sequence G we define

As()y=1+(t-1)> 1.

jeG

For the semigroup S, 7, the gap sequence is
{1,2,3,5,6,9,10,13,17}, so we have
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The Alexander polynomial

For a semigroup S with a gap sequence G we define

As()y=1+(t-1)> 1.

jeG

For the semigroup S, 7, the gap sequence is
{1,2,3,5,6,9,10,13,17}, so we have

A4,7(t)=1+(t—1)(t+t2+t3+t5+t6+t9+t‘°+t13+t17)
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The Alexander polynomial

For a semigroup S with a gap sequence G we define

As()y=1+(t-1)> 1.

jeG

For the semigroup S, 7, the gap sequence is
{1,2,3,5,6,9,10,13,17}, so we have

A4,7(t)=1+(t—1)(t+t2+t3+t5+t6+t9+t‘°+t13+t17)
or:

Dg7=1—t+t" O+t 4" 34 17 4 118,
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The Alexander polynomial

For a semigroup S with a gap sequence G we define

As()y=1+(t-1)> 1.

jeG

For the semigroup S, 7, the gap sequence is
{1,2,3,5,6,9,10,13,17}, so we have

A4,7(f)=1+(t—1)(1‘+t2+t3+t5+t6+t9+t‘°+t13+t17)
or.
Dg7=1—t+t" O+t 4" 34 17 4 118,

This is the Alexander polynomial of the knot of the singularity.
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The staircase
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The staircase

Pg7 =817 4 4143 L 11 O L7 5Lttt
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The staircase

Pg7 =817 4 4143 L 11 O L7 5Lttt
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The staircase

Pg7 =18 174 143 L 11 O L7 51ttt
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The staircase
A L L L L T N N
@ 9=9(T47)

oo i e18-17=1
bbb bbb @17-14=3
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The staircase

e L L A e L L e )
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The staircase
A L L L N L S Y Ly N
@ 9=9(T47)

s e18-17=1
s b b s i i i e17—-14=3
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The staircase

Pg7 =817 4 4143 L 11 O L7 5Lttt
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IERSEY S IRRTEE 251 ST RER S ST S

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves



The staircase

Pg7 =817 4 4143 L 11 O L7 5Lttt
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L2 S o 4 edeee g and soon
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: : @ Symmetry
e . reflects
FREN AR A symmetry of A
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The staircase complex
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The staircase complex

@ Place Z» for each
vertex.
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The staircase complex
@ Place Z» for each

‘e S vertex.

.ian. v..o..e..0..... @ Differential is given
PN PSP S by lines as

... 4 - t-e.e...  depicted.

oo : ooee

oo o -0-- 9 00 o o 1]

o -6 -- ® L] & 00 L [} (] { ]

oo e ioi el
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The staircase complex

@ Place Z» for each
vertex.

@ Differential is given
by lines as
depicted.
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The staircase complex

@ Place Z» for each
vertex.

@ Differential is given
by lines as
depicted.

°
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The staircase complex
_ S @ Place Z, for each
b ool vertex.
oo b e e 44 9..0.0..e... @ Differential is given
T Ir F by lines as
v b b v e e e e depicted.
RPN RIS NS SO SUP SO A SO GOSN
MR ”’i””’ @ Bifiltration is given
rprorr Ty vt by coordinates.
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The staircase complex

_ S @ Place Z, for each
oA vertex.
soe b doeiii s e a4, @ Differential is given
: Y S T PN S T AR by lines as
R N R I R IR I T depicted.
PO ER S S A S S
MR ”’i"”’ e Bifiltration is given
e "’_‘_Y”' by coordinates.
ST T Y @ Absolute grading
of a type A vertex
is 0, of type Bis 1.
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Now there comes something really scary

We will tensor the staircase complex by Zo[U, U™].
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Now there comes something really scary

We will tensor the staircase complex by Zo[U, U™].
Are you ready for the challenge?
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Tensoring

o - - o @ Tensor St(K) by
_(L fl_._ Zo[U, U1].
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Tensoring

@ Tensor St(K) by
ZQ[U, U71].

@ U changes the
filtration level by
(—1,—1) and the
absolute grading by
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Tensoring

@ Tensor St(K) by
ZQ[U, U71].

@ U changes the
filtration level by
(—1,—1) and the
absolute grading by
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Tensoring

@ Tensor St(K) by
ZQ[U, U71].

5 t @ U changes the
= filtration level by
. (—1,—1) and the

- absolute grading by
o —2.
I—H— @ The resulting

—s complex is
CFK>=(K) if K'is an
algebraic knot.
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Tensoring

@ Tensor St(K) by

: ZZ[Ua Uf‘l]'

: t @ U changes the

= filtration level by
. (—1,—1) and the

absolute grading by
—2.

.. I_H_ @ The resulting

complex is

. CFK>=(K) if K'is an
L o L )¢ algebraic knot.
l—«—l—o—«—lo @ Actually, itis
« . 6—+<s5..6-s..e...  enough that K is so
called an L—space
knot.
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The function J(m)
- @ mec Z. Here

"‘U*LE* =1
‘*HI.. L’ L

L* LLFLLB
L

o=




The function J(m)

@ m e Z. Here
m=1.

@ The subcomplex
C(i<0,j<m).
Look at the
quotient C,..
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The function J(m)

@ m < Z. Here

— m=1.
l @ The subcomplex

C(i<0,j<m).
Look at the
o0 quotient C,.

: 1 5 @ Define J(m) as

AR the minimal
absolute grading
of an element
non-trivial in
homology of the
quotient.
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The function J(m)

@ m < Z. Here

— m=1.
l @ The subcomplex

C(i<0,j<m).
Look at the
o0 quotient C,.

: 1 5 @ Define J(m) as

AR the minimal
absolute grading
of an element
non-trivial in
homology of the
quotient.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves



The function J(m)
Coop o r o @ me L. Here

@ The subcomplex
. Co C(I<0,]<m)
A A Look at the
ey quotient C;..
ot @ Define J(m) as
Pttt the minimal
A I absolute grading
AR A S A S S A of an element
non-trivial in
...?...?...:...?...?...:...?...?...?... homologyofthe
A S S S quotient.
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The function J(m)
Do Do @ me Z. Here

BT SIS m—1.

@ The subcomplex
C(i<0,j<m).
Look at the
quotient C,..

@ Define J(m) as
the minimal
absolute grading
of an element
non-trivial in
homology of the
quotient.

Jm)= min max(vy, Vo —m)
(v1,v2)€Verta
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The function J(m)
Lo S @ m < Z. Here
~...?...:...?...?...:...?...?...?... m:1.

@ The subcomplex
C(i<0,j<m).
Look at the
quotient C,..

@ Define J(m) as
the minimal
absolute grading
of an element
non-trivial in
homology of the
quotient.

Jm)= min max(vy, Vo —m)
(v1,v2)€Verta
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The function J(m)
Do Do @ m e Z. Here
m=1.

@ The subcomplex
C(i<0,j<m).
Look at the
quotient C,..

@ Define J(m) as
the minimal
absolute grading
of an element
non-trivial in
homology of the
quotient.

@ J(m)=I(m-g).

Jim)= min  max(vy,vo —m)
(V1,V2)EvertA
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Question

Now you may start wondering:
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Question

Now you may start wondering:

Oh where, oh where has the true
mathematics gone?
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d-invariants of Ozsvath and Szabd

Proposition
Let K be an L—space knot.
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d-invariants of Ozsvath and Szabd

Proposition
Let K be an
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d-invariants of Ozsvath and Szabd

Proposition

Let K be an L—space knot. Let q > 2g(K) and
me [—q/2,q/2]. Then

_ 2 _
d(S3(K). 5m) = (‘724'21)‘7 ~ 24(m).
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d-invariants of Ozsvath and Szabd

Proposition

Let K be an L—space knot. Let q > 2g(K) and
me [—q/2,q/2]. Then

d(S3(K), 5m) = (‘7_24”;)2_‘7 —2l(m+g).

Theorem

If M3 bounds a smooth negative definite manifold W* and s is a
spin® structure on M®, that is a restriction of a spin® structure t
on W, then

c3(t) — 2x(W) — 30(W)
. |
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Applications. The FLMN conjecture.

@ C degree d rational cuspidal curve in CP?.
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Applications. The FLMN conjecture.
@ C degree d rational cuspidal curve in CP?.

@ N neighbourhood of C, M = ON, W = CP?\ N. W'is
rational homology ball.
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Applications. The FLMN conjecture.

@ C degree d rational cuspidal curve in CP?.

@ N neighbourhood of C, M = ON, W = CP?\ N. W'is
rational homology ball.

@ Then M = S%,(K), K is connected sum of links of
singularities.
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Applications. The FLMN conjecture.

@ C degree d rational cuspidal curve in CP?.

@ N neighbourhood of C, M = ON, W = CP?\ N. W'is
rational homology ball.

@ Then M = S%,(K), K is connected sum of links of
singularities. Suppose that C is unicuspidal.
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Applications. The FLMN conjecture.

@ C degree d rational cuspidal curve in CP?.

@ N neighbourhood of C, M = ON, W = CP?\ N. W'is
rational homology ball.

@ Then M = S%,(K), K is connected sum of links of
singularities. Suppose that C is unicuspidal.

@ The spin® structures that extend over W are those with
m = kd for d odd or kd/2 for d even, k € Z.
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Applications. The FLMN conjecture.

@ C degree d rational cuspidal curve in CP?.

@ N neighbourhood of C, M = ON, W = CP?\ N. W'is
rational homology ball.

@ Then M = S%,(K), K is connected sum of links of
singularities. Suppose that C is unicuspidal.

@ The spin® structures that extend over W are those with
m = kd for d odd or kd/2 for d even, k € Z.

@ By Ozsvath and Szabd, d—invariant must vanish for s,.

Theorem (—,Livingston, 2013)

If | is the gap function associated with the single singular point,
j=0,...,d—3. Then

(d—j-1)(d-j-2)

I(jd +1) = >
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Applications. The FLMN conjecture.

@ C degree d rational cuspidal curve in CP?.

@ N neighbourhood of C, M = ON, W = CP?\ N. W'is
rational homology ball.

@ Then M = S%,(K), K is connected sum of links of
singularities. Suppose that C is unicuspidal.

@ The spin® structures that extend over W are those with
m = kd for d odd or kd/2 for d even, k € Z.

@ By Ozsvath and Szabd, d—invariant must vanish for s,.

Theorem (—,Livingston, 2013)

If | is the gap function associated with the single singular point,
j=0,...,d—3. Then

d—j-1)d-j-2)

I + 1) = ¢ >

Generalizations apply for many singular points.
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Applications. Semigroup semicontinuity.

@ Ki, K> two knots. Suppose there is a PSI cobordism from
Kj to K> with k double points.
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Applications. Semigroup semicontinuity.

@ Ki, K> two knots. Suppose there is a PSI cobordism from
Kj to K> with k double points.

@ W is a cobordism between S3(K1) and SJ ,, (Ka).
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Applications. Semigroup semicontinuity.

@ Ki, K> two knots. Suppose there is a PSI cobordism from
Kj to K> with k double points.

@ W is a cobordism between S3(K1) and SJ ,, (Ka).

Theorem (—,Livingston 2013)

If Ky and K> are two L—space knots, g; and g» their genera, I
and I, gap functions, then forany m € 7:

b(m+go + k) < ly(m+ g1).
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Applications. Semigroup semicontinuity.

@ Ki, K> two knots. Suppose there is a PSI cobordism from
Kj to K> with k double points.

@ W is a cobordism between S3(K1) and SJ ,, (Ka).

Theorem (—,Livingston 2013)

If Ky and K> are two L—space knots, g; and g» their genera, I
and I, gap functions, then forany m € 7:

b(m+go + k) < ly(m+ g1).

Example
Set Kj unknot, Ko = Tp g, m=0,k =go — 1. Then
(292 —1) =1 £ h(g1) = 0.
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Applications. Semigroup semicontinuity.

@ Ki, K> two knots. Suppose there is a PSI cobordism from
Kj to K> with k double points.

@ W is a cobordism between S3(K1) and SJ ,, (Ka).

Theorem (—,Livingston 2013)

If Ky and K> are two L—space knots, g; and g» their genera, I
and I, gap functions, then forany m € 7:

b(m+go + k) < ly(m+ g1).

Example
Set Kj unknot, Ko = Tp g, m=0,k =go — 1. Then
(292 —1) =1 £ h(g1) = 0.

This detects the unknotting number of torus knots.
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Applications. Semigroup semicontinuity.

@ In the case of j—constant deformation, k = g» — g5.
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Applications. Semigroup semicontinuity.

@ In the case of j—constant deformation, k = g» — g5.

@ We get #I> N[0, m) < #I'1 N[0, m). Semigroup
semicontinuity property.
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Applications. Semigroup semicontinuity.

@ In the case of o—constant deformation, k = g» — g;.
@ We get #I> N[0, m) < #I'1 N[0, m). Semigroup
semicontinuity property.

@ First obtained by Gorsky—Némethi in January 2013
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Applications. Semigroup semicontinuity.

@ In the case of o—constant deformation, k = g» — g;.
@ We get #I> N[0, m) < #I'1 N[0, m). Semigroup
semicontinuity property.

@ First obtained by Gorsky—Némethi in January 2013
(without é—constant assumption).

@ Another proof by Javier Fernandez de Bobadilla.

@ In general weak, but it uses smooth structure, unlike
semicontinuity of spectrum.

@ (6;7) cannot be perturbed to (4;9), even though the
spectrum allows it.
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Perspectives

@ Generalize for curves with higher genus (joint project with
Ch. Livingston).

@ Generalize for curves in Hirzebruch surfaces (joint project
with K. Moe).

@ Relate staircases to lattice homology by Andras Némethi.

@ Can one classify all the rational unicuspidal curves in CP??
For many cusps other tools are more useful.
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