Algebraic unknotting number and 4-manifolds joint with S. Friedl

Maciej Borodzik

Institute of Mathematics, University of Warsaw

Akron, October 2012

Algebraic unknotting

- Unknotting number: how many crossing changes make K the unknot.

Algebraic unknotting

- Unknotting number: how many crossing changes make K the unknot.
- Algebraic unknotting number u_{a} : how many crossing changes make K a knot L with $\Delta(L) \equiv 1$.

Algebraic unknotting

- Unknotting number: how many crossing changes make K the unknot.
- Algebraic unknotting number u_{a} : how many crossing changes make K a knot L with $\Delta(L) \equiv 1$.
- Defined by Murakami and Fogel in 1993.

Algebraic unknotting

- Unknotting number: how many crossing changes make K the unknot.
- Algebraic unknotting number u_{a} : how many crossing changes make K a knot L with $\Delta(L) \equiv 1$.
- Defined by Murakami and Fogel in 1993.
- Murakami and Saeki considered an an algebraic unknotting operation on Seifert matrices.

Algebraic unknotting

- Unknotting number: how many crossing changes make K the unknot.
- Algebraic unknotting number u_{a} : how many crossing changes make K a knot L with $\Delta(L) \equiv 1$.
- Defined by Murakami and Fogel in 1993.
- Murakami and Saeki considered an an algebraic unknotting operation on Seifert matrices.
- u_{a} depends only on the Seifert matrix. For example, if $\Delta(K) \equiv 1$, then $u_{a}=0$.

Surgery presentation

A unknotting move can be regarded as a ± 1 surgery on a suitable link.

Surgery presentation

A unknotting move can be regarded as $\mathrm{a} \pm 1$ surgery on a suitable link.

Surgery presentation

A unknotting move can be regarded as a ± 1 surgery on a suitable link.

Surgery presentation

A unknotting move can be regarded as a ± 1 surgery on a suitable link.

A surgery presentation is a collection of such circles and numbers ± 1, such that a simultaneous surgery transforms the knot into the unknot.

A manifold with boundary $S_{0}^{3}(K)$

- Consider a surgery presentation $c_{1}, \ldots, c_{r}, n_{1}, \ldots, n_{r}$.

A manifold with boundary $S_{0}^{3}(K)$

- Consider a surgery presentation $c_{1}, \ldots, c_{r}, n_{1}, \ldots, n_{r}$.
- The cycles c_{1}, \ldots, c_{r} may be choosen to lie on the boundary of the tubular neighbourhood of K.

A manifold with boundary $S_{0}^{3}(K)$

- Consider a surgery presentation $c_{1}, \ldots, c_{r}, n_{1}, \ldots, n_{r}$.
- The cycles c_{1}, \ldots, c_{r} may be choosen to lie on the boundary of the tubular neighbourhood of K.
- Consider them as a cycles on $S_{0}^{3}(K)$. Surgery on them yields $S_{0}^{3}($ unknot $)=S^{2} \times S^{1}$.

A manifold with boundary $S_{0}^{3}(K)$

- Consider a surgery presentation $c_{1}, \ldots, c_{r}, n_{1}, \ldots, n_{r}$.
- The cycles c_{1}, \ldots, c_{r} may be choosen to lie on the boundary of the tubular neighbourhood of K.
- Consider them as a cycles on $S_{0}^{3}(K)$. Surgery on them yields $S_{0}^{3}($ unknot $)=S^{2} \times S^{1}$.
- These surgeries induce a cobordism of $S_{0}^{3}(K)$ with $S^{2} \times S^{1}$ with only 2-handles. We glue $D^{3} \times S^{1}$ at the end.

A manifold with boundary $S_{0}^{3}(K)$

- Consider a surgery presentation $c_{1}, \ldots, c_{r}, n_{1}, \ldots, n_{r}$.
- The cycles c_{1}, \ldots, c_{r} may be choosen to lie on the boundary of the tubular neighbourhood of K.
- Consider them as a cycles on $S_{0}^{3}(K)$. Surgery on them yields $S_{0}^{3}($ unknot $)=S^{2} \times S^{1}$.
- These surgeries induce a cobordism of $S_{0}^{3}(K)$ with $S^{2} \times S^{1}$ with only 2-handles. We glue $D^{3} \times S^{1}$ at the end.
- We obtain W with $\partial W=S_{0}^{3}(K)$.

Properties of W

- $\pi_{1}(W)=\mathbb{Z}$;

Properties of W

- $\pi_{1}(W)=\mathbb{Z}$;
- $H_{1}(M) \rightarrow H_{1}(W)$ is an isomorphism;

Properties of W

- $\pi_{1}(W)=\mathbb{Z}$;
- $H_{1}(M) \rightarrow H_{1}(W)$ is an isomorphism;
- $b_{2}(W)=r$;

Properties of W

- $\pi_{1}(W)=\mathbb{Z}$;
- $H_{1}(M) \rightarrow H_{1}(W)$ is an isomorphism;
- $b_{2}(W)=r$;
- The intersection pairing on W is diagonalizable;

Properties of W

- $\pi_{1}(W)=\mathbb{Z}$;
- $H_{1}(M) \rightarrow H_{1}(W)$ is an isomorphism;
- $b_{2}(W)=r$;
- The intersection pairing on W is diagonalizable;

Remark

If the surgery on c_{1}, \ldots, c_{r} yields a knot with Alexander polynomial 1, then such W still exists, but it is a topological manifold in general.

Properties of W

- $\pi_{1}(W)=\mathbb{Z}$;
- $H_{1}(M) \rightarrow H_{1}(W)$ is an isomorphism;
- $b_{2}(W)=r$;
- The intersection pairing on W is diagonalizable;

Remark

If the surgery on c_{1}, \ldots, c_{r} yields a knot with Alexander polynomial 1, then such W still exists, but it is a topological manifold in general.

Definition

If W is a manifold as above, then we shall say that it strictly cobounds $M(K)$.

Off-topic

This formula appears in almost every talk here, so I will write it.

$$
\ldots \mathcal{F}_{(n .5)} \subset \mathcal{F}_{(n)} \subset \ldots \subset \mathcal{F}_{(0)} \subset \mathcal{C}
$$

Setup

- For a knot K we consider $X=X(K)$ its complement and \widetilde{X} its infinite cyclic cover.

Setup

- For a knot K we consider $X=X(K)$ its complement and \widetilde{X} its infinite cyclic cover.
- Denote $\Lambda=\mathbb{Z}\left[t^{ \pm 1}\right]$

Setup

- For a knot K we consider $X=X(K)$ its complement and \widetilde{X} its infinite cyclic cover.
- Denote $\Lambda=\mathbb{Z}\left[t^{ \pm 1}\right]$
- $H_{1}(X ; \Lambda)$ as homologies of \widetilde{X} regarded as a Λ-module.

Setup

- For a knot K we consider $X=X(K)$ its complement and \widetilde{X} its infinite cyclic cover.
- Denote $\wedge=\mathbb{Z}\left[t^{ \pm 1}\right]$
- $H_{1}(X ; \wedge)$ as homologies of \widetilde{X} regarded as a \wedge-module.

Lemma (Blanchfield, 1959)

There exists a pairing $H_{1}(X ; \Lambda) \times H_{1}(X ; \Lambda) \rightarrow \mathbb{Q}(t) / \Lambda$.

Setup

- For a knot K we consider $X=X(K)$ its complement and \widetilde{X} its infinite cyclic cover.
- Denote $\wedge=\mathbb{Z}\left[t^{ \pm 1}\right]$
- $H_{1}(X ; \wedge)$ as homologies of \widetilde{X} regarded as a \wedge-module.

Lemma (Blanchfield, 1959)

There exists a pairing $H_{1}(X ; \Lambda) \times H_{1}(X ; \wedge) \rightarrow \mathbb{Q}(t) / \Lambda$.
The construction resembles the standard construction of a linking form on a rational homology sphere.

Presentation matrix

Definition

We say that a square $k \times k$ matrix A over \wedge represents the Blanchfield pairing if

Presentation matrix

Definition

We say that a square $k \times k$ matrix A over \wedge represents the Blanchfield pairing if

- $H_{1}(X ; \Lambda) \cong \Lambda^{k} / A \wedge^{k}$;

Presentation matrix

Definition

We say that a square $k \times k$ matrix A over \wedge represents the Blanchfield pairing if

- $H_{1}(X ; \Lambda) \cong \Lambda^{k} / A \wedge^{k}$;
- the pairing is $(a, b) \rightarrow a \cdot A^{-1} \bar{b}$ under the above identification.

Presentation matrix

Definition

We say that a square $k \times k$ matrix A over \wedge represents the Blanchfield pairing if

- $H_{1}(X ; \Lambda) \cong \Lambda^{k} / A \wedge^{k}$;
- the pairing is $(a, b) \rightarrow a \cdot A^{-1} \bar{b}$ under the above identification.

Lemma (Kearton 1975)

A Seifert matrix gives rise to a presentation matrix of the same size.

Presentation matrix and W

Lemma (—,Friedl 2012)

If W strictly cobounds $M(K)$ and B is a matrix of the intersection form on $\mathrm{H}_{2}(\mathrm{~W} ; \wedge)$, then B represents also the Blanchfield pairing for K.

Presentation matrix and W

Lemma (—,Friedl 2012)

If W strictly cobounds $M(K)$ and B is a matrix of the intersection form on $\mathrm{H}_{2}(\mathrm{~W} ; \Lambda)$, then B represents also the Blanchfield pairing for K.

Corollary

Let $n(K)$ be the minimal size of a matrix A representing the Blanchfield pairing (such that $A(1)$ is diagonal). Then $n(K) \leq u_{a}(K)$.

Presentation matrix and W

Lemma (—,Friedl 2012)

If W strictly cobounds $M(K)$ and B is a matrix of the intersection form on $\mathrm{H}_{2}(\mathrm{~W} ; \Lambda)$, then B represents also the Blanchfield pairing for K.

Corollary

Let $n(K)$ be the minimal size of a matrix A representing the Blanchfield pairing (such that $A(1)$ is diagonal). Then $n(K) \leq u_{a}(K)$.

Theorem (-,Friedl 2013)

Presentation matrix and W

Lemma (—,Friedl 2012)

If W strictly cobounds $M(K)$ and B is a matrix of the intersection form on $\mathrm{H}_{2}(\mathrm{~W} ; \Lambda)$, then B represents also the Blanchfield pairing for K.

Corollary

Let $n(K)$ be the minimal size of a matrix A representing the Blanchfield pairing (such that $A(1)$ is diagonal). Then $n(K) \leq u_{a}(K)$.

Theorem (-,Friedl 2013)

$u_{a}=n(K)$. Thus $u_{a}(K)=\min b_{2}(W)$ over all topological manifolds strictly cobounding $M(K)$.

Consequences

Given the knot K, the following four numbers are equal.

Consequences

Given the knot K, the following four numbers are equal.

- The minimal number of crossings needed to change K into an Alexander polynomial 1 knot;

Consequences

Given the knot K, the following four numbers are equal.

- The minimal number of crossings needed to change K into an Alexander polynomial 1 knot;
- The minimal number of algebraic crossing changes on the Seifert matrix, which make the Seifert matrix trivial;

Consequences

Given the knot K, the following four numbers are equal.

- The minimal number of crossings needed to change K into an Alexander polynomial 1 knot;
- The minimal number of algebraic crossing changes on the Seifert matrix, which make the Seifert matrix trivial;
- The minimal size of a matrix A representing the Blanchfield pairing;

Consequences

Given the knot K, the following four numbers are equal.

- The minimal number of crossings needed to change K into an Alexander polynomial 1 knot;
- The minimal number of algebraic crossing changes on the Seifert matrix, which make the Seifert matrix trivial;
- The minimal size of a matrix A representing the Blanchfield pairing;
- The minimal $b_{2}(W)$ for a manifold W strictly cobounding $M(K)$;

Computing $n(K)$

Lower bounds.

Computing $n(K)$

Lower bounds.

- $n(K)$ is not smaller than the Nakanishi index;

Computing $n(K)$

Lower bounds.

- $n(K)$ is not smaller than the Nakanishi index;
- $n(K) \geq\left|\sigma_{K}(z)\right|$, in fact we can take the span of T-L signature;

Computing $n(K)$

Lower bounds.

- $n(K)$ is not smaller than the Nakanishi index;
- $n(K) \geq\left|\sigma_{K}(z)\right|$, in fact we can take the span of T-L signature;
- $n(K)$ contains the Lickorish and Jabuka obstruction to $u(K)=1$;

Computing $n(K)$

Lower bounds.

- $n(K)$ is not smaller than the Nakanishi index;
- $n(K) \geq\left|\sigma_{K}(z)\right|$, in fact we can take the span of T-L signature;
- $n(K)$ contains the Lickorish and Jabuka obstruction to $u(K)=1$;
- $n(K)$ contains the Stoimenow $u(K)=2$ obstruction;

Computing $n(K)$

Lower bounds.

- $n(K)$ is not smaller than the Nakanishi index;
- $n(K) \geq\left|\sigma_{K}(z)\right|$, in fact we can take the span of T-L signature;
- $n(K)$ contains the Lickorish and Jabuka obstruction to $u(K)=1$;
- $n(K)$ contains the Stoimenow $u(K)=2$ obstruction;
- a new obstruction from careful reading of Owens' paper;

Computing $n(K)$

Lower bounds.

- $n(K)$ is not smaller than the Nakanishi index;
- $n(K) \geq\left|\sigma_{K}(z)\right|$, in fact we can take the span of T-L signature;
- $n(K)$ contains the Lickorish and Jabuka obstruction to $u(K)=1$;
- $n(K)$ contains the Stoimenow $u(K)=2$ obstruction;
- a new obstruction from careful reading of Owens' paper;

Upper bounds.

Computing $n(K)$

Lower bounds.

- $n(K)$ is not smaller than the Nakanishi index;
- $n(K) \geq\left|\sigma_{K}(z)\right|$, in fact we can take the span of T-L signature;
- $n(K)$ contains the Lickorish and Jabuka obstruction to $u(K)=1$;
- $n(K)$ contains the Stoimenow $u(K)=2$ obstruction;
- a new obstruction from careful reading of Owens' paper;

Upper bounds.

- the unknotting number;

Computing $n(K)$

Lower bounds.

- $n(K)$ is not smaller than the Nakanishi index;
- $n(K) \geq\left|\sigma_{K}(z)\right|$, in fact we can take the span of T-L signature;
- $n(K)$ contains the Lickorish and Jabuka obstruction to $u(K)=1$;
- $n(K)$ contains the Stoimenow $u(K)=2$ obstruction;
- a new obstruction from careful reading of Owens' paper;

Upper bounds.

- the unknotting number;
- algebraic unknotting on matrices. Can be implemented on a computer;

Open questions

- Is $n(K)$ mutation invariant?

Open questions

- Is $n(K)$ mutation invariant?
- Is the condition $A(1)$ is diagonal important?

Open questions

- Is $n(K)$ mutation invariant?
- Is the condition $A(1)$ is diagonal important?
- What if we require W to be smooth?

Open questions

- Is $n(K)$ mutation invariant?
- Is the condition $A(1)$ is diagonal important?
- What if we require W to be smooth?
- Does this generalize to higher dimensions? We have a notion of a zero-surgery on $S^{n-2} \subset S^{n}$.

