Algebraic unknotting number and 4-manifolds joint with S. Friedl

Maciej Borodzik

Institute of Mathematics, University of Warsaw

Akron, October 2012

<ロト <回ト <注入 < モト < モト = 王

• Unknotting number: how many crossing changes make *K* the unknot.

イロト 不得 トイヨト 不良トー

- Unknotting number: how many crossing changes make *K* the unknot.
- Algebraic unknotting number u_a : how many crossing changes make *K* a knot *L* with $\Delta(L) \equiv 1$.

イロト イ理ト イヨト イヨト

- Unknotting number: how many crossing changes make *K* the unknot.
- Algebraic unknotting number u_a : how many crossing changes make *K* a knot *L* with $\Delta(L) \equiv 1$.
- Defined by Murakami and Fogel in 1993.

イロト イ押ト イヨト イヨト

æ

- Unknotting number: how many crossing changes make *K* the unknot.
- Algebraic unknotting number u_a : how many crossing changes make *K* a knot *L* with $\Delta(L) \equiv 1$.
- Defined by Murakami and Fogel in 1993.
- Murakami and Saeki considered an an algebraic unknotting operation on Seifert matrices.

イロト イ押ト イヨト イヨト

- Unknotting number: how many crossing changes make *K* the unknot.
- Algebraic unknotting number u_a : how many crossing changes make *K* a knot *L* with $\Delta(L) \equiv 1$.
- Defined by Murakami and Fogel in 1993.
- Murakami and Saeki considered an an algebraic unknotting operation on Seifert matrices.
- u_a depends only on the Seifert matrix. For example, if $\Delta(K) \equiv 1$, then $u_a = 0$.

イロト イ理ト イヨト イヨト

Surgery presentation

A unknotting move can be regarded as a ± 1 surgery on a suitable link.

イロト 不得 トイヨト 不良トー

Surgery presentation

A unknotting move can be regarded as a ± 1 surgery on a suitable link.

< □ > < 同 >

★ Ξ > < Ξ > ...

Surgery presentation

A unknotting move can be regarded as a ± 1 surgery on a suitable link.

(E) < E) </p>

Surgery presentation

A unknotting move can be regarded as a ± 1 surgery on a suitable link.

A surgery presentation is a collection of such circles and numbers ± 1 , such that a simultaneous surgery transforms the knot into the unknot.

→ Ξ > < Ξ >

< 🗇 🕨

A manifold with boundary $S_0^3(K)$

• Consider a surgery presentation $c_1, \ldots, c_r, n_1, \ldots, n_r$.

イロト 不得 トイヨト 不良トー

- Consider a surgery presentation $c_1, \ldots, c_r, n_1, \ldots, n_r$.
- The cycles c₁,..., c_r may be choosen to lie on the boundary of the tubular neighbourhood of K.

・ロト ・ 四ト ・ 日下・

ъ

- Consider a surgery presentation $c_1, \ldots, c_r, n_1, \ldots, n_r$.
- The cycles c_1, \ldots, c_r may be choosen to lie on the boundary of the tubular neighbourhood of *K*.
- Consider them as a cycles on S³₀(K). Surgery on them yields S³₀(unknot) = S² × S¹.

・ロト ・ 四ト ・ 日下・

- Consider a surgery presentation $c_1, \ldots, c_r, n_1, \ldots, n_r$.
- The cycles c_1, \ldots, c_r may be choosen to lie on the boundary of the tubular neighbourhood of *K*.
- Consider them as a cycles on S³₀(K). Surgery on them yields S³₀(unknot) = S² × S¹.
- These surgeries induce a cobordism of S³₀(K) with S² × S¹ with only 2-handles. We glue D³ × S¹ at the end.

・ ロ ト ・ 雪 ト ・ 雪 ト ・

- Consider a surgery presentation $c_1, \ldots, c_r, n_1, \ldots, n_r$.
- The cycles c_1, \ldots, c_r may be choosen to lie on the boundary of the tubular neighbourhood of *K*.
- Consider them as a cycles on S³₀(K). Surgery on them yields S³₀(unknot) = S² × S¹.
- These surgeries induce a cobordism of S³₀(K) with S² × S¹ with only 2-handles. We glue D³ × S¹ at the end.
- We obtain W with $\partial W = S_0^3(K)$.

くロン 不得 とくほ とくほとう

•
$$\pi_1(W) = \mathbb{Z};$$

Maciej Borodzik Algebraic unknotting number and 4-manifolds

•
$$\pi_1(W) = \mathbb{Z}$$

• $H_1(M) \rightarrow H_1(W)$ is an isomorphism;

Maciej Borodzik Algebraic unknotting number and 4-manifolds

イロト 不得 トイヨト イヨト

- $\pi_1(W) = \mathbb{Z};$
- $H_1(M) \rightarrow H_1(W)$ is an isomorphism;
- $b_2(W) = r;$

イロト 不得下 不良下 不良下 一度

- $\pi_1(W) = \mathbb{Z};$
- $H_1(M) \rightarrow H_1(W)$ is an isomorphism;

•
$$b_2(W) = r;$$

• The intersection pairing on W is diagonalizable;

イロト 不得 トイヨト イヨト

- $\pi_1(W) = \mathbb{Z};$
- $H_1(M) \rightarrow H_1(W)$ is an isomorphism;
- $b_2(W) = r;$
- The intersection pairing on W is diagonalizable;

Remark

If the surgery on c_1, \ldots, c_r yields a knot with Alexander polynomial 1, then such W still exists, but it is a topological manifold in general.

イロト 不得 トイヨト イヨト

- $\pi_1(W) = \mathbb{Z};$
- $H_1(M) \rightarrow H_1(W)$ is an isomorphism;
- $b_2(W) = r;$
- The intersection pairing on W is diagonalizable;

Remark

If the surgery on c_1, \ldots, c_r yields a knot with Alexander polynomial 1, then such W still exists, but it is a topological manifold in general.

Definition

If *W* is a manifold as above, then we shall say that it *strictly* cobounds M(K).

Off-topic

This formula appears in almost every talk here, so I will write it.

$$\ldots \mathcal{F}_{(n.5)} \subset \mathcal{F}_{(n)} \subset \ldots \subset \mathcal{F}_{(0)} \subset \mathcal{C}$$

Maciej Borodzik Algebraic unknotting number and 4-manifolds

イロト イロト イヨト

ъ

For a knot K we consider X = X(K) its complement and X
its infinite cyclic cover.

イロト イロト イヨト

- For a knot K we consider X = X(K) its complement and X
 its infinite cyclic cover.
- Denote $\Lambda = \mathbb{Z}[t^{\pm 1}]$

イロト イロト イヨト

- For a knot K we consider X = X(K) its complement and \widetilde{X} its infinite cyclic cover.
- Denote $\Lambda = \mathbb{Z}[t^{\pm 1}]$
- $H_1(X; \Lambda)$ as homologies of \widetilde{X} regarded as a Λ -module.

ヘロト 人間 トイヨト イヨト

- For a knot K we consider X = X(K) its complement and X
 its infinite cyclic cover.
- Denote $\Lambda = \mathbb{Z}[t^{\pm 1}]$
- $H_1(X; \Lambda)$ as homologies of \widetilde{X} regarded as a Λ -module.

Lemma (Blanchfield, 1959)

There exists a pairing $H_1(X; \Lambda) \times H_1(X; \Lambda) \to \mathbb{Q}(t)/\Lambda$.

イロト 不得 トイヨト 不良トー

ъ

- For a knot K we consider X = X(K) its complement and X
 its infinite cyclic cover.
- Denote $\Lambda = \mathbb{Z}[t^{\pm 1}]$
- $H_1(X; \Lambda)$ as homologies of \widetilde{X} regarded as a Λ -module.

Lemma (Blanchfield, 1959)

There exists a pairing $H_1(X; \Lambda) \times H_1(X; \Lambda) \to \mathbb{Q}(t)/\Lambda$.

The construction resembles the standard construction of a linking form on a rational homology sphere.

・ロト ・ 同ト ・ ヨト ・ ヨト

Presentation matrix

Definition

We say that a square $k \times k$ matrix A over \wedge *represents* the Blanchfield pairing if

・ロト ・ 同ト ・ ヨト・

Presentation matrix

Definition

We say that a square $k \times k$ matrix A over Λ *represents* the Blanchfield pairing if

• $H_1(X;\Lambda) \cong \Lambda^k / A \Lambda^k;$

・ロト ・ 同ト ・ ヨト ・ ヨト

Presentation matrix

Definition

We say that a square $k \times k$ matrix A over \wedge *represents* the Blanchfield pairing if

- $H_1(X; \Lambda) \cong \Lambda^k / A \Lambda^k;$
- the pairing is $(a, b) \rightarrow a \cdot A^{-1}\overline{b}$ under the above identification.

・ロト ・ 同ト ・ ヨト ・ ヨト

Presentation matrix

Definition

We say that a square $k \times k$ matrix A over \land represents the Blanchfield pairing if

- $H_1(X; \Lambda) \cong \Lambda^k / A \Lambda^k;$
- the pairing is $(a, b) \rightarrow a \cdot A^{-1}\overline{b}$ under the above identification.

Lemma (Kearton 1975)

A Seifert matrix gives rise to a presentation matrix of the same size.

・ロト ・ 四ト ・ 日下・

Lemma (---,Friedl 2012)

If W strictly cobounds M(K) and B is a matrix of the intersection form on $H_2(W; \Lambda)$, then B represents also the Blanchfield pairing for K.

イロト イ理ト イヨト イヨト

Lemma (---,Friedl 2012)

If W strictly cobounds M(K) and B is a matrix of the intersection form on $H_2(W; \Lambda)$, then B represents also the Blanchfield pairing for K.

Corollary

Let n(K) be the minimal size of a matrix A representing the Blanchfield pairing (such that A(1) is diagonal). Then $n(K) \le u_a(K)$.

イロト イ押ト イヨト イヨト

Lemma (---,Friedl 2012)

If W strictly cobounds M(K) and B is a matrix of the intersection form on $H_2(W; \Lambda)$, then B represents also the Blanchfield pairing for K.

Corollary

Let n(K) be the minimal size of a matrix A representing the Blanchfield pairing (such that A(1) is diagonal). Then $n(K) \le u_a(K)$.

Theorem (-, Friedl 2013)

Lemma (---,Friedl 2012)

If W strictly cobounds M(K) and B is a matrix of the intersection form on $H_2(W; \Lambda)$, then B represents also the Blanchfield pairing for K.

Corollary

Let n(K) be the minimal size of a matrix A representing the Blanchfield pairing (such that A(1) is diagonal). Then $n(K) \le u_a(K)$.

Theorem (-, Friedl 2013)

 $u_a = n(K)$. Thus $u_a(K) = \min b_2(W)$ over all topological manifolds strictly cobounding M(K).

Given the knot K, the following four numbers are equal.

Maciej Borodzik Algebraic unknotting number and 4-manifolds

イロト イロト イヨト

ъ

Given the knot K, the following four numbers are equal.

• The minimal number of crossings needed to change *K* into an Alexander polynomial 1 knot;

・ロト ・雪 ト ・ ヨ ト

ъ

Given the knot K, the following four numbers are equal.

- The minimal number of crossings needed to change *K* into an Alexander polynomial 1 knot;
- The minimal number of algebraic crossing changes on the Seifert matrix, which make the Seifert matrix trivial;

イロト (得) (注) (す)

Given the knot K, the following four numbers are equal.

- The minimal number of crossings needed to change *K* into an Alexander polynomial 1 knot;
- The minimal number of algebraic crossing changes on the Seifert matrix, which make the Seifert matrix trivial;
- The minimal size of a matrix *A* representing the Blanchfield pairing;

イロト イ押ト イヨト イヨト

Given the knot K, the following four numbers are equal.

- The minimal number of crossings needed to change *K* into an Alexander polynomial 1 knot;
- The minimal number of algebraic crossing changes on the Seifert matrix, which make the Seifert matrix trivial;
- The minimal size of a matrix *A* representing the Blanchfield pairing;
- The minimal b₂(W) for a manifold W strictly cobounding M(K);

・ロト ・ 四ト ・ 日下・

ъ

Computing *n*(*K*)

Lower bounds.

Maciej Borodzik Algebraic unknotting number and 4-manifolds

ヘロト 人間 とく ヨン 人 ヨトー

Lower bounds.

• n(K) is not smaller than the Nakanishi index;

Maciej Borodzik Algebraic unknotting number and 4-manifolds

イロト 不得 トイヨト 不良トー

Lower bounds.

- n(K) is not smaller than the Nakanishi index;
- n(K) ≥ |σ_K(z)|, in fact we can take the span of T-L signature;

イロト 不得 トイヨト 不良トー

Lower bounds.

- n(K) is not smaller than the Nakanishi index;
- n(K) ≥ |σ_K(z)|, in fact we can take the span of T-L signature;
- n(K) contains the Lickorish and Jabuka obstruction to u(K) = 1;

くロン 不得 とくほ とくほとう

Lower bounds.

- n(K) is not smaller than the Nakanishi index;
- n(K) ≥ |σ_K(z)|, in fact we can take the span of T-L signature;
- n(K) contains the Lickorish and Jabuka obstruction to u(K) = 1;
- n(K) contains the Stoimenow u(K) = 2 obstruction;

くロン 不得 とくほ とくほとう

Lower bounds.

- n(K) is not smaller than the Nakanishi index;
- n(K) ≥ |σ_K(z)|, in fact we can take the span of T-L signature;
- n(K) contains the Lickorish and Jabuka obstruction to u(K) = 1;
- n(K) contains the Stoimenow u(K) = 2 obstruction;
- a new obstruction from careful reading of Owens' paper;

イロト イポト イヨト

æ

Lower bounds.

- n(K) is not smaller than the Nakanishi index;
- n(K) ≥ |σ_K(z)|, in fact we can take the span of T-L signature;
- n(K) contains the Lickorish and Jabuka obstruction to u(K) = 1;
- n(K) contains the Stoimenow u(K) = 2 obstruction;
- a new obstruction from careful reading of Owens' paper;

Upper bounds.

くロン 不得 とくほ とくほとう

Lower bounds.

- n(K) is not smaller than the Nakanishi index;
- n(K) ≥ |σ_K(z)|, in fact we can take the span of T-L signature;
- n(K) contains the Lickorish and Jabuka obstruction to u(K) = 1;
- n(K) contains the Stoimenow u(K) = 2 obstruction;
- a new obstruction from careful reading of Owens' paper;

Upper bounds.

• the unknotting number;

ヘロト 不得 トイヨト イヨト

æ

Lower bounds.

- n(K) is not smaller than the Nakanishi index;
- n(K) ≥ |σ_K(z)|, in fact we can take the span of T-L signature;
- n(K) contains the Lickorish and Jabuka obstruction to u(K) = 1;
- n(K) contains the Stoimenow u(K) = 2 obstruction;
- a new obstruction from careful reading of Owens' paper;

Upper bounds.

- the unknotting number;
- algebraic unknotting on matrices. Can be implemented on a computer;

・ロト ・ 同ト ・ ヨト ・ ヨト

Open questions

• Is *n*(*K*) mutation invariant?

Maciej Borodzik Algebraic unknotting number and 4-manifolds

ヘロト 人間 とくほ とくほ とう

æ

Open questions

- Is *n*(*K*) mutation invariant?
- Is the condition A(1) is diagonal important?

イロト イロト イヨト

Open questions

- Is n(K) mutation invariant?
- Is the condition A(1) is diagonal important?
- What if we require *W* to be smooth?

・ロト ・ 同ト ・ ヨト ・ ヨト

Open questions

- Is *n*(*K*) mutation invariant?
- Is the condition A(1) is diagonal important?
- What if we require W to be smooth?
- Does this generalize to higher dimensions? We have a notion of a zero-surgery on Sⁿ⁻² ⊂ Sⁿ.

イロト イ理ト イヨト イヨト