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Heegaard decomposition of 3-manifolds

Definition

Let Y be a closed oriented and connected 3–manifold. A Heegaard

decomposition is the presentation of Y as a union Y = H1 ∪Σ ∪H2,

where H1 and H2 are handlebodies and Σ is a closed connected

surface.
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Theorem

Each three manifold admits a Heegaard decomposition. Any two

Heegaard decompositions are related by stabilizations and
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Heegaard decomposition of 3-manifolds

Definition

Let Y be a closed oriented and connected 3–manifold. A Heegaard

decomposition is the presentation of Y as a union Y = H1 ∪Σ ∪H2,

where H1 and H2 are handlebodies and Σ is a closed connected

surface.

Theorem

Each three manifold admits a Heegaard decomposition. Any two

Heegaard decompositions are related by stabilizations and

destabilizations.

Sketch of proof.

Use Morse theory.
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Example

The only manifold admitting a Heegaard decomposition of genus 0

is S3.
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Example

The only manifold admitting a Heegaard decomposition of genus 0

is S3.

For genus 1 H1 and H2 are two solid tori glued along their

boundary. Then Y is either S3 or a lens space.
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Example

The only manifold admitting a Heegaard decomposition of genus 0

is S3.

For genus 1 H1 and H2 are two solid tori glued along their

boundary. Then Y is either S3 or a lens space.

Problem

Prove the last statement.
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Heegaard diagrams

Definition

Let H1 ∪ Σ ∪ H2 be a Heegaard decomposition. Let g = genus(Σ). A

Heegaard diagram is a triple (Σ, α, β), where α and β are unordered

collections of g simple closed curves, α1, . . . , αg and β1, . . . , βg , such

that
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Heegaard diagrams
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Let H1 ∪ Σ ∪ H2 be a Heegaard decomposition. Let g = genus(Σ). A

Heegaard diagram is a triple (Σ, α, β), where α and β are unordered

collections of g simple closed curves, α1, . . . , αg and β1, . . . , βg , such

that

αi ∩ αj = βi ∩ βj = ∅ if i 6= j ;

The curves {α1, . . . , αg} form a basis of ker H1(Σ) → H1(H1) and

{β1, . . . , βg} form a basis of ker H1(Σ) → H1(H2).
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collections of g simple closed curves, α1, . . . , αg and β1, . . . , βg , such

that

αi ∩ αj = βi ∩ βj = ∅ if i 6= j ;

The curves {α1, . . . , αg} form a basis of ker H1(Σ) → H1(H1) and

{β1, . . . , βg} form a basis of ker H1(Σ) → H1(H2).

Another way: α1, . . . , αg bound disjoint disks in H1 such that the

complement of these disks in H1 is a 3–ball.
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Heegaard diagrams

Definition

Let H1 ∪ Σ ∪ H2 be a Heegaard decomposition. Let g = genus(Σ). A

Heegaard diagram is a triple (Σ, α, β), where α and β are unordered

collections of g simple closed curves, α1, . . . , αg and β1, . . . , βg , such

that

αi ∩ αj = βi ∩ βj = ∅ if i 6= j ;

The curves {α1, . . . , αg} form a basis of ker H1(Σ) → H1(H1) and

{β1, . . . , βg} form a basis of ker H1(Σ) → H1(H2).

Another way: α1, . . . , αg bound disjoint disks in H1 such that the

complement of these disks in H1 is a 3–ball.

A pointed Heegaard diagram is a quadruple (Σ, α, β, z), where

z ∈ Σ \ (α ∪ β).

Maciej Borodzik (Institute of Mathematics, Polish Academy of Science)Heegaard Floer homologies and rational cuspidal curvesWarsaw, February 2016 4 / 45



Symmetric products

Let (Σ, α, β, z) be a pointed Heegaard diagram. Let g = genus(Σ).
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Symmetric products

Let (Σ, α, β, z) be a pointed Heegaard diagram. Let g = genus(Σ). For

technical reasons assume that g > 2.
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now: Choose a complex structure on Σ. Let Symg(Σ) = Σ× . . .Σ/Sg ,

where Sg is the symmetric group. The product of α-curves is a torus

Tα and the product of β-curves is a torus Tβ .
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Let (Σ, α, β, z) be a pointed Heegaard diagram. Let g = genus(Σ). For
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now: Choose a complex structure on Σ. Let Symg(Σ) = Σ× . . .Σ/Sg ,

where Sg is the symmetric group. The product of α-curves is a torus

Tα and the product of β-curves is a torus Tβ . These tori are
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Symmetric products

Let (Σ, α, β, z) be a pointed Heegaard diagram. Let g = genus(Σ). For

technical reasons assume that g > 2. There will be some technicalities

now: Choose a complex structure on Σ. Let Symg(Σ) = Σ× . . .Σ/Sg ,

where Sg is the symmetric group. The product of α-curves is a torus

Tα and the product of β-curves is a torus Tβ . These tori are

lagrangian. The main object is the set of intersection points Tα ∩ Tβ .

Problem

Show that there is a 1–1 correspondence between points x ∈ Tα ∩ Tβ

and g−tuples of points (x1, . . . , xg) ∈ Σ such that there exists a

permutation σ : {1, . . . , g} → {1, . . . , g} and xi ∈ αi ∩ βσ(i).
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Symmetric products

Let (Σ, α, β, z) be a pointed Heegaard diagram. Let g = genus(Σ). For

technical reasons assume that g > 2. There will be some technicalities

now: Choose a complex structure on Σ. Let Symg(Σ) = Σ× . . .Σ/Sg ,

where Sg is the symmetric group. The product of α-curves is a torus

Tα and the product of β-curves is a torus Tβ . These tori are

lagrangian. The main object is the set of intersection points Tα ∩ Tβ .

Problem

Show that there is a 1–1 correspondence between points x ∈ Tα ∩ Tβ

and g−tuples of points (x1, . . . , xg) ∈ Σ such that there exists a

permutation σ : {1, . . . , g} → {1, . . . , g} and xi ∈ αi ∩ βσ(i).

Let Dz = {z} × Σ× . . .× Σ. Then Dz is a divisor in Symg(Σ).
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The chain complex ĈF and CF−

The chain complex ĈF is defined (over Z2) by intersection points

Tα ∩ Tβ .

Maciej Borodzik (Institute of Mathematics, Polish Academy of Science)Heegaard Floer homologies and rational cuspidal curvesWarsaw, February 2016 6 / 45



The chain complex ĈF and CF−

The chain complex ĈF is defined (over Z2) by intersection points

Tα ∩ Tβ .

The chain complex CF− is defined over Z2[U] by Tα ∩ Tβ .
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The chain complex ĈF and CF−

The chain complex ĈF is defined (over Z2) by intersection points

Tα ∩ Tβ .

The chain complex CF− is defined over Z2[U] by Tα ∩ Tβ .

The differential counts holomorphic maps φ : D → Symg such that

φ(−1) = x , φ(1) = y , φ∂−D ⊂ Tα and φ∂+D ⊂ Tβ . We make it

precise.
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The chain complex ĈF and CF−

The chain complex ĈF is defined (over Z2) by intersection points

Tα ∩ Tβ .

The chain complex CF− is defined over Z2[U] by Tα ∩ Tβ .

The differential counts holomorphic maps φ : D → Symg such that

φ(−1) = x , φ(1) = y , φ∂−D ⊂ Tα and φ∂+D ⊂ Tβ . We make it

precise.

Define π2(x , y) a set of homotopy classes of continuous maps as

above.
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φ(−1) = x , φ(1) = y , φ∂−D ⊂ Tα and φ∂+D ⊂ Tβ . We make it

precise.

Define π2(x , y) a set of homotopy classes of continuous maps as

above.

For each φ ∈ π2(x , y) there is a uniquely defined integer, the

Maslov class, µ(φ). This is the dimension of the moduli space of

of holomorphic maps.
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The chain complex ĈF and CF−

The chain complex ĈF is defined (over Z2) by intersection points

Tα ∩ Tβ .

The chain complex CF− is defined over Z2[U] by Tα ∩ Tβ .

The differential counts holomorphic maps φ : D → Symg such that

φ(−1) = x , φ(1) = y , φ∂−D ⊂ Tα and φ∂+D ⊂ Tβ . We make it

precise.

Define π2(x , y) a set of homotopy classes of continuous maps as

above.

For each φ ∈ π2(x , y) there is a uniquely defined integer, the

Maslov class, µ(φ). This is the dimension of the moduli space of

of holomorphic maps.

The differential for ĈF is

∂x =
∑

y∈Tα∩Tβ

∑

φ∈π2(x ,y) : µ(φ)=1,nz(φ)=0

#M(φ)y .

Maciej Borodzik (Institute of Mathematics, Polish Academy of Science)Heegaard Floer homologies and rational cuspidal curvesWarsaw, February 2016 6 / 45



Complexes CF+ and CF∞

The differential for CF− (and later for CF∞) is

∂x =
∑

y∈Tα∩Tβ

∑

φ∈π2(x ,y) : µ(φ)=1

#M(φ)Unz(φ)y .
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Complexes CF+ and CF∞

The differential for CF− (and later for CF∞) is

∂x =
∑

y∈Tα∩Tβ

∑

φ∈π2(x ,y) : µ(φ)=1

#M(φ)Unz(φ)y .

The complex CF∞ arises from CF− by replacing Z2[U] by

Z2[U,U−1].
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Complexes CF+ and CF∞
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∑

φ∈π2(x ,y) : µ(φ)=1

#M(φ)Unz(φ)y .

The complex CF∞ arises from CF− by replacing Z2[U] by
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Complexes CF+ and CF∞

The differential for CF− (and later for CF∞) is

∂x =
∑

y∈Tα∩Tβ

∑

φ∈π2(x ,y) : µ(φ)=1

#M(φ)Unz(φ)y .

The complex CF∞ arises from CF− by replacing Z2[U] by

Z2[U,U−1].The complex CF+ is the quotient CF∞/CF−. The short

exact sequence 0 → CF− → CF∞ → CF+ → 0 gives rise to an exact

triangle in homology.
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Complexes CF+ and CF∞

The differential for CF− (and later for CF∞) is

∂x =
∑

y∈Tα∩Tβ

∑

φ∈π2(x ,y) : µ(φ)=1

#M(φ)Unz(φ)y .

The complex CF∞ arises from CF− by replacing Z2[U] by

Z2[U,U−1].The complex CF+ is the quotient CF∞/CF−. The short

exact sequence 0 → CF− → CF∞ → CF+ → 0 gives rise to an exact

triangle in homology.

Problem

Prove that there exists a short exact sequence

0 → ĈF → CF+ ·U
→ CF+ → 0 giving rise to a long exact sequence in

homology.
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Complexes CF+ and CF∞

The differential for CF− (and later for CF∞) is

∂x =
∑

y∈Tα∩Tβ

∑

φ∈π2(x ,y) : µ(φ)=1

#M(φ)Unz(φ)y .

The complex CF∞ arises from CF− by replacing Z2[U] by

Z2[U,U−1].The complex CF+ is the quotient CF∞/CF−. The short

exact sequence 0 → CF− → CF∞ → CF+ → 0 gives rise to an exact

triangle in homology.

Problem

Prove that there exists a short exact sequence

0 → ĈF → CF+ ·U
→ CF+ → 0 giving rise to a long exact sequence in

homology.

A remark. The complexes have a relative grading, called the Maslov

grading, with M(x)− M(y) = µ(φ)− 2nz(φ).
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Spin-c structures

Definition

A spin-c structure on a manifold M is a choice of a complex line bundle

L → M together with a choice of spin structure on TM ⊗ L−1.
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A spin-c structure on a manifold M is a choice of a complex line bundle

L → M together with a choice of spin structure on TM ⊗ L−1.

We can think of spin-c structure as line bundles.

Spin-c structures admit an action of H1(M;Z).
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A spin-c structure on a manifold M is a choice of a complex line bundle

L → M together with a choice of spin structure on TM ⊗ L−1.

We can think of spin-c structure as line bundles.

Spin-c structures admit an action of H1(M;Z).

If H1(M;Z2) = 0, then we have a correspondence between spin-c

structures and elements in H1(M;Z).
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Spin-c structures

Definition

A spin-c structure on a manifold M is a choice of a complex line bundle

L → M together with a choice of spin structure on TM ⊗ L−1.

We can think of spin-c structure as line bundles.

Spin-c structures admit an action of H1(M;Z).

If H1(M;Z2) = 0, then we have a correspondence between spin-c

structures and elements in H1(M;Z).

Theorem (Turaev)

Suppose dim M = 3. Consider the set of non-vanishing vector fields on

M. Consider two vector fields equivalent if they are homotopic through

vector fields non-vanishing outside of a point. Then the set of

abstraction classes is in a bijective correspondence with the set of

spin-c structures.
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Spin-c structures and Heegaard Floer

Choose a generator x ∈ ĈF .
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Spin-c structures and Heegaard Floer

Choose a generator x ∈ ĈF . This is the g-tuple of points x1, . . . , xg

such that xj ∈ αj ∩ βσ(j).
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Spin-c structures and Heegaard Floer

Choose a generator x ∈ ĈF . This is the g-tuple of points x1, . . . , xg

such that xj ∈ αj ∩ βσ(j). Each point xj corresponds to a trajectory of

∇F connecting index 1 and 2 critical points.
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Spin-c structures and Heegaard Floer

Choose a generator x ∈ ĈF . This is the g-tuple of points x1, . . . , xg

such that xj ∈ αj ∩ βσ(j). Each point xj corresponds to a trajectory of

∇F connecting index 1 and 2 critical points. Remove all these

trajectories from M.
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Spin-c structures and Heegaard Floer

Choose a generator x ∈ ĈF . This is the g-tuple of points x1, . . . , xg

such that xj ∈ αj ∩ βσ(j). Each point xj corresponds to a trajectory of

∇F connecting index 1 and 2 critical points. Remove all these

trajectories from M. Remove the trajectory of ∇F through the marked

point z.
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Spin-c structures and Heegaard Floer

Choose a generator x ∈ ĈF . This is the g-tuple of points x1, . . . , xg

such that xj ∈ αj ∩ βσ(j). Each point xj corresponds to a trajectory of

∇F connecting index 1 and 2 critical points. Remove all these

trajectories from M. Remove the trajectory of ∇F through the marked

point z. Then ∇F is non-vanishing.
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Spin-c structures and Heegaard Floer

Choose a generator x ∈ ĈF . This is the g-tuple of points x1, . . . , xg

such that xj ∈ αj ∩ βσ(j). Each point xj corresponds to a trajectory of

∇F connecting index 1 and 2 critical points. Remove all these

trajectories from M. Remove the trajectory of ∇F through the marked

point z. Then ∇F is non-vanishing.

Each generator x ∈ ĈF determines a spin-c structure on M
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Spin-c structures and Heegaard Floer

Choose a generator x ∈ ĈF . This is the g-tuple of points x1, . . . , xg

such that xj ∈ αj ∩ βσ(j). Each point xj corresponds to a trajectory of

∇F connecting index 1 and 2 critical points. Remove all these

trajectories from M. Remove the trajectory of ∇F through the marked

point z. Then ∇F is non-vanishing.

Each generator x ∈ ĈF determines a spin-c structure on M

Problem

Show that if the differential from x to y is non-trivial, then x and y

determine the same spin-c structure.

Maciej Borodzik (Institute of Mathematics, Polish Academy of Science)Heegaard Floer homologies and rational cuspidal curvesWarsaw, February 2016 9 / 45



Spin-c structures and Heegaard Floer

Choose a generator x ∈ ĈF . This is the g-tuple of points x1, . . . , xg

such that xj ∈ αj ∩ βσ(j). Each point xj corresponds to a trajectory of

∇F connecting index 1 and 2 critical points. Remove all these

trajectories from M. Remove the trajectory of ∇F through the marked

point z. Then ∇F is non-vanishing.

Each generator x ∈ ĈF determines a spin-c structure on M

Problem

Show that if the differential from x to y is non-trivial, then x and y

determine the same spin-c structure.

Given that, the chain complexes split as direct sums of subcomplexes

corresponding to different spin-c structures.
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Independence

Theorem

The homologies HF+,HF−,HF∞ and ĤF are independent of the

choices made and are invariants of (Y , s). Moreover, if Y is a rational

homology sphere, then HF∞(Y , s) = Z2[U,U−1].
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The homologies HF+,HF−,HF∞ and ĤF are independent of the

choices made and are invariants of (Y , s). Moreover, if Y is a rational

homology sphere, then HF∞(Y , s) = Z2[U,U−1].

The original result shows that a change of data induces an

isomorphism of HF groups. Therefore the isomorphism class of

groups is well defined.
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The original result shows that a change of data induces an

isomorphism of HF groups. Therefore the isomorphism class of

groups is well defined.

It is a result of Juhász and Thurston that the homology groups are

well-defined and not just their isomorphism classes.
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Independence

Theorem

The homologies HF+,HF−,HF∞ and ĤF are independent of the

choices made and are invariants of (Y , s). Moreover, if Y is a rational

homology sphere, then HF∞(Y , s) = Z2[U,U−1].

The original result shows that a change of data induces an

isomorphism of HF groups. Therefore the isomorphism class of

groups is well defined.

It is a result of Juhász and Thurston that the homology groups are

well-defined and not just their isomorphism classes.

There is a subtle difference between having an isomorphism class

of a group or a group.
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Example. L(p, q)

A Heegaard diagram for L(p, q) is as on the picture.
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Example. L(p, q)

A Heegaard diagram for L(p, q) is as on the picture.

The complex for L(3, 1) has three generators and no

differentials. Each generator corresponds to another spin-c structure.

We get that CF−(L(3, 1), s) ∼= Z2[U] for each s.
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Example. L(p, q)

A Heegaard diagram for L(p, q) is as on the picture.

The complex for L(3, 1) has three generators and no

differentials. Each generator corresponds to another spin-c structure.

We get that CF−(L(3, 1), s) ∼= Z2[U] for each s.

The same statement hold for every lens space.
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L–spaces

Definition

A rational homology three–sphere is called an L–space if for every

spin-c structure s we have ĤF (Y , s) = Z2 and HF−(Y , s) = Z2[U]
(these two are equivalent to each other and also equivalent to saying

that HF+ = Z2[U,U−1]/Z2[U]).
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Künneth formula

Problem

Suppose (Y1, s1) and (Y2, s2) are two three–manifolds. Prove the

following Künneth formula for CF− and CF∞:

CF−(Y1#Y2, s1#s2) ∼= CF−(Y1, s1)⊗ CF−(Y2, s2).
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Adjunction inequality

Theorem (Ozsváth–Szabo 2003)

Suppose Y has b1(Y ) > 0. Let Z ⊂ Y be a closed oriented surface in

Y . If HF+(Y , s) 6= 0, then |〈c1(s),Z 〉| ≤ 2g(Z )− 2.

Maciej Borodzik (Institute of Mathematics, Polish Academy of Science)Heegaard Floer homologies and rational cuspidal curvesWarsaw, February 2016 14 / 45



Adjunction inequality

Theorem (Ozsváth–Szabo 2003)

Suppose Y has b1(Y ) > 0. Let Z ⊂ Y be a closed oriented surface in

Y . If HF+(Y , s) 6= 0, then |〈c1(s),Z 〉| ≤ 2g(Z )− 2.

This is the one of the two main technical tools in dealing with

Heegaard Floer theory. This is also one of the sources of its power.
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Surgery exact sequence

Theorem

Suppose Y is a homology three–sphere and K ⊂ Y is a knot. Then

there exists an exact sequence

. . . → HF+(Y ) → HF+(Y0) → HF+(Y1) → HF+(Y ) → . . . ,

where Y1 is the +1 surgery and Y0 is the 0-surgery.

Idea of proof.

Construct a suitable triple Heegaard diagram and define various maps

by counting holomorphic triangles.
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Grading

Theorem (Ozsváth–Szabó 2003)
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Grading

Theorem (Ozsváth–Szabó 2003)

There is an absolute Q grading of the homologies.
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Grading

Theorem (Ozsváth–Szabó 2003)

There is an absolute Q grading of the homologies.

If (W , t) is a smooth spin-c cobordism between (Y1, s1) and

(Y2, s2), then there exists maps F ◦

W t
: HF ◦(Y1, s1) → HF ◦(Y2, s2)

with ◦ ∈ {+,−,∞} making the obvious diagrams commute. The

grading shift of F is equal to

deg FW := 1
4(c1(t)

2 − 2χ(W )− 3σ(W )).
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Grading

Theorem (Ozsváth–Szabó 2003)

There is an absolute Q grading of the homologies.

If (W , t) is a smooth spin-c cobordism between (Y1, s1) and

(Y2, s2), then there exists maps F ◦

W t
: HF ◦(Y1, s1) → HF ◦(Y2, s2)

with ◦ ∈ {+,−,∞} making the obvious diagrams commute. The

grading shift of F is equal to

deg FW := 1
4(c1(t)

2 − 2χ(W )− 3σ(W )).

If W has negative definite intersection form, then F∞

W is an

isomorphism.
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d-invariants

Let W be a spin-c cobordism between Y1 and Y2. We have maps
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d-invariants

Let W be a spin-c cobordism between Y1 and Y2. We have maps

// HF−(Y1)

F−

W
��

// HF∞(Y1)

F∞

W

��

// HF+(Y1) //

F+
W

��

// HF−(Y2) // HF∞(Y2) // HF+(Y2) //
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d-invariants

Let W be a spin-c cobordism between Y1 and Y2. We have maps

// HF−(Y1)

F−

W
��

// HF∞(Y1)

F∞

W

��

// HF+(Y1) //

F+
W

��

// HF−(Y2) // HF∞(Y2) // HF+(Y2) //

Define d(Y1, s1) and d(Y2, s2) as the minimal grading of an

element in HF+ that is in the image of HF∞.
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d-invariants

Let W be a spin-c cobordism between Y1 and Y2. We have maps

// HF−(Y1)

F−

W
��

// HF∞(Y1)

F∞

W

��

// HF+(Y1) //

F+
W

��

// HF−(Y2) // HF∞(Y2) // HF+(Y2) //

Define d(Y1, s1) and d(Y2, s2) as the minimal grading of an

element in HF+ that is in the image of HF∞.

If W is negative definite, then the red arrow is an isomorphism so

we obtain the fundamental inequality between d-invariants:

d(Y1, s1) ≥ d(Y2, s2) + deg FW .
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Power of d-invariants.

The inequality for d-invariants is strong enough to:

Maciej Borodzik (Institute of Mathematics, Polish Academy of Science)Heegaard Floer homologies and rational cuspidal curvesWarsaw, February 2016 18 / 45



Power of d-invariants.

The inequality for d-invariants is strong enough to:

Reprove the Donaldson’s diagonalization theorem.
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Power of d-invariants.

The inequality for d-invariants is strong enough to:

Reprove the Donaldson’s diagonalization theorem.

Reprove the Kronheimer–Mrowka result on the unknotting number

of torus knots.
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Power of d-invariants.

The inequality for d-invariants is strong enough to:

Reprove the Donaldson’s diagonalization theorem.

Reprove the Kronheimer–Mrowka result on the unknotting number

of torus knots.

many other things.
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A glimpse into the future

Corollary

If (Y , s) bounds a rational homology ball W (that is Hk (W ;Q) = 0 for

k ≥ 1) and the spin-c structure s extends over W, then d(Y , s) = 0.
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A glimpse into the future

Corollary

If (Y , s) bounds a rational homology ball W (that is Hk (W ;Q) = 0 for

k ≥ 1) and the spin-c structure s extends over W, then d(Y , s) = 0.

Remark

Being a rational homology ball is the same as being a Q-acyclic

surface. In particular, a complement of a rational cuspidal curve C in

CP2 is a rational homology ball.
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A glimpse into the future

Corollary

If (Y , s) bounds a rational homology ball W (that is Hk (W ;Q) = 0 for

k ≥ 1) and the spin-c structure s extends over W, then d(Y , s) = 0.

Remark

Being a rational homology ball is the same as being a Q-acyclic

surface. In particular, a complement of a rational cuspidal curve C in

CP2 is a rational homology ball.

Question

How to calculate d-invariants?
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Knots and Heegaard diagrams

A doubly pointed Heegaard diagram is (Σ, α, β, z,w) with z,w disjoint

from α and β.
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Knots and Heegaard diagrams

A doubly pointed Heegaard diagram is (Σ, α, β, z,w) with z,w disjoint

from α and β. Connect z and w by an arc in both handlebodies. We

get a knot in K ⊂ Y . We say that the diagram represents the knot.

Problem

Show that for any null-homologous knot K in Y there exists a doubly

pointed Heegaard diagram representing that knot.
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Knots and Heegaard diagrams

A doubly pointed Heegaard diagram is (Σ, α, β, z,w) with z,w disjoint

from α and β. Connect z and w by an arc in both handlebodies. We

get a knot in K ⊂ Y . We say that the diagram represents the knot.

Problem

Show that for any null-homologous knot K in Y there exists a doubly

pointed Heegaard diagram representing that knot.

We think of a knot as a of a doubly pointed Heegaard diagram.
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The Alexander filtration

The second point w diagram induces a (relative) filtration on CF−.
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The Alexander filtration

The second point w diagram induces a (relative) filtration on CF−.

Write A(x)− A(y) = nw (φ)− nz(φ).
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The Alexander filtration

The second point w diagram induces a (relative) filtration on CF−.

Write A(x)− A(y) = nw (φ)− nz(φ).

Lemma

We have
∑

x∈Tα∩Tβ
(−1)M(x)qA(x) = ∆(q).
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Floer homologies

There are several ways to define homologies.
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Floer homologies

There are several ways to define homologies.

Remember! Chain complexes are good, homologies are bad!
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Floer homologies

There are several ways to define homologies.

Remember! Chain complexes are good, homologies are bad!

Take generators for ĈF and count only disks that do not intersect

z and w . Get ĤFK .
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Floer homologies

There are several ways to define homologies.

Remember! Chain complexes are good, homologies are bad!

Take generators for ĈF and count only disks that do not intersect

z and w . Get ĤFK .

Take generators for CF− and act as above. Get HFK−.
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Floer homologies

There are several ways to define homologies.

Remember! Chain complexes are good, homologies are bad!

Take generators for ĈF and count only disks that do not intersect

z and w . Get ĤFK .

Take generators for CF− and act as above. Get HFK−.

Take generators for CF− and do not change anything in the

definition of ∂. Get HF− of the underlying space.
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Floer homologies

There are several ways to define homologies.

Remember! Chain complexes are good, homologies are bad!

Take generators for ĈF and count only disks that do not intersect

z and w . Get ĤFK .

Take generators for CF− and act as above. Get HFK−.

Take generators for CF− and do not change anything in the

definition of ∂. Get HF− of the underlying space.

Do the same with ĈF .
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Properties of HKF

Detects the genus. That is, g(K ) = max{i : ĤFK ∗(K , i) 6= 0}.
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Properties of HKF

Detects the genus. That is, g(K ) = max{i : ĤFK ∗(K , i) 6= 0}.

In particular, it detects the unknot. The proof is much easier than

for Khovanov.
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Properties of HKF

Detects the genus. That is, g(K ) = max{i : ĤFK ∗(K , i) 6= 0}.

In particular, it detects the unknot. The proof is much easier than

for Khovanov.

Detects fibredness, a knot K is fibred if and only if

ĤFK ∗(K , g) = Z.
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Properties of HKF

Detects the genus. That is, g(K ) = max{i : ĤFK ∗(K , i) 6= 0}.

In particular, it detects the unknot. The proof is much easier than

for Khovanov.

Detects fibredness, a knot K is fibred if and only if

ĤFK ∗(K , g) = Z.

The τ -invariant, τ(K ) = −max{s : ∃x ∈ HFK−

∗
(K , s) : U jx 6= 0} is

a concordance invariant, equal to 2g(K ) for all positive knots,

detecting the unknotting number of positive knots.
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Surgeries and spin-c structures

Let K ⊂ S3 be a knot. Take ball B4 and glue to it a two–handle along K

with framing q. We obtain a 4–manifold N with boundary S3
q(K ). The

core of the handle and a Seifert surface for K form a closed surface F

that generates H2(N;Z).
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Surgeries and spin-c structures

Let K ⊂ S3 be a knot. Take ball B4 and glue to it a two–handle along K

with framing q. We obtain a 4–manifold N with boundary S3
q(K ). The

core of the handle and a Seifert surface for K form a closed surface F

that generates H2(N;Z).

Theorem

For every m ∈ [−q/2, q/2) ∩ Z there exists a unique spin-c structure

sm on Y that extends to a spin-c structure tm on N characterized by the

property that 〈c1(tm),F 〉+ 2m = q
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Surgeries and spin-c structures

Let K ⊂ S3 be a knot. Take ball B4 and glue to it a two–handle along K

with framing q. We obtain a 4–manifold N with boundary S3
q(K ). The

core of the handle and a Seifert surface for K form a closed surface F

that generates H2(N;Z).

Theorem

For every m ∈ [−q/2, q/2) ∩ Z there exists a unique spin-c structure

sm on Y that extends to a spin-c structure tm on N characterized by the

property that 〈c1(tm),F 〉+ 2m = q

The bottom line: think of spin-c structures as of integers in some

interval!
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Surgeries

A CFK∞ allows us to calculate the Heegaard Floer homologies of

surgeries on knots.
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Surgeries

A CFK∞ allows us to calculate the Heegaard Floer homologies of

surgeries on knots. The formula is in general very complex and

involves a mapping cone on many copies of subcomplexes

CFK∞(i > 0).
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Surgeries

A CFK∞ allows us to calculate the Heegaard Floer homologies of

surgeries on knots. The formula is in general very complex and

involves a mapping cone on many copies of subcomplexes

CFK∞(i > 0). If the surgery coefficient is large, by some clever

application of the adjunction inequality we can show that the formula

greatly simplifies.
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Large surgeries

Theorem

Suppose K ⊂ S3 and q > 2g(K ). Let Y = S3
q(K ). Then

CF−(Y , sm) ∼= CFK∞(K )(i < 0, j < m) and

CF+(Y , sm) ∼= CFK∞/(i < 0, j < m).
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Large surgeries

Theorem

Suppose K ⊂ S3 and q > 2g(K ). Let Y = S3
q(K ). Then

CF−(Y , sm) ∼= CFK∞(K )(i < 0, j < m) and

CF+(Y , sm) ∼= CFK∞/(i < 0, j < m).

The grading shift of this

homomorphism is
(q−2m)2

−q
4q .

Maciej Borodzik (Institute of Mathematics, Polish Academy of Science)Heegaard Floer homologies and rational cuspidal curvesWarsaw, February 2016 26 / 45



Large surgeries

Theorem

Suppose K ⊂ S3 and q > 2g(K ). Let Y = S3
q(K ). Then

CF−(Y , sm) ∼= CFK∞(K )(i < 0, j < m) and

CF+(Y , sm) ∼= CFK∞/(i < 0, j < m).

The grading shift of this

homomorphism is
(q−2m)2

−q
4q .

All needed data is derived

from the CFK∞
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L–space knots

Definition

A knot is called an L–space knot if there exists a positive surgery on K

which is an L–space.
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L–space knots

Definition

A knot is called an L–space knot if there exists a positive surgery on K

which is an L–space.

Theorem (Hedden 2006)

Algebraic knots are L–space knots.
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L–space knots

Definition

A knot is called an L–space knot if there exists a positive surgery on K

which is an L–space.

Theorem (Hedden 2006)

Algebraic knots are L–space knots.

Theorem (Krcatovich 2013)

An L–space knot is prime, in particular a connected sum of two

algebraic knots is not an L–space knot.
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L–space knots

Definition

A knot is called an L–space knot if there exists a positive surgery on K

which is an L–space.

Theorem (Hedden 2006)

Algebraic knots are L–space knots.

Theorem (Krcatovich 2013)

An L–space knot is prime, in particular a connected sum of two

algebraic knots is not an L–space knot.

L–space knots have the CFK∞ determined from the Alexander

polynomial.
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The staircase

∆4,7 = t18 − t17 + t14 − t13 + t11 − t9 + t7 − t5 + t4 − t + 1.
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The staircase

∆4,7 = t18 − t17 + t14 − t13 + t11 − t9 + t7 − t5 + t4 − t + 1.

(0, 9)

9 = 18/2
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The staircase

∆4,7 = t18 − t17 + t14 − t13 + t11 − t9 + t7 − t5 + t4 − t + 1.

9 = g(T4,7)
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The staircase

∆4,7 = t18 − t17 + t14 − t13 + t11 − t9 + t7 − t5 + t4 − t + 1.

9 = g(T4,7)

18 − 17 = 1
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The staircase

∆4,7 = t18 − t17 + t14 − t13 + t11 − t9 + t7 − t5 + t4 − t + 1.

9 = g(T4,7)

18 − 17 = 1

17 − 14 = 3
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The staircase

∆4,7 = t18 − t17 + t14 − t13 + t11 − t9 + t7 − t5 + t4 − t + 1.

9 = g(T4,7)

18 − 17 = 1

17 − 14 = 3

14 − 13 = 1
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The staircase

∆4,7 = t18 − t17 + t14 − t13 + t11 − t9 + t7 − t5 + t4 − t + 1.

9 = g(T4,7)

18 − 17 = 1

17 − 14 = 3

14 − 13 = 1

13 − 11 = 2
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The staircase

∆4,7 = t18 − t17 + t14 − t13 + t11 − t9 + t7 − t5 + t4 − t + 1.

9 = g(T4,7)

18 − 17 = 1

17 − 14 = 3

14 − 13 = 1

13 − 11 = 2

. . . and so on
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The staircase

∆4,7 = t18 − t17 + t14 − t13 + t11 − t9 + t7 − t5 + t4 − t + 1.

9 = g(T4,7)

18 − 17 = 1

17 − 14 = 3

14 − 13 = 1

13 − 11 = 2

. . . and so on

Symmetry reflects

symmetry of ∆
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The staircase complex

Maciej Borodzik (Institute of Mathematics, Polish Academy of Science)Heegaard Floer homologies and rational cuspidal curvesWarsaw, February 2016 29 / 45



The staircase complex

Place Z2 for each vertex.
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The staircase complex

Place Z2 for each vertex.

Differential is given by

lines as depicted.
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The staircase complex

Place Z2 for each vertex.

Differential is given by

lines as depicted.

Type A vertices.
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The staircase complex

Place Z2 for each vertex.

Differential is given by

lines as depicted.

Type A vertices.

Type B vertices.
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The staircase complex

Place Z2 for each vertex.

Differential is given by

lines as depicted.

Type A vertices.

Type B vertices.

Bifiltration is given by

coordinates.
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The staircase complex

Place Z2 for each vertex.

Differential is given by

lines as depicted.

Type A vertices.

Type B vertices.

Bifiltration is given by

coordinates.

Absolute grading of a

type A vertex is 0, of

type B is 1.
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Tensoring

Tensor St(K ) by

Z2[U,U−1].
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Tensoring

Tensor St(K ) by

Z2[U,U−1].

U changes the

filtration level by

(−1,−1) and the

absolute grading

by −2.
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Tensoring

(0)

(−2)

(−4)

(−6)

(−8)

Tensor St(K ) by

Z2[U,U−1].

U changes the

filtration level by

(−1,−1) and the

absolute grading

by −2.
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Tensoring

Tensor St(K ) by

Z2[U,U−1].

U changes the

filtration level by

(−1,−1) and the

absolute grading

by −2.

The resulting

complex is

CFK∞(K ) if K is

an algebraic knot.
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The function J(m)
m ∈ Z. Here m = 3.
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The function J(m)
m ∈ Z. Here m = 3.

The subcomplex

C(i < 0, j < m). Look

at the quotient C+.
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The function J(m)
m ∈ Z. Here m = 3.

The subcomplex

C(i < 0, j < m). Look

at the quotient C+.

Define J(m) as the

minimal absolute

grading of an element

non-trivial in

homology of the

quotient.
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The function J(m)

(−4)

m ∈ Z. Here m = 3.

The subcomplex

C(i < 0, j < m). Look

at the quotient C+.

Define J(m) as the

minimal absolute

grading of an element

non-trivial in

homology of the

quotient.
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The function J(m)
m ∈ Z. Here m = 3.

The subcomplex

C(i < 0, j < m). Look

at the quotient C+.

Define J(m) as the

minimal absolute

grading of an element

non-trivial in

homology of the

quotient.
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The function J(m)
m ∈ Z. Here m = 3.

The subcomplex

C(i < 0, j < m). Look

at the quotient C+.

Define J(m) as the

minimal absolute

grading of an element

non-trivial in

homology of the

quotient.
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The function J(m)
m ∈ Z. Here m = 3.

The subcomplex

C(i < 0, j < m). Look

at the quotient C+.

Define J(m) as the

minimal absolute

grading of an element

non-trivial in

homology of the

quotient.
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The function J(m)
m ∈ Z. Here m = 3.

The subcomplex

C(i < 0, j < m). Look

at the quotient C+.

Define J(m) as the

minimal absolute

grading of an element

non-trivial in

homology of the

quotient.

We will show yet

another description of

J.
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CFK∞ for T (2, 3)#T (2, 3)
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CFK∞ for T (2, 3)#T (2, 3)

The whole picture

must be tensored

by Z2[U,U−1].
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CFK∞ for T (2, 3)#T (2, 3)

The whole picture

must be tensored

by Z2[U,U−1].

We have a

staircase plus an

acyclic complex.
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CFK∞ for T (2, 3)#T (2, 3)

The whole picture

must be tensored

by Z2[U,U−1].

We have a

staircase plus an

acyclic complex.

This is not always

true, for example

for

T (4, 5)#T (4, 5).
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CFK∞ for −T (3, 4)
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CFK∞ for −T (3, 4)

The situation is

completely different than

for positive T (3, 4).
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CFK∞ for −T (3, 4)

The situation is

completely different than

for positive T (3, 4).

A generator of homology

of the complex is a sum

of filtered elements.
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CFK∞ for −T (3, 4)

The situation is

completely different than

for positive T (3, 4).

A generator of homology

of the complex is a sum

of filtered elements.

It is not a filtered

element, that is an

element at bifiltration

element (x , y) that is

non-zero in the quotient

by

CFK∞(i ≤ x−1, j ≤ y)+
CFK∞(i ≤ x , j ≤ y − 1).
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Semigroups of singular points

The semigroup of a singular point on a plane curve is the set of

possible local intersection with the curve.

Problem

Show that for a singularity xp − yq = 0 with p, q coprime, the

semigroup is generated by p and q.
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Semigroups of singular points

The semigroup of a singular point on a plane curve is the set of

possible local intersection with the curve.

Problem

Show that for a singularity xp − yq = 0 with p, q coprime, the

semigroup is generated by p and q.
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Semigroups of singular points

The semigroup of a singular point on a plane curve is the set of

possible local intersection with the curve.

Problem

Show that for a singularity xp − yq = 0 with p, q coprime, the

semigroup is generated by p and q.

If p = 4, q = 7, the semigroup is

S4,7 := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, . . .).
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Semigroups of singular points

The semigroup of a singular point on a plane curve is the set of

possible local intersection with the curve.

Problem

Show that for a singularity xp − yq = 0 with p, q coprime, the

semigroup is generated by p and q.

If p = 4, q = 7, the semigroup is

S4,7 := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, . . .).

The gap sequence is G4,7 = {1, 2, 3, 5, 6, 9, 10, 13, 17}.
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Semigroups of singular points

The semigroup of a singular point on a plane curve is the set of

possible local intersection with the curve.

Problem

Show that for a singularity xp − yq = 0 with p, q coprime, the

semigroup is generated by p and q.

If p = 4, q = 7, the semigroup is

S4,7 := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, . . .).

The gap sequence is G4,7 = {1, 2, 3, 5, 6, 9, 10, 13, 17}.

We have #G4,7 = µ/2 and max{x ∈ G4,7} = 17 = µ− 1. this is a

special property of semigroups of singular points!
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Semigroups of singular points

The semigroup of a singular point on a plane curve is the set of

possible local intersection with the curve.

Problem

Show that for a singularity xp − yq = 0 with p, q coprime, the

semigroup is generated by p and q.

If p = 4, q = 7, the semigroup is

S4,7 := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, . . .).

The gap sequence is G4,7 = {1, 2, 3, 5, 6, 9, 10, 13, 17}.

We have #G4,7 = µ/2 and max{x ∈ G4,7} = 17 = µ− 1.
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Semigroups of singular points

The semigroup of a singular point on a plane curve is the set of

possible local intersection with the curve.

Problem

Show that for a singularity xp − yq = 0 with p, q coprime, the

semigroup is generated by p and q.

If p = 4, q = 7, the semigroup is

S4,7 := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, . . .).

The gap sequence is G4,7 = {1, 2, 3, 5, 6, 9, 10, 13, 17}.

We have #G4,7 = µ/2 and max{x ∈ G4,7} = 17 = µ− 1.
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The Alexander polynomial

For a semigroup S with a gap sequence G we define
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The Alexander polynomial

For a semigroup S with a gap sequence G we define

∆S(t) = 1 + (t − 1)
∑

j∈G

t j .
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The Alexander polynomial

For a semigroup S with a gap sequence G we define

∆S(t) = 1 + (t − 1)
∑

j∈G

t j .

For the semigroup S4,7, the gap sequence is

{1, 2, 3, 5, 6, 9, 10, 13, 17}, so we have

Maciej Borodzik (Institute of Mathematics, Polish Academy of Science)Heegaard Floer homologies and rational cuspidal curvesWarsaw, February 2016 35 / 45



The Alexander polynomial

For a semigroup S with a gap sequence G we define

∆S(t) = 1 + (t − 1)
∑

j∈G

t j .

For the semigroup S4,7, the gap sequence is

{1, 2, 3, 5, 6, 9, 10, 13, 17}, so we have

∆4,7(t) = 1 + (t − 1)
(

t + t2 + t3 + t5 + t6 + t9 + t10 + t13 + t17
)
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The Alexander polynomial

For a semigroup S with a gap sequence G we define

∆S(t) = 1 + (t − 1)
∑

j∈G

t j .

For the semigroup S4,7, the gap sequence is

{1, 2, 3, 5, 6, 9, 10, 13, 17}, so we have

∆4,7(t) = 1 + (t − 1)
(

t + t2 + t3 + t5 + t6 + t9 + t10 + t13 + t17
)

or:

∆4,7 = 1 − t + t4 − t5 + t7 − t9 + t11 − t13 + t14 − t17 + t18.
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The Alexander polynomial

For a semigroup S with a gap sequence G we define

∆S(t) = 1 + (t − 1)
∑

j∈G

t j .

For the semigroup S4,7, the gap sequence is

{1, 2, 3, 5, 6, 9, 10, 13, 17}, so we have

∆4,7(t) = 1 + (t − 1)
(

t + t2 + t3 + t5 + t6 + t9 + t10 + t13 + t17
)

or:

∆4,7 = 1 − t + t4 − t5 + t7 − t9 + t11 − t13 + t14 − t17 + t18.

This is the Alexander polynomial of the knot of the singularity.
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The gap function

Definition

The gap function is defined as

I(m) := #{x ∈ Z, x ≥ m, x 6∈ S}.
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The gap function

Definition

The gap function is defined as

I(m) := #{x ∈ Z, x ≥ m, x 6∈ S}.

We have

I4,7(5) = #{5, 6, 9, 10, 13, 17} = 6.
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The gap function

Definition

The gap function is defined as

I(m) := #{x ∈ Z, x ≥ m, x 6∈ S}.

We have

I4,7(5) = #{5, 6, 9, 10, 13, 17} = 6.

Always I(0) = µ/2, I(x) = 0 for x ≥ µ and I(−n) = n + µ/2 for n > 0.
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The gap function

Definition

The gap function is defined as

I(m) := #{x ∈ Z, x ≥ m, x 6∈ S}.

We have

I4,7(5) = #{5, 6, 9, 10, 13, 17} = 6.

Always I(0) = µ/2, I(x) = 0 for x ≥ µ and I(−n) = n + µ/2 for n > 0.

Theorem

For an algebraic knot J(m) = −2I(m + g), where g = µ/2 is the genus.
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Gap function for connected sums

A connected sum of algebraic knots is not an L–space knot. But some

part of the theory survives.
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Gap function for connected sums

A connected sum of algebraic knots is not an L–space knot. But some

part of the theory survives.

Definition

For two functions I1, I2 : Z → Z bounded from below define their infimal

convolution by I1 ⋄ I2(k) = minn∈Z I1(n) + I2(k − n).
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Gap function for connected sums

A connected sum of algebraic knots is not an L–space knot. But some

part of the theory survives.

Definition

For two functions I1, I2 : Z → Z bounded from below define their infimal

convolution by I1 ⋄ I2(k) = minn∈Z I1(n) + I2(k − n).

Theorem

Let K = K1# . . .#Kn be a connected sum of algebraic knots. Gap

functions are I1, . . . , In. Set I = I1 ⋄ . . . ⋄ In. Then J(m) = −2I(m + g),
where J is the minimal grading . . .
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d-invariants again

Proposition

Let K be a connected sum of algebraic knots. Then

d(S3
q(K ), sm) =

(q − 2m)2 − q

4q
− 2I(m + g).
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d-invariants again

Proposition

Let K be a connected sum of algebraic knots. Then

d(S3
q(K ), sm) =

(q − 2m)2 − q

4q
+ J(m).
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Boundary of a rational cuspidal curve

C is a rational cuspidal curve with singularities z1, . . . , zn.
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Boundary of a rational cuspidal curve

C is a rational cuspidal curve with singularities z1, . . . , zn. d = deg C.
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Boundary of a rational cuspidal curve

C is a rational cuspidal curve with singularities z1, . . . , zn. d = deg C.

K1, . . .Kn are links of singularities.
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Boundary of a rational cuspidal curve

C is a rational cuspidal curve with singularities z1, . . . , zn. d = deg C.

K1, . . .Kn are links of singularities. Define K = K1# . . .#Kn.
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Boundary of a rational cuspidal curve

C is a rational cuspidal curve with singularities z1, . . . , zn. d = deg C.

K1, . . .Kn are links of singularities. Define K = K1# . . .#Kn.

Proposition

Let N be the tubular neighborhood of C and let Y = ∂N. Then Y is a

d2 surgery on K .
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Boundary of a rational cuspidal curve

C is a rational cuspidal curve with singularities z1, . . . , zn. d = deg C.

K1, . . .Kn are links of singularities. Define K = K1# . . .#Kn.

Proposition

Let N be the tubular neighborhood of C and let Y = ∂N. Then Y is a

d2 surgery on K .

Then d(Y , s) = 0 for every spin-c structure on Y that extends over

CP2 \ N.
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Boundary of a rational cuspidal curve

C is a rational cuspidal curve with singularities z1, . . . , zn. d = deg C.

K1, . . .Kn are links of singularities. Define K = K1# . . .#Kn.

Proposition

Let N be the tubular neighborhood of C and let Y = ∂N. Then Y is a

d2 surgery on K .

Then d(Y , s) = 0 for every spin-c structure on Y that extends over

CP2 \ N.

Proposition

The spin-c structure sm extends over CP2 \ N if m = jd for j ∈ Z if d is

odd and m = (j + 1
2)d if d is even.
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The FLMN conjecture

Combining results we obtain the following result.

Theorem (—,Livingston, 2013)

For j = 0, . . . , d − 3 we have

I(jd + 1) =
(d − j − 1)(d − j − 2)

2
.

Maciej Borodzik (Institute of Mathematics, Polish Academy of Science)Heegaard Floer homologies and rational cuspidal curvesWarsaw, February 2016 40 / 45



The FLMN conjecture

Combining results we obtain the following result.

Theorem (—,Livingston, 2013)

For j = 0, . . . , d − 3 we have

I(jd + 1) =
(d − j − 1)(d − j − 2)

2
.

For n = 1 and n = 2 this is equivalent to the original FLMN conjecture

(for n = 2 the translation is non-trivial and done by Bodnár–Némethi

and Nayar–Pilat).
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The FLMN conjecture

Combining results we obtain the following result.

Theorem (—,Livingston, 2013)

For j = 0, . . . , d − 3 we have

I(jd + 1) =
(d − j − 1)(d − j − 2)

2
.

For n = 1 and n = 2 this is equivalent to the original FLMN conjecture

(for n = 2 the translation is non-trivial and done by Bodnár–Némethi

and Nayar–Pilat). For n ≥ 3 the original conjecture is false, but the

above result is a natural plan B.
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Generalization

Theorem (–,Hedden,Livingston and Bodnár, Celoria, Golla, 2014)

A set of inequalities of the semigroup function for the genus g curve

with cuspidal singularities.
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Generalization

Theorem (–,Hedden,Livingston and Bodnár, Celoria, Golla, 2014)

A set of inequalities of the semigroup function for the genus g curve

with cuspidal singularities. They are of form

0 ≤ I(jd + 1)− (d−j−1)(d−j−2)
2 ≤ g.
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Generalization

Theorem (–,Hedden,Livingston and Bodnár, Celoria, Golla, 2014)

A set of inequalities of the semigroup function for the genus g curve

with cuspidal singularities. They are of form

0 ≤ I(jd + 1)− (d−j−1)(d−j−2)
2 ≤ g.

Theorem (–,Moe, 2014)

Generalization for rational cuspidal curves in Hirzebruch surfaces.

Only one side of inequality is obtained.
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Generalization

Theorem (–,Hedden,Livingston and Bodnár, Celoria, Golla, 2014)

A set of inequalities of the semigroup function for the genus g curve

with cuspidal singularities. They are of form

0 ≤ I(jd + 1)− (d−j−1)(d−j−2)
2 ≤ g.

Theorem (–,Moe, 2014)

Generalization for rational cuspidal curves in Hirzebruch surfaces.

Only one side of inequality is obtained.

Theorem (–, 2015)

Generalization for rcc in surfaces with pg = 0. The condition implies

that the complement of a rcc is a negative definite manifold.

Maciej Borodzik (Institute of Mathematics, Polish Academy of Science)Heegaard Floer homologies and rational cuspidal curvesWarsaw, February 2016 41 / 45



If time permits

Theorem (FLMN)

Suppose that C is a curve in CP2 of degree d. Let z ∈ C be a singular

point and S its semigroup. Then for j = 1, . . . , d − 1 we have

#S ∩ [0, jd + 1) ≥
1

2
(j + 1)(j + 2).
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Theorem (FLMN)

Suppose that C is a curve in CP2 of degree d. Let z ∈ C be a singular

point and S its semigroup. Then for j = 1, . . . , d − 1 we have

#S ∩ [0, jd + 1) ≥
1

2
(j + 1)(j + 2).

This is one part of the FLMN conjecture.
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If time permits

Theorem (FLMN)

Suppose that C is a curve in CP2 of degree d. Let z ∈ C be a singular

point and S its semigroup. Then for j = 1, . . . , d − 1 we have

#S ∩ [0, jd + 1) ≥
1

2
(j + 1)(j + 2).

This is one part of the FLMN conjecture.

The right hand side is the dimension of space of polynomials of

degree j , H0(CP2,O(jH)).
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If time permits

Theorem (FLMN)

Suppose that C is a curve in CP2 of degree d. Let z ∈ C be a singular

point and S its semigroup. Then for j = 1, . . . , d − 1 we have

#S ∩ [0, jd + 1) ≥
1

2
(j + 1)(j + 2).

This is one part of the FLMN conjecture.

The right hand side is the dimension of space of polynomials of

degree j , H0(CP2,O(jH)).

The quantity #S ∩ [0, k) is the number of conditions of a curve D

to intersect C at z with multiplicity at least k .
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If time permits

Theorem (FLMN)

Suppose that C is a curve in CP2 of degree d. Let z ∈ C be a singular

point and S its semigroup. Then for j = 1, . . . , d − 1 we have

#S ∩ [0, jd + 1) ≥
1

2
(j + 1)(j + 2).

This is one part of the FLMN conjecture.

The right hand side is the dimension of space of polynomials of

degree j , H0(CP2,O(jH)).

The quantity #S ∩ [0, k) is the number of conditions of a curve D

to intersect C at z with multiplicity at least k .

If the inequality is violated, then there exists a curve D of degree j

intersecting C with multiplicity jd + 1 or higher. Contradicition.
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If time permits 2

The result of MB and Moe and then of MB show that Heegaard Floer

theory gives the same set of inequalities than Bézout (or

Riemann–Roch).
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If time permits 2

The result of MB and Moe and then of MB show that Heegaard Floer

theory gives the same set of inequalities than Bézout (or

Riemann–Roch).

Problem (You’re encouraged to work at it)

Prove the FLMN inequalities using the line of FLMN for almost

complex manifolds replacing H0(CP2,O(jH)) by some moduli space of

J-holomorphic curves.
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If time permits 2

The result of MB and Moe and then of MB show that Heegaard Floer

theory gives the same set of inequalities than Bézout (or

Riemann–Roch).

Problem (You’re encouraged to work at it)

Prove the FLMN inequalities using the line of FLMN for almost

complex manifolds replacing H0(CP2,O(jH)) by some moduli space of

J-holomorphic curves. Explain the similarity between the two

approaches as a variant of GW–SW correspondence.
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Work in progress

Joint project with Hom and Schinzel.
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Joint project with Hom and Schinzel.

Use Involutive Floer homology for finer obstruction.
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Work in progress

Joint project with Hom and Schinzel.

Use Involutive Floer homology for finer obstruction.

Definition

For an algebraic knot K with a staircase, the stretch is the length of the

middle step of a staircase. A knot is called even or odd if the staircase

has an even or odd number of steps.
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Use Involutive Floer homology for finer obstruction.

Definition

For an algebraic knot K with a staircase, the stretch is the length of the

middle step of a staircase. A knot is called even or odd if the staircase

has an even or odd number of steps.
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Work in progress

Joint project with Hom and Schinzel.

Use Involutive Floer homology for finer obstruction.

Definition

For an algebraic knot K with a staircase, the stretch is the length of the

middle step of a staircase. A knot is called even or odd if the staircase

has an even or odd number of steps.

The stretch of the staircase for T (4, 5) is 2. This knot is odd.
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Bound from the IH

Theorem (Hom, Schinzel, –)

Let p, q be coprime. Write the continuous fraction expansion

q/p = [a0; a1; . . . ; ak ]. Then the stretch of T (p, q) is equal to [ak−1
2 ] + 1.

Maciej Borodzik (Institute of Mathematics, Polish Academy of Science)Heegaard Floer homologies and rational cuspidal curvesWarsaw, February 2016 45 / 45



Bound from the IH

Theorem (Hom, Schinzel, –)

Let p, q be coprime. Write the continuous fraction expansion

q/p = [a0; a1; . . . ; ak ]. Then the stretch of T (p, q) is equal to [ak−1
2 ] + 1.

Theorem (Hom, Schinzel, –)

Let C be a rational cuspidal curve with knots K1, . . . ,Kn. Suppose K1 is

odd. Then the stretch of K1 is less or equal than g(K2) + . . .+ g(Kn).
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Bound from the IH

Theorem (Hom, Schinzel, –)

Let p, q be coprime. Write the continuous fraction expansion

q/p = [a0; a1; . . . ; ak ]. Then the stretch of T (p, q) is equal to [ak−1
2 ] + 1.

We have only this result for curves of odd degree.

Theorem (Hom, Schinzel, –)

Let C be a rational cuspidal curve with knots K1, . . . ,Kn. Suppose K1 is

odd. Then the stretch of K1 is less or equal than g(K2) + . . .+ g(Kn).

Remark

This obstructs some cases with one ‘big’ singularity and some small.
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