Heegaard Floer homologies and rational cuspidal curves

Maciej Borodzik
www．mimuw．edu．pl／～mcboro

Institute of Mathematics，Polish Academy of Science
Warsaw，February 2016

Heegaard decomposition of 3-manifolds

Definition
Let Y be a closed oriented and connected 3-manifold. A Heegaard decomposition is the presentation of Y as a union $Y=H_{1} \cup_{\Sigma} \cup H_{2}$, where H_{1} and H_{2} are handlebodies and Σ is a closed connected surface.

Heegaard decomposition of 3-manifolds

Definition
Let Y be a closed oriented and connected 3-manifold. A Heegaard decomposition is the presentation of Y as a union $Y=H_{1} \cup_{\Sigma} \cup H_{2}$, where H_{1} and H_{2} are handlebodies and Σ is a closed connected surface.

Theorem

Each three manifold admits a Heegaard decomposition. Any two Heegaard decompositions are related by stabilizations and destabilizations.

Heegaard decomposition of 3-manifolds

Definition
Let Y be a closed oriented and connected 3-manifold. A Heegaard decomposition is the presentation of Y as a union $Y=H_{1} \cup_{\Sigma} \cup H_{2}$, where H_{1} and H_{2} are handlebodies and Σ is a closed connected surface.

Theorem

Each three manifold admits a Heegaard decomposition. Any two Heegaard decompositions are related by stabilizations and destabilizations.

Sketch of proof.
Use Morse theory.

Example

- The only manifold admitting a Heegaard decomposition of genus 0 is S^{3}.

Example

- The only manifold admitting a Heegaard decomposition of genus 0 is S^{3}.
- For genus $1 H_{1}$ and H_{2} are two solid tori glued along their boundary. Then Y is either S^{3} or a lens space.

Example

- The only manifold admitting a Heegaard decomposition of genus 0 is S^{3}.
- For genus $1 H_{1}$ and H_{2} are two solid tori glued along their boundary. Then Y is either S^{3} or a lens space.

Problem
Prove the last statement.

Heegaard diagrams

Definition

Let $H_{1} \cup \Sigma \cup H_{2}$ be a Heegaard decomposition. Let $g=\operatorname{genus}(\Sigma)$. A Heegaard diagram is a triple (Σ, α, β), where α and β are unordered collections of g simple closed curves, $\alpha_{1}, \ldots, \alpha_{g}$ and $\beta_{1}, \ldots, \beta_{g}$, such that

Heegaard diagrams

Definition

Let $H_{1} \cup \Sigma \cup H_{2}$ be a Heegaard decomposition. Let $g=\operatorname{genus}(\Sigma)$. A Heegaard diagram is a triple (Σ, α, β), where α and β are unordered collections of g simple closed curves, $\alpha_{1}, \ldots, \alpha_{g}$ and $\beta_{1}, \ldots, \beta_{g}$, such that

- $\alpha_{i} \cap \alpha_{j}=\beta_{i} \cap \beta_{j}=\emptyset$ if $i \neq j$;

Heegaard diagrams

Definition

Let $H_{1} \cup \Sigma \cup H_{2}$ be a Heegaard decomposition. Let $g=\operatorname{genus}(\Sigma)$. A Heegaard diagram is a triple (Σ, α, β), where α and β are unordered collections of g simple closed curves, $\alpha_{1}, \ldots, \alpha_{g}$ and $\beta_{1}, \ldots, \beta_{g}$, such that

- $\alpha_{i} \cap \alpha_{j}=\beta_{i} \cap \beta_{j}=\emptyset$ if $i \neq j$;
- The curves $\left\{\alpha_{1}, \ldots, \alpha_{g}\right\}$ form a basis of ker $H_{1}(\Sigma) \rightarrow H_{1}\left(H_{1}\right)$ and $\left\{\beta_{1}, \ldots, \beta_{g}\right\}$ form a basis of $\operatorname{ker} H_{1}(\Sigma) \rightarrow H_{1}\left(H_{2}\right)$.

Heegaard diagrams

Definition

Let $H_{1} \cup \Sigma \cup H_{2}$ be a Heegaard decomposition. Let $g=\operatorname{genus}(\Sigma)$. A Heegaard diagram is a triple (Σ, α, β), where α and β are unordered collections of g simple closed curves, $\alpha_{1}, \ldots, \alpha_{g}$ and $\beta_{1}, \ldots, \beta_{g}$, such that

- $\alpha_{i} \cap \alpha_{j}=\beta_{i} \cap \beta_{j}=\emptyset$ if $i \neq j$;
- The curves $\left\{\alpha_{1}, \ldots, \alpha_{g}\right\}$ form a basis of ker $H_{1}(\Sigma) \rightarrow H_{1}\left(H_{1}\right)$ and $\left\{\beta_{1}, \ldots, \beta_{g}\right\}$ form a basis of $\operatorname{ker} H_{1}(\Sigma) \rightarrow H_{1}\left(H_{2}\right)$.

Another way: $\alpha_{1}, \ldots, \alpha_{g}$ bound disjoint disks in H_{1} such that the complement of these disks in H_{1} is a 3-ball.

Heegaard diagrams

Definition

Let $H_{1} \cup \Sigma \cup H_{2}$ be a Heegaard decomposition. Let $g=\operatorname{genus}(\Sigma)$. A Heegaard diagram is a triple (Σ, α, β), where α and β are unordered collections of g simple closed curves, $\alpha_{1}, \ldots, \alpha_{g}$ and $\beta_{1}, \ldots, \beta_{g}$, such that

- $\alpha_{i} \cap \alpha_{j}=\beta_{i} \cap \beta_{j}=\emptyset$ if $i \neq j$;
- The curves $\left\{\alpha_{1}, \ldots, \alpha_{g}\right\}$ form a basis of ker $H_{1}(\Sigma) \rightarrow H_{1}\left(H_{1}\right)$ and $\left\{\beta_{1}, \ldots, \beta_{g}\right\}$ form a basis of ker $H_{1}(\Sigma) \rightarrow H_{1}\left(H_{2}\right)$.

Another way: $\alpha_{1}, \ldots, \alpha_{g}$ bound disjoint disks in H_{1} such that the complement of these disks in H_{1} is a 3-ball.
A pointed Heegaard diagram is a quadruple $(\Sigma, \alpha, \beta, z)$, where $z \in \Sigma \backslash(\alpha \cup \beta)$.

Symmetric products

Let $(\Sigma, \alpha, \beta, z)$ be a pointed Heegaard diagram. Let $g=\operatorname{genus}(\Sigma)$.

Symmetric products

Let $(\Sigma, \alpha, \beta, z)$ be a pointed Heegaard diagram. Let $g=\operatorname{genus}(\Sigma)$. For technical reasons assume that $g>2$.

Symmetric products

Let $(\Sigma, \alpha, \beta, z)$ be a pointed Heegaard diagram. Let $g=\operatorname{genus}(\Sigma)$. For technical reasons assume that $g>2$. There will be some technicalities now:

Symmetric products

Let $(\Sigma, \alpha, \beta, z)$ be a pointed Heegaard diagram. Let $g=\operatorname{genus}(\Sigma)$. For technical reasons assume that $g>2$. There will be some technicalities now: Choose a complex structure on Σ.

Symmetric products

Let $(\Sigma, \alpha, \beta, z)$ be a pointed Heegaard diagram. Let $g=\operatorname{genus}(\Sigma)$. For technical reasons assume that $g>2$. There will be some technicalities now: Choose a complex structure on Σ. Let $\operatorname{Sym}^{g}(\Sigma)=\Sigma \times \ldots \Sigma / S_{g}$, where S_{g} is the symmetric group.

Symmetric products

Let $(\Sigma, \alpha, \beta, z)$ be a pointed Heegaard diagram. Let $g=\operatorname{genus}(\Sigma)$. For technical reasons assume that $g>2$. There will be some technicalities now: Choose a complex structure on Σ. Let $\operatorname{Sym}^{g}(\Sigma)=\Sigma \times \ldots \Sigma / S_{g}$, where S_{g} is the symmetric group. The product of α-curves is a torus \mathbb{T}_{α} and the product of β-curves is a torus \mathbb{T}_{β}.

Symmetric products

Let $(\Sigma, \alpha, \beta, z)$ be a pointed Heegaard diagram. Let $g=\operatorname{genus}(\Sigma)$. For technical reasons assume that $g>2$. There will be some technicalities now: Choose a complex structure on Σ. Let $\operatorname{Sym}^{g}(\Sigma)=\Sigma \times \ldots \Sigma / S_{g}$, where S_{g} is the symmetric group. The product of α-curves is a torus \mathbb{T}_{α} and the product of β-curves is a torus \mathbb{T}_{β}. These tori are lagrangian.

Symmetric products

Let $(\Sigma, \alpha, \beta, z)$ be a pointed Heegaard diagram. Let $g=\operatorname{genus}(\Sigma)$. For technical reasons assume that $g>2$. There will be some technicalities now: Choose a complex structure on Σ. Let $\operatorname{Sym}^{g}(\Sigma)=\Sigma \times \ldots \Sigma / S_{g}$, where S_{g} is the symmetric group. The product of α-curves is a torus \mathbb{T}_{α} and the product of β-curves is a torus \mathbb{T}_{β}. These tori are lagrangian. The main object is the set of intersection points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$.

Symmetric products

Let $(\Sigma, \alpha, \beta, z)$ be a pointed Heegaard diagram. Let $g=\operatorname{genus}(\Sigma)$. For technical reasons assume that $g>2$. There will be some technicalities now: Choose a complex structure on Σ. Let $\operatorname{Sym}^{g}(\Sigma)=\Sigma \times \ldots \Sigma / S_{g}$, where S_{g} is the symmetric group. The product of α-curves is a torus \mathbb{T}_{α} and the product of β-curves is a torus \mathbb{T}_{β}. These tori are lagrangian. The main object is the set of intersection points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$.

Problem

Show that there is a 1-1 correspondence between points $x \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$ and g-tuples of points $\left(x_{1}, \ldots, x_{g}\right) \in \Sigma$ such that there exists a permutation $\sigma:\{1, \ldots, g\} \rightarrow\{1, \ldots, g\}$ and $x_{i} \in \alpha_{i} \cap \beta_{\sigma(i)}$.

Symmetric products

Let $(\Sigma, \alpha, \beta, z)$ be a pointed Heegaard diagram. Let $g=\operatorname{genus}(\Sigma)$. For technical reasons assume that $g>2$. There will be some technicalities now: Choose a complex structure on Σ. Let $\operatorname{Sym}^{g}(\Sigma)=\Sigma \times \ldots \Sigma / S_{g}$, where S_{g} is the symmetric group. The product of α-curves is a torus \mathbb{T}_{α} and the product of β-curves is a torus \mathbb{T}_{β}. These tori are lagrangian. The main object is the set of intersection points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$.

Problem

Show that there is a 1-1 correspondence between points $x \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$ and g-tuples of points $\left(x_{1}, \ldots, x_{g}\right) \in \Sigma$ such that there exists a permutation $\sigma:\{1, \ldots, g\} \rightarrow\{1, \ldots, g\}$ and $x_{i} \in \alpha_{i} \cap \beta_{\sigma(i)}$.

Let $D_{z}=\{z\} \times \Sigma \times \ldots \times \Sigma$. Then D_{z} is a divisor in $\operatorname{Sym}^{g}(\Sigma)$.

The chain complex $\widehat{C F}$ and CF^{-}

- The chain complex $\widehat{C F}$ is defined (over \mathbb{Z}_{2}) by intersection points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$.

The chain complex $\widehat{C F}$ and CF^{-}

- The chain complex $\widehat{C F}$ is defined (over \mathbb{Z}_{2}) by intersection points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$.
- The chain complex $C F^{-}$is defined over $\mathbb{Z}_{2}[U]$ by $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$.

The chain complex $\widehat{C F}$ and CF^{-}

- The chain complex $\widehat{C F}$ is defined (over \mathbb{Z}_{2}) by intersection points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$.
- The chain complex $C F^{-}$is defined over $\mathbb{Z}_{2}[U]$ by $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$.
- The differential counts holomorphic maps $\phi: D \rightarrow$ Sym g such that $\phi(-1)=x, \phi(1)=y, \phi_{\partial_{-} D} \subset \mathbb{T}_{\alpha}$ and $\phi_{\partial_{+} D} \subset \mathbb{T}_{\beta}$. We make it precise.

The chain complex $\widehat{C F}$ and CF^{-}

- The chain complex $\widehat{C F}$ is defined (over \mathbb{Z}_{2}) by intersection points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$.
- The chain complex $C F^{-}$is defined over $\mathbb{Z}_{2}[U]$ by $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$.
- The differential counts holomorphic maps $\phi: D \rightarrow$ Sym g such that $\phi(-1)=x, \phi(1)=y, \phi_{\partial_{-} D} \subset \mathbb{T}_{\alpha}$ and $\phi_{\partial_{+} D} \subset \mathbb{T}_{\beta}$. We make it precise.
- Define $\pi_{2}(x, y)$ a set of homotopy classes of continuous maps as above.

The chain complex $\widehat{C F}$ and CF^{-}

- The chain complex $\widehat{C F}$ is defined (over \mathbb{Z}_{2}) by intersection points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$.
- The chain complex $C F^{-}$is defined over $\mathbb{Z}_{2}[U]$ by $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$.
- The differential counts holomorphic maps $\phi: D \rightarrow$ Sym g such that $\phi(-1)=x, \phi(1)=y, \phi_{\partial_{-} D} \subset \mathbb{T}_{\alpha}$ and $\phi_{\partial_{+} D} \subset \mathbb{T}_{\beta}$. We make it precise.
- Define $\pi_{2}(x, y)$ a set of homotopy classes of continuous maps as above.
- For each $\phi \in \pi_{2}(x, y)$ there is a uniquely defined integer, the Maslov class, $\mu(\phi)$. This is the dimension of the moduli space of of holomorphic maps.

The chain complex $\widehat{C F}$ and CF^{-}

- The chain complex $\widehat{C F}$ is defined (over \mathbb{Z}_{2}) by intersection points $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$.
- The chain complex $C F^{-}$is defined over $\mathbb{Z}_{2}[U]$ by $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$.
- The differential counts holomorphic maps $\phi: D \rightarrow$ Sym g such that $\phi(-1)=x, \phi(1)=y, \phi_{\partial_{-} D} \subset \mathbb{T}_{\alpha}$ and $\phi_{\partial_{+} D} \subset \mathbb{T}_{\beta}$. We make it precise.
- Define $\pi_{2}(x, y)$ a set of homotopy classes of continuous maps as above.
- For each $\phi \in \pi_{2}(x, y)$ there is a uniquely defined integer, the Maslov class, $\mu(\phi)$. This is the dimension of the moduli space of of holomorphic maps.
- The differential for $\widehat{C F}$ is

$$
\partial x=\sum_{y \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta} \phi \in \pi_{2}(x, y):} \sum_{\mu(\phi)=1, n_{z}(\phi)=0} \# \mathcal{M}(\phi) y .
$$

Complexes CF^{+}and CF^{∞}

The differential for CF^{-}(and later for CF^{∞}) is

$$
\partial x=\sum_{y \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}} \sum_{\phi \in \pi_{2}(x, y): \mu(\phi)=1} \# \mathcal{M}(\phi) U^{n_{z}(\phi)} y .
$$

Complexes CF^{+}and CF^{∞}

The differential for CF^{-}(and later for CF^{∞}) is

$$
\partial x=\sum_{y \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}} \sum_{\phi \in \pi_{2}(x, y): \mu(\phi)=1} \# \mathcal{M}(\phi) U^{n_{z}(\phi)} y .
$$

The complex $C F^{\infty}$ arises from $C F^{-}$by replacing $\mathbb{Z}_{2}[U]$ by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$.

Complexes CF^{+}and CF^{∞}

The differential for CF^{-}(and later for CF^{∞}) is

$$
\partial x=\sum_{y \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}} \sum_{\phi \in \pi_{2}(x, y): \mu(\phi)=1} \# \mathcal{M}(\phi) U^{n_{z}(\phi)} y
$$

The complex $C F^{\infty}$ arises from $C F^{-}$by replacing $\mathbb{Z}_{2}[U]$ by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$. The complex $C F^{+}$is the quotient $C F^{\infty} / C F^{-}$.

Complexes CF^{+}and CF^{∞}

The differential for CF^{-}(and later for CF^{∞}) is

$$
\partial x=\sum_{y \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}} \sum_{\phi \in \pi_{2}(x, y): \mu(\phi)=1} \# \mathcal{M}(\phi) U^{n_{z}(\phi)} y .
$$

The complex $C F^{\infty}$ arises from $C F^{-}$by replacing $\mathbb{Z}_{2}[U]$ by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$. The complex $C F^{+}$is the quotient $C F^{\infty} / C F^{-}$. The short exact sequence $0 \rightarrow \mathrm{CF}^{-} \rightarrow \mathrm{CF}^{\infty} \rightarrow \mathrm{CF}^{+} \rightarrow 0$ gives rise to an exact triangle in homology.

Complexes CF^{+}and CF^{∞}

The differential for CF^{-}(and later for CF^{∞}) is

$$
\partial x=\sum_{y \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}} \sum_{\phi \in \pi_{2}(x, y): \mu(\phi)=1} \# \mathcal{M}(\phi) U^{n_{z}(\phi)} y .
$$

The complex $C F^{\infty}$ arises from ${C F^{-}}^{-}$by replacing $\mathbb{Z}_{2}[U]$ by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$. The complex $C F^{+}$is the quotient $C F^{\infty} / C F^{-}$. The short exact sequence $0 \rightarrow \mathrm{CF}^{-} \rightarrow \mathrm{CF}^{\infty} \rightarrow \mathrm{CF}^{+} \rightarrow 0$ gives rise to an exact triangle in homology.

Problem

Prove that there exists a short exact sequence
$0 \rightarrow \widehat{C F} \rightarrow \mathrm{CF}^{+} \xrightarrow{\cdot \stackrel{U}{C}} \mathrm{CF}^{+} \rightarrow 0$ giving rise to a long exact sequence in homology.

Complexes CF^{+}and CF^{∞}

The differential for CF^{-}(and later for CF^{∞}) is

$$
\partial x=\sum_{y \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}} \sum_{\phi \in \pi_{2}(x, y): \mu(\phi)=1} \# \mathcal{M}(\phi) U^{n_{z}(\phi)} y .
$$

The complex $C F^{\infty}$ arises from ${C F^{-}}^{-}$by replacing $\mathbb{Z}_{2}[U]$ by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$. The complex $C F^{+}$is the quotient $C F^{\infty} / C F^{-}$. The short exact sequence $0 \rightarrow \mathrm{CF}^{-} \rightarrow \mathrm{CF}^{\infty} \rightarrow \mathrm{CF}^{+} \rightarrow 0$ gives rise to an exact triangle in homology.

Problem

Prove that there exists a short exact sequence
$0 \rightarrow \widehat{C F} \rightarrow \mathrm{CF}^{+} \xrightarrow{\cdot U} \mathrm{CF}^{+} \rightarrow 0$ giving rise to a long exact sequence in homology.

A remark. The complexes have a relative grading, called the Maslov grading, with $M(x)-M(y)=\mu(\phi)-2 n_{z}(\phi)$.

Spin-c structures

Definition

A spin-c structure on a manifold M is a choice of a complex line bundle $L \rightarrow M$ together with a choice of spin structure on $T M \otimes L^{-1}$.

Spin-c structures

Definition

A spin-c structure on a manifold M is a choice of a complex line bundle $L \rightarrow M$ together with a choice of spin structure on $T M \otimes L^{-1}$.

- We can think of spin-c structure as line bundles.

Spin-c structures

Definition

A spin-c structure on a manifold M is a choice of a complex line bundle $L \rightarrow M$ together with a choice of spin structure on $T M \otimes L^{-1}$.

- We can think of spin-c structure as line bundles.
- Spin-c structures admit an action of $H_{1}(M ; \mathbb{Z})$.

Spin-c structures

Definition

A spin-c structure on a manifold M is a choice of a complex line bundle $L \rightarrow M$ together with a choice of spin structure on $T M \otimes L^{-1}$.

- We can think of spin-c structure as line bundles.
- Spin-c structures admit an action of $H_{1}(M ; \mathbb{Z})$.
- If $H_{1}\left(M ; \mathbb{Z}_{2}\right)=0$, then we have a correspondence between spin-c structures and elements in $H_{1}(M ; \mathbb{Z})$.

Spin-c structures

Definition

A spin-c structure on a manifold M is a choice of a complex line bundle $L \rightarrow M$ together with a choice of spin structure on $T M \otimes L^{-1}$.

- We can think of spin-c structure as line bundles.
- Spin-c structures admit an action of $H_{1}(M ; \mathbb{Z})$.
- If $H_{1}\left(M ; \mathbb{Z}_{2}\right)=0$, then we have a correspondence between spin-c structures and elements in $H_{1}(M ; \mathbb{Z})$.

Theorem (Turaev)
Suppose $\operatorname{dim} M=3$. Consider the set of non-vanishing vector fields on M. Consider two vector fields equivalent if they are homotopic through vector fields non-vanishing outside of a point. Then the set of abstraction classes is in a bijective correspondence with the set of spin-c structures.

Spin-c structures and Heegaard Floer

Choose a generator $x \in \widehat{C F}$.

Spin-c structures and Heegaard Floer

Choose a generator $x \in \widehat{C F}$. This is the g-tuple of points x_{1}, \ldots, x_{g} such that $x_{j} \in \alpha_{j} \cap \beta_{\sigma(j)}$.

Spin-c structures and Heegaard Floer

Choose a generator $x \in \widehat{C F}$. This is the g-tuple of points x_{1}, \ldots, x_{g} such that $x_{j} \in \alpha_{j} \cap \beta_{\sigma(j)}$. Each point x_{j} corresponds to a trajectory of ∇F connecting index 1 and 2 critical points.

Spin-c structures and Heegaard Floer

Choose a generator $x \in \widehat{C F}$. This is the g-tuple of points x_{1}, \ldots, x_{g} such that $x_{j} \in \alpha_{j} \cap \beta_{\sigma(j)}$. Each point x_{j} corresponds to a trajectory of ∇F connecting index 1 and 2 critical points. Remove all these trajectories from M.

Spin-c structures and Heegaard Floer

Choose a generator $x \in \widehat{C F}$. This is the g-tuple of points x_{1}, \ldots, x_{g} such that $x_{j} \in \alpha_{j} \cap \beta_{\sigma(j)}$. Each point x_{j} corresponds to a trajectory of ∇F connecting index 1 and 2 critical points. Remove all these trajectories from M. Remove the trajectory of ∇F through the marked point z.

Spin-c structures and Heegaard Floer

Choose a generator $x \in \widehat{C F}$. This is the g-tuple of points x_{1}, \ldots, x_{g} such that $x_{j} \in \alpha_{j} \cap \beta_{\sigma(j)}$. Each point x_{j} corresponds to a trajectory of ∇F connecting index 1 and 2 critical points. Remove all these trajectories from M. Remove the trajectory of ∇F through the marked point z. Then ∇F is non-vanishing.

Spin-c structures and Heegaard Floer

Choose a generator $x \in \widehat{C F}$. This is the g-tuple of points x_{1}, \ldots, x_{g} such that $x_{j} \in \alpha_{j} \cap \beta_{\sigma(j)}$. Each point x_{j} corresponds to a trajectory of ∇F connecting index 1 and 2 critical points. Remove all these trajectories from M. Remove the trajectory of ∇F through the marked point z. Then ∇F is non-vanishing.
Each generator $x \in \widehat{C F}$ determines a spin-c structure on M

Spin-c structures and Heegaard Floer

Choose a generator $x \in \widehat{C F}$. This is the g-tuple of points x_{1}, \ldots, x_{g} such that $x_{j} \in \alpha_{j} \cap \beta_{\sigma(j)}$. Each point x_{j} corresponds to a trajectory of ∇F connecting index 1 and 2 critical points. Remove all these trajectories from M. Remove the trajectory of ∇F through the marked point z. Then ∇F is non-vanishing.
Each generator $x \in \widehat{C F}$ determines a spin-c structure on M
Problem
Show that if the differential from x to y is non-trivial, then x and y determine the same spin-c structure.

Spin-c structures and Heegaard Floer

Choose a generator $x \in \widehat{C F}$. This is the g-tuple of points x_{1}, \ldots, x_{g} such that $x_{j} \in \alpha_{j} \cap \beta_{\sigma(j)}$. Each point x_{j} corresponds to a trajectory of ∇F connecting index 1 and 2 critical points. Remove all these trajectories from M. Remove the trajectory of ∇F through the marked point z. Then ∇F is non-vanishing.
Each generator $x \in \widehat{C F}$ determines a spin-c structure on M

Problem

Show that if the differential from x to y is non-trivial, then x and y determine the same spin-c structure.

Given that, the chain complexes split as direct sums of subcomplexes corresponding to different spin-c structures.

Independence

Theorem

The homologies $\mathrm{HF}^{+}, \mathrm{HF}^{-}, \mathrm{HF}^{\infty}$ and $\widehat{\mathrm{HF}}$ are independent of the choices made and are invariants of (Y, \mathfrak{s}). Moreover, if Y is a rational homology sphere, then $\operatorname{HF}^{\infty}(Y, \mathfrak{s})=\mathbb{Z}_{2}\left[U, U^{-1}\right]$.

Independence

Theorem

The homologies $\mathrm{HF}^{+}, \mathrm{HF}^{-}, \mathrm{HF}^{\infty}$ and $\widehat{\mathrm{HF}}$ are independent of the choices made and are invariants of (Y, \mathfrak{s}). Moreover, if Y is a rational homology sphere, then $\operatorname{HF}^{\infty}(Y, \mathfrak{s})=\mathbb{Z}_{2}\left[U, U^{-1}\right]$.

- The original result shows that a change of data induces an isomorphism of HF groups. Therefore the isomorphism class of groups is well defined.

Independence

Theorem

The homologies $\mathrm{HF}^{+}, \mathrm{HF}^{-}, \mathrm{HF}^{\infty}$ and $\widehat{\mathrm{HF}}$ are independent of the choices made and are invariants of (Y, \mathfrak{s}). Moreover, if Y is a rational homology sphere, then $\operatorname{HF}^{\infty}(Y, \mathfrak{s})=\mathbb{Z}_{2}\left[U, U^{-1}\right]$.

- The original result shows that a change of data induces an isomorphism of HF groups. Therefore the isomorphism class of groups is well defined.
- It is a result of Juhász and Thurston that the homology groups are well-defined and not just their isomorphism classes.

Independence

Theorem

The homologies $\mathrm{HF}^{+}, \mathrm{HF}^{-}, \mathrm{HF}^{\infty}$ and $\widehat{\mathrm{HF}}$ are independent of the choices made and are invariants of (Y, \mathfrak{s}). Moreover, if Y is a rational homology sphere, then $\operatorname{HF}^{\infty}(Y, \mathfrak{s})=\mathbb{Z}_{2}\left[U, U^{-1}\right]$.

- The original result shows that a change of data induces an isomorphism of HF groups. Therefore the isomorphism class of groups is well defined.
- It is a result of Juhász and Thurston that the homology groups are well-defined and not just their isomorphism classes.
- There is a subtle difference between having an isomorphism class of a group or a group.

Example. $L(p, q)$

A Heegaard diagram for $L(p, q)$ is as on the picture.

Example. $L(p, q)$

A Heegaard diagram for $L(p, q)$ is as on the picture.

Example. $L(p, q)$

A Heegaard diagram for $L(p, q)$ is as on the picture.

The complex for $L(3,1)$ has three generators and no differentials. Each generator corresponds to another spin-c structure. We get that $C F^{-}(L(3,1), \mathfrak{s}) \cong \mathbb{Z}_{2}[U]$ for each \mathfrak{s}.

Example. $L(p, q)$

A Heegaard diagram for $L(p, q)$ is as on the picture.

The complex for $L(3,1)$ has three generators and no differentials. Each generator corresponds to another spin-c structure. We get that $C F^{-}(L(3,1), \mathfrak{s}) \cong \mathbb{Z}_{2}[U]$ for each \mathfrak{s}. The same statement hold for every lens space.

L-spaces

Definition

A rational homology three-sphere is called an L-space if for every spin-c structure \mathfrak{s} we have $\widehat{H F}(Y, \mathfrak{s})=\mathbb{Z}_{2}$ and $\operatorname{HF}^{-}(Y, \mathfrak{s})=\mathbb{Z}_{2}[U]$ (these two are equivalent to each other and also equivalent to saying that $\left.H F^{+}=\mathbb{Z}_{2}\left[U, U^{-1}\right] / Z_{2}[U]\right)$.

L-spaces

Definition

A rational homology three-sphere is called an L-space if for every spin-c structure \mathfrak{s} we have $\widehat{H F}(Y, \mathfrak{s})=\mathbb{Z}_{2}$ and $\operatorname{HF}^{-}(Y, \mathfrak{s})=\mathbb{Z}_{2}[U]$ (these two are equivalent to each other and also equivalent to saying that $\left.H F^{+}=\mathbb{Z}_{2}\left[U, U^{-1}\right] / Z_{2}[U]\right)$.

Künneth formula

Problem

Suppose $\left(Y_{1}, \mathfrak{s}_{1}\right)$ and $\left(Y_{2}, \mathfrak{s}_{2}\right)$ are two three-manifolds. Prove the following Künneth formula for CF^{-}and CF^{∞} :

$$
C F^{-}\left(Y_{1} \# Y_{2}, \mathfrak{s}_{1} \# \mathfrak{s}_{2}\right) \cong C F^{-}\left(Y_{1}, \mathfrak{s}_{1}\right) \otimes C F^{-}\left(Y_{2}, \mathfrak{s}_{2}\right)
$$

Adjunction inequality

Theorem (Ozsváth-Szabo 2003)
Suppose Y has $b_{1}(Y)>0$. Let $Z \subset Y$ be a closed oriented surface in Y. If $\operatorname{HF}^{+}(Y, \mathfrak{s}) \neq 0$, then $\left|\left\langle c_{1}(\mathfrak{s}), Z\right\rangle\right| \leq 2 g(Z)-2$.

Adjunction inequality

Theorem (Ozsváth-Szabo 2003)
Suppose Y has $b_{1}(Y)>0$. Let $Z \subset Y$ be a closed oriented surface in Y. If $\operatorname{HF}^{+}(Y, \mathfrak{s}) \neq 0$, then $\left|\left\langle c_{1}(\mathfrak{s}), Z\right\rangle\right| \leq 2 g(Z)-2$.

This is the one of the two main technical tools in dealing with Heegaard Floer theory. This is also one of the sources of its power.

Surgery exact sequence

Theorem

Suppose Y is a homology three-sphere and $K \subset Y$ is a knot. Then there exists an exact sequence

$$
\ldots \rightarrow \mathrm{HF}^{+}(Y) \rightarrow \mathrm{HF}^{+}\left(Y_{0}\right) \rightarrow \mathrm{HF}^{+}\left(Y_{1}\right) \rightarrow \mathrm{HF}^{+}(Y) \rightarrow \ldots,
$$

where Y_{1} is the +1 surgery and Y_{0} is the 0 -surgery.
Idea of proof.
Construct a suitable triple Heegaard diagram and define various maps by counting holomorphic triangles.

Grading

Theorem (Ozsváth-Szabó 2003)

Grading

Theorem (Ozsváth-Szabó 2003)

- There is an absolute \mathbb{Q} grading of the homologies.

Grading

Theorem (Ozsváth-Szabó 2003)

- There is an absolute \mathbb{Q} grading of the homologies.
- If (W, \mathfrak{t}) is a smooth spin-c cobordism between $\left(Y_{1}, \mathfrak{s}_{1}\right)$ and $\left(Y_{2}, \mathfrak{s}_{2}\right)$, then there exists maps $F_{W_{t}}^{\circ}: \operatorname{HF}^{\circ}\left(Y_{1}, \mathfrak{s}_{1}\right) \rightarrow \operatorname{HF}^{\circ}\left(Y_{2}, \mathfrak{s}_{2}\right)$ with $\circ \in\{+,-, \infty\}$ making the obvious diagrams commute. The grading shift of F is equal to $\operatorname{deg} F_{W}:=\frac{1}{4}\left(c_{1}(\mathfrak{t})^{2}-2 \chi(W)-3 \sigma(W)\right)$.

Grading

Theorem (Ozsváth-Szabó 2003)

- There is an absolute \mathbb{Q} grading of the homologies.
- If (W, \mathfrak{t}) is a smooth spin-c cobordism between $\left(Y_{1}, \mathfrak{s}_{1}\right)$ and $\left(Y_{2}, \mathfrak{s}_{2}\right)$, then there exists maps $F_{W_{t}}^{\circ}: \operatorname{HF}^{\circ}\left(Y_{1}, \mathfrak{s}_{1}\right) \rightarrow \operatorname{HF}^{\circ}\left(Y_{2}, \mathfrak{s}_{2}\right)$ with $\circ \in\{+,-, \infty\}$ making the obvious diagrams commute. The grading shift of F is equal to $\operatorname{deg} F_{W}:=\frac{1}{4}\left(c_{1}(\mathfrak{t})^{2}-2 \chi(W)-3 \sigma(W)\right)$.
- If W has negative definite intersection form, then F_{W}^{∞} is an isomorphism.

d-invariants

Let W be a spin-c cobordism between Y_{1} and Y_{2}. We have maps

d-invariants

Let W be a spin-c cobordism between Y_{1} and Y_{2}. We have maps

d-invariants

Let W be a spin-c cobordism between Y_{1} and Y_{2}. We have maps

- Define $d\left(Y_{1}, \mathfrak{s}_{1}\right)$ and $d\left(Y_{2}, \mathfrak{s}_{2}\right)$ as the minimal grading of an element in HF^{+}that is in the image of HF^{∞}.

d-invariants

Let W be a spin-c cobordism between Y_{1} and Y_{2}. We have maps

- Define $d\left(Y_{1}, \mathfrak{s}_{1}\right)$ and $d\left(Y_{2}, \mathfrak{s}_{2}\right)$ as the minimal grading of an element in HF^{+}that is in the image of HF^{∞}.
- If W is negative definite, then the red arrow is an isomorphism so we obtain the fundamental inequality between d-invariants:

$$
d\left(Y_{1}, \mathfrak{s}_{1}\right) \geq d\left(Y_{2}, \mathfrak{s}_{2}\right)+\operatorname{deg} F_{W}
$$

Power of d-invariants.

The inequality for d-invariants is strong enough to:

Power of d-invariants.

The inequality for d-invariants is strong enough to:

- Reprove the Donaldson's diagonalization theorem.

Power of d-invariants.

The inequality for d-invariants is strong enough to:

- Reprove the Donaldson's diagonalization theorem.
- Reprove the Kronheimer-Mrowka result on the unknotting number of torus knots.

Power of d-invariants.

The inequality for d-invariants is strong enough to:

- Reprove the Donaldson's diagonalization theorem.
- Reprove the Kronheimer-Mrowka result on the unknotting number of torus knots.
- many other things.

A glimpse into the future

Corollary

If (Y, \mathfrak{s}) bounds a rational homology ball W (that is $H_{k}(W ; \mathbb{Q})=0$ for $k \geq 1)$ and the spin-c structure \mathfrak{s} extends over W, then $d(Y, \mathfrak{s})=0$.

A glimpse into the future

Corollary

If (Y, s) bounds a rational homology ball W (that is $H_{k}(W ; \mathbb{Q})=0$ for $k \geq 1)$ and the spin-c structure \mathfrak{s} extends over W, then $d(Y, \mathfrak{s})=0$.

Remark

Being a rational homology ball is the same as being a \mathbb{Q}-acyclic surface. In particular, a complement of a rational cuspidal curve C in $\mathbb{C} P^{2}$ is a rational homology ball.

A glimpse into the future

Corollary

If (Y, \mathfrak{s}) bounds a rational homology ball W (that is $H_{k}(W ; \mathbb{Q})=0$ for $k \geq 1)$ and the spin-c structure \mathfrak{s} extends over W, then $d(Y, \mathfrak{s})=0$.

Remark

Being a rational homology ball is the same as being a \mathbb{Q}-acyclic surface. In particular, a complement of a rational cuspidal curve C in $\mathbb{C} P^{2}$ is a rational homology ball.

Question

How to calculate d-invariants?

Knots and Heegaard diagrams

A doubly pointed Heegaard diagram is $(\Sigma, \alpha, \beta, z, w)$ with z, w disjoint from α and β.

Knots and Heegaard diagrams

A doubly pointed Heegaard diagram is $(\Sigma, \alpha, \beta, z, w)$ with z, w disjoint from α and β. Connect z and w by an arc in both handlebodies. We get a knot in $K \subset Y$. We say that the diagram represents the knot.

Problem
Show that for any null-homologous knot K in Y there exists a doubly pointed Heegaard diagram representing that knot.

Knots and Heegaard diagrams

A doubly pointed Heegaard diagram is $(\Sigma, \alpha, \beta, z, w)$ with z, w disjoint from α and β. Connect z and w by an arc in both handlebodies. We get a knot in $K \subset Y$. We say that the diagram represents the knot.

Problem
Show that for any null-homologous knot K in Y there exists a doubly pointed Heegaard diagram representing that knot.

We think of a knot as a of a doubly pointed Heegaard diagram.

The Alexander filtration

The second point w diagram induces a (relative) filtration on CF^{-}.

The Alexander filtration

The second point w diagram induces a (relative) filtration on CF^{-}. Write $A(x)-A(y)=n_{w}(\phi)-n_{z}(\phi)$.

The Alexander filtration

The second point w diagram induces a (relative) filtration on CF^{-}. Write $A(x)-A(y)=n_{w}(\phi)-n_{z}(\phi)$.

Lemma
We have $\sum_{x \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}}(-1)^{M(x)} q^{A(x)}=\Delta(q)$.

Floer homologies

There are several ways to define homologies.

Floer homologies

There are several ways to define homologies. Remember! Chain complexes are good, homologies are bad!

Floer homologies

There are several ways to define homologies.
Remember! Chain complexes are good, homologies are bad!

- Take generators for $\widehat{C F}$ and count only disks that do not intersect z and w. Get $\widehat{H F K}$.

Floer homologies

There are several ways to define homologies.
Remember! Chain complexes are good, homologies are bad!

- Take generators for $\widehat{C F}$ and count only disks that do not intersect z and w. Get $\widehat{H F K}$.
- Take generators for CF^{-}and act as above. Get HFK^{-}.

Floer homologies

There are several ways to define homologies. Remember! Chain complexes are good, homologies are bad!

- Take generators for $\widehat{C F}$ and count only disks that do not intersect z and w. Get $\widehat{H F K}$.
- Take generators for CF^{-}and act as above. Get $H F K^{-}$.
- Take generators for CF^{-}and do not change anything in the definition of ∂. Get HF^{-}of the underlying space.

Floer homologies

There are several ways to define homologies. Remember! Chain complexes are good, homologies are bad!

- Take generators for $\widehat{C F}$ and count only disks that do not intersect z and w. Get $\widehat{H F K}$.
- Take generators for CF^{-}and act as above. Get HFK^{-}.
- Take generators for CF^{-}and do not change anything in the definition of ∂. Get HF^{-}of the underlying space.
- Do the same with $\widehat{C F}$.

Properties of HKF

- Detects the genus. That is, $g(K)=\max \left\{i: \widehat{\operatorname{HFK}}_{*}(K, i) \neq 0\right\}$.

Properties of HKF

- Detects the genus. That is, $g(K)=\max \left\{i: \widehat{\operatorname{HFK}}_{*}(K, i) \neq 0\right\}$.
- In particular, it detects the unknot. The proof is much easier than for Khovanov.

Properties of HKF

- Detects the genus. That is, $g(K)=\max \left\{i: \widehat{\operatorname{HFK}}_{*}(K, i) \neq 0\right\}$.
- In particular, it detects the unknot. The proof is much easier than for Khovanov.
- Detects fibredness, a knot K is fibred if and only if $\widehat{H F K}_{*}(K, g)=\mathbb{Z}$.

Properties of HKF

- Detects the genus. That is, $g(K)=\max \left\{i: \widehat{\operatorname{HFK}}_{*}(K, i) \neq 0\right\}$.
- In particular, it detects the unknot. The proof is much easier than for Khovanov.
- Detects fibredness, a knot K is fibred if and only if $\widehat{H F K}_{*}(K, g)=\mathbb{Z}$.
- The τ-invariant, $\tau(K)=-\max \left\{s: \exists x \in H F K_{*}^{-}(K, s): U^{j} x \neq 0\right\}$ is a concordance invariant, equal to $2 g(K)$ for all positive knots, detecting the unknotting number of positive knots.

Surgeries and spin-c structures

Let $K \subset S^{3}$ be a knot. Take ball B^{4} and glue to it a two-handle along K with framing q. We obtain a 4 -manifold N with boundary $S_{q}^{3}(K)$. The core of the handle and a Seifert surface for K form a closed surface F that generates $H_{2}(N ; \mathbb{Z})$.

Surgeries and spin-c structures

Let $K \subset S^{3}$ be a knot. Take ball B^{4} and glue to it a two-handle along K with framing q. We obtain a 4 -manifold N with boundary $S_{q}^{3}(K)$. The core of the handle and a Seifert surface for K form a closed surface F that generates $H_{2}(N ; \mathbb{Z})$.

Theorem
For every $m \in[-q / 2, q / 2) \cap \mathbb{Z}$ there exists a unique spin-c structure \mathfrak{s}_{m} on Y that extends to a spin-c structure \mathfrak{t}_{m} on N characterized by the property that $\left\langle c_{1}\left(\mathfrak{t}_{m}\right), F\right\rangle+2 m=q$

Surgeries and spin-c structures

Let $K \subset S^{3}$ be a knot. Take ball B^{4} and glue to it a two-handle along K with framing q. We obtain a 4 -manifold N with boundary $S_{q}^{3}(K)$. The core of the handle and a Seifert surface for K form a closed surface F that generates $H_{2}(N ; \mathbb{Z})$.

Theorem
For every $m \in[-q / 2, q / 2) \cap \mathbb{Z}$ there exists a unique spin-c structure \mathfrak{s}_{m} on Y that extends to a spin-c structure \mathfrak{t}_{m} on N characterized by the property that $\left\langle c_{1}\left(\mathfrak{t}_{m}\right), F\right\rangle+2 m=q$

The bottom line: think of spin-c structures as of integers in some interval!

Surgeries

A CFK ${ }^{\infty}$ allows us to calculate the Heegaard Floer homologies of surgeries on knots.

Surgeries

A CFK ${ }^{\infty}$ allows us to calculate the Heegaard Floer homologies of surgeries on knots. The formula is in general very complex and involves a mapping cone on many copies of subcomplexes $C F K^{\infty}(i>0)$.

Surgeries

A CFK ${ }^{\infty}$ allows us to calculate the Heegaard Floer homologies of surgeries on knots. The formula is in general very complex and involves a mapping cone on many copies of subcomplexes $C F K^{\infty}(i>0)$. If the surgery coefficient is large, by some clever application of the adjunction inequality we can show that the formula greatly simplifies.

Large surgeries

Theorem
Suppose $K \subset S^{3}$ and $q>2 g(K)$. Let $Y=S_{q}^{3}(K)$. Then
$C F^{-}\left(Y, \mathfrak{s}_{m}\right) \cong C F K^{\infty}(K)(i<0, j<m)$ and
$C F^{+}\left(Y, s_{m}\right) \cong C F K^{\infty} /(i<0, j<m)$.

Large surgeries

Theorem
Suppose $K \subset S^{3}$ and $q>2 g(K)$. Let $Y=S_{q}^{3}(K)$. Then
$C F^{-}\left(Y, \mathfrak{s}_{m}\right) \cong C F K^{\infty}(K)(i<0, j<m)$ and
$C F^{+}\left(Y, s_{m}\right) \cong C F K^{\infty} /(i<0, j<m)$.

Large surgeries

Theorem

```
Suppose K \subset S and q>2g(K). Let Y = S S
CF
CF+}(Y,\mp@subsup{\mathfrak{s}}{m}{})\congCF\mp@subsup{K}{}{\infty}/(i<0,j<m)
```


Large surgeries

Theorem

```
Suppose K \subset S and q>2g(K). Let Y = S S
CF
CF+}(Y,\mp@subsup{\mathfrak{s}}{m}{})\congCF\mp@subsup{K}{}{\infty}/(i<0,j<m)
```


Large surgeries

Theorem
Suppose $K \subset S^{3}$ and $q>2 g(K)$. Let $Y=S_{q}^{3}(K)$. Then
$C F^{-}\left(Y, \mathfrak{s}_{m}\right) \cong C F K^{\infty}(K)(i<0, j<m)$ and
$C F^{+}\left(Y, s_{m}\right) \cong C F K^{\infty} /(i<0, j<m)$.

Large surgeries

Theorem

Suppose $K \subset S^{3}$ and $q>2 g(K)$. Let $Y=S_{q}^{3}(K)$. Then
$C^{-}\left(Y, s_{m}\right) \cong C F K^{\infty}(K)(i<0, j<m)$ and
$C F^{+}\left(Y, \mathfrak{s}_{m}\right) \cong C F K^{\infty} /(i<0, j<m)$.

- The grading shift of this homomorphism is

$$
\frac{(q-2 m)^{2}-q}{4 q} .
$$

Large surgeries

```
Theorem
Suppose K \subset S 3 and q>2g(K). Let Y=S S
CF-}(Y,\mp@subsup{s}{m}{})\congCFK\mp@subsup{K}{}{\infty}(K)(i<0,j<m) and
CF+}(Y,\mp@subsup{\mathfrak{s}}{m}{})\congCF\mp@subsup{K}{}{\infty}/(i<0,j<m)
```

- The grading shift of this homomorphism is $\frac{(q-2 m)^{2}-q}{4 q}$.
- All needed data is derived from the $C F K^{\infty}$

L-space knots

Definition

A knot is called an L-space knot if there exists a positive surgery on K which is an L-space.

L-space knots

Definition

A knot is called an L-space knot if there exists a positive surgery on K which is an L -space.

Theorem (Hedden 2006)
Algebraic knots are L-space knots.

L-space knots

Definition

A knot is called an L-space knot if there exists a positive surgery on K which is an L-space.

Theorem (Hedden 2006)
Algebraic knots are L-space knots.

Theorem (Krcatovich 2013)
An L-space knot is prime, in particular a connected sum of two algebraic knots is not an L-space knot.

L-space knots

Definition

A knot is called an L-space knot if there exists a positive surgery on K which is an L-space.

Theorem (Hedden 2006)
Algebraic knots are L-space knots.

Theorem (Krcatovich 2013)
An L-space knot is prime, in particular a connected sum of two algebraic knots is not an L-space knot.

L-space knots have the $C F K^{\infty}$ determined from the Alexander polynomial.

The staircase

$$
\Delta_{4,7}=t^{18}-t^{17}+t^{14}-t^{13}+t^{11}-t^{9}+t^{7}-t^{5}+t^{4}-t+1
$$

The staircase

$$
\Delta_{4,7}=t^{18}-t^{17}+t^{14}-t^{13}+t^{11}-t^{9}+t^{7}-t^{5}+t^{4}-t+1
$$

The staircase

$$
\Delta_{4,7}=t^{18}-t^{17}+t^{14}-t^{13}+t^{11}-t^{9}+t^{7}-t^{5}+t^{4}-t+1
$$

- $9=g\left(T_{4,7}\right)$

The staircase

$$
\Delta_{4,7}=t^{18}-t^{17}+t^{14}-t^{13}+t^{11}-t^{9}+t^{7}-t^{5}+t^{4}-t+1
$$

- $9=g\left(T_{4,7}\right)$
- $18-17=1$

The staircase

$$
\Delta_{4,7}=t^{18}-t^{17}+t^{14}-t^{13}+t^{11}-t^{9}+t^{7}-t^{5}+t^{4}-t+1
$$

- $9=g\left(T_{4,7}\right)$
- $18-17=1$
- $17-14=3$

The staircase

$$
\Delta_{4,7}=t^{18}-t^{17}+t^{14}-t^{13}+t^{11}-t^{9}+t^{7}-t^{5}+t^{4}-t+1
$$

- $9=g\left(T_{4,7}\right)$
- $18-17=1$
- $17-14=3$
- $14-13=1$

The staircase

$$
\Delta_{4,7}=t^{18}-t^{17}+t^{14}-t^{13}+t^{11}-t^{9}+t^{7}-t^{5}+t^{4}-t+1
$$

- $9=g\left(T_{4,7}\right)$
- $18-17=1$
- $17-14=3$
- $14-13=1$
- $13-11=2$

The staircase

$$
\Delta_{4,7}=t^{18}-t^{17}+t^{14}-t^{13}+t^{11}-t^{9}+t^{7}-t^{5}+t^{4}-t+1
$$

- $9=g\left(T_{4,7}\right)$
- $18-17=1$
- $17-14=3$
- $14-13=1$
- $13-11=2$
- ... and so on

The staircase

$$
\Delta_{4,7}=t^{18}-t^{17}+t^{14}-t^{13}+t^{11}-t^{9}+t^{7}-t^{5}+t^{4}-t+1
$$

- $9=g\left(T_{4,7}\right)$
- $18-17=1$
- $17-14=3$
- $14-13=1$
- $13-11=2$
- ... and so on
- Symmetry reflects symmetry of Δ

The staircase complex

The staircase complex

- Place \mathbb{Z}_{2} for each vertex.

The staircase complex

- Place \mathbb{Z}_{2} for each vertex.
- Differential is given by lines as depicted.

The staircase complex

- Place \mathbb{Z}_{2} for each vertex.
- Differential is given by lines as depicted.
- Type A vertices.

The staircase complex

- Place \mathbb{Z}_{2} for each vertex.
- Differential is given by lines as depicted.
- Type A vertices.
- Type B vertices.

The staircase complex

- Place \mathbb{Z}_{2} for each vertex.
- Differential is given by lines as depicted.
- Type A vertices.
- Type B vertices.
- Bifiltration is given by coordinates.

The staircase complex

- Place \mathbb{Z}_{2} for each vertex.
- Differential is given by lines as depicted.
- Type A vertices.
- Type B vertices.
- Bifiltration is given by coordinates.
- Absolute grading of a type A vertex is 0 , of type B is 1 .

Tensoring

- Tensor St(K) by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$.

Tensoring

- Tensor St(K) by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$.
- U changes the filtration level by $(-1,-1)$ and the absolute grading by -2 .

Tensoring

- Tensor St(K) by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$.
- U changes the filtration level by $(-1,-1)$ and the absolute grading by -2 .

Tensoring

- Tensor St (K) by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$.
- U changes the filtration level by $(-1,-1)$ and the absolute grading by -2 .
- The resulting complex is $C F K^{\infty}(K)$ if K is an algebraic knot.

The function $J(m)$

- $m \in \mathbb{Z}$. Here $m=3$.

The function $J(m)$

- $m \in \mathbb{Z}$. Here $m=3$.

- The subcomplex $C(i<0, j<m)$. Look at the quotient C_{+}.

The function $J(m)$

- $m \in \mathbb{Z}$. Here $m=3$.
- The subcomplex $C(i<0, j<m)$. Look at the quotient C_{+}.
- Define $J(m)$ as the minimal absolute grading of an element non-trivial in homology of the quotient.

The function $J(m)$

- $m \in \mathbb{Z}$. Here $m=3$.
- The subcomplex $C(i<0, j<m)$. Look at the quotient C_{+}.
- Define $J(m)$ as the minimal absolute grading of an element non-trivial in homology of the quotient.

The function $J(m)$

- $m \in \mathbb{Z}$. Here $m=3$.
- The subcomplex $C(i<0, j<m)$. Look at the quotient C_{+}.
- Define $J(m)$ as the minimal absolute grading of an element non-trivial in homology of the quotient.

The function $J(m)$

- $m \in \mathbb{Z}$. Here $m=3$.
- The subcomplex $C(i<0, j<m)$. Look at the quotient C_{+}.
- Define $J(m)$ as the minimal absolute grading of an element non-trivial in homology of the quotient.

The function $J(m)$

- $m \in \mathbb{Z}$. Here $m=3$.
- The subcomplex $C(i<0, j<m)$. Look at the quotient C_{+}.
- Define $J(m)$ as the minimal absolute grading of an element non-trivial in homology of the quotient.

The function $J(m)$

- $m \in \mathbb{Z}$. Here $m=3$.
- The subcomplex $C(i<0, j<m)$. Look at the quotient C_{+}.
- Define $J(m)$ as the minimal absolute grading of an element non-trivial in homology of the quotient.
- We will show yet another description of J.

CFK $^{\infty}$ for $T(2,3) \# T(2,3)$

CFK $^{\infty}$ for $T(2,3) \# T(2,3)$

- The whole picture must be tensored by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$.

CFK $^{\infty}$ for $T(2,3) \# T(2,3)$

- The whole picture must be tensored by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$.
- We have a staircase plus an acyclic complex.

CFK $^{\infty}$ for $T(2,3) \# T(2,3)$

- The whole picture must be tensored by $\mathbb{Z}_{2}\left[U, U^{-1}\right]$.
- We have a staircase plus an acyclic complex.
- This is not always true, for example for $T(4,5) \# T(4,5)$.

CFK $^{\infty}$ for $-T(3,4)$

$C F K^{\infty}$ for $-T(3,4)$

CFK $^{\infty}$ for $-T(3,4)$

- The situation is completely different than for positive $T(3,4)$.
- A generator of homology of the complex is a sum of filtered elements.

$C F K^{\infty}$ for $-T(3,4)$

Semigroups of singular points

The semigroup of a singular point on a plane curve is the set of possible local intersection with the curve.

Problem
Show that for a singularity $x^{p}-y^{q}=0$ with p, q coprime, the semigroup is generated by p and q.

Semigroups of singular points

The semigroup of a singular point on a plane curve is the set of possible local intersection with the curve.

Problem
Show that for a singularity $x^{p}-y^{q}=0$ with p, q coprime, the semigroup is generated by p and q.

Semigroups of singular points

The semigroup of a singular point on a plane curve is the set of possible local intersection with the curve.

Problem

Show that for a singularity $x^{p}-y^{q}=0$ with p, q coprime, the semigroup is generated by p and q.

- If $p=4, q=7$, the semigroup is

$$
S_{4,7}:=(0,4,7,8,11,12,14,15,16,18,19,20,21, \ldots) .
$$

Semigroups of singular points

The semigroup of a singular point on a plane curve is the set of possible local intersection with the curve.

Problem

Show that for a singularity $x^{p}-y^{q}=0$ with p, q coprime, the semigroup is generated by p and q.

- If $p=4, q=7$, the semigroup is

$$
S_{4,7}:=(0,4,7,8,11,12,14,15,16,18,19,20,21, \ldots) .
$$

- The gap sequence is $G_{4,7}=\{1,2,3,5,6,9,10,13,17\}$.

Semigroups of singular points

The semigroup of a singular point on a plane curve is the set of possible local intersection with the curve.

Problem
Show that for a singularity $x^{p}-y^{q}=0$ with p, q coprime, the semigroup is generated by p and q.

- If $p=4, q=7$, the semigroup is

$$
S_{4,7}:=(0,4,7,8,11,12,14,15,16,18,19,20,21, \ldots) .
$$

- The gap sequence is $G_{4,7}=\{1,2,3,5,6,9,10,13,17\}$.
- We have $\# G_{4,7}=\mu / 2$ and $\max \left\{x \in G_{4,7}\right\}=17=\mu-1$. this is a special property of semigroups of singular points!

Semigroups of singular points

The semigroup of a singular point on a plane curve is the set of possible local intersection with the curve.

Problem

Show that for a singularity $x^{p}-y^{q}=0$ with p, q coprime, the semigroup is generated by p and q.

- If $p=4, q=7$, the semigroup is $S_{4,7}:=(0,4,7,8,11,12,14,15,16,18,19,20,21, \ldots)$.
- The gap sequence is $G_{4,7}=\{1,2,3,5,6,9,10,13,17\}$.
- We have $\# G_{4,7}=\mu / 2$ and $\max \left\{x \in G_{4,7}\right\}=17=\mu-1$.

Semigroups of singular points

The semigroup of a singular point on a plane curve is the set of possible local intersection with the curve.

Problem

Show that for a singularity $x^{p}-y^{q}=0$ with p, q coprime, the semigroup is generated by p and q.

- If $p=4, q=7$, the semigroup is $S_{4,7}:=(0,4,7,8,11,12,14,15,16,18,19,20,21, \ldots)$.
- The gap sequence is $G_{4,7}=\{1,2,3,5,6,9,10,13,17\}$.
- We have $\# G_{4,7}=\mu / 2$ and $\max \left\{x \in G_{4,7}\right\}=17=\mu-1$.

The Alexander polynomial

For a semigroup S with a gap sequence G we define

The Alexander polynomial

For a semigroup S with a gap sequence G we define

$$
\Delta_{S}(t)=1+(t-1) \sum_{j \in G} t^{j}
$$

The Alexander polynomial

For a semigroup S with a gap sequence G we define

$$
\Delta_{S}(t)=1+(t-1) \sum_{j \in G} t^{j}
$$

For the semigroup $S_{4,7}$, the gap sequence is $\{1,2,3,5,6,9,10,13,17\}$, so we have

The Alexander polynomial

For a semigroup S with a gap sequence G we define

$$
\Delta_{S}(t)=1+(t-1) \sum_{j \in G} t^{j}
$$

For the semigroup $S_{4,7}$, the gap sequence is $\{1,2,3,5,6,9,10,13,17\}$, so we have

$$
\Delta_{4,7}(t)=1+(t-1)\left(t+t^{2}+t^{3}+t^{5}+t^{6}+t^{9}+t^{10}+t^{13}+t^{17}\right)
$$

The Alexander polynomial

For a semigroup S with a gap sequence G we define

$$
\Delta_{S}(t)=1+(t-1) \sum_{j \in G} t^{j}
$$

For the semigroup $S_{4,7}$, the gap sequence is $\{1,2,3,5,6,9,10,13,17\}$, so we have

$$
\Delta_{4,7}(t)=1+(t-1)\left(t+t^{2}+t^{3}+t^{5}+t^{6}+t^{9}+t^{10}+t^{13}+t^{17}\right)
$$

or:

$$
\Delta_{4,7}=1-t+t^{4}-t^{5}+t^{7}-t^{9}+t^{11}-t^{13}+t^{14}-t^{17}+t^{18}
$$

The Alexander polynomial

For a semigroup S with a gap sequence G we define

$$
\Delta_{S}(t)=1+(t-1) \sum_{j \in G} t^{j}
$$

For the semigroup $S_{4,7}$, the gap sequence is
$\{1,2,3,5,6,9,10,13,17\}$, so we have

$$
\Delta_{4,7}(t)=1+(t-1)\left(t+t^{2}+t^{3}+t^{5}+t^{6}+t^{9}+t^{10}+t^{13}+t^{17}\right)
$$

or:

$$
\Delta_{4,7}=1-t+t^{4}-t^{5}+t^{7}-t^{9}+t^{11}-t^{13}+t^{14}-t^{17}+t^{18}
$$

This is the Alexander polynomial of the knot of the singularity.

The gap function

Definition

The gap function is defined as

$$
I(m):=\#\{x \in \mathbb{Z}, x \geq m, x \notin S\}
$$

The gap function

Definition

The gap function is defined as

$$
I(m):=\#\{x \in \mathbb{Z}, x \geq m, x \notin S\}
$$

We have

$$
I_{4,7}(5)=\#\{5,6,9,10,13,17\}=6 .
$$

The gap function

Definition

The gap function is defined as

$$
I(m):=\#\{x \in \mathbb{Z}, x \geq m, x \notin S\} .
$$

We have

$$
I_{4,7}(5)=\#\{5,6,9,10,13,17\}=6
$$

Always $I(0)=\mu / 2, I(x)=0$ for $x \geq \mu$ and $I(-n)=n+\mu / 2$ for $n>0$.

The gap function

Definition

The gap function is defined as

$$
I(m):=\#\{x \in \mathbb{Z}, x \geq m, x \notin S\}
$$

We have

$$
I_{4,7}(5)=\#\{5,6,9,10,13,17\}=6
$$

Always $I(0)=\mu / 2, I(x)=0$ for $x \geq \mu$ and $I(-n)=n+\mu / 2$ for $n>0$.
Theorem
For an algebraic knot $J(m)=-2 l(m+g)$, where $g=\mu / 2$ is the genus.

Gap function for connected sums

A connected sum of algebraic knots is not an L-space knot. But some part of the theory survives.

Gap function for connected sums

A connected sum of algebraic knots is not an L-space knot. But some part of the theory survives.

Definition
For two functions $I_{1}, l_{2}: \mathbb{Z} \rightarrow \mathbb{Z}$ bounded from below define their infimal convolution by $I_{1} \diamond I_{2}(k)=\min _{n \in \mathbb{Z}} I_{1}(n)+I_{2}(k-n)$.

Gap function for connected sums

A connected sum of algebraic knots is not an L-space knot. But some part of the theory survives.

Definition
For two functions $l_{1}, l_{2}: \mathbb{Z} \rightarrow \mathbb{Z}$ bounded from below define their infimal convolution by $I_{1} \diamond I_{2}(k)=\min _{n \in \mathbb{Z}} I_{1}(n)+I_{2}(k-n)$.

Theorem
Let $K=K_{1} \# \ldots \# K_{n}$ be a connected sum of algebraic knots. Gap functions are I_{1}, \ldots, I_{n}. Set $I=I_{1} \diamond \ldots \diamond I_{n}$. Then $J(m)=-2 I(m+g)$, where J is the minimal grading ...

d-invariants again

Proposition

Let K be a connected sum of algebraic knots. Then

$$
d\left(S_{q}^{3}(K), \mathfrak{s}_{m}\right)=\frac{(q-2 m)^{2}-q}{4 q}-2 l(m+g)
$$

d-invariants again

Proposition

Let K be a connected sum of algebraic knots. Then

$$
d\left(S_{q}^{3}(K), s_{m}\right)=\frac{(q-2 m)^{2}-q}{4 q}+J(m)
$$

Boundary of a rational cuspidal curve

C is a rational cuspidal curve with singularities z_{1}, \ldots, z_{n}.

Boundary of a rational cuspidal curve

C is a rational cuspidal curve with singularities $z_{1}, \ldots, z_{n} . d=\operatorname{deg} C$.

Boundary of a rational cuspidal curve

C is a rational cuspidal curve with singularities $z_{1}, \ldots, z_{n} . d=\operatorname{deg} C$. $K_{1}, \ldots K_{n}$ are links of singularities.

Boundary of a rational cuspidal curve

C is a rational cuspidal curve with singularities $z_{1}, \ldots, z_{n} . d=\operatorname{deg} C$. $K_{1}, \ldots K_{n}$ are links of singularities. Define $K=K_{1} \# \ldots \# K_{n}$.

Boundary of a rational cuspidal curve

C is a rational cuspidal curve with singularities $z_{1}, \ldots, z_{n} . d=\operatorname{deg} C$. $K_{1}, \ldots K_{n}$ are links of singularities. Define $K=K_{1} \# \ldots \# K_{n}$.

Proposition
Let N be the tubular neighborhood of C and let $Y=\partial N$. Then Y is a d^{2} surgery on K.

Boundary of a rational cuspidal curve

C is a rational cuspidal curve with singularities $z_{1}, \ldots, z_{n} . d=\operatorname{deg} C$. $K_{1}, \ldots K_{n}$ are links of singularities. Define $K=K_{1} \# \ldots \# K_{n}$.

Proposition
Let N be the tubular neighborhood of C and let $Y=\partial N$. Then Y is a d^{2} surgery on K.

Then $d(Y, \mathfrak{s})=0$ for every spin-c structure on Y that extends over $\mathbb{C} P^{2} \backslash N$.

Boundary of a rational cuspidal curve

C is a rational cuspidal curve with singularities $z_{1}, \ldots, z_{n} . d=\operatorname{deg} C$. $K_{1}, \ldots K_{n}$ are links of singularities. Define $K=K_{1} \# \ldots \# K_{n}$.

Proposition

Let N be the tubular neighborhood of C and let $Y=\partial N$. Then Y is a d^{2} surgery on K.

Then $d(Y, \mathfrak{s})=0$ for every spin-c structure on Y that extends over $\mathbb{C} P^{2} \backslash N$.

Proposition

The spin-c structure \mathfrak{s}_{m} extends over $\mathbb{C} P^{2} \backslash N$ if $m=j d$ for $j \in \mathbb{Z}$ if d is odd and $m=\left(j+\frac{1}{2}\right) d$ if d is even.

The FLMN conjecture

Combining results we obtain the following result.
Theorem (—,Livingston, 2013)
For $j=0, \ldots, d-3$ we have

$$
I(j d+1)=\frac{(d-j-1)(d-j-2)}{2}
$$

The FLMN conjecture

Combining results we obtain the following result.
Theorem (—,Livingston, 2013)
For $j=0, \ldots, d-3$ we have

$$
I(j d+1)=\frac{(d-j-1)(d-j-2)}{2}
$$

For $n=1$ and $n=2$ this is equivalent to the original FLMN conjecture (for $n=2$ the translation is non-trivial and done by Bodnár-Némethi and Nayar-Pilat).

The FLMN conjecture

Combining results we obtain the following result.
Theorem (—,Livingston, 2013)
For $j=0, \ldots, d-3$ we have

$$
I(j d+1)=\frac{(d-j-1)(d-j-2)}{2}
$$

For $n=1$ and $n=2$ this is equivalent to the original FLMN conjecture (for $n=2$ the translation is non-trivial and done by Bodnár-Némethi and Nayar-Pilat). For $n \geq 3$ the original conjecture is false, but the above result is a natural plan B.

Generalization

Theorem (-,Hedden,Livingston and Bodnár, Celoria, Golla, 2014)
A set of inequalities of the semigroup function for the genus g curve with cuspidal singularities.

Generalization

Theorem (-,Hedden,Livingston and Bodnár, Celoria, Golla, 2014)
A set of inequalities of the semigroup function for the genus g curve with cuspidal singularities. They are of form
$0 \leq I(j d+1)-\frac{(d-j-1)(d-j-2)}{2} \leq g$.

Generalization

Theorem (-,Hedden,Livingston and Bodnár, Celoria, Golla, 2014)
A set of inequalities of the semigroup function for the genus g curve with cuspidal singularities. They are of form
$0 \leq I(j d+1)-\frac{(d-j-1)(d-j-2)}{2} \leq g$.

Theorem (-,Moe, 2014)
Generalization for rational cuspidal curves in Hirzebruch surfaces. Only one side of inequality is obtained.

Generalization

Theorem (-,Hedden,Livingston and Bodnár, Celoria, Golla, 2014)
A set of inequalities of the semigroup function for the genus g curve with cuspidal singularities. They are of form
$0 \leq I(j d+1)-\frac{(d-j-1)(d-j-2)}{2} \leq g$.

Theorem (-,Moe, 2014)
Generalization for rational cuspidal curves in Hirzebruch surfaces. Only one side of inequality is obtained.

Theorem (-, 2015)
Generalization for rcc in surfaces with $p_{g}=0$. The condition implies that the complement of a rcc is a negative definite manifold.

If time permits

Theorem (FLMN)

Suppose that C is a curve in $\mathbb{C} P^{2}$ of degree d. Let $z \in C$ be a singular point and S its semigroup. Then for $j=1, \ldots, d-1$ we have

$$
\# S \cap[0, j d+1) \geq \frac{1}{2}(j+1)(j+2) .
$$

If time permits

Theorem (FLMN)

Suppose that C is a curve in $\mathbb{C} P^{2}$ of degree d. Let $z \in C$ be a singular point and S its semigroup. Then for $j=1, \ldots, d-1$ we have

$$
\# S \cap[0, j d+1) \geq \frac{1}{2}(j+1)(j+2) .
$$

- This is one part of the FLMN conjecture.

If time permits

Theorem (FLMN)

Suppose that C is a curve in $\mathbb{C} P^{2}$ of degree d. Let $z \in C$ be a singular point and S its semigroup. Then for $j=1, \ldots, d-1$ we have

$$
\# S \cap[0, j d+1) \geq \frac{1}{2}(j+1)(j+2) .
$$

- This is one part of the FLMN conjecture.
- The right hand side is the dimension of space of polynomials of degree $j, H^{0}\left(\mathbb{C} P^{2}, \mathcal{O}(j H)\right)$.

If time permits

Theorem (FLMN)

Suppose that C is a curve in $\mathbb{C} P^{2}$ of degree d. Let $z \in C$ be a singular point and S its semigroup. Then for $j=1, \ldots, d-1$ we have

$$
\# S \cap[0, j d+1) \geq \frac{1}{2}(j+1)(j+2) .
$$

- This is one part of the FLMN conjecture.
- The right hand side is the dimension of space of polynomials of degree $j, H^{0}\left(\mathbb{C} P^{2}, \mathcal{O}(j H)\right)$.
- The quantity $\# S \cap[0, k)$ is the number of conditions of a curve D to intersect C at z with multiplicity at least k.

If time permits

Theorem (FLMN)

Suppose that C is a curve in $\mathbb{C} P^{2}$ of degree d. Let $z \in C$ be a singular point and S its semigroup. Then for $j=1, \ldots, d-1$ we have

$$
\# S \cap[0, j d+1) \geq \frac{1}{2}(j+1)(j+2)
$$

- This is one part of the FLMN conjecture.
- The right hand side is the dimension of space of polynomials of degree $j, H^{0}\left(\mathbb{C} P^{2}, \mathcal{O}(j H)\right)$.
- The quantity $\# S \cap[0, k)$ is the number of conditions of a curve D to intersect C at z with multiplicity at least k.
- If the inequality is violated, then there exists a curve D of degree j intersecting C with multiplicity jd +1 or higher. Contradicition.

If time permits 2

The result of MB and Moe and then of MB show that Heegaard Floer theory gives the same set of inequalities than Bézout (or Riemann-Roch).

If time permits 2

The result of MB and Moe and then of MB show that Heegaard Floer theory gives the same set of inequalities than Bézout (or Riemann-Roch).

Problem (You're encouraged to work at it)
Prove the FLMN inequalities using the line of FLMN for almost complex manifolds replacing $H^{0}\left(\mathbb{C} P^{2}, \mathcal{O}(j H)\right)$ by some moduli space of J-holomorphic curves.

If time permits 2

The result of MB and Moe and then of MB show that Heegaard Floer theory gives the same set of inequalities than Bézout (or Riemann-Roch).

Problem (You're encouraged to work at it)
Prove the FLMN inequalities using the line of FLMN for almost complex manifolds replacing $H^{0}\left(\mathbb{C} P^{2}, \mathcal{O}(j H)\right)$ by some moduli space of J-holomorphic curves. Explain the similarity between the two approaches as a variant of GW-SW correspondence.

Work in progress

Joint project with Hom and Schinzel.

Work in progress

Joint project with Hom and Schinzel. Use Involutive Floer homology for finer obstruction.

Work in progress

Joint project with Hom and Schinzel.
Use Involutive Floer homology for finer obstruction.

Definition

For an algebraic knot K with a staircase, the stretch is the length of the middle step of a staircase. A knot is called even or odd if the staircase has an even or odd number of steps.

Work in progress

Joint project with Hom and Schinzel.
Use Involutive Floer homology for finer obstruction.

Definition

For an algebraic knot K with a staircase, the stretch is the length of the middle step of a staircase. A knot is called even or odd if the staircase has an even or odd number of steps.

Work in progress

Joint project with Hom and Schinzel.
Use Involutive Floer homology for finer obstruction.

Definition

For an algebraic knot K with a staircase, the stretch is the length of the middle step of a staircase. A knot is called even or odd if the staircase has an even or odd number of steps.

Work in progress

Joint project with Hom and Schinzel.
Use Involutive Floer homology for finer obstruction.

Definition

For an algebraic knot K with a staircase, the stretch is the length of the middle step of a staircase. A knot is called even or odd if the staircase has an even or odd number of steps.

The stretch of the staircase for $T(4,5)$ is 2 . This knot is odd.

Bound from the $I H$

Theorem (Hom, Schinzel, -)
Let p, q be coprime. Write the continuous fraction expansion $q / p=\left[a_{0} ; a_{1} ; \ldots ; a_{k}\right]$. Then the stretch of $T(p, q)$ is equal to $\left[\frac{a_{k}-1}{2}\right]+1$.

Bound from the $I H$

Theorem (Hom, Schinzel, -)
Let p, q be coprime. Write the continuous fraction expansion $q / p=\left[a_{0} ; a_{1} ; \ldots ; a_{k}\right]$. Then the stretch of $T(p, q)$ is equal to $\left[\frac{a_{k}-1}{2}\right]+1$.

Theorem (Hom, Schinzel, -)
Let C be a rational cuspidal curve with knots K_{1}, \ldots, K_{n}. Suppose K_{1} is odd. Then the stretch of K_{1} is less or equal than $g\left(K_{2}\right)+\ldots+g\left(K_{n}\right)$.

Bound from the $I H$

Theorem (Hom, Schinzel, -)
Let p, q be coprime. Write the continuous fraction expansion
$q / p=\left[a_{0} ; a_{1} ; \ldots ; a_{k}\right]$. Then the stretch of $T(p, q)$ is equal to $\left[\frac{a_{k}-1}{2}\right]+1$.
We have only this result for curves of odd degree.
Theorem (Hom, Schinzel, -)
Let C be a rational cuspidal curve with knots K_{1}, \ldots, K_{n}. Suppose K_{1} is odd. Then the stretch of K_{1} is less or equal than $g\left(K_{2}\right)+\ldots+g\left(K_{n}\right)$.

Remark

This obstructs some cases with one 'big' singularity and some small.

