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Periodic knots

Definition
A knot K ⊂ S3 is p–periodic if it admits a rotational symmetry with the
symmetry axis disjoint from K .
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Alexander polynomial obstruction

Theorem (Murasugi criterion)

Suppose K ⊂ S3 is a p-periodic knot with p a prime. Let ∆ be the
Alexander polynomial of K and ∆′ be the Alexander polynomial of the
quotient knot K/Zp. Let l be the absolute value of linking number of K
with the symmetry axis. Then ∆0|∆ and up to multiplication by a power
of t we have

∆ ≡ ∆p
0(1 + t + . . .+ t l−1)p−1 mod p. (1)

Often one can find factors of ∆ over integers.
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Naik’s criterion

Suppose Zp acts on S3 keeping K ;

Then Zp acts on Σm(K ) – k–fold branched cover;
Then Zp acts on H1(Σm(K )).
Look at Zqm summands of H1(Σm(K )).
Zp can fix it, or permute different such summands.
The number of fixed components is controlled by |∆′(−1)|.
Restrictions for H1(Σm(K )) of periodic knots.
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Jabuka–Naik criterion

Consider Σk (K );

Zp acts on the spin-c structures.
Acts on Ozsváth–Szabó d–invariants.
These invariants appear with multiplicities.
If K is quasi-alternating, then Σ2(K ) is an L–space and
d-invariants are computable.
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Twisted Alexander Polynomial criterion

Hillman, Livingston and Naik generalize the Murasugi’s periodicity
criterion for twisted Alexander polynomials.

Computable, if we know a representation.
It is known when knot group admits a representation into a
dihedral group.
Other representations are sometimes harder to find.

None of the above criteria can be used for ∆ = 1 knots. The TAP
criterion is possible, but requires finding non-trivial representations.
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Jones and HOMFLYPT

Theorem
If K is p–periodic, then JK (q)− JK (q)−1 ≡ 0 mod (qp − q−p,p).

Effective for p > 3.

Theorem (HOMFLYPT criterion)

Let R be a unital subring in Z[a±1, z±1] generated by a,a−1, a+a−1

z and
z. For a prime number p let Ip be the ideal in R generated by p and zp.
If a knot K is p-periodic and P(a, z) is its HOMFLYPT polynomial, then

P(a, z) ≡ P(a−1, z) mod Ip.

Przytycki shows an effective way of applying Theorem 4.

Maciej Borodzik (Institute of Mathematics, University of Warsaw)Khovanov homology and periodic knots Bern, June 2017 7 / 20



Jones and HOMFLYPT

Theorem
If K is p–periodic, then JK (q)− JK (q)−1 ≡ 0 mod (qp − q−p,p).

Effective for p > 3.

Theorem (HOMFLYPT criterion)

Let R be a unital subring in Z[a±1, z±1] generated by a,a−1, a+a−1

z and
z. For a prime number p let Ip be the ideal in R generated by p and zp.
If a knot K is p-periodic and P(a, z) is its HOMFLYPT polynomial, then

P(a, z) ≡ P(a−1, z) mod Ip.

Przytycki shows an effective way of applying Theorem 4.

Maciej Borodzik (Institute of Mathematics, University of Warsaw)Khovanov homology and periodic knots Bern, June 2017 7 / 20



Jones and HOMFLYPT

Theorem
If K is p–periodic, then JK (q)− JK (q)−1 ≡ 0 mod (qp − q−p,p).

Effective for p > 3.

Theorem (HOMFLYPT criterion)

Let R be a unital subring in Z[a±1, z±1] generated by a,a−1, a+a−1

z and
z. For a prime number p let Ip be the ideal in R generated by p and zp.
If a knot K is p-periodic and P(a, z) is its HOMFLYPT polynomial, then

P(a, z) ≡ P(a−1, z) mod Ip.

Przytycki shows an effective way of applying Theorem 4.

Maciej Borodzik (Institute of Mathematics, University of Warsaw)Khovanov homology and periodic knots Bern, June 2017 7 / 20



Jones and HOMFLYPT

Theorem
If K is p–periodic, then JK (q)− JK (q)−1 ≡ 0 mod (qp − q−p,p).

Effective for p > 3.

Theorem (HOMFLYPT criterion)

Let R be a unital subring in Z[a±1, z±1] generated by a,a−1, a+a−1

z and
z. For a prime number p let Ip be the ideal in R generated by p and zp.
If a knot K is p-periodic and P(a, z) is its HOMFLYPT polynomial, then

P(a, z) ≡ P(a−1, z) mod Ip.

Przytycki shows an effective way of applying Theorem 4.

Maciej Borodzik (Institute of Mathematics, University of Warsaw)Khovanov homology and periodic knots Bern, June 2017 7 / 20



Equivariant Khovanov homology

For a periodic diagram D, the group Zp permutes the cube of
resolution.

Take a ring R. Then CKh(D; R) has a structure of
Λ = R[Zp]–module.

Definition (Politarczyk)
For any Λ–module M define the equivariant Khovanov homology as

EKh(L; M) = ExtΛ(M,CKh(D; R)).

Does not depend on the choice of the diagram.
In a similar way one can show the existence of equivariant Lee
theory.
Most important example: M = Λ.
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Equivariant Khovanov. Properties.

We can define EKhd (L) = EKh(L;Z[ξd ]) for any d |p. This is the
third gradation, coming from representations of Zp.

If R = Zm and p is invertible in R, then Exti
Λ = 0 for i > 0 and

EKh(L; Λ) = Kh(L; R).
On the other hand we have a Schur decomposition of
HomΛ(Λ; CKh(D)).
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Equivariant Lee spectral sequence

There exists an equivariant Lee spectral sequence (if R = Zq,
q > 2, or R = Z or R = Q).

Equivariant Lee homology for knots is easy.
The equivariant Khovanov polynomial and the equivariant Lee
polynomial differ by a specific polynomial.
And EKh(L; Λ) splits as a sum over different representations of Λ.
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Main criterion

Theorem (—,Politarczyk, 2017)
Let K be a pn-periodic, where p is an odd prime. Suppose that F = Q
or Fr , for a prime r such that r 6= p, and r has maximal order in the
multiplicative group mod pn. Set c = 1 if F = F2 and c = 2 otherwise.
Then the Khovanov polynomial KhP(K ;F) decomposes as

KhP(K ;F) = P0 +
n∑

j=1

(pj − pj−1)Pj , (2)

where
P0,P1, . . . ,Pn ∈ Z[q±1, t±1],

are Laurent polynomials such that
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Main criterion

1 P0 = qs(K ,F)(q + q−1) +
∑∞

j=1(1 + tq2cj)S0j(t ,q), and the
polynomials S0j have non-negative coefficients;

2 Pk =
∑∞

j=1(1 + tq2cj)Skj(t ,q) and the polynomials Skj have
non-negative coefficients for 1 ≤ k ≤ n,

3 If the width of Kh(K ;F) is equal to w , then Skj = 0 for j > c
2w .

4 Pk (−1,q)− Pk+1(−1,q) ≡ Pk (−1,q−1)− Pk+1(−1,q−1)

(mod qpn−k − q−pn−k
);

Without (4) the condition is trivial!
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Example

Consider knot 15n135221.
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∆(15n1335221) = 1. No Alexander criterion.

No Naik criterion either.
No Jabuka–Naik criterion.
Passes MPT criterion for period 5.
Let’s check Khovanov.
We do not need to calculate equivariant Khovanov.
We work over Z3.
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Khovanov homology
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Khovanov Polynomial

KhP = q + q−1 + (1 + tq4)(t−7q−15 + 3t−6q−13 + t−5q−11+

+ 3t−4q−9 + t−3q−9 + 3t−2q−7

+ t−1q−5 + 3t−1q−3 + q−3 + q−1 + 3tq+

+ t2q3 + 3t3q3 + t4q5 + 3t5q7 + t6q9

+ 4(t−5q−11 + t−4q−9 + 2t−3q−7 + 2t−2q−5+

+ t−1q−5 + t−1q−3 + 2tq−1

+ q−3 + q−1 + 2t2q + t3q3 + t4q5)).
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Tentative decomposition

KhP = q + q−1 + (1 + tq4)S′01 + 4(1 + tq4)S′11,

where

S′01 = t−7q−15 + 3t−6q−13 + t−5q−11 + 3t−4q−9 + t−3q−9 + 3t−2q−7

+ t−1q−5 + 3t−1q−3 + q−3 + q−1 + 3tq + t2q3 + 3t3q3+

+ t4q5 + 3t5q7 + t6q9,

S′11 = t−5q−11 + t−4q−9 + 2t−3q−7 + 2t−2q−5 + t−1q−5+

+ t−1q−3 + 2tq−1 + q−3 + q−1 + 2t2q+

+ t3q3 + t4q5.
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Main criterion

According to the main criterion define

Ξ̃(q) = (q + q−1 + (1 + tq4)(S ′01 − S ′11)|t=−1 and set
Ξ := (Ξ̃(q)− Ξ̃(q−1)) mod q5 − q−5. We have then

Ξ = −10q + 5q3 − 5q7 + 10q9.

Ξ is not zero, but we might get zero if we choose different S′01 and S′11.
In general checking all possibilities requires 20736 possibilities.
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Speed up

Let δ = atuqj . The change S′11 7→ S′11 − δ, S′01 7→ S′01 + 4δ induces the
change

Ξ 7→ Ξ + aTij ,

where

Tij = (−1)i5(−q−j−4 + q−j − qj + qj+4) mod (q5 − q−5).

Reducing modulo q5− q−5 we get Tij = (−1)iRj ′ with j ′ = j mod 10 and

R1 = R5 = 5(q − q9),

R3 = 10(q3 − q7),

R7 = R9 = 5(−q − q3 + q7 + q9).
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Speed up 2

δ is such that S′11 − δ and δ have non-negative coefficients. Hence the
question is, whether

Ξ = a1R1 + a3R3 + a7R7

with

a1 ∈ {−1,0,1,2,3,4,5,6},
a3 ∈ {−3,−2,−1,0},
a7 ∈ {−4,−3,−2,−1,0,1,2}.

This is impossible. The knot is not periodic.
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Questions

Khovanov-Rozanski homology?

Linking form on H1(Σ2(K )) (generalize Naik)?
Blanchfield form of periodic links (A. Conway)?
Twisted Blanchfield forms?
Is 15n166130 5–periodic?
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