
Lecture 9 (17.05.2013) Scribe: Marcin Wrochna

Random walks, applications of expanders: SL=L

In this lecture we show an important proof that uses expanders algorithmically to derandomize
random walks.

Theorem 1 (2004 Reingold). The connectivity of an undirected graph can be decided in logarithmic
space.

The theorem can be stated for two closely related problems: connectivity and STCON, the
problem of finding a path from a given vertex s to t in a graph (USTCON in undirected graphs).
The class of problems solvable in logarithmic space is called L or LOGSPACE, the class of problems
reducible to USTCON is called SL. so the theorem is often stated as USTCON ∈ LOGSPACE
or L = SL.

Both problems in directed graphs (STCON and strong connectivity) have long been known
to be NL-complete and are thus believed not to be in L. The undirected cases are also easily
seen to be in NL (progressively guess any route and stop after n steps), by Savitch’s theorem (or
any simple algorithm that comes to mind) they can be decided in O(log2 n) space. A randomized
algorithm that performs a random walk for n3 steps was also known, but nevertheless Reingold’s
theorem was a breakthrough, as many believed SL to be unequal to L.

Logarithmic space allows only to remember a fixed number of counters and pointers to vertices.

1 Modifying the graph

First, to make the graph 3-regular, we replace each vertex v with a cycle of length deg(v), each
cycle vertex incident to one original edge – reachability/connectivity is preserved. To make the
graph d-regular, for any d, simply add loops to all vertices – loops will also be useful later, because
we can talk about paths of length ‘exactly k’, instead of ‘at most k’. Like in all graph modifications
here, we don’t actually write the new graph, we only say we’ll use tuples to represent new vertices
(here: pairs (v, i) for v ∈ V (G), i ≤ deg(v)) and notice that new edges can be easily enumerated.

We choose some d and a fixed graph H, hard-coded in the algorithm, satisfying |H| = d16,
d-regular and λ(H) ≤ d

2 (existence was proved on exercises). We take G0 to be G modified as
described above to be d2-regular (G0 has n = |G0| = 2|E(G)| vertices, which is polynomial in the
size of the input graph G). Define

Gt+1 = G8
t zH

for t = 1, . . . , L, where L is such that
(
1− 1

d16n2

)2L
< 1

2 (so L is O(log n)). Inductively, Gt is
d2-regular, G8

t is d16-regular, so the zig-zag product with H is well defined, giving a graph of degree
d2. The number of vertices is |Gt+1| = |G8

t | · |H| = |Gt| · d16, so |GL| = d16L|G0|, which still is
polynomial in n.

We’ll show how to actually describe and walk the graph later (the idea is that it’ll suffice to
search all paths of length log n, which can be done in L with some effort), for now let’s focus on
the expansion obtained in the construction.

Lemma 2. If G is connected, GL is a good expander, namely λ(GL) < (1− ε)d2 for some fixed ε
independent of |G|. Otherwise GL is not connected either.



Proof. G0 is a d2-regular, connected graph with loops in every vertex, so (from exercise 97)

λ(G0) ≤ d2
(

1− 1

d2n2

)

λ(G8
0) ≤ d16

(
1− 1

d16n2

)
We use the fact (cited in the previous lecture, and proved in a weaker version) that, for a D-regular
graph G and d-regular graph H,

1− λ(G zH)

d2
≥
(

1− λ(G)

D

)
·

1−
(
λ(H)
d

)2
2

For λ(H) ≤ d
2 the factor

1−
(
λ(H)
d

)2

2 , which describes how much we loose in the spectral gap, is
at least 3

8 – the main point of the zig-zag product is that it lowers the degree and doesn’t lower the
gap too much.

When λ(G8
t ) is already less than half the degree, λ(G8

t ) ≤ 1
2 · d

16, so are later G8
t′s, because

λ(G8
t zH) ≤ d2(1− 3

8 ·
1
2) = d2 · 1316 , and then λ((G8

t zH)8) ≤ d16
(
13
16

)8
< 1

2 · d
16.

On the other hand, when λ(G8
t ) is not yet less than half the degree, let x = 1−λ(G8

t )/d
16 ∈ (0, 12).

On this range it is easy to prove that (1− 3
8x)4 ≤ 1− x, so taking the 4th power would already be

enough to return to the original gap, but we square it once more (taking it to the 8th power):

1− λ(G8
t )/d

16 = x

1− λ(G8
t zH)/d2 ≥ 3

8
x

λ
(
(G8

t zH)4
)
/d8 ≤ (1− 3

8
x)4 ≤ 1− x = λ(G8

t )/d
16

λ(G8
t+1)/d

16 = λ
(
(G8

t zH)8
)
/d16 ≤

(
λ(G8

t )/d
16
)2

Inductively,

λ(G8
t )/d

16 ≤ max

(
1

2
,

(
1− 1

d16n2

)2t
)

Thus λ(G8
L)/d16 ≤ 1

2 .

2 Walking algorithm

Since we proved λ(GL) to be separated from d2 by a constant factor, we know (from exercise 98)
that the diameter of GL is at most O(log n) and it suffices to check all routes of that length. The
description of one vertex s̃ = (s, p1, p2, . . . , pL) in GL consists of the description of a vertex in G,
which takes logarithmic space, and L descriptions of vertices in H, each taking constant space. To
enumerate neighbors of one vertex we only need lg d2 = O(1) bits. A naive approach would be to
make a simple DFS:



Procedure 1 DFS(ṽ, i)

if i == 0 then
return ṽ == t̃

else
result := false
for all w̃ neighbors of ṽ in GL do

result |= DFS(w̃, i− 1)
end for
return result

end if

Started with DFS(s̃, log n) and a global variable t̃ for the end vertex, this program would put
log n stack frames of size O(log n) each – as we noticed earlier, a program running in log2 n space is
easy to obtain. Instead, it is enough to maintain the current vertex and depth in one global variable,
and remember the returning edge index on each stack frame (every time we move to a vertex,
remember which edge, as a number 1 ≤ γ ≤ d2, we should use to return). Let GOi(β) in vertex ṽ
and depth i be a procedure moving to the β-th neighbor of ṽ and returning the returning edge γ
(described later). The following program uses only O(1) memory per stack frame to remember the
neighbor numbers (≤ d2).

Procedure 2 DFS’
if i == 0 then
return ṽ == t̃

else
result := false
i := i - 1
for all β ∈ 1 . . . d2 do
γ := GOL(β)
DFS’()
GOL(γ)

end for
i := i + 1

end if

It remains to implement GOt(β) in logarithmic space – this procedure walks the graph Gt by
recursively calling GOt−1. It allocates O(1) memory one every stack frame, for a total of O(log n).



Procedure 3 GO(β)

Interpret ṽ as (v, q1, . . . , qt, . . . , qL) ∈ V (G)× V (H)× · · · × V (H)
if t == 0 then

(simply walk in G)
w := the β’th neighbor of v in G
γ := returning edge index (such that v is the γ-th neighbor of w)
v := w
return γ

else
(walk in H, then Gt−1, then H, as in the definition of Gt = G8

t−1 zH)
Interpret β ∈ 1 . . . d2 as two numbers β1, β2 ∈ 1 . . . d
pt := the β1-th neighbor of qt in H
γ2 := the returning edge index
Interpret pt as 8 neighbor indices (δ1, . . . , δ8) in Gt−1 (a neighbor index in G8

t−1).
t := t - 1
for j := 1 . . . 8 do
ζ9−j := GO(δj)

end for
t := t + 1
Interpret the 8 returning edge indices (ζ1, . . . , ζ8) as a vertex rt in H
(rt is the vertex we arrived in)
qt := the β2-th neighbor of rt in H
γ1 := the returning edge index
return (γ1, γ2)

end if

qt

pt

β1 γ2

new qt

rt

γ1 β2

δ1 . . . δ8

ζ8
. . .

ζ1

Gt−1

H H

old (v, q1, . . . , qt−1) new (v, q1, . . . , qt−1)

3 Lower bound for expansion

We show in exercise 103 a construction of an expander graph that can be used for H in our
algorithm: for any q we have a q-regular graph Hq with q2 vertices and λ(Hq) ∼

√
q. The following

theorem shows we cannot hope for much more.



Theorem 3 (Alon,Boppana). Let G1, G2, . . . be a sequence of d-regular graphs with |V (Gi)| → ∞.
Then

lim inf λ(Gi) ≥ 2
√
d− 1.

Proof. Consider a large k and an s such that ns := |V (Gs)| is enormous. We want to estimate
G2k
s ’s trace (the sum of eigenvalues). G2k

s is d2k-regular, so λ1 = d2k. All other eigenvalues are
bounded by λ(Gs)

2k, so

tr(A(G2k
s )) =

ns∑
i=1

λi(G
2k
s ) ≤ d2k + (ns − 1)λ(Gs)

2k

On the other hand, the trace can be calculated by summing the diagonal of A(G2k
s ), which contains,

for each vertex v, the number of routes of length 2k going from v back to v. From such routes,
we can count at least those that form euler walks around trees: routes constructed by going along
an edge, doing a smaller route of this type, and returning along the edge (so we never use actual
cycles in the graph to come back, because those would be hard to count).

1

To count such routes we divide the 2k steps of the walk into k returning steps and k non-
returning steps (like in an expression with balanced parentheses), and choose, for non-returning
steps, one of the remaining edges:

tr(A(G2k
s )) ≥ ns ·

(
2k
k

)
k + 1

· (d− 1)k

Therefore

d2k + (ns − 1)λ(Gs)
2k ≥ ns ·

(
2k
k

)
k + 1

· (d− 1)k

ns − 1

ns
λ(Gs) ≥ 2k

√(
2k

k

)
1

k + 1
(d− 1)k − 1

ns
d2k

λ(Gs) ≥ 2k

√(
2k

k

)
1

k + 1
(d− 1)k − 1

ns
d2k

As k increases we have

2k

√(
2k

k

)
1

k + 1
(d− 1)k −→ 2

√
d− 1,

so for large enough k, and s such that 1
ns
d2k ≤ ε2k we have λ(G) ≥ 2

√
d− 1− ε.


