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Graph coloring, perfect graphs

1 Introduction to graph coloring

Definition 1. Let G be a simple undirected graph and k a positive integer. A function c : V (G)→
{1, . . . , k} is called a k-coloring of G if c(u) 6= c(v) for each uv ∈ E(G).

Definition 2. A chromatic number χ(G) of a graph G is the smallest integer k such that G admits
a k-coloring.

Example 3. A chromatic number of a clique Kn is n. Bipartite graphs can be defined as graphs
which admit a 2-coloring.

Deciding whether a graph is k-colorable is difficult, both combinatorially and algorithmically.
While 2-colorability is in P , 3-colorability is already NP -complete. Moreover, the problem of
determining χ(G) is not approximable [3].

1.1 Greedy coloring and applications

Let us consider the following algorithm

Algorithm 1: Greedy coloring

Let (v1, . . . , vn) be an ordering of V (G);
for i := 1 to n do

c(vi) := min{k ∈ Z+ : k /∈ c (N(vi) ∩ {v1, . . . , vi−1})};

Observe that the number of ‘forbidden’ colors for vi is bounded by deg vi. Consequently, the greedy
algorithm uses at most ∆(G) + 1 colors, where ∆(G) = maxv∈V (G) deg v.

Corollary 4. For every graph G we have χ(G) ≤ ∆(G) + 1.

Let us improve this bound. Assume that G is a connected graph and T is its spanning tree
rooted at r. Let us consider an ordering of V (G) in which each vertex v appears after its children
in T . Now, for v 6= r we have |N(vi) ∩ {v1, . . . , vi−1}| ≤ deg v − 1, so c(vi) ≤ deg vi for vi 6= r.
Unfortunately, the greedy may still need to use ∆(G) + 1 colors if deg r = ∆(G) and each child of
r happens to be colored using a different color. Nevertheless, we have a lot of freedom in choosing
T and it turns out that for each graph we can either find an appropriate tree T or prove that no
∆(G)-coloring exists.

Theorem 5 (Brooks). Let G be a connected graph. If G 6= Kn and G 6= C2n+1, i.e. G is neither a
clique nor an odd cycle, then χ(G) ≤ ∆(G).

We omit the proof as it appears in the Discrete Mathematics course, see also [2].



Definition 6. A graph G is k-degenerate if every subgraph of G has a vertex of degree at most k.
Degeneracy of G is the smallest integer k, for which G is k-degenerate.

Observe that a natural implementation of Algorithm 1 is to take a vertex of the minimum degree
as vn, recursively color G[v1, . . . , vn−1] and then color vn with the smallest available color, which is
at most 1 + deg vn. We conclude that a k-degenerate graph can be colored with k + 1 colors.

1.2 Edge coloring

Definition 7. Let G be a simple undirected graph and k a positive integer. A function c′ : E(G)→
{1, . . . , k} is called an k-edge coloring if c(e1) 6= c(e2) for all incident edges e1, e2 ∈ G.

Definition 8. A chromatic index χ′(G) of G is the smallest integer k such that G admits a k-edge
coloring.

Clearly, for each vertex v the edges incident to v must be colored with pairwise different colors.
This implies χ′(G) ≥ ∆(G). The upper bound is very close to the lower bound this time:

Theorem 9 (Vizing). For each graph G we have χ′(G) ≤ ∆(G) + 1.

Nevertheless, deciding whether χ′(G) is ∆(G) or ∆(G) + 1 is NP -complete.

2 Perfect graphs

We have already defined the chromatic number χ(G). Let us recall more graph invariants. By
ω(G) we denote the clique number of G, i.e. the maximum size of a clique that is a subgraph of
G, and by α(G) the independence number of G, i.e. the maximum size of a stable set in G. Note
that α(G) = ω(Ḡ) since cliques in G correspond to stable sets in Ḡ. These invariants provide lower
bounds on the chromatic number:

Fact 10. For each graph G we have χ(G) ≥ ω(G) and χ(G) ≥ |V (G)|
α(G) .

Proof. For the first inequality note that if K ⊆ V (G) induces a clique, then each vertex v ∈ K is
colored with a different color. For the second one observe that each color class forms a stable set,
so |V (G)| can be partitioned into χ(G) stable sets.

The perfect graphs, which we shall define in a moment, are graphs for which the colorings
behave in a controlled and structured way. Simultaneously this class is quite large and includes
many important graph classes. This makes it one of the central classes in graph theory.

First, let us make an attempt to define nice graphs. Call a graph nice if χ(G) = ω(G), i.e. a
graph G is nice if it has both a coloring and a clique which is a witness that the number of colors
is optimal.

This may seem a natural definition, but there are some problems with it. For a graph G define
Ĝ as G∪̇Kχ(G), where ∪̇ is a disjoint union. Clearly Ĝ is a nice graph, so an arbitrary graph can be
made nice if we add a sufficiently large clique. Consequently, we cannot tell anything interesting
about the structure of nice graphs. The definition of perfect graphs fixes that problem.

Definition 11. A graph G is perfect if each induced subgraph H of G is nice, i.e. for each X ⊆ V (G)
the graph H = G[X] satisfies χ(H) = ω(H).



Observe that the perfect graphs are defined so that this class is hereditary. That is if G is
perfect then for any v ∈ G the graph G− v is still perfect and consequently each induced subgraph
of a perfect graph is perfect. More generally, the fact that a graph class is closed under induced
subgraphs or even under minors, makes it much more convenient to work with it. This is what the
nice graphs missed.

As a hereditary class perfect graphs can be characterized by a family of minimal forbidden
induced subgraphs. This family is known and relatively simple but infinite, which is possible as
the induced subgraph order is not WQO. The following theorem has been conjectured by Berge in
1960’s and the proof by Chudnovsky et al. [1], who develop involved structural theorems for perfect
graphs, has been published in 2006.

Theorem 12 (Strong Perfect Graph Theorem). A graph G is perfect if and only if it does not
contain an odd hole or an odd antihole, i.e. for any integer k ≥ 2 neither C2k+1 nor C2k+1 is an
induced subgraph of G.

Observe that the family of forbidden induced subgraphs is closed under complements, which
implies the same property for the class of perfect graphs.

Corollary 13 (Weak Perfect Graph Theorem). If a graph G is perfect then Ḡ is perfect as well.

In this lecture we shall give two alternative proves of the weak perfect graph theorem. Both
are due to Lovász and date back to 1970’s. The first one is purely combinatorial and proves the
theorem directly. The other besides combinatorics uses linear algebra and gives an equivalent
characterization of perfect graphs, which immediately implies the weak perfect graph theorem, but
is also interesting on its own.

2.1 Combinatorial proof

First, let us develop a way of making perfect graphs by cloning vertices.

Definition 14. Let G be a graph and let v ∈ V (G). We say that Ĝ is obtained from G by cloning
v or adding a true twin of v, if Ĝ is obtained from G by adding a vertex v̂ adjacent to v so that v
and v̂ have the same neighbours in V (G) \ {v}.

Lemma 15. Let G be a perfect graph and let Ĝ be obtained from G by adding a true twin of
v ∈ V (G). Then Ĝ is perfect.

Proof. We perform induction on the number of vertices. For |V (G)| = 1 clearly the lemma holds,
which gives the inductive base. Therefore, let us perform an inductive step, i.e. take a perfect graph
G and assume that the lemma holds for all perfect graphs G′ with fewer vertices.

Formally, we need to prove that for each induced subgraph H of Ĝ we have χ(H) = ω(H).
Observe that if H 6= Ĝ then either H is isomorphic to an induced subgraph of G (and automatically
perfect) or v, v̂ ∈ V (H) and H is obtained from H \ {v̂} by cloning v (and perfect by the inductive
hypothesis). Thus, it suffices to show that χ(Ĝ) = ω(Ĝ). Fact 10 allows to prove the ≤ inequality
only, i.e. it is enough to show that Ĝ can be colored with ω(Ĝ) colors. This type of reasoning is a
standard beginning of proofs concerning perfect graphs; in subsequent proofs we omit these details.

Note that ω(Ĝ) ≥ ω(G) since G is a subgraph of Ĝ and simultaneously ω(Ĝ) ≤ ω(G) + 1 since
we have added a single vertex. This gives two cases.



If ω(Ĝ) = ω(G)+1, then we can extend a coloring of G with χ(G) = ω(G) colors to a coloring of
Ĝ with ω(G) + 1 = ω(Ĝ) colors just by coloring v̂ with the additional color. This simple argument
shows χ(Ĝ) = ω(Ĝ).

The other case where ω(Ĝ) = ω(G) is more difficult. Note that v did not belong to any maximum
clique in G, since otherwise we would have a strictly larger clique in Ĝ. Let us consider a coloring
of G with ω(G) colors, which defines color classes A1, . . . , Aω(G); wlog we may assume v ∈ A1. Let
us consider a graph H = G \ (A1 \ {v}). Observe that H − v can be colored with χ(G)− 1 colors
(with A2, . . . , Aω(G) as color classes), so ω(H−v) ≤ ω(G)−1. Moreover ω(H) ≤ ω(G)−1, since no
clique of size of ω(G) contains v. As an induced subgraph of G, H is a perfect graph, so it admits
a coloring with ω(G) − 1 colors. This gives an coloring of Ĝ with ω(G) colors, since A1 is stable
and Ĝ \A1 is isomorphic to H. Consequently, χ(Ĝ) = ω(Ĝ).

Having proved the lemma, let us proceed with the proof of the weak perfect graph theorem.

Proof. Again, by an inductive argument it suffices to show that Ḡ can be colored with α(G) colors.
Instead of coloring Ḡ, it is more convenient to think of ‘coloring’ G, so that each color class is a
clique.

Consider the following naive approach: take a clique K in G. Color the vertices of K with a
single color and apply the inductive hypothesis to G \K. Let K be the family of all cliques in G.
This approach succeeds unless for each clique K ∈ K we have α(G) = α(G\K), i.e. for each K ∈ K
there exists a stable set AK of size α(G) disjoint with K. We shall show that this is impossible.

Let us fix a single AK for each clique K and for each v ∈ V (G) define

`(v) = |{K ∈ K : v ∈ AK}|.

Let us define a graph H which is obtained from G by cloning each v ∈ V (G) exactly `(v) times. In
particular, if `(v) = 0 then we remove v and otherwise `(v)− 1 times we add a true twin of v. Note
that the order of adding twins and removing vertices does not influence the result. By Lemma 15,
H is a perfect graph. Moreover, removing vertices does not increase the independence number and
adding twins preserves it, so α(H) ≤ α(G). Observe that

|V (H)| =
∑

x∈V (G)

`(v) =
∑
K∈K

AK = α(G)|K|.

Consequently, by Fact 10,

χ(H) ≥ |V (H)|
α(H)

=
α(G)|K|
α(H)

≥ α(G)|K|
α(G)

= |K|

Now, note that all cliques in H are obtained from cliques in G by taking clones of vertices of the
original cliques, and to obtain a maximal clique in H we must take all clones. This means that

ω(H) = max
K∈K

∑
v∈K

l(v) = max
K∈K

∑
K′∈K

|K ∩AK′ |.

Clearly, a stable set and a clique have at most one common vertex while for K = K ′ we know that
K ∩AK = ∅, i.e.

ω(H) = max
K∈K

∑
K′∈K

|K ∩AK′ | ≤ |K| − 1 ≤ χ(H)− 1.

This is a contradiction since H is perfect.



2.2 Algebraic proof

We shall deduce the weak perfect graph theorem from the following characterization of perfect
graphs.

Theorem 16 (Lovász). A graph G is perfect if and only if |V (H)| ≤ α(H)ω(H) for each induced
subgraph H of G.

Clearly α ·ω is invariant under complements, so the weak perfect graph theorem is an immediate
consequence.

Proof. Combining Fact 10 with the definition of perfect graphs we obtain the⇒ implication, so let
us concentrate of proving the ⇐ part.

As usually, we apply an inductive argument. Consequently we can assume that each induced
subgraph H of G is perfect and it suffices to show that G can be colored with ω(G) colors. For
brevity we denote α = α(G), ω = ω(G), V = V (G) and n = |V |.

Again, we shall apply the naive approach and see when it fails. More precisely, we take a stable
A, color A with a single color and recursively color H = G\A with ω(G\A) colors. We can choose
A arbitrarily, so the naive approach fails only if ω(G \A) = ω for each stable set A, i.e. for each A
there exists a clique KA of size ω disjoint with A.

Provided n ≤ αω, we shall again show that there is no ‘space’ in G for these cliques and
independent sets. This time, the ‘space’ is going to formalized as the rank of a particular matrix.

Let A0 be an arbitrary independent set of size α in G and A0 = {a1, . . . , aα}. By inductive
hypothesis each G−ai is perfect and consequently can be colored with ω colors; let the color classes
be Ai1, . . . , A

i
ω.

This way we get a collection A = {A0} ∪ {Aij : i ∈ {1, . . . , α}, j ∈ {1, . . . , ω}} of αω + 1
independent sets.

Claim 17. Let K be a clique of size ω. Then K with is disjoint with exactly one A ∈ A.

Proof. Let us fix ai ∈ A0. If ai /∈ K, then then K is a clique of size ω in G − ai, so it hits each
color class Aij . On the other hand, if ai ∈ K, then K − ai is a clique of size ω − 1 in G− ai, so it

hits all but one color class Aij .

Consequently, if K ∩ A0 = ∅, then K is hits all cliques Aij . Otherwise K ∩ A0 = {ai} for some

i and K hits all color classes Ai
′
j for i′ 6= i while it is disjoint with a single color class Aij .

Let A = {A0, . . . , Aαω} and let us fix cliques K0, . . . ,Kαω of size ω so that Ki is disjoint with
Ai. Let us define matrices X,Y of size (αω + 1)m× n, with the characteristic vector of Ai as the
i-th row of X and the characteristic vector of Ki as the i-th row of Y .

Let us consider a matrix Z = X · Y T and its single entry zij . Observe zij =
∑

v∈V [v ∈ Ai][v ∈
Kj ] = |Ai ∩Kj | and this quantity is 0 for i = j. On the other hand the Claim implies that each
column of Z contains exactly one zero, while the other entries are ones. This means that

Z =


0 1 · · · 1 1
1 0 · · · 1 1
...

...
. . .

...
...

1 1 · · · 0 1
1 1 · · · 1 0





In particular Z is of full rank, i.e. rk(Z) = αω+1. On the other hand rk(X), rk(Y ) ≤ n, so rk(Z) ≤
min(rk(X), rk(Y )) ≤ n. This implies αω + 1 ≤ n, a contradiction with |V (G)| ≤ α(G)ω(G).
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