Problems

1. Let $A=A^{T}>0$ such that its eigenvalues are in $[10,100]$. We consider the following method for solving $A x^{*}=b$:

$$
\begin{aligned}
& z_{n}=x_{n}-\frac{1}{100}\left(A x_{n}-b\right) \\
& x_{n+1}=z_{n}-\frac{1}{10}\left(A z_{n}-b\right)
\end{aligned}
$$

- Is this method convergent for any x_{0} ?
- Find the smallest a such that

$$
\left\|x_{20}-x^{*}\right\|_{2} \leq a\left\|x_{0}-x^{*}\right\|_{2}
$$

for any x_{0}.
2. We consider the following method for solving $A^{T} A x^{*}=A^{T} b$, with a nonsingular A :

$$
x_{n+1}=x_{n}+\tau_{n} r_{n}
$$

where $r_{n}=A^{T} \tilde{r}_{n}$ for $\tilde{r}_{n}=b-A x_{n}$ and τ_{n} is such that

$$
\min _{\tau}\left\|x_{n}+\tau r_{n}-x^{*}\right\|_{2}=\left\|x_{n}+\tau_{n} r_{n}-x^{*}\right\|_{2}
$$

- find the formula for τ_{n} and show how to compute τ_{n} without knowing x^{*}.
- Is this method convergent for any x_{0} ?
- Let assume that the largest eigenvalue of $A^{T} A$ is $M=\lambda_{\max }\left(A^{T} A\right)$ and the smallest eigenvalue of $A^{T} A$ is $m=\lambda_{\min }\left(A^{T} A\right)$. Find the smallest a such that

$$
\left\|x_{n}-x^{*}\right\|_{2} \leq a\left\|x_{n-1}-x^{*}\right\|_{2}
$$

for any x_{0}.
3. Let $A=A^{T}>0 N \times N$ such that its eigenvalues are $\lambda_{k}=k$ for $k=1, \ldots, N$. Let the eigenvector for λ_{k} be denoted by v_{k}. We consider the following method for solving $A x^{*}=b$:

$$
x_{n+1}=x_{n}-\frac{1}{10}\left(A x_{n}-b\right)
$$

- Is this method convergent for any x_{0} for $N=10^{4}$?
- Assuming that $x_{0}-x^{*}=\sum_{k=1}^{10} a_{k} v_{k}$ Find the smallest a such that

$$
\left\|x_{n}-x^{*}\right\|_{2} \leq a\left\|x_{n-1}-x^{*}\right\|_{2}
$$

for any x_{0} and $N=10^{4}$.
4. Let $A_{\alpha}=\left(a_{i j}\right) N \times N$ be defined by:

$$
a_{i j}= \begin{cases}\alpha & i \neq j \\ 1 & i=j\end{cases}
$$

Find all values of α for which:

- $A=A^{T}>0$
- The Jacobi method for solving $A_{\alpha} x^{*}=b$ is convergent for any initial iteration x_{0}.

