Problems

1. Let $A = A^T > 0$ such that its eigenvalues are in [10, 100]. We consider the following method for solving $Ax^* = b$:

$$z_n = x_n - \frac{1}{100}(Ax_n - b)$$

$$x_{n+1} = z_n - \frac{1}{10}(Az_n - b)$$

- Is this method convergent for any x_0 ?
- Find the smallest a such that

$$||x_{20} - x^*||_2 \le a||x_0 - x^*||_2$$

for any x_0 .

2. We consider the following method for solving $A^TAx^* = A^Tb$, with a nonsingular A:

$$x_{n+1} = x_n + \tau_n r_n$$

where $r_n = A^T \tilde{r}_n$ for $\tilde{r}_n = b - Ax_n$ and τ_n is such that

$$\min_{\tau} \|x_n + \tau r_n - x^*\|_2 = \|x_n + \tau_n r_n - x^*\|_2.$$

- find the formula for τ_n and show how to compute τ_n without knowing x^* .
- Is this method convergent for any x_0 ?
- Let assume that the largest eigenvalue of A^TA is $M = \lambda_{max}(A^TA)$ and the smallest eigenvalue of A^TA is $m = \lambda_{min}(A^TA)$. Find the smallest a such that

$$||x_n - x^*||_2 \le a||x_{n-1} - x^*||_2$$

for any x_0 .

3. Let $A = A^T > 0$ $N \times N$ such that its eigenvalues are $\lambda_k = k$ for k = 1, ..., N. Let the eigenvector for λ_k be denoted by v_k . We consider the following method for solving $Ax^* = b$:

$$x_{n+1} = x_n - \frac{1}{10}(Ax_n - b)$$

• Is this method convergent for any x_0 for $N = 10^4$?

• Assuming that $x_0 - x^* = \sum_{k=1}^{10} a_k v_k$ Find the smallest a such that

$$||x_n - x^*||_2 \le a||x_{n-1} - x^*||_2$$

for any x_0 and $N = 10^4$.

4. Let $A_{\alpha} = (a_{ij}) \ N \times N$ be defined by:

$$a_{ij} = \begin{cases} \alpha & i \neq j \\ 1 & i = j \end{cases}$$

Find all values of α for which:

- $\bullet \ A = A^T > 0$
- The Jacobi method for solving $A_{\alpha}x^* = b$ is convergent for any initial iteration x_0 .