
Small Stone in Pool

Samuel R. Buss∗

Department of Mathematics

University of California, San Diego

La Jolla, CA 92093-0112, USA

sbuss@math.ucsd.edu

Leszek Aleksander Ko lodziejczyk†

Institute of Mathematics

University of Warsaw

Banacha 2, 02-097 Warszawa, Poland

lak@mimuw.edu.pl

April 13, 2014

I have said it thrice; What I tell you three times is true.
Fit the First — The Landing; The Hunting of the Snark

Lewis Carroll

Abstract

The Stone tautologies are known to have polynomial size resolution
refutations and require exponential size regular refutations. We prove
that the Stone tautologies also have polynomial size proofs in both
pool resolution and the proof system of regular tree-like resolution
with input lemmas (regRTI). Therefore, the Stone tautologies do not
separate resolution from DPLL with clause learning.

1 Introduction

The Davis-Putnam-Logeman-Loveland (DPLL) proof search method [6, 7],
augmented with clause learning [9], has become a core method for solving
the satisfiability (SAT) problem, especially for large-scale instances of SAT
that arise in industrial applications. However, when restarts are not allowed,
the proof strength of DPLL with clause learning relative to full resolution
remains unknown. On one hand, if Γ is a set of clauses, and DPLL with

∗Supported in part by NSF grants DMS-1101228 and CCR-1213151.
†This work was carried out while the second author was visiting the University of

California, San Diego, supported by Polish Ministry of Science and Higher Education pro-
gramme “Mobilność Plus” with additional support from a grant from the Simons Foun-
dation (#208717 to Sam Buss).

1



clause learning can show that Γ is unsatisfiable in n steps, then Γ has a
resolution refutation with size polynomially bounded by n (see [2]). On
the other hand, the results of [1, 10, 3, 4] imply that the length of DPLL
with clause learning proof searches can be nearly exponentially smaller than
the length of the shortest regular resolution proofs. Systems designed to
correspond to DPLL with clause learning, such as pool resolution ([11]) and
regRTI ([5]), are therefore simulated by resolution and strictly stronger than
regular resolution. Determining the exact strength of those systems is an
open problem.

The two papers [1, 10] gave examples of three principles which have
polynomial size resolution refutations, but require exponential size regular
refutations. In the terminology of [3, 4], these three principles were (1) the
guarded graph tautologies, (2) the Stone tautologies, and (3) the guarded
pebbling tautologies. Subsequently, [3, 4] showed that the guarded graph
tautologies and the guarded pebbling tautologies have polynomial size pool
and regRTI refutations, and hence can be refuted by polynomially long
DPLL search with clause learning and without restarts.

It remained open whether the same holds for the Stone tautologies.
There seems to be an inherent simplicity in the irregularity introduced by
“guarded” versions of combinatorial principles, such as (1) and (3). This is
because the guarded principles have refutations in which all irregularities are
at the initial inferences; namely, the resolution refutation can start by using
resolution to remove the guard literals, and then give a (regular) refutation
of the underlying principle as usual. In contrast, the prior known resolution
refutations for the Stone principles of [1] use irregularity in a more essential
fashion, with the irregularities distributed throughout the refutation. Be-
cause of this, it was conjectured that the Stone principles might be examples
where the pool and regRTI systems, and thus DPLL with clause learning
and no restarts, require exponential size refutations. That is, the Stone tau-
tologies were viewed as candidates for separating DPLL with clause learning
from resolution.

The present paper, however, refutes this conjecture and establishes that
the Stone tautologies do indeed have polynomial size pool refutations and
regRTI refutations. In light of this, the possibility that pool and regRTI
actually simulate the full power of resolution perhaps becomes slightly more
plausible. Nevertheless, even if such a general simulation result does hold,
it is far from clear whether the methods we use to deal with the Stone
tautologies can be of much help in proving it.

The remainder of this introduction gives a review of the basic definitions,
first of the Stone principles, then of the various proof systems. It concludes

2



by stating our main theorems about the existence of pool and regRTI refuta-
tions. The reader is encouraged to consult the introductory sections of [3, 4]
for a more extensive discussion of prior work, and to consult [1] for more
on the Stone principles. A good general introduction to DPLL with clause
learning is [2].

Definition A literal is either a propositional variable x or a negated vari-
able x. A clause is a set of literals, usually written as a list of literals
separated by either ∨’s (disjunctions) or commas. A clause is interpreted
as the disjunction of its members. A set Γ of clauses is interpreted as the
conjunction of its members, so Γ represents a propositional formula in con-
junctive normal form.

The next definition describes the Stone principle of [1] as a set of clauses.
The Stone principle is a kind of induction principle. For a given directed
acyclic graph (dag), it states that if each source vertex is pebbled with a
red stone and if each vertex whose immediate predecessors are pebbled with
red stones is also pebbled with a red stone, then the sink vertex is pebbled
with a red stone.

Definition Assume that G = (V,E) is a dag with a single sink, with vertices
V = {1, . . . , N}, such that each non-source vertex of G has in-degree 2. We
assume that vertices are numbered consistently with the directions of the
edges of G so that if there is an edge (i′, i) ∈ E from i′ to i then i′ > i, and so
that the source nodes of G are exactly vertices n+1, n+2, . . . , N for some n.
Vertex 1 is the sole sink of G. Further assume that m ≥ N ; here, m is the
number of “stones”. The (negation of the) Stone tautology for G and m is
denoted Stone(G,m) and uses variables pi,j to indicate that vertex i ∈ V
is marked (“pebbled”) with the j-th stone and variables rj to indicate that
the j-th stone is colored red. Stone(G,m) contains the following clauses:

•
∨m

j=1 pi,j, for each vertex i in G.

(Each vertex is pebbled by at least one stone.)

• pi,j ∨ rj , for each j = 1, . . . ,m, and each source vertex i in G.

(Each stone on a source vertex is colored red.)

• p1,j ∨ rj , for each j = 1, . . . ,m.

(The sink vertex 1 is not pebbled by any red stone.)

3



• pi′,j′∨rj′∨pi′′,j′′∨rj′′ ∨pi,j∨rj, whenever i
′ and i′′ are the two vertices

such that (i′, i) ∈ E and (i′′, i) ∈ E and j /∈ {j′, j′′}.

(If the two predecessors of i in G are pebbled by red stones, then
every stone pebbling vertex i is also red. These “induction clauses”
are equivalent to pi′,j′ ∧ rj′ ∧ pi′′,j′′ ∧ rj′′ ∧ pi,j → rj .)

It is permitted that vertices are pebbled with more than one stone; likewise,
the same stone may pebble multiple vertices.

The Stone clauses are clearly inconsistent since if the source vertices
are pebbled with red stones then the induction clauses imply that all other
vertices are also pebbled with red stones, and this contradicts the third
group of clauses asserting that the sink vertex is not pebbled with a red
stone.

We next recall the definitions of various types of resolution.

Definition Let A, B, and C be clauses, and x a literal such that x /∈ A
and x /∈ B. Consider the inference

A B
C

The literal x is the resolution variable. Three kinds of inferences are defined
by:

Resolution rule. We have x ∈ A, x ∈ B, and C = (A \ {x}) ∨ (B \ {x}).

Degenerate resolution rule, [8, 11]. If x ∈ A and x ∈ B, then C is obtained
as in the resolution rule. If x ∈ A and x /∈ B, then C is B. If x /∈ A
and x ∈ B, then C is A. Otherwise C is one of A or B.

w-resolution rule, [5]. The clause C equals (A \ {x}) ∨ (B \ {x}).

The three different types of resolution coincide when x ∈ A and x ∈ B, in
which case we refer to the inference as non-degenerate.

Definition A resolution derivation D of a clause C from a set Γ of clauses is
a sequence of clauses C1, . . . , Cs=C and such that each Ci is either a clause
from Γ or is inferred by a resolution rule from two previous clauses. If C is
the empty clause, D is a resolution refutation of Γ. Degenerate resolution
and w-resolution derivations and refutations are defined similarly.

The size of a refutation C1, . . . , Cs=⊥ is defined to be s.

4



Derivations are typically viewed as directed acyclic graphs. A derivation is
tree-like provided its dag is a tree. It is well known that (tree-like) resolution
is sound and complete, in that Γ has a refutation iff it is unsatisfiable.

Definition A refutation D is regular provided that no variable is used as
a resolution variable more than once along any path in the directed acyclic
graph ofD. A derivation D of a clause C is regular provided that, in addition,
no variable appearing in C is used as a resolution variable in D.

We next define “regular resolution derivation trees with lemmas”, or
“regRTL”, following [5]. The idea is that a dag-like proof can by rewritten
as a tree-like proof in which clauses obtained earlier in the proof can be used
freely as “learned” lemmas. This will be the key component in defining Van
Gelder’s notion of pool proofs.

Definition Given a tree T , the postorder ordering<T of the nodes is defined
as follows: if u, v, w are distinct nodes of T , v is a node in the subtree rooted
at the left child of u, and w is a node in the subtree rooted at the right child
of u, then v <T w <T u. The preorder ordering <′

T is defined similarly, but
stipulates that u <′

T v <′
T w.

Definition A regRTL derivation [5] of a clause C from a set of initial
clauses Γ is a tree-like resolution derivation T that fulfills the following
conditions: (a) each leaf is labeled with either a clause of Γ or a clause
(called a “lemma”) that appears earlier in T in the <T ordering; (b) each
internal node is labeled with a clause and a literal, and the clause is obtained
by resolution from the clauses labeling the node’s children by resolving on
the given literal; (c) the proof tree is regular; (d) the root is labeled with C.
If the labeling of the root is the empty clause, T is a regRTL refutation.

A regWRTL derivation [5] is defined similarly, but allowing w-resolution
inferences instead of just resolution inferences.

A pool resolution derivation [11] is also defined similarly, but allowing
degenerate resolution inferences.

Proposition 1 If Γ has a regWRTL refutation R, then Γ has a pool reso-
lution refutation R′ with the size of R′ no greater than the size of R.

The proof of Proposition 1 is simple. Each clause C in R corresponds to
a clause C ′ in R′ with C ′ ⊆ C. Arguing inductively, suppose that C is
derived in R from the clauses C1 and C2 using resolution literal x. Then,
it is straightforward to define C ′ from C ′

1 and C ′
2 as the unique clause that

5



can be inferred by degenerate resolution from C ′
1 and C ′

2 with respect to x.
2

The strategy of proving the existence of short pool refutations via con-
structing short regWTRL refutations is employed in the proof of Theorem 2
below.

Definition ([5]). A “lemma” in clause (a) of the definition of regRTL
derivations is called an input lemma if it is derived by an input subderivation,
namely by a subderivation in which each inference has at least one hypothesis
which is a member of Γ or a lemma. A regRTI derivation is a regRTL
derivation which uses only input lemmas as lemmas.

A bit more generally, we say that a clause is “learned” provided it is available
for use as a lemma by virtue of having been learned earlier in the postorder
traversal of the proof, or by virtue of being an initial clause:

Definition Suppose that R is a regRTL (respectively, a regRTI) refutation
of Γ, and let C be a clause in R. The learned clauses of R at clause C are
the clauses which are either in Γ or which have been derived in R (respec-
tively, have been derived by an input subderivation in R) before C in the
postordering of R.

Theorem 5.1 of [5] gives a polynomial equivalence between regRTI proofs
and DPLL with clause learning without restarts. This equivalence, however,
uses non-greedy DPLL; namely, the DPLL proof search may need to ignore
contradictions during its search. Since most real-world DPLL search al-
gorithms do not ignore contradictions, and use unit propagation whenever
possible, is it natural to posit similar properties for regRTI proofs. These
are formalized by the next two definitions.

Definition Let C be a clause appearing in a regular derivation R. Fol-
lowing [4], we write Cpool to denote the clause containing the literals that
appear in any clause in the path from the root of R up to and including C.

The clause Cpool is the same as what [3] calls C+. The regularity of R
ensures that Cpool contains no contradictory literals.

Definition Let R be a tree-like refutation of Γ. A clause D in R is prior-
learned for a clause C in R if either D ∈ Γ or there is an occurrence of D as a
learned clause which appears in R before C in both postorder and preorder.

6



The intuition for “prior-learned”, is that, when reaching the clause C
while constructing R in left-to-right, depth-first order, the prior-learned
clauses are the clauses that are already available to help derive C.

Definition (See [3]). A refutation R is greedy provided that, for each
clause C of R, if C or any subclause of C is prior-learned, then C itself is a
prior-learned clause and is a leaf clause of R. A refutation R is greedy and
unit-propagating provided that, for each clause C of R, if there is an input
derivation of some clause C ′ ⊆ Cpool from the prior-learned clauses of R
at C which does not resolve on any literal in Cpool, then C is derived in R
by such a derivation.

We can now state our main results.

Theorem 2 The Stone principles Stone(G,m) have regWRTL refutations,
and thus pool refutations, of size O(Nm3).

Theorem 3 The Stone principles Stone(G,m) have regRTI refutations of
size O(N3m4).

It follows from Theorem 3 and Theorem 5.1 of [5] that DPLL proof search
with clause learning and without restarts can refute the Stone principle
clauses in polynomial time. It is possible that the regRTI refutations of
Theorem 3 can be made greedy and unit-propagating, but we have not tried
to prove this.

The proofs of Theorems 2 and 3 are given in Sections 3 and 4, respec-
tively. Section 2 first gives some preliminary resolution derivations that will
be useful for both proofs.

Of course, Theorem 3 implies Theorem 2 apart from the size bounds.
However, it seems useful to prove the two theorems separately, since the
proof of Theorem 2 is substantially simpler than the proof of Theorem 3.

The intuition behind both proofs is similar. The reason the Stone tau-
tologies seem highly irregular is that, in the earlier refutations given by [1],
some of the variables (the rj ’s) are resolved on repeatedly during the refu-
tation. The intuition is that the regWRTL/regRTI proofs for Theorems 2
and 3 can be built in a bottom-up fashion starting from the empty clause,
by first resolving on the variables pi,j that do not cause irregularities, and
saving the problematic variables rj to be resolved on later (higher in the
proof). This is not quite completely true, since our derivations do also re-
solve again on pi,j’s at the top of the derivations; it is nonetheless a useful
intuition.

7



2 Learning and 3-Learning

The regWRTL refutation for Theorem 2 and the regRTI refutation for The-
orem 3 both work by learning the clauses pi,j , rj. If i is a source vertex of G
then these clauses are Stone clauses, but otherwise they must be learned.

Suppose that i is a non-leaf vertex, and i′ and i′′ are the two predecessors
of i in G. In addition, suppose that every clause pi′,j, rj and pi′′,j, rj has
already been learned. Fix a value of j. A derivation of pi,j, rj proceeds in
the following three steps.

First, for each j′ 6= j′′, both distinct from j, derive the clause

pi′,j′, pi′′,j′′ , pi,j, rj (1)

by resolving a Stone clause against the two learned clauses pi′,j′, rj′ and
pi′′,j′′, rj′′ using rj′ and rj′′ as resolution variables:

pi′,j′ , rj′ , pi′′,j′′ , rj′′ , pi,j , rj pi′,j′, rj′

pi′,j′ , pi′′,j′′, rj′′ , pi,j, rj pi′′,j′′, rj′′

pi′,j′ , pi′′,j′′ , pi,j, rj

For j′ = j′′ 6= j, the clause (1) is derived in one step by resolving the Stone
clause against only one of the two learned clauses pi′,j′, rj′ and pi′′,j′′ , rj′′ .

Second, for each j′′ 6= j, resolve the Stone clause
∨m

j′=1 pi′,j′ against the
learned clause pi′,j, rj and against m− 1 of the clauses (1) to obtain

pi′′,j′′ , pi,j, rj . (2)

This is shown in Figure 1.
Third, resolve the Stone clause

∨m
j′′=1 pi′′,j′′ against the learned clause

pi′′,j, rj and against the m−1 many clauses (2), and derive the desired clause
pi,j, rj . This is shown in Figure 2.

For the regWRTL proof constructed in Section 3, the clause pi,j, rj will
be learned and available to use as a lemma once the above three steps have
been carried out.

For the regRTI proof described in Section 4, this is not sufficient, since
only clauses derived by input subderivations are learned. For regRTI proofs,
the above three steps are used the first time pi,j, rj is derived. This results
in the clauses (1) being learned as input lemmas, but not the clauses (2).
The second time pi,j, rj is derived, only the second and third steps of the
above derivation are carried out. This results in the clauses (2) becoming
learned, but not the clause pi,j, rj . The third time pi,j, rj is derived, only

8



pi′′,j′′ , pi,j, rj

pi′,1, pi′′,j′′, pi,j, rj pi′,1, pi′′,j′′ , pi,j, rj

pi′,1, pi′,2, pi′′,j′′, pi,j, rj pi′,2, pi′′,j′′ , pi,j, rj

pi′,1, pi′,2, . . . , pi′,m−2, pi′′,j′′ , pi,j, rj

pi′,m−1, pi′′,j′′ , pi,j, rjpi′,1, pi′,2, . . . , pi′,m−1, pi′′,j′′ , pi,j, rj

pi′,1, pi′,2, . . . , pi′,m pi′,m, pi′′,j′′ , pi,j, rj

Figure 1: The derivation of a clause (2) follows this pattern with the one
exception (not shown) that the clause pi′,j, pi′′,j′′ , pi,j, rj is not one of the
m− 1 clauses (1) and the learned clause pi′,j, rj is used instead.

the third step is needed; this results in the clause pi,j, rj becoming learned
as an input lemma.

This leads to the following definition, which will be useful for the regRTI
derivations of Section 4:

Definition Let i, i′, i′′, j be as above, so in particular all the clauses pi′,j′ , rj′

and pi′′,j′′ , rj′′ are learned. The clause pi,j, rj is called 3-learned provided it
has been learned. It is called 2-learned if all of the clauses (2) for j′′ 6= j
have been learned. It is called 1-learned if all of the clauses (1) for j′ 6= j,
j′′ 6= j have been learned.

A vertex i is defined to be K-learned, for K = 1, 2, 3, if and only if every
pi,j, rj has been K-learned. It is also allowed that K = 0: every clause
pi,j, rj and every vertex i is considered to be 0-learned.

Since axiom clauses are considered to be learned, the source vertices
i > n are 3-learned by definition.

The next theorem summarizes the above construction.

Theorem 4 Let i′ and i′′ be the two predecessors of vertex i. There is a
regular tree-like derivation of the clause pi,j , rj from Stone clauses and the

9



pi,j, rj

pi′′,1, pi,j , rj pi′′,1, pi,j, rj

pi′′,1, pi′′,2, pi,j, rj pi′′,2, pi,j, rj

pi′′,1, pi′′,2, . . . , pi′′,m−2, pi,j, rj

pi′′,m−1, pi,j, rjpi′′,1, pi′′,2, . . . , pi′′,m−1, pi,j, rj

pi′′,1, pi′′,2, . . . , pi′′,m pi′′,m, pi,j, rj

Figure 2: The derivation of the clause pi,j, rj follows this pattern with the
one exception (not shown) that the clause pi′′,j, pi,j, rj is not one of the m−1
clauses (2) and the clause pi′′,j, rj is used instead.

clauses pi′,j′ , rj′ and pi′′,j′′ , rj′′ , which has size O(m2) and resolves on (only)
the variables rk for k 6= j and the variables pi′,k and pi′′,k for all k.

In the setting of a regRTI proof, if i′ and i′′ are 3-learned, and pi,j, rj
was already K-learned for K < 3, then there is a regular tree-like derivation
of pi,j, rj from learned clauses (including Stone clauses) which causes it to
become (K+1)-learned. This derivation has size O(m2) and resolves on at
most the variables rk for k 6= j and variables pi′,k and pi′′,k for all k.

It will also be useful to modify the derivations described above to allow
side variables rj1 , . . . , rjℓ . This is summarized by the next theorem.

Theorem 5 Let i, i′, i′′ be as above. Let F = {rj1 , . . . , rjℓ} where rj /∈ F .
There is a regular tree-like derivation of the clause F, pi,j, rj from Stone
clauses and the clauses pi′,j′, rj′ and pi′′,j′′ , rj′′ , which has size O(m2) and
resolves on (only) the variables rk for k /∈ {j, j1, . . . , jℓ} and the variables
pi′,k and pi′′,k for all k.

The derivation for Theorem 5 is obtained from the derivation for Theorem 4
by omitting inferences that resolve on the literals rjq against the clauses
pi′,jq , rjq and pi′′,jq , rjq .

10



3 The pool/regWRTL refutation

This section proves Theorem 2 by describing regWRTL proofs of the Stone
principles. Fix an instance of the Stone principle for a dag G as above with
N vertices and m stones. Recall that G has n < N non-source vertices.

The regWRTL refutation of Stone(G,m) will be a tree with its final,
empty, clause at the bottom. The main part of the regWRTL refutation
above the empty clause is a “skeleton”, which consists of a long branch
containing n segments of length m each, as is shown in Figures 3 and 4.
Each segment in the skeleton corresponds to a non-source vertex in G, and
the role of the i-th segment is that clauses of the form pi,j, rj are learned on
branches to the right of the segment. In keeping with the intuition discussed
in the introduction, this skeleton is the bottom part of the proof which
resolves on the literals pi,j; the variables rj (plus additional variables pi′,j′

with i′ > i) will be resolved on above the skeleton.
The first, second, and last segments of the skeleton are pictured in Fig-

ure 3. Each of these three segments is somewhat atypical, but the i-th
segment for a typical intermediate i ∈ {3, . . . , n−1} is pictured in Figure 4.
In the typical situation, the idea is that for given 3 ≤ i ≤ n−1 and j < m,

the clause pi,j, rj is learned in the
. . .

... . .
.
part of the proof above the clause

p1,m, pi−1,m, pi,j on the right hand side of Figure 4. For i = 1, 2, n and j 6= m,

the idea is that the clause pi,j, rj is learned in the
. . .

... . .
.
part of the proof

above the clause containing pi,j. There are various exceptions to this idea,
and several complications, as discussed below. However, in all cases, when

working in the subproof in the
. . .

... . .
.
part of the proof above the clause

containing pi,j, all clauses of the form pi′,j′, rj′ with i′ > i have already been
learned. To maintain the regularity property, this subproof must itself be
regular, and will not resolve on any literals pi′,j′ with i′ ≤ i.

We now outline how a clause pi,j , rj is learned in the most typical case,
where i = 3, . . . , n−1 and j ≤ m−2 or i = n and j ≤ m−1. (The restriction
that j < m−2 when i < n−1 is made because a more complicated construc-
tion will be needed when j = m−1 in order to also learn pi,m, rm.) The part
of the proof directly above p1,m, pi−1,m, pi,j is presented in Figure 5.

The clause pi,j, rj on the left hand side of Figure 5 is the clause we want
to learn. This clause is derived, and learned, by the derivation given by
Theorem 4. If i′ and i′′ are the two predecessors of i in G, then i′ > i and
i′′ > i and thus the clauses pi′,j′, rj′′ and pi′′,j′′, rj′′ will have all already been
learned, so Theorem 4 is applicable.

On the right hand side of Figure 5, we do not need to learn anything.

11



⊥

p1,1 p1,1

. . .
... . .

.

p1,1, p1,2 p1,2

. . .
... . .

.

p1,1, p1,2, . . . , p1,m−2

p1,m−1

. . .
... . .

.

p1,1, p1,2, . . . , p1,m−1

p1,1, p1,2, . . . , p1,m p1,m

p1,m, p2,1 p1,m, p2,1

. . .
... . .

.

p1,m, p2,1, p2,2 p1,m, p2,2

. . .
... . .

.

p1,m, p2,1, p2,2, . . . , p2,m−2

p1,m, p2,m−1

. . .
... . .

.

p1,m, p2,1, p2,2, . . . , p2,m−1

p2,1, p2,2, . . . , p2,m p1,m, p2,m

p1,m, pn−1,m

p1,m, pn−1,m, pn,1 p1,m, pn−1,m, pn,1

. . .
... . .

.

p1,m, pn−1,m, pn,1, pn,2 p1,m, pn−1,m, pn,2

. . .
... . .

.

p1,m, pn−1,m, pn,1, pn,2, . . . , pn,m−2

p1,m, pn−1,m, pn,m−1

. . .
... . .

.

p1,m, pn,1, pn,2, . . . , pn,m−1

pn,1, pn,2, . . . , pn,m p1,m, pn,m

. . .
... . .

.

Figure 3: The “skeleton” of the regWRTL proof.

12



p1,m, pi−1,m

p1,m, pi−1,m, pi,1 p1,m, pi−1,m, pi,1

. . .
... . .

.

p1,m, pi−1,m, pi,1, pi,2 p1,m, pi−1,m, pi,2

. . .
... . .

.

p1,m, pi−1,m, pi,1, pi,2, . . . , pi,m−2

p1,m, pi−1,m, pi,m−1

. . .
... . .

.

p1,m, pi,1, pi,2, . . . , pi,m−1

pi,1, pi,2, . . . , pi,m p1,m, pi,m

. . .
... . .

.

Figure 4: The i-th segment of the skeleton, for 3 ≤ i < n.

We only need to make sure that the right hand side is a well-formed proof.
The notation [pi,j, ] indicates that pi,j may not be present. In fact, pi,j is
present exactly when i is a predecessor of i−1; otherwise, it is absent.

To describe the right hand side of Figure 5, first suppose that vertex i
is not a predecessor of vertex i−1 in the graph. In this case, the literal pi,j
is not present, and the leaf clause rj , pi−1,m, rm can be proved by the proof
given by Theorem 5. Second, suppose that vertex i is a predecessor of i−1.
We must give a derivation of

pi,j , rj , pi−1,m, rm. (3)

Let i′ > i be the other predecessor of i−1. The derivation proceeds as
follows. First, for each j′ /∈ {j,m}, it resolves the learned clause pi′,j′ , rj′

against the Stone clause pi′,j′ , rj′ , pi,j, rj, pi−1,m, rm to obtain

pi′,j′ , pi,j, rj , pi−1,m, rm. (4)

These steps use the resolution variables rj′ for j′ /∈ {j,m}. For j′ = j,
the clause (4) is a Stone clause and does not need to be derived. Then, it
resolves the Stone clause

∨

j′ pi′,j′ against the learned clause pi′,m, rm and
the m − 1 many clauses (4), resolving on the literals pi′,j′. This yields the
desired clause (3).

13



p1,m, pi−1,m, pi,j

pi,j, rj

. . .
... . .

.

p1,m, [pi,j,] rj, pi−1,m

p1,m, rm [pi,j,] rj , pi−1,m, rm

. . .
... . .

.

Figure 5: The proof above p1,m, pi−1,m, pi,j.

That completes the description of the typical case of learning pi,j, rj . In
less typical cases, the changes are as follows:

• i = 2 and j ≤ m − 2. As described above, except that the variables
p1,m and pi−1,m coincide.

• i = 1, j ≤ m − 2. There is no pi−1,m. The clause p1,j is derived
from p1,j , rj and p1,j , rj. The former is learned using the derivation of
Theorem 4, while the latter is a Stone clause.

• i = n and j = m. The clause p1,m, pn,m is derived from pn,m, rm and
p1,m, rm. The former is learned via Theorem 4, the latter is a Stone
clause.

• 2 ≥ i ≥ n − 1 and j = m − 1,m. There is no natural place in the
i-th segment of the skeleton to learn clause pi,m, rm, but we must
learn it somewhere. To create “room” to learn both pi,m−1, rm−1 and
pi,m, rm, the clause p1,m, pi−1,m, pi,m−1 is derived by w-resolution on
the resolution variable pi,m from the two clauses p1,m, pi−1,m, pi,m−1

(i.e., itself) and p1,m, pi,m. The derivation proceeds as in the typical
case above the former clause and as over p1,m, pn,m above the latter.

• i = 1, j = m− 1,m. The clause p1,m−1 is derived using a w-resolution
inference with the resolution variable p1,m from itself and p1,m. Above
those two clauses, the proof proceeds as in all other cases with i = 1.

We have now fully described the polynomial size refutation for the Stone
principle in regWRTL. A size bound of O(nm3) = O(Nm3) is immediate
from inspection, using the bound of O(m2) for the size of the derivations of
Theorems 4 and 5. This completes the proof of Theorem 2.

14



Note that our construction of the regWRTL refutation of Stone(G,m)
makes no use of the assumption that m ≥ N . This is in contrast to the
construction of regRTI proofs in the next section.

4 The RegRTI proof

We now give a regRTI refutation R for the Stone(G,m) principles. We
describe R by building it from the bottom up, constructing R in a left-to-
right depth-first fashion. At each point of the construction, R is a partially
formed regRTI refutation. The leaves of R are designated as either “fin-
ished” or “unfinished”, and all finished leaves are to the left of all unfinished
leaves. The finished leaves are learned clauses; namely, they are either valid
Stone clauses or have been derived by an input subderivation earlier in the
postorder of R. Clauses pi,j , rj, or vertices i are defined to be K-learned,
K = 0, 1, 2, 3, according to whether they have been K-learned in R at the
point of reaching the leftmost unfinished leaf of R.

Each unfinished leaf will contain a clause C of the form

pi1,j1 , pi2,j2 , . . . , pik,jk , (5)

for k ≥ 0. The domain, dom(C), of C is equal to {i1, . . . , ik}. Clauses of the
form (5) will be required to have distinct values for the iℓ’s; for convenience
we assume that

i1 < i2 < · · · < ik. (6)

We let max dom(C) denote the maximum member of dom(C), namely ik.
We let dom(Cpool) denote the set of i such that some pi,j ∈ Cpool.

We define the notion of a “well-formed unfinished clause” momentarily.
The intuition behind an unfinished leaf C is based on the idea that a proof
is being constructed from the bottom up, by a search process which sets
the values of resolution variables in such a way that the clause reached at a
given point becomes false. Upon reaching C, the search process has set all
of the literals in C (and Cpool) false, so that each vertex iℓ ∈ dom(C) has
been pebbled with stone jℓ. The search process will generate a derivation
of C by proving that each such stone jℓ is red, namely that rjℓ is true. Since
well-formed initial clauses will have i1 = 1, this will yield a contradiction
and thereby the desired refutation.

The stone jℓ can be shown to be red using one of the following three
scenarios: (1) iℓ is a source vertex in G, (2) there is iℓ′ > iℓ such that
jℓ′ = jℓ and stone jℓ′ is red, or (3) the two predecessors of iℓ in G are

15



pebbled with red stones. Accordingly, for a fixed clause C of the form (5)
satisfying (6), we define:

Definition Let 1 ≤ ℓ ≤ k. The vertex iℓ is said to be bypassed if there is
some ℓ′ > ℓ such that jℓ′ = jℓ. For the maximum such value ℓ′, the vertex iℓ′

is called the max-bypasser of iℓ.
Now let 1 ≤ ℓ < ℓ′ ≤ k. We say that vertex iℓ′ directly supports vertex iℓ

if either (1) iℓ′ is the max-bypasser of iℓ, or (2) iℓ is not bypassed and iℓ′

is one of the two predecessors of iℓ in G. Note that iℓ can directly support
multiple iℓ′ ’s.

The “supports” relation is the reflexive, transitive closure of “directly
supports”; namely, if iℓ1 > iℓ2 > · · · > iℓs , s ≥ 1, and each iℓq directly
supports iℓq−1

, then iℓ1 supports iℓs . We use Sℓ(C) to denote the set of
vertices in dom(C) which support iℓ. Note that Sℓ(C) ⊆ {iℓ, . . . , ik}.

The construction of R starts with the empty clause as the first unfinished
clause. The first step will be to generate new unfinished clauses of the form
p1,j1 ; namely of the form (5) with k = 1 and i1 = 1. In subsequent steps,
an unfinished clause is extended by adding literals pik+1,jk+1

where ik+1 is
the least vertex > ik which supports the vertex i1 = 1. The next definitions
make this formal.

Definition A clause C is a well-formed unfinished clause provided C is of
the form (5), satisfies (6) with i1 = 1 and ik ≤ n, and the following three
conditions hold:

i. Cpool contains only literals of the form pi,j for i ≤ ik, and for each i there

is at most one j such that pi,j in Cpool.

ii. Let 1 ≤ ℓ ≤ k, and consider iℓ. Then either

a. The vertex iℓ is bypassed, or

b. The vertex iℓ is not bypassed, and each predecessor i′ of iℓ in G
satisfies one of the following three conditions:

(α) i′ ∈ dom(C);

(β) Vertex i′ is already 3-learned, and i′ /∈ dom(Cpool); or

(γ) i′ > ik, and i′ is not 3-learned.

In case (α), i′ may or may not be 3-learned.

iii. Each iℓ ∈ dom(C) supports i1 = 1. Equivalently, S1(C) = dom(C).

The empty clause is also a well-formed unfinished clause.

16



Definition A non-empty well-formed unfinished clause of the form (5) is
extendible provided there is some iℓ with at least one predecessor i′ in G
that satisfies condition (γ). The empty clause is also extendible.

During the construction of R, all unfinished leaves will be well-formed
unfinished clauses. To describe the construction, we explain how to handle
the leftmost unfinished leaf of the so-far constructed portion of R.

The extendible case

First suppose that the leftmost unfinished leaf is an extendible clause C
of the form (5) with k > 0. Considering all vertices iℓ, find one with the
least predecessor i′ that satisfies (γ). This least i′ is denoted ik+1. In the
special case where k = 0 and R contains just the empty clause (as C), let
ik+1 = 1. In either case, ik+1 is not 3-learned and not a source vertex for G,
so ik+1 ≤ n.

With ik+1 chosen, define Dt to be the clause C, pik+1,t
. The idea is that

we would like to replace C in R with a derivation of C from the Stone clause
pik+1,1, . . . , pik+1,m and the clauses Dt for t = 1, . . . m by resolving on the
variables pik+1,t. The problem with this is that the Dt’s may not be well-
formed unfinished clauses. So, we consider the set S1(Dt), namely the set
of literals that support the root vertex 1 in Dt.

Claim 6 ik+1 ∈ S1(Dt).

The claim is trivial for k = 0. To prove it when k > 0, first suppose that
t is equal to some jℓ for ℓ ≤ k. Choose iℓ to be the least value such that
t = jℓ; of course ik+1 is a max-bypasser for iℓ in Dt. Using the fact that
S1(C) contains every iℓ′ for ℓ

′ ≤ k, a simple induction argument proves that
iℓ′ ∈ S1(Dt) for every ℓ′ ≤ ℓ. It follows that ik+1 ∈ S1(Dt) since it is the
max-bypasser of iℓ ∈ S1(Dt). Second, suppose that t is distinct from all the
jℓ values. A similar induction argument proves readily that S1(Dt) contains
every iℓ for ℓ ≤ k. Hence ik+1 ∈ S1(Dt) since ik+1 is a predecessor of some
non-bypassed iℓ ∈ S1(Dt). 2

Claim 7 There is a t such that S1(Dt) = {i1, . . . , ik, ik+1}.

To prove this, take t distinct from all jℓ values, and use the result from
the second subcase of the previous claim. There must exist such a t since
m ≥ N , i.e., there are at least as many stones as vertices. 2

Define Ct to be the clause containing the literals piℓ,jℓ for iℓ ∈ S1(Dt)
with 1 ≤ ℓ ≤ k. Claim 7 shows that C =

⋃

t Ct. With the aid of Claim 6

17



C

C∗
m−1, pik+1,m

Cm, pik+1,m

C∗
m−2, pik+1,m−1, pik+1,m

Cm−1, pik+1,m−1

C∗
2 , pik+1,3, . . . , pik+1,m

C2, pik+1,2C1, pik+1,2, . . . , pik+1,m

pik+1,1, . . . , pik+1,m C1, pik+1,1

Figure 6: The proof in the extendible case. The resolution variables are the
pik+1,s’s. Each clause C∗

i is the union of the clauses C1, . . . , Ci.

and the fact that C satisfies conditions ii. and iii. of the definition of well-
formedness, it follows from the definition of Ct that the clause Ct, pik+1,t

also
satisfies the conditions ii. and iii.

Now replace the clause C in R with the resolution derivation shown in
Figure 6. The clauses Ct, pik+1,t

are clearly well-formed unfinished clauses,
the Ct’s are subclauses of C, and the (sub)clauses C∗

j in the figure are
defined to equal

⋃

t≤j Ct. By Claim 7, C∗
m is equal to C, which implies that

the inference used to derive C is a valid non-degenerate resolution inference.
For all the other newly added inferences, this is clear.

That completes the construction in the case where the leftmost unfin-
ished leaf is extendible.

The non-extendible case

The construction for the case where the leftmost unfinished leaf is not ex-
tendible is summarized in the following lemma.

Lemma 8 Suppose that clause C, of the form (5), is the leftmost unfinished
leaf of R, and that C is not extendible. Then there is a regRTI derivation RC

of C from the Stone clauses and the learned clauses in R to the left of C.
If the clause pik,jk , rjk was already K-learned for K < 3, then it becomes

18



(K+1)-learned after the clause C is replaced in R with RC . The only vari-
ables used as resolution variables in RC are variables rj, and variables pi,j
for i /∈ dom(Cpool). The size of RC is O(Nm2).

Proof First suppose that k = 1. Then i1 = 1, so pi1,j1 , ri1 is a Stone
clause. Since C is not extendible, the two predecessors i′ and i′′ of i1 are
3-learned. Theorem 4 gives a resolution derivation L1 of pi1,j1 , rj1 from 3-
learned clauses using resolution on (at most) the variables rj with j 6= j1
and the variables pi′,j and pi′′,j. Form the derivation RC as

. . .
... . .

.L1

pi1,j1 , rj1 pi1,j1, rj1
pi1,j1

(7)

Here and in the sequel, notation of the form
. . .

... . .
.L

indicates that the dots
should be replaced by the derivation L without its (already pictured) final
clause.

By the second half of Theorem 4, if pi1,j1 , rj1 was K-learned for K < 3,
it becomes (K+1)-learned. The size of L1 is O(m2).

We now assume that k > 1. This case is more involved, and takes up
most of the rest of the paper.

Define B to be the set of those non-bypassed vertices iℓ ∈ dom(C) that
have at least one predecessor outside of dom(C). Note that since C is not
extendible, a non-bypassed element of dom(C) belongs to B exactly if it has
a predecessor satisfying condition (β) from the definition of well-formedness;
in particular, the predecessor has to be 3-learned. We further split B into the
sets B1 and B2 depending on whether one or both predecessors satisfy (β).
Note that i1 = 1 might be in B1, but it cannot be in B2, because i2 is either
a predecessor or a max-bypasser of i1. On the other hand, ik must be in B2.
We also define B+ to be the set containing B and all those iℓ which are
bypassed by a max-bypasser iℓ′ ∈ B. Thus, a vertex iℓ is in B+ if, according
to the minimal partial assignment falsifying clause C, iℓ is pebbled by a
stone that also covers some vertex in B.

The idea behind the construction of RC is that vertices iℓ that belong
to B ∪ {1} determine a “partition” of G↾dom(C) into possibly overlapping

subgraphs (namely the sets SB
ℓ (C) defined next). RC will deal with these

subgraphs independently. The set SB
ℓ (C) is a subgraph with sink iℓ:

Definition For iℓ ∈ dom(C), the set SB
ℓ (C) is the smallest set containing

iℓ and satisfying the following whenever iℓ′ ∈ SB
ℓ (C) and either ℓ′ = ℓ

19



or iℓ′ /∈ B: (1) If iℓ′ is bypassed in C by max-bypasser iℓ′′ /∈ B, then
iℓ′′ ∈ SB

ℓ (C) and (2) if iℓ′ is not bypassed in C and iℓ′′ is a predecessor of iℓ′

in G, then iℓ′′ ∈ SB
ℓ (C).

Note that the closure condition (1) does not allow iℓ′′ ∈ B, whereas (2) does
allow it.

Enumerate B ∪ {1} in decreasing order as it1 , it2 , . . . , itr so that t1 = k
and tr = 1. Below, we use the convention that the index q ranges over
1, . . . , r, so that the vertices itq are the members of B ∪ {1}.

The overall structure of the derivation RC is shown in Figure 7 below.
RC will be built around certain clauses related to the vertices itq ∈ B ∪ {1}
(the clauses C∗

q−1, Fq in Figure 7). To complete RC , we will have to construct
derivations of the clauses to the side of this “skeleton” (the derivations Ltq of
the clauses Ctq , Fq, rjtq in Figure 7). In the case where itq ∈ B2, this is easy
(Lemma 10 below), and this easy case is the one which makes it1 = ik become
(K+1)-learned instead of K-learned. In the case where itq ∈ B1 ∪ {1},
we only need to obtain a valid derivation, but this requires a relatively
complex construction based on the structure of the subgraph determined by
itq (Lemma 11).

A clause appearing in RC will contain some literals of the form pi,j, some
literals of the form rj, and at most one literal of the form rj . These literals
have to be selected so as to avoid irregularities and degenerate inferences.
RC is defined using four special types of clauses: Cℓ, C

∗
q , Eℓ, and Fq. (The

Cℓ’s are different from the Ct’s used for the extendible case.) The Cℓ’s
and C∗

q ’s consist of pi,j ’s, while the Eℓ’s and Fq’s consist of rj’s. As suggested
by the notation, the C∗

q ’s and Fq’s are parametrized by vertices itq ∈ B∪{1},
whereas the Cℓ’s and Eℓ’s are parametrized by vertices iℓ ∈ dom(C).

Definition If iℓ is not bypassed in the clause C, then Cℓ is the clause
containing the literals piℓ′ ,jℓ′ for iℓ′ ∈ SB

ℓ (C). If iℓ is bypassed in C, then Cℓ

is the same set except the literal piℓ,jℓ is omitted.

Definition C∗
q equals {p1,j1} ∪

⋃

q′>q Ctq′
.

The reason we have to explicitly include p1,j1 in C∗
q is that p1,j1 /∈ C1 if

vertex 1 is bypassed.

Definition If iℓ ∈ B, then the clause Eℓ is the set of literals rjℓ′ such
that ℓ′ 6= ℓ and iℓ′ ∈ SB

ℓ (C) ∩ B+. For iℓ /∈ B, the clause Eℓ contains the
literals rjℓ′ such that iℓ′ ∈ SB

ℓ (C) ∩B+.

20



Informally, Eℓ contains the literals rjℓ′ for iℓ′ ∈ B+ a source (leaf) vertex
above iℓ relative to the subgraph SB

ℓ (C).
The cases where iℓ is bypassed by a max-bypasser iℓ′ deserve special

mention. Of course, jℓ = jℓ′ . If iℓ′ ∈ B, then iℓ ∈ B+ \ B, and we have
SB
ℓ (C) = {iℓ}, Cℓ = ∅, and Eℓ = {rjℓ}. On the other hand, if iℓ′ /∈ B, then

iℓ /∈ B+, and we have SB
ℓ (C) = {iℓ} ∪ SB

ℓ′ (C), Cℓ = Cℓ′ , and Eℓ = Eℓ′ .
Before defining the Fq’s, we prove a lemma listing some basic properties

of the C’s, C∗’s, and E’s:

Lemma 9

(a) Each iℓ 6= 1 is a member of some SB
tq
(C). Thus, C∗

0 is equal to C.

(b) If 1 is bypassed by max-bypasser iℓ, then ℓ = 2.

(c) rjtr−1
∈ E1.

(d) Etq ⊆ {rjt1 , . . . , rjtq−1
}, for all q.

Proof (a) Given ℓ 6= 1, consider a chain iℓ=iℓ1 > iℓ2 > · · · > iℓs=1
of directly supporting vertices from iℓ to 1. Let iℓa be the first member
of B ∪ {1} in this sequence. Then ℓa = tq′ for some q′, and we have iℓ ∈
SB
tq′
(C). Thus, piℓ,jℓ is in Ctq′

and hence C∗
0 .

(b) Suppose that 1 has max-bypasser iℓ with ℓ > 2. Then iℓ > i2. There
must exist a chain of directly supporting vertices from i2 to 1, but this
contradicts iℓ > i2.

(c) Consider a chain itr−1
=iℓ1 > iℓ2 > · · · > iℓs=1 of directly support-

ing vertices from itr−1
to 1. By the descending order of the tq’s, none of

iℓ2 , . . . , iℓs−1
is in B. If itr−1

is not the max-bypasser of iℓ2 , then itr−1
∈

SB
1 (C) and thus rjtr−1

∈ E1. Suppose instead that itr−1
is the max-bypasser

of iℓ2 , so iℓ2 ∈ B+ \B. Then iℓ2 ∈ SB
1 (C), so rjℓ2 ∈ E1. By the definition of

bypasser, jℓ2 = jtr−1
, so rjtr−1

∈ E1.

(d) Let rjℓ ∈ Etq , so ℓ ≥ tq and iℓ ∈ B+. If iℓ ∈ B, then ℓ > tq, and thus
ℓ = tq′ for some q′ < q. If iℓ ∈ B+ \ B, then iℓ has max-bypasser iℓ′ ∈ B.
Then ℓ′ > ℓ ≥ tq and thus ℓ′ equals tq′ for some q′ < q, and by the definition
of bypasser jℓ′ = jℓ. Therefore rjℓ is the same as rjt

q′
. 2

Define Fq to be the clause

Fq :=

{

Etr = E1 if q = r and 1 /∈ B
rjt1 , . . . , rjtq−1

otherwise

21



C∗
0 , F1

Lt1 . . .
... . .

.

Ct1 , F1, rjt1
C∗
1 , F2

Lt2 . . .
... . .

.

Ct2 , F2, rjt2

C∗
r−2, Fr−1

Ltr−1 . . .
... . .

.

Ctr−1
, Fr−1, rjtr−1

C∗
r−1, Fr





L1 . . .
... . .

.

C1, Fr, rj1





[p1,j1 , rj1 ]

Figure 7: The structure of the derivation RC .

By Lemma 9(d), Etq ⊆ Fq. Note that F1 = ∅, because r 6= 1 and so in
evaluating F1 we use the second case of the definition of Fq.

We can now describe the derivation RC in detail. As mentioned, the
general structure of RC is shown in Figure 7. The parts of the derivation
displayed in brackets are omitted if 1 ∈ B+ \B.

Note that C∗
0 , F1, the final clause of RC , is the same as C. For q < r,

the inference

Ctq , Fq, rjtq C∗
q , Fq+1

C∗
q−1, Fq

resolves on rjtq , and it is non-degenerate by the definitions of the Fq’s and
C∗
q ’s. (By Lemma 9(c,d), this is true even in the case where q = r − 1 and

1 /∈ B.) It follows that the resolution variables on the path from Ctq , Fq, rjtq
to C are exactly rjt1 , . . . , rjtq . The derivation Ltq is described below (cf.
Lemmas 10 and 11).

For q = r, we have tq equal to 1. If 1 /∈ B+ \ B, then, as shown in
Figure 7, the clause C∗

r−1, Fr is derived by:

22



. . .
... . .

.L1

C1, Fr, rj1 p1,j1 , rj1
C∗
r−1, Fr

Again, the final inference deriving C∗
r−1, Fr is non-degenerate. The upper

right clause p1,j1 , rj1 is a Stone clause. The derivation L1 is described in
Lemma 11.

On the other hand, if 1 ∈ B+ \ B and thus 1 has max-bypasser i2 ∈ B,
then C∗

r−1 is p1,j1 and Fr = E1 is rj1 . Therefore clause C∗
r−1, Fr is equal to

the Stone clause p1,j1 , rj1 , and there is no need to add to RC anything above
it.

To finish the description of RC , we must describe the derivations Ltq .
This is done by the next two lemmas.

Lemma 10 Suppose that itq ∈ B2. Then there is a regRTI proof Ltq of
Ctq , Fq, rjtq of size O(m2). The variables used as resolution variables in Ltq

are (at most) the variables rj where rj /∈ Fq ∪ {rjtq} and the variables pi′,j
and pi′′,j for i′ and i′′ the predecessors of itq in G.

In the special case of q = 1, so t1 = k, if pik,jk , rjk was K-learned for
K < 3, then pik,jk , rjk becomes (K+1)-learned in Lk.

Note that the values i′ and i′′ are not in dom(Cpool) by the definition of B2;
therefore, the resolution variables pi′,j and pi′′,j do not violate the regularity
condition. Also note that, since 1 /∈ B2, we have tq 6= 1 and the condition
that rj /∈ Fq ∪ {rjtq} is equivalent to j /∈ {jt1 , . . . , jtq}. This is precisely
what is needed to ensure regularity.

Proof The clause Ctq consists of the single literal pitq ,jtq . Thus the deriva-
tion Ltq is the derivation given by Theorem 5. When q = 1 and tq = k, we
have F1 = ∅ and Ck is the clause pik,jk . In this case, Lk is the derivation
given by the second part of Theorem 4. 2

Lemma 11 Suppose that 1 ≤ q ≤ r, and itq ∈ B1 ∪ {1} and itq /∈ B+ \ B.
Let Nq = |SB

tq (C)|.

(a) There is a regular dag-like derivation L′
tq

of size O(Nq) which contains

each clause Cℓ, Eℓ, rjℓ for iℓ /∈ B+ such that iℓ ∈ SB
tq (C). The sub-

derivation L′
ℓ of L′

tq
that ends with Cℓ, Eℓ, rjℓ uses as resolution vari-

ables precisely the variables rjℓ′ such that jℓ 6= jℓ′ , iℓ′ ∈ SB
ℓ (C), and

iℓ′ /∈ B+.

23



If itq /∈ B1, then tq = 1 and q = r and the final clause of L′
tq is

C1, E1, rj1 (that is, with ℓ = tq = 1). Suppose instead that itq ∈ B1

and iℓ is the (only) predecessor of itq such that iℓ ∈ dom(Cpool). If
iℓ ∈ B+, then SB

tq (C) ⊆ B+ and L′
tq is empty. If iℓ /∈ B+, then the

final clause of L′
tq

is Cℓ, Eℓ, rjℓ.

(b) There is a regRTI derivation Ltq of Ctq , Fq, rjtq of size O(N2
q +m). The

variables used as resolution variables in Ltq are at most the variables rj
where rj /∈ Fq ∪ {rtq} and, if itq ∈ B1, the variables pi′′,j where i′′ is
the predecessor of itq such that i′′ /∈ dom(Cpool).

Note that itq ∈ B+ \ B only if tq = 1, and this is the case where L1 is not
needed.

Proof The regular dag-like refutation L′
tq for part (a) is constructed by

induction on ℓ such that iℓ ∈ SB
tq (C) \ B+. We add the clauses Cℓ, Eℓ, rjℓ

to L′
tq for larger values of ℓ first, making sure that the condition on resolution

variables remains satisfied. The inductive argument splits into four cases.
Case 1: iℓ is bypassed by max-bypasser iℓ′ . Since iℓ /∈ B+, we have

iℓ′ /∈ B+. The induction hypothesis tells us that Cℓ′ , Eℓ′ , rj′
ℓ
appears in the

already constructed portion of L′
tq
. From the remarks after the definitions

of Cℓ and Eℓ, we have jℓ = jℓ′ and Cℓ = Cℓ′ and Eℓ = Eℓ′ . Thus Cℓ′ , Eℓ′ , rj′
ℓ

is exactly the same clause as Cℓ, Eℓ, rjℓ . So no further resolution inferences
need to be added to L′

tq to handle iℓ, and L′
ℓ = L′

ℓ′ . Since SB
ℓ (C) = {iℓ} ∪

SB
ℓ′ (C) and iℓ /∈ B+, the subderivation L′

ℓ satisfies the condition about which
resolution variables are used.

The remaining cases all assume that iℓ is not bypassed.
Case 2 (the base case): both of iℓ’s predecessors iℓ′ and iℓ′′ are in B+.

Then Cℓ is piℓ′ ,jℓ′ , piℓ′′ ,jℓ′′ , piℓ,jℓ. Also, Eℓ is rjℓ′ , rjℓ′′ . Therefore the Stone
clause (8) is the same as Cℓ, Eℓ, rjℓ , so L′

ℓ consists of just this clause.
Case 3: neither of iℓ’s predecessors iℓ′ and iℓ′′ is in B+. The already

constructed part of L′
ℓ contains the clauses Cℓ′ , Eℓ′ , rjℓ′ and Cℓ′′ , Eℓ′′ , rjℓ′′ .

Assume for the moment that jℓ′ 6= jℓ′′ . W.l.o.g., the highest index s′′ such
that js′′ = jℓ′′ is strictly greater than highest index s′ such that js′ = jℓ′ ;
otherwise interchange ℓ′ and ℓ′′. It follows from the induction step for Case 1
that L′

ℓ′′ equals L′
s′′ . Therefore, by the assumption that s′ < s′′ and the

inductive condition on resolution variables, rjℓ′ is not resolved on in L′
ℓ′′ .

Using the Stone clause

piℓ′ ,jℓ′ , rjℓ′ , piℓ′′ ,jℓ′′ , rjℓ′′ , piℓ,jℓ, rjℓ (8)

24



form L′
ℓ as

piℓ′ ,jℓ′ , rjℓ′ , piℓ′′ ,jℓ′′ , rjℓ′′ , piℓ,jℓ , rjℓ

. . .
... . .

.L
′
ℓ′′

Cℓ′′ , Eℓ′′ , rjℓ′′

piℓ′ ,jℓ′ , rjℓ′ , piℓ′′ ,jℓ′′ , Cℓ′′ , Eℓ′′ , piℓ,jℓ, rjℓ

. . .
... . .

.L
′
ℓ′

Cℓ′ , Eℓ′ , rjℓ′

Cℓ, Eℓ, rjℓ

(9)

We have Eℓ = Eℓ′ ∪ Eℓ′′ . The literals piℓ′ ,jℓ′ and piℓ′′ ,jℓ′′ may or may not
appear in Cℓ′ and Cℓ′′ (respectively), but in any case Cℓ is the same as
piℓ′ ,jℓ′ , Cℓ′ , piℓ′′ ,jℓ′′ , Cℓ′′ , piℓ,jℓ . Note that the proof as pictured above might
be slightly misleading: we are constructing a dag-like derivation, not a tree-
like derivation and the subderivations L′

ℓ′ and L′
ℓ′′ need not be disjoint. The

regularity of L′
ℓ follows from the induction hypotheses and the fact that

rjℓ′ is not a resolution variable of L′
ℓ′′ . The condition on which resolution

variables are used in L′
ℓ follows from SB

ℓ (C) = {iℓ} ∪ SB
ℓ′ (C) ∪ SB

ℓ′′(C).
For the remaining part of case 3, suppose that jℓ′ = jℓ′′ . Let s be the

highest index such that js = jℓ′ = jℓ′′ . By the remarks after the definitions
of Cℓ and Eℓ, we have Cℓ′ = Cℓ′′ = Cs and Eℓ′ = Eℓ′′ = Es. Thus also L′

ℓ′ =
L′
ℓ′′ = L′

s. Now, argue as in the previous case, but replace the inferences (9)
with the inference

piℓ′ ,js , piℓ′′ ,js , rjs , piℓ,jℓ, rjℓ

. . .
... . .

.L
′
s

Cs, Es, rjs

Cℓ, Eℓ, rjℓ

The left hypothesis is a Stone clause. The rest of the argument for this
subcase is as in the previous case.

Case 4: iℓ has predecessors iℓ′ /∈ B+ and iℓ′′ ∈ B+. The induction
hypothesis says that the clause Cℓ′ , Eℓ′ , rjℓ′ has already been derived. Then
Cℓ is piℓ′ ,jℓ′ , piℓ′′ ,jℓ′′ , piℓ,jℓ , Cℓ′ , and Eℓ is rjℓ′′ , Eℓ′ , so we can form L′

ℓ as

piℓ′ ,jℓ′ , rjℓ′ , piℓ′′ ,jℓ′′ , rjℓ′′ , piℓ,jℓ, rjℓ

. . .
... . .

.L
′
ℓ′

Cℓ′ , Eℓ′ , rjℓ′

Cℓ, Eℓ, rjℓ

using resolution on rℓ′ . The regularity of L′
ℓ and the conditions on which

resolution variables are used in L′
ℓ follow from the induction hypothesis

for L′
ℓ′ and the fact that SB

ℓ (C) = {iℓ, iℓ′′} ∪ SB
ℓ′ .

25



That completes the proof of part (a). The size bound O(Nq) on L′
ℓ

follows from the fact that each of the four cases in the construction of L′
ℓ

added O(1) clauses.
To apply part (a) in the proof of (b), we need regRTI derivations L′′

tq ,
instead of the regular dag-like refutations L′

tq
. For this, Theorem 3.3 of [5]

states that the desired derivation L′′
tq
, containing exactly the same clauses

as L′
tq
, can be constructed from L′′

tq
with the size of L′′

tq
bounded by the

product of the size and the height of L′
tq . Thus, the size of L′′

tq is O(N2
q ).

Furthermore, L′′
tq uses the same resolution variables as L′

tq .
We now prove part (b). First suppose that q = r and 1 /∈ B. Then tq = 1

and Fq = E1. In this case, the regRTI derivation L′′
1 obtained from part (a)

is already the desired derivation. This only uses resolution variables rjℓ such
that iℓ /∈ B+ and hence jℓ /∈ {jt1 , . . . , jtq}.

Otherwise, itq ∈ B1, and hence Fq = {rjt1 , . . . , rjtq−1
}. Let iℓ′ and i′′ be

the predecessors of itq ; so, i
′′ is 3-learned and i′′ /∈ dom(Cpool). Note that jℓ′

may or may not be in {jt1 , . . . , jtq}. Consider the m− 2 many Stone clauses
for j′′ /∈ {jtq , jℓ′}:

piℓ′ ,jℓ′ , rjℓ′ , pi′′,j′′, rj′′ , pitq ,jtq , rjtq .

Resolving these with the 3-learned clauses pi′′,j′′ , rj′′ for j
′′ /∈ {jt1 , . . . , jtq , jℓ′}

and the Stone clause
∨

j′′ pi′′,j′′ gives the clause

piℓ′ ,jℓ′ , rjℓ′ , Fq, pitq ,jtq , rjtq (10)

by resolution on the variables rj′′ for j
′′ /∈ {jt1 , . . . , jtq , jℓ′} and the variables

pi′′,j′′ for all j
′′.

Suppose that iℓ′ ∈ B+ and thus rjℓ′ ∈ Fq and Ctq is the clause piℓ′ ,jℓ′ , pitq ,jtq .

Then (10) is the same as Ctq , Fq, rjtq and the construction of Ltq for part (b)
is complete. In this case, Ltq has size O(m).

Alternately, suppose that iℓ′ /∈ B+, so rjℓ′ /∈ Fq. By the last assertion of
part (a), L′′

tq is a regRTI derivation of Cℓ′ , Eℓ′ , rjℓ′ of size O(N2
q ). Form Ltq

by resolving this against (10) on the variable rjℓ′ to obtain Ctq , Fq, rjtq . This
is a valid resolution inference since Ctq is pitq ,jtq , piℓ′ ,jℓ′ , Cℓ′ , and Eℓ′ ⊆ Fq.

The size of Ltq is O(N2
q +m).

This completes the description of Ltq , and the proof of Lemma 11. 2

This also completes the construction of the derivation RC of Lemma 8.
Since the construction of RC invokes Lemmas 10 and 11 at most N times,
the size of RC is bounded by O(Nm2 +N(N2 +m)) = O(Nm2).

26



Finishing the proof

All that remains to finish the proof of Theorem 3 is to bound the size
of the refutation R. As described above, R is built up from a derivation
containing only the empty clause by applying the constructions of Figure 6
and Lemma 8, always to the leftmost currently unfinished leaf.

If the clause at that leaf is non-extendible, it is dealt with using Lemma 8,
and no new unfinished leaves appear.

Otherwise, the leftmost unfinished leaf contains an extendible clause,
and it is dealt with using the construction of Figure 6, leading to m new
unfinished leaves, at least one of them labeled with a clause Ct, pik+1,t

such
that pik+1,t

, rt has not been 3-learned.
A clause of the type allowed to appear in an unfinished leaf can be

iteratively extended at most n times, so at some point we have to reach a
situation in which the construction of Figure 6 produces only non-extendible
clauses. When Lemma 8 is applied to those clauses, at least one K-learned
clause of the form pi,j, rj becomes (K+1)-learned. There are nm clauses of
the form pi,j, rj to be learned. Once all of them have been 3-learned, all
remaining unfinished leaves become non-extendible and can be dealt with
using the construction of Lemma 8.

Consider the set of clauses in R which at some point were unfinished
leaves during the construction of R. Call such a clause green if it was handled
with Lemma 8 and thereby a clause of the form pi,j, rj became (K+1)-
learned instead of K-learned. The remaining clauses are called non-green:
these clauses were either handled by Lemma 8 but without any clause pi,j, rj
becoming (K+1)-learned, or were handled with the construction of Figure 6.
These green and non-green clauses inherit a tree structure from R. It follows
from the discussion above that this tree is m-branching, has depth at most n,
and contains at most 3nm green leaves. Moreover, each node in the tree is
a green leaf, is an ancestor or sibling of a green leaf, or is the sibling of an
ancestor of a green leaf. It is straightforward to prove that such a tree has
at most O(n2m2) leaves. Since each of these leaves corresponds to a single
application of Lemma 8, the size of R is at most O(N3m4). This completes
the proof of Theorem 3. 2

Since the Stone tautologies contain O(Nm3) many symbols, and since
N ≤ m, the size upper boundO(N3m4) is quadratic in the size of the clauses
being refuted.

The refutation R described above may not be greedy. Although we lack
a proof, it is possible that R can be made greedy by omitting subderivations

27



of already learned clauses. It is also possible that R is, or could be made
to be, unit-propagating. In particular, note that the only unit clauses that
appear in R are the literals p1,j that appear as unfinished clauses in the very
first step of the construction of R. However, we have not tried to formally
analyze the greedy or unit-propagating properties of R.

Acknowledgement We thank the two anonymous referees for useful com-
ments and suggestions.

The proof is complete, If only I’ve stated it thrice.
Fit the Fifth – The Beaver’s Lesson, The Hunting of the Snark

Lewis Carroll

References

[1] M. Alekhnovich, J. Johannsen, T. Pitassi, and A. Urquhart,
An exponential separation between regular and general resolution, The-
ory of Computing, 3 (2007), pp. 81–102.

[2] P. Beame, H. A. Kautz, and A. Sabharwal, Towards understand-
ing and harnessing the potential of clause learning, J. Artificial Intelli-
gence Research, 22 (2004), pp. 319–351.

[3] M. L. Bonet and S. R. Buss, An improved separation of regular res-
olution from pool resolution and clause learning, in Proc. 15th Interna-
tional Conference on Theory and Applications of Satisfiability Testing –
SAT 2012, Lecture Notes in Computer Science #7317, 2012, pp. 45–57.

[4] M. L. Bonet, S. R. Buss, and J. Johannsen, Improved separations
of regular resolution from pool resolution and clause learning. Submit-
ted for publication, 2012.

[5] S. R. Buss, J. Hoffmann, and J. Johannsen, Resolution trees with
lemmas: Resolution refinements that characterize DLL-algorithms with
clause learning, Logical Methods in Computer Science, 4, 4:13 (2008),
pp. 1–18.

[6] M. Davis, G. Logemann, and D. Loveland, A machine program
for theorem proving, Communications of the ACM, 5 (1962), pp. 394–
397.

28



[7] M. Davis and H. Putnam, A computing procedure for quantification
theory, Journal of the Association for Computing Machinery, 7 (1960),
pp. 201–215.

[8] P. Hertel, F. Bacchus, T. Pitassi, and A. Van Gelder, Clause
learning can effectively p-simulate general propositional resolution, in
Proc. 23rd AAAI Conf. on Artificial Intelligence (AAAI 2008), AAAI
Press, 2008, pp. 283–290.

[9] J. P. Marques-Silva and K. A. Sakallah, GRASP — A new
search algorithm for satisfiability, IEEE Transactions on Computers,
48 (1999), pp. 506–521.

[10] A. Urquhart, A near-optimal separation of regular and general reso-
lution, SIAM Journal on Computing, 40 (2011), pp. 107–121.

[11] A. Van Gelder, Pool resolution and its relation to regular resolution
and DPLL with clause learning, in Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR 2005), Lecture Notes in Computer
Science 3835, Springer-Verlag, 2005, pp. 580–594.

29


