Mathematical Logic midterm December 15, 2010

1. Prove the following sequent in the sequent calculus:

$$
\rightarrow \neg(p \Rightarrow q) \Rightarrow(p \wedge \neg q) .
$$

2. Write down a first-order sentence in the signature $\{\leq\}$ which is true in

$$
\left\{(\{0\} \times \mathbb{Z}) \cup(\{1\} \times \mathbb{Q}), \leq_{\operatorname{lex}}\right\}
$$

but false in

$$
\left\{(\{0\} \times \mathbb{Q}) \cup(\{1\} \times \mathbb{Z}), \leq_{\operatorname{lex}}\right\}
$$

3. Let $\mathbb{A}=(A, E)$, where $\operatorname{card}(A)=\mathfrak{c}$ and E is an equivalence relation with continuum many equivalence class of each finite cardinality, countably many equivalence classes of size \mathfrak{c}, and no other equivalence classes. Prove that no (exactly) countable subset of A is definable in \mathbb{A} (with parameters).
4. Let T be a theory in a countable language and let $\varphi(x), \psi(x)$ be two formulas with one free variable x. Assume that there exists $\mathbb{A} \models T$ such that $\operatorname{card}\left(\varphi^{\mathbb{A}}\right)=\aleph_{0}, \operatorname{card}\left(\psi^{\mathbb{A}}\right)=\mathfrak{c}$. Show that T has at least two non-isomorphic models of cardinality c.
