Exam in Mathematical Logic January 27, 2011

Reminder: an \exists_1 (or purely existential) formula has the form $\exists y_1 \ldots \exists y_n \psi$, where ψ is quantifier-free. A \forall_2 formula has the form $\forall x_1 \ldots \forall x_k \exists y_1 \ldots \exists y_n \psi$, where ψ is quantifier-free.

1. Find a formula in DNF and a formula in CNF logically equivalent to:

$$\neg \left((p \Rightarrow q) \Leftrightarrow \neg (q \Leftrightarrow (p \land \neg r)) \right).$$

2. Let φ be the sentence:

$$\neg \forall x \, (\neg \forall z \, R(x, z) \land \forall z \exists z \, \neg S(x, z)).$$

- (a) Find a sentence in prenex normal form logically equivalent to φ ,
- (b) Prove that φ is not logically equivalent to any \forall_2 sentence.

3. Let σ be a finite signature containing only relation symbols. Let \mathbb{A} be a countable structure over σ and let T be a theory over σ . Assume that every finite substructure of \mathbb{A} can be embedded in a model of T. Show that \mathbb{A} can be embedded in a countable model of T.

4. A model \mathbb{A} of a theory T is called existentially closed if for every $\mathbb{B} \supseteq \mathbb{A}$, $\mathbb{B} \models T$, every tuple $\bar{a} \in A$ and every \exists_1 formula $\varphi(\bar{x})$,

if
$$\mathbb{B} \models \varphi(\bar{a})$$
, then $\mathbb{A} \models \varphi(\bar{a})$.

- (a) Give an example of an infinite boolean algebra which is not existentially closed (as a model of the theory of boolean algebras in the signature {∧, ∨, -, 0, 1}).
- (b) Let T be a theory in a finite signature. Show that if T has an infinite model that is not existentially closed, then T has a model of cardinality c that is not existentially closed.
- 5. Recall that $Spec(\varphi) = \{n \in \mathbb{N} : \text{ there is } \mathbb{A} \models \varphi, \ card(A) = n\}.$
 - (a) Show that there exists a sentence φ such that $Spec(\varphi) = \{n \in \mathbb{N} \setminus \{0\} : n \equiv 0 \pmod{4}\}.$
- (b) Show that there exists a sentence ψ such that $Spec(\psi) = \{n \in \mathbb{N} \setminus \{0\} : n \equiv 2 \pmod{8}\}.$
- (c) Show that there is no sentence ξ in the empty signature which is true in all models of cardinality divisible by 4 and false in all models of cardinality congruent to 2 (mod 8).
- (d) Explain how (a)-(c) imply that "Craig's interpolation theorem fails over finite structures".