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Abstract

We show that for each n ≥ 1, if Tn
2 does not prove the weak

pigeonhole principle for Σb
n functions, then the collection scheme BΣ1

is not finitely axiomatizable over Tn
2 . The same result holds with Sn

2

in place of Tn
2 .

The collection scheme BΣ1 is

∀v (∀x < v ∃y ϕ(x, y) ⇒ ∃w ∀x < v ∃y < wϕ(x, y))

for all bounded formulae ϕ (or equivalently, for all ϕ ∈ Σ1, as the initial
existential quantifiers may be absorbed by ∃y).

An intriguing open problem, mentioned already in [WP89], concerns the
provability of BΣ1 in I∆0 + ¬ exp. It is well known that I∆0 does not
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prove BΣ1, but all known proofs (cf. e.g. [PK78], [CFL07]) make use of the
universal formula for Σ1, and hence need the totality of exponentiation. It is
widely believed that BΣ1 remains unprovable even if we assume ¬ exp, but so
far, no proof or even promising proof strategy has emerged. BΣ1 is, however,
known to be unprovable in T n

2 +¬ exp, where T n
2 is the finite fragment of Buss’

S2 (essentially a notational variant of I∆0 + Ω1) axiomatized by induction
for Σb

n formulae. Here, the universal formula for a restricted fragment of Σ1

is enough.
The proofs of independence of BΣ1 from I∆0 + exp and from T n

2 +¬ exp
have very much in common. In this note, we point out that the behaviour
of BΣ1 in these theories is nevertheless probably quite different. In I∆0 +
exp, collection is finitely axiomatizable, by the existence of the universal Σ1

formula. On the other hand, we show that under a plausible assumption,
BΣ1 is not only unprovable, but even not finitely axiomatizable over T n

2 .
The “plausible assumption” we need is that T n

2 does not prove the weak
pigeonhole principle WPHP(Σb

n), i.e. that the existence of a Σb
n definable

injection from a2 to a for some a > 1 is consistent with T n
2 . Our proof goes

through if T n
2 is replaced in both the assumption and the conclusion by the

presumably weaker theory Sn
2 . It is worth noting that until a breakthrough

occurs, we cannot hope to prove non-finite axiomatizability of BΣ1 uncon-
ditionally: it follows easily from [Bus95] and [Zam96] that if T n

2 ` Sn+1
2 ,

then BΣ1 is finitely axiomatized over T n
2 . The assumption about unprova-

bility of WPHP seems reasonable, as it is true for all n in the relativized
world ([BK94]) and, for n = 1 and S1

2 , follows from the hardness of integer
factoring ([Jeř07]).

Our result does have some bearing on the problem whether I∆0 +¬ exp `
BΣ1, in that it casts doubt on one possible line of attack. If BΣ1 were
finitely axiomatized over T n

2 for some n, the answer to the problem would be
negative. This is because the unprovability of BΣ1 in Tm

2 + ¬ exp for each
m ≥ n would imply unprovability of a fixed finite fragment, which would
then be independent from S2 + ¬ exp by compactness. However, if we are
to believe the assumption about WPHP, then finite axiomatizability should
not be hoped for.

We assume familiarity with basic notions and results concerning bounded
arithmetic, which may be found e.g. in [HP93], [Kra95] or [Bus98]. For
a brief review of relevant facts about WPHP, see e.g. [KT08] or [Tha02].
One important fact we need is that in Sn

2 the failure of WPHP(Σb
n) can be
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amplified, that is, a Σb
n injection from a2 into a can be used to obtain an

injection from b into a for larger b.
We recall that the class Σ̂b

n, the prenex version of Σb
n, consists of formulae

of the form
∃y1 < t1 ∀y2 < t2 . . . Qyn < tn ψ,

where ψ is sharply bounded. The classes Σb
n and Σ̂b

n coincide w.r.t. equiva-
lence in Sn

2 , but in weaker theories Σb
n might be strictly larger. Π̂b

n is defined
dually to Σ̂b

n, and ∃Π̂b
n is the class of Π̂b

n formulae preceded by existential
quantifiers. It is easily checked that collection for ∃Π̂b

n formulae, B∃Π̂b
n, is

equivalent to BΠ̂b
n.

We also introduce one piece of notation: for a number a, #ma is a#a . . .#a,
where a appears m times. Given a model A, #Na is the cut in A determined
by the numbers #ma for standard m.

We now state and prove our theorem. Our proof is essentially a combina-
tion of slightly stronger variants of arguments from [AK07] and [KT08], and
we assume the reader has access to those two papers.

Theorem 1. Let Tn be T n
2 or Sn

2 . If Tn 6` WPHP(Σb
n), then the collection

scheme BΣ1 is not finitely axiomatizable over Tn.

We prove the theorem through a series of lemmas. Our starting point
is a countable model A |= Tn containing a number a such that A = #Na
and the WPHP for Σb

n functions fails at a, in the sense that there is a Σb
n

definable injection from a2 into a. Such a model exists if Tn does not prove
WPHP(Σb

n).
To prove that BΣ1 is not finitely axiomatizable over Tn, we need to show

that there is no k such that over T n
2 , collection for Σ1 formulae follows from

collection for ∃Π̂b
k formulae. W.l.o.g., we may consider only k for which

k + 2 ≥ n+ 1.
There is a standard way of building a cofinal and Σ̂b

k+2-elementary exten-

sion of A to a Σ̂b
k+3-maximal model A+ of Tn, i.e. one all of whose Σ̂b

k+2-

elementary extensions to models of Tn are actually Σ̂b
k+3-elementary. By

tweaking the construction a little, we are able to make A+ satisfy ∃Π̂b
k col-

lection (Lemma 2). By Σ̂b
n+1-elementarity, WPHP(Σb

n) still fails at a in A+.
To complete the proof of the theorem, we show that A+ does not satisfy

B∃Π̂b
k+2. The argument is as follows. We observe that in A+, each Σ̂b

k+3

formula is equivalent to a ∀Σ̂b
k+2 formula, with a as parameter (Lemma 3).

If A+ satisfied B∃Π̂b
k+2, this collapse would translate into a “local” collapse
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of Σ̂b
k+2 to Π̂b

k+2 (Corollary 4), which falls just short of implying Σp
k+2 ⊆

Πp
k+2/poly. But in any model of Sn

2 , such a collapse is incompatible with
¬WPHP(Σb

n) (Lemma 5).
The remainder of the note contains proofs of the lemmas and a concluding

remark.

Lemma 2. Let m ≥ n. Let A |= Tn be countable and of the form #Na for
some a. There exists a cofinal countable extension A+ �Σb

m
A which is a

Σ̂b
m+1-maximal model A+ of Tn and (if m ≥ 2) satisfies ∃Π̂b

m−2 collection.

Proof. The construction of a cofinal Σ̂b
m-elementary Σ̂b

m+1-maximal extension
of A is a routine variant of the general model-theoretic construction of an
existentially closed model. Starting with A0 = A, we build a chain A0 �Σ̂b

m

A1 �Σ̂b
m
. . . of countable cofinal models of Tn. Al+1 arises from Al by adding

a witness for the initial existential quantifier in a given Σ̂b
m+1 formula with

a given choice of parameters from Al, whenever that is possible without
losing Σ̂b

m-elementarity. A+ is the union of the chain, and Σ̂b
m-elementarity

guarantees that A+ satisfies Tn. (See the proof of Lemma 2.2 in [AK07] for
details.)

To ensure that A+ satisfies the right amount of collection, we slightly
modify our method of constructing Al+1 from Al. As before, we add a
witness for a given Σ̂b

m+1 formula with given parameters in a Σ̂b
m-elementary

way. However, we also make sure that the model thus obtained, say Ãl+1, is
not a cofinal extension of Al, but satisfies overspill for all bounded formulae.
This can be achieved by a standard compactness argument. We then take
Al+1 to be the cut #Na in Ãl+1.

In this way, Al+1 is a proper initial segment of the form #Na in a model of
Σb
∞ overspill. It is now easy to show Al+1 |= BΣ1. This is done by mirroring

the well-known proof that a proper initial segment of a model of I∆0 satisfies
BΣ1 (cf. [WP89]).

It remains to check that the fact that Al |= BΣ1 for all l implies A+ |=
B∃Π̂b

m−2. Let b, p̄ ∈ A+, let ψ(x, y, p̄) be a Π̂b
m−2 formula, and assume that

A+ |= ∀w ∃x < b∀y < w¬ψ(x, y, p̄).

In particular, for each i ∈ N we have

A+ |= ∃x < b∀y < #ia¬ψ(x, y, p̄).
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Take l such that Al contains b and p̄. By Σ̂b
m-elementarity, we get

Al |= ∃x < b∀y < #ia¬ψ(x, y, p̄)

for each i, and thus

Al |= ∀w ∃x < b∀y < w¬ψ(x, y, p̄)

since Al is of the form #Na. By B∃Π̂b
m−2 in Al, there exists c < b such

that Al |= ∀y ¬ψ(c, y, p̄). Applying Σ̂b
m-elementarity once again, we obtain

A+ |= ∀y < #ia¬ψ(c, y, p̄) for each i. But A+ is also of the form #Na, which
means that A+ |= ∀y ¬ψ(c, y, p̄).

Lemma 3. Let m ∈ N and let A be a Σ̂b
m+1-maximal model of Tn of the form

#Na. Then each Σ̂b
m+1 formula is equivalent in A to a ∀Σ̂b

m formula with a
as an additional parameter.

Proof. We sketch the proof omitting some details which are essentially the
same as in Section 3 of [AK07].

It is easy to see that if A is Σ̂b
m+1-maximal for Tn, ψ(x) is a Σ̂b

m+1 formula,

and d ∈ A, then ψ(d) holds iff it is consistent with Tn plus the Π̂b
m theory of

A in the language L(A) (that is, LBA expanded by constants for all elements
of A). Thus, it remains to check that “ψ(x) is consistent with Tn plus the
Π̂b

m theory of AL(A)” can be expressed in A using a ∀Σ̂b
m formula with a as

a parameter.
Formalize L(A) is some reasonable way, e.g. by letting the first few odd

numbers represent the symbols of LBA, letting 2d represent a constant symbol
d standing for d ∈ A, and then coding syntax as usual. Our formula will say
the following:

∀y ∀l ∀s [l ∈ N & y = 2|a|
l

& “s is a sequence of formulae” &
∑

i<lh(s) lh((s)i)) ≤ |l|

& “no (s)i contains a constant for a number greater than y”

&∀i < lh(s) ((s)i ∈ Tn ∨ “(s)i is a true Π̂b
m formula”

∨ “(s)i is derived from previous elements of s by an inference rule”)

⇒ (s)lh(s)−1 6= p¬ψ(x)q]

.
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We need to see that this is equivalent in A to a ∀Σ̂b
m formula, which amounts

to checking that each conjunct in the antecedent of the implication may be
stated in ∃Π̂b

m form. The conjunct l ∈ N is not really needed, as it is implied
by y = 2|a|

l
because A is of the form #Na. The only other problematic

conjunct is:

∀i < lh(s) (. . . ∨ “(s)i is a true Π̂b
m formula” ∨ . . .),

but a universal formula for Π̂b
m formulae of length ≤ |l| and arguments below

2|a|
l

is Π̂b
m with a bounding parameter, which can be any number above

2|a|
l2

.

Corollary 4. Let A be a Σ̂b
m+1-maximal model of Tn of the form #Na and

A |= B∃Π̂b
m. Then for each d ∈ A, each Σ̂b

m+1 formula is equivalent on [0, d]

to a Π̂b
m+1 formula with a as an additional parameter.

Proof. Let ψ(x) be a Σ̂b
m+1 formula and d ∈ A. By Lemma 3, ψ(x) is

equivalent in A to ∀y η(x, y, a), where η is Σ̂b
m. Thus, we have

A |= ∀x (ψ(x) ∨ ∃y ¬η(x, y, a)).

If A |= B∃Π̂b
m, then there exists w such that for x ∈ [0, d], a witness for either

ψ(x) or ∃y ¬η(x, y) may be bounded by w. We may take w to be of the form
#la for some l ∈ N, so on [0, d], ψ(x) is equivalent to ∀y < #la η(x, y, a).

Lemma 5. Let A |= Sn
2 + ¬WPHP(Σb

n) be of the form #Na. Then for each
m ≥ 1 there exists d ∈ A and a Σ̂b

m formula ψ(x) which is not equivalent on
[0, d] to a Π̂b

m formula, even with parameters.

Proof. The proof is based on an argument from Sections 4 and 5 of [KT08],
used there to show that in a model of Sn

2 +¬WPHP(Σb
n) the bounded formula

hierarchy does not collapse, even with parameters (Theorem 5.1 of [KT08]).
We will check that the argument is actually strong enough to show that in
the case of models of the form #Na, failure of WPHP(Σb

n) excludes even a
collapse on a large enough initial segment with a top.

Assume that m is such that on each interval [0, d], every Σ̂b
m formula

is equivalent to a Π̂b
m formula with a parameter (which may depend on d).

It can then be easily checked that on each [0, d], every bounded formula is
equivalent to a Π̂b

m formula with a parameter.
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By increasing a and amplifying the function violating WPHP if necessary,
we may assume that a is a power of 2, f is a Σb

n injection from a#a into a
and that the definition of f involves only a parameter q < a and quantifiers
bounded by a#a. We now use compactness to extend A elementarily to a
model A′ additionally containing an element t > A and an element b > #Nt
of the form #ca for some small nonstandard c. Let B be the cut #Na in
A′. The reason for the amplification and for introducing the new models is
that the relation between A′ and B is now exactly the same as between the
models A and B in Section 4 of [KT08], and we will be able to apply the
results of that section.

Note that because A′ � A and A is cofinal in B, on each interval [0, d]
in B every bounded formula is equivalent to a Σ̂b

m formula with a parameter
from B (even from A).

Since t > B, there is a universal Σ̂b
m formula Um such that for all x, y ∈ B

and Σ̂b
m formulae ψ, ψ(x, y) is equivalent in A′ to Um(x, 〈pψq, y〉, t). Now, b >

#Nt and Um is bounded, so for x, y ∈ B and for standard ψ the quantifiers in
Um(x, 〈pψq, y〉, t) range only over numbers below b. By Lemma 4.3 of [KT08],
this means that we can use the failure of WPHP to translate Um(x, 〈pψq, y〉, t)
into a bounded formula with parameters from B. More precisely, there is a
bounded (even linearly bounded) formula U lin

m such that for all x, y ∈ B
and all ψ, Um(x, 〈pψq, y〉, t) is equivalent to U lin

m (x, 〈pψq, y〉, p), where p is a
parameter bounded by some standard power of a#a (p is actually a tuple
(t̂, a#a, c, q), where c, q are as above and t̂ is a number below a which codes
t in a certain way).

On each interval [0, d] in B, the bounded formula ¬U lin
m (x, x, p) is equ-

ivalent to a Σ̂b
m formula ϕ(x, r). A priori, the size of r depends on d, but

for sufficiently large d, we can assume 〈pϕq, r, p〉 < d. This is because r is
certainly bounded by #ia for some i, and #ia can be mapped injectively into
a by an amplified version f (i−1) of f , which is also Σb

n definable; thus, we can
replace the original ϕ(x, r) by ϕ̃(x, r̃) := ∃y < #ma (f (i−1)(y) = r̃&ϕ(x, y)),
where r̃ = f (i−1)(r) is a number below a.

Consider ϕ(〈pϕq, r〉, r). By the properties of Um, this is equivalent to
Um(〈pϕq, r〉, 〈pϕq, r〉, t) and hence to U lin

m (〈pϕq, r〉, 〈pϕq, r〉, p). On the other
hand, for a large enough d, ¬U lin

m (〈pϕq, r〉, 〈pϕq, r〉, p) is also equivalent to
ϕ(〈pϕq, r〉, r), which gives a contradiction.

Remark. The model A+ obtained in our construction has the property that
each ∃Π̂b

k+3 formula is equivalent to an ∃Π̂b
k+2 formula with a parameter
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(Lemma 3), but is not in general equivalent to an ∃Π̂b
k formula, even with

parameters (because collection holds for the latter class).
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