
Approximate counting and NP search problems

Leszek Aleksander Ko lodziejczyk∗ and Neil Thapen†

March 26, 2021

Abstract

We study a new class of NP search problems, those which can be
proved total using standard combinatorial reasoning based on approx-
imate counting. Our model for this kind of reasoning is the bounded
arithmetic theory APC2 of [Jeřábek 2009]. In particular, the Ramsey and
weak pigeonhole search problems lie in the new class. We give a purely
computational characterization of this class and show that, relative to an
oracle, it does not contain the problem CPLS, a strengthening of PLS.

As CPLS is provably total in the theory T 2
2 , this shows that APC2 does

not prove every ∀Σb
1 sentence which is provable in bounded arithmetic.

This answers the question posed in [Buss, Ko lodziejczyk, Thapen 2014]
and represents some progress in the programme of separating the levels
of the bounded arithmetic hierarchy by low-complexity sentences.

Our main technical tool is an extension of the “fixing lemma” from
[Pudlák, Thapen 2017], a form of switching lemma, which we use to show
that a random partial oracle from a certain distribution will, with high
probability, determine an entire computation of a PNP oracle machine.
The introduction to the paper is intended to make the statements and
context of the results accessible to someone unfamiliar with NP search
problems or with bounded arithmetic.

1 Introduction

An NP search problem is specified by a polynomial-time relation R(x, y) and
a polynomial p(x). Given an input x, a solution to the problem is any y such
that R(x, y) holds and |y| < p(|x|) (where |x| is the length of a string x). We only
consider total problems, where a solution is guaranteed to exist for all x. The
class of all such problems is called TFNP, standing for total functional NP [31].

Subclasses of TFNP are sometimes described as consisting of all search prob-
lems which can be proved to be total by some particular combinatorial lemma or
style of argument [31, 35]. For example, the class PPA “is based on the lemma
that every graph has an even number of odd-degree nodes” [3]. Often, the par-
ticular lemma or argument can be represented by a specific axiomatic theory. In

∗Institute of Mathematics, University of Warsaw, lak@mimuw.edu.pl
†Institute of Mathematics of the Czech Academy of Sciences, thapen@math.cas.cz

1

this paper we study the class, which we call APPROX, of problems that can be
proved total using reasoning based on approximate counting. Our model of this
kind of reasoning is the theory APC2 developed by Jeřábek in [20, 21], which
provides machinery to count the size of a set well enough to distinguish between
sets of size a and (1 + ε)a, for a given in binary (but not between sets of size a
and a+ 1), and to formalize a certain amount of induction in this language. In
this way it can carry out the standard proofs of, for example, the finite Ramsey
theorem and the tournament principle [21]. We give a non-logical characteriza-
tion of APPROX, as the class of TFNP problems reducible in a certain sense
to a version of the weak pigeonhole principle for PNP functions. Examples of
problems in the class are natural problems associated with the finite Ramsey
theorem, the usual weak pigeonhole principle, and the ordering principle.

Our main result is that, in the relativized setting, a search problem known
as CPLS [28] is not in APPROX. Here CPLS is a natural strengthening of a
complete problem for the class PLS of search problems (polynomial local search,
see Section 1.2 below).

This work is mainly motivated by an open problem in logic. Our result
answers a question about a hierarchy of theories collectively known as bounded
arithmetic. For each i ∈ N, the theory T i2 is axiomatized by induction for
formulas at level i in the polynomial hierarchy. It is a long-standing open
problem whether the theories T i2 can be separated by sentences expressing that
various NP search problems are total – known as ∀Σb1 sentences. In other words:
does the class of provably total NP search problems get strictly bigger as i
increases? This is open for i ≥ 2.

APC2 lies between T 1
2 and T 3

2 . In [11] we pointed out that the NP search
problems typically used in arguments separating T 1

2 from T i2 for i ≥ 2 could
be proved total using approximate counting. This led us to state the following
open problem, which is an important special case of the more general one: is
there any i such that T i2 proves the totality of more NP search problems than
APC2 does?

Our result in this paper implies that the answer is yes. The totality of CPLS,
which is provable in T 2

2 , is not provable in APC2, and thus T 3
2 proves strictly

more NP search problems total than APC2 does. This makes APC2 one of the
strongest natural theories that has been separated from theories higher up in
the bounded arithmetic hierarchy – in fact, from T i2 for the lowest possible i –
in terms of NP search problems. Intuitively speaking, the conclusion is that the
power of T 2

2 , T 3
2 , . . . to prove many NP search problems total is based on more

than just a limited ability to count.
While our motivation is from logic, an important part of the methods we use

are complexity-theoretic, and may be independently interesting to complexity
theorists. Our main technical tool is the “fixing lemma” from [42]. This is
related to the switching lemma of H̊astad [19], which is used in complexity to
separate depth d + 1 circuits from depth d circuits. The fixing lemma is a
simplified, but more widely applicable, version of this result. It shows that a
random partial assignment can, with high probability, determine the value of
a CNF. We strengthen it slightly, to show that a random partial oracle can

2

determine an entire computation of a PNP oracle machine. The proof of our
version is almost identical, and many definitions are identical, to what appears
in [42]. In the more technical parts of Sections 4-6 will assume the reader has
access to that paper.

In the rest of this introductory section we give an overview of bounded
arithmetic and the theory APC2, describe the structure of TFNP from this
point of view, and outline how we handle relativization and reductions. The
paper is then structured as follows.

Section 2. We define CPLS and our search-problem class APPROX, formally
state our main Theorems 12 and 13, obtain some corollaries, and give an outline
of the proofs.

Section 3. We prove Theorem 12, that the class APPROX captures the ∀Σb1
consequences of APC2. This section contains the technical work in logic.

Section 4. We state and prove our version of the fixing lemma.
Section 5. We use the fixing lemma to show that a PNP computation is

determined by a random partial oracle, and derive Theorem 13, that CPLS is
not in APPROX.

Section 6. We briefly sketch an alternative way to prove our main result
about bounded arithmetic, that APC2 does not prove the totality of CPLS, by
going through propositional proof complexity rather than NP search problems.

Section 7. We mention some open problems.

Acknowledgements. The first author was partially supported first by grant
2013/09/B/ST1/04390 and then by grant 2017/27/B/ST1/01951 of the Na-
tional Science Centre, Poland. The second author was partially supported by
GA ČR project 19-05497S. Part of this research was carried out during the first
author’s visit to Prague in 2017, funded by ERC grant 339691. The Institute of
Mathematics of the Czech Academy of Sciences is supported by RVO:67985840.

We are grateful to Pavel Pudlák and Pavel Hubáček for discussions about
this work.

1.1 Bounded arithmetic

Fix a language LPV containing a symbol for every function or relation com-
puted by a polynomial-time machine. Then a total NP search problem can be
identified with a true LPV sentence of the form ∀x∃y<t(x)R(x, y), where R is
a polynomial-time relation, t is a polynomial-time function, and x and y range
over natural numbers written in binary notation. Let T be any sound theory.
The set of such sentences provable in T then defines a class of search problems.
For the class to have some reasonable properties, T should not be too weak; and
to get classes of the kind usually studied in complexity theory, it should not be
too strong.

Natural examples of suitable theories T come from bounded arithmetic,
which has close ties to computational complexity. For the purposes of this
paper, we will take such theories to be given by a base theory fixing some basic

3

properties of the symbols of LPV, together with one or more axiom schemes that
allow us to do stronger kinds of reasoning, typically induction. All axioms are
universal closures of bounded formulas, that is, formulas in which all quantifiers
appear in the form ∀x<t or ∃x<t .

In more detail, a PV formula is a quantifier-free formula of LPV. A Σbi
formula is one of the form

∃x1<t1(z̄)∀x2<t2(z̄, x1) . . . ϕ(z̄, x̄)

where ϕ is a PV formula, the bounds tj are LPV-terms, quantifiers may appear in
alternating ∃ and ∀ blocks, and there are at most i blocks. Such formulas define
precisely the Σpi relations, that is, those at level i in the polynomial hiearchy.
The Πb

i formulas are defined dually. The universal closure of a formula ϕ(z̄) is
the sentence ∀z̄ ϕ(z̄). Given a class of formulas Γ, we write ∀Γ for the set of
universal closures of formulas from Γ. Thus, for instance, a ∀PV sentence states
that some polynomial-time computable property holds for all inputs.

We will consider two base theories, both containing only ∀PV sentences.
The first and more usual one is the theory PV, which comes from Cobham’s
characterization of the polynomial-time functions as a function algebra [16, 15].
We will not define PV here, as the details are not important, but it can be
thought of as a minimal theory in which all polynomial-time functions are well-
behaved.

The second, stronger but simpler theory, which we denote ∀PV(N), consists
simply of all ∀PV sentences which are true under the standard interpretation
in N. This is simpler to understand than PV because there is no list of ax-
ioms to keep in mind, and also works more naturally for defining NP search
problems. Our results translate easily between the two, and a reader unfamil-
iar with bounded arithmetic will not go very wrong by reading PV as ∀PV(N)
throughout – see Subsection 1.3.

The important family of theories T i2, for i ≥ 0, is defined as

T i2 := PV + Σbi -IND

where Σbi -IND is the usual induction scheme for Σbi formulas with parameters.
PV already proves induction for quantifier-free formulas (as that sort of induc-
tion can be witnessed by polynomial-time binary search) so in this setting T 0

2

is the same as PV. We write T2 for the union of this family.
We can now state a fundamental theorem. By the Σbi -definable functions of

a theory we mean the functions with Σbi graphs which the theory proves are
total.

Theorem 1 ([9]). For i ≥ 0, the Σbi+1-definable functions of T i2 are precisely
the PΣp

i functions, that is, those that are polynomial-time computable with an
oracle from level i of the polynomial hierarchy.

We will also use a related family of theories Si2, for i ≥ 1, which is defined by
replacing the Σbi -IND scheme in T i2 with the apparently weaker scheme Σbi -LIND

4

in which inductions can only run for polynomially many steps (in the binary
length of a parameter). We have T i2 ⊆ Si+1

2 ⊆ T i+1
2 [9]. Theorem 1 remains true

if T i2 is replaced by Si+1
2 and/or the base theory PV is replaced by ∀PV(N).

In addition to being related to computational complexity by Theorem 1,
bounded arithmetic is a natural environment in which to ask questions about
the provability or consistency of theorems or conjectures from complexity theory.
For recent examples see [38, 34].

We now make the above definitions slightly more complicated. As in com-
plexity theory, we typically cannot expect to show that two theories of bounded
arithmetic are distinct without either making some extra assumption or working
relative to some oracle. We will use oracles. We redefine LPV to include a unary
relation symbol α standing for “an arbitrary oracle”, and function and relation
symbols for all polynomial-time machines with oracle access to α. Other formula
classes and theories are redefined to use this extended language. In particular,
∀PV(N) becomes the set of ∀PV sentences which are true in 〈N, A〉 for every
oracle A interpreting the symbol α. Strictly speaking, we should change the
names to PV(α), Σbi (α), T i2(α) etc. However, since we never use the unrela-
tivized versions, we simplify notation by keeping the old names. The results
mentioned above still hold.

An open problem. By adapting oracle separation results for the polynomial
hierarchy, it has been shown that the strength of the (relativized) theories T i2
increases strictly with i: for each i there is a ∀Σbi+1 sentence provable in T i+1

2

but not in T i2 [13]. A pressing open question in proof complexity1 is whether
this remains true if we measure the strength of theories only by their ∀Σbk
consequences for some fixed k, in particular for k = 1.

We write ∀Σbk(T) for the ∀Σbk consequences of a theory T . In particular
∀Σb1(T) is a class of total NP search problems (as long as T is sound). From
[25, 14] we know that

∀Σb1(PV) (∀Σb1(T 1
2) (∀Σb1(T 2

2)

and from [14, 43] we know that for any i, k ≥ 1,

if ∀Σbk(T i2) = ∀Σbk(T i+1
2) then ∀Σbk(T i2) = ∀Σbk(T2).

The following is open for k ≤ 2:

does ∀Σbk(T 2
2) = ∀Σbk(T2) ? (1)

The answer is expected to be negative, even for k = 0, by analogy with the Π1

separation between IΣi and IΣi+1 given by the second incompleteness theorem.
The case k = 1 seems to be particularly approachable, as classes ∀Σb1(T) have
a natural computational interpretation in terms of NP search problems.

1This is essentially equivalent to a question in propositional proof complexity about sep-
arating bounded-depth Frege systems by formulas of fixed depth, and in particular finding a
family of small-width CNF’s which have short refutations in bounded-depth Frege but require
long refutations in Res(log).

5

Approximate counting. Jeřábek [20, 21] developed a bounded arithmetic
theory for approximate counting. Following [11] we call this theory2 APC2 and
define it as T 1

2 together with the surjective weak pigeonhole principle (sWPHP)
for PNP functions, which asserts that no such function can be a surjection from n
to 2n, for any n > 0. APC2 can formalize many arguments in finite combina-
torics that use approximate counting, such as the standard proofs of the finite
Ramsey theorem and the tournament principle, as well as some probabilistic
reasoning. It lies between T 1

2 and T 3
2 in strength, as this instance of the weak

pigeonhole principle is provable in T 3
2 .

In [11] we asked the analogue of question (1) for APC2 in place of T 2
2 . More

specifically:
does ∀Σb1(APC2) = ∀Σb1(T2) ? (2)

We expected the answer to be “no”, but the opposite did not seem completely
implausible. Approximate counting is a powerful tool in finite combinatorics,
and typical combinatorially natural examples of hard ∀Σb1 statements that have
been used to separate T 1

2 from T2 were known to be provable in APC2 [11]. More-
over it was shown in [12], by formalizing Toda’s theorem, that all of bounded
arithmetic collapses to the analogue of APC2 if we add a parity quantifier to
the language.

Both [11] and later [2] showed unprovability results for various natural sub-
theories of APC2, but these fell well short of answering (2). In fact, they were
obtained using a ∀Σb1 sentence that is actually provable in APC2.

1.2 TFNP

As already discussed, in our language a total NP search problem is simply a
true ∀Σb1 sentence, that is, one of the form ∀x∃y<t(x)R(x, y) where R(x, y) is
a PV formula and t is an LPV-term. This represents the search-task of finding
a witness y, given x. We will often assume that the bound y < t(x) is implicit
in R(x, y), and we will usually write R(x, y) or just R as a name for the search
problem.

As before, polynomial-time is defined relative to an oracle symbol α, and
we will occasionally use notation like R(x, y;α) to emphasize the specific oracle
being used. The oracle leads to a slight complication in what we mean when we
say a search problem is total: ∀x ∃y<t(x)R(x, y;α) must be true in 〈N, A〉 for
every oracle A interpreting α. This behaviour is essentially the same as what is
called a total type-2 NP search problem in e.g. [3, 10].

We define two important notions of reducibility between search problems Q
and R. We will introduce one more in Subsection 2.2.

Definition 2. Q(x, y) is polynomial-time many-one reducible, or simply re-
ducible, to R(x′, y′), written Q ≤ R, if there are polynomial-time functions f

2Our definition is slightly different from Jeřábek’s in [21], which uses a variant of the
surjective weak pigeonhole principle with a smaller difference between domain and range.
However, the theories prove the same ∀Σb

2 statements, which is all that matters for this
paper.

6

and g and a polynomial-time relation P (all of which may query the oracle α)
such that

R(f(x), y′;P (x, ·))→ Q(x, g(x, y′);α)

holds for all x, y′ and α, where P (x, ·) represents the oracle {z : P (x, z)}. Two
problems are equivalent if they are reducible to one another.

Definition 3. Q(x, y) is polynomial-time Turing-reducible to R(x′, y′) if there
is a polynomial-time relation P and a polynomial-time oracle machine M which,
on input x, makes a series of (adaptive) queries to R(x′, y′;P (〈x, x′〉, ·)). If all
replies are correct, then M outputs some y such that Q(x, y;α).

We are interested in search problem classes corresponding to bounded arith-
metic theories, in the sense that the class captures the search problems proved
total by the theory (but see Section 1.3 below). There has been a research pro-
gramme, motivated partly by the logical separation question discussed above,
to characterize these classes.

• PV corresponds to FP, the class of search problems which can be solved in
deterministic polynomial time [16, 9].

• T 1
2 corresponds to PLS [23, 13]. A PLS problem is given by polynomial-time

neighbourhood and cost functions Nx and Cx and domain predicate Fx, such
that 0 ∈ Fx and if y ∈ Fx, then |y| ≤ |x|k for some fixed k. A solution to an
instance x is any y ∈ Fx such that either Nx(y) /∈ Fx or Cx(Nx(y)) ≥ Cx(y).
Such a y exists because costs cannot decrease indefinitely. A complete
problem for the class is to find a local minimum for a function on a bounded-
degree graph.

• T 2
2 corresponds to CPLS [28], a generalization of PLS described below.

• For k ≥ 1, T k2 corresponds to a class GIk defined by the k-turn game induc-
tion principle [43] (see also [5, 6]). Roughly speaking, a complete problem
for GIk is: given a sequence of k-round 2-player games, winning strategies
for opposite players in the first and last games, and reductions between
neighbouring games in the sequence, find an error in one of the strategies or
one of the reductions. Equivalent search problems include further general-
izations of PLS and principles about feasible Nash equilibria [41], and LLIk,
the k-round linear local improvement principle [24].

The theory T i2 is equivalent to a natural formalization of “every PΣp
i ma-

chine has a computation on every input”, essentially by Theorem 1. The search
problems above can thus be thought of as the projections onto TFNP of in-
creasingly strong computation models. This can be taken further: there are two
“second-order” bounded arithmetic theories, U1

2 and V 1
2 , which are equivalent

(with respect to their ∀Σb1 consequences) to similar statements about compu-
tations of, respectively, PSPACE and EXPTIME machines [9, 24]. In terms of
NP search problems, from [24, 7] we have:

7

PPA PPP

PPAD

FP

PLS ≡ GI1

CPLS ≡ GI2

GI3

GI4

LLIlog

LI

PWPP HOP RAMSEY

APPROX

Figure 1: A diagram showing some inclusions between selected classes in TFNP,
including our results. Some classes are named by their complete problems. Solid
arrows are strict inclusions, relative to some oracle. Dotted arrows are inclusions not
known to be strict. For separations among PPA, PPP, PPAD, PLS see [3, 32, 8, 10].
For other references see Sections 1.2 and 2.2. CPLS separates GI3 from APPROX
and also separates GI2 from HOP and PWPP. WEAKPIGEON separates APPROX
from PLS. HOP separates APPROX from PWPP. Solid arrows from PPP to HOP [11]
and from PPP to PWPP have been omitted for readability.

• U1
2 corresponds to LLIlog, the linear local improvement principle with poly-

nomially many rounds.3

• V 1
2 corresponds to LI, the local improvement principle.

One can think of the classes FP ⊆ GI1 ⊆ GI2 ⊆ · · · ⊆ LLIlog ⊆ LI as forming a
backbone for TFNP, arising natural from the hierarchy of bounded arithmetic
theories or of computation models – see Figure 1. This could be extended even
beyond bounded arithmetic, to say ∀Σb1(PA) or ∀Σb1(ZFC) [4, 44], or by using
potentially stronger systems of reasoning, as in [17].

However, experience suggests4 that it is difficult to find any natural “combi-
natorial” NP search problem that is not already provably total in U1

2 , and thus
reducible to LLIlog. In particular, U1

2 is strong enough to formalize the counting
arguments needed to prove the totality of complete problems for the well-known

3Unfortunately LLIlog is rather complicated to describe or use. The authors believe that
it is equivalent to the simpler game induction principle GI, which is like the principle GIk
of [43] but with polynomially many rounds.

4A related issue in propositional proof complexity is the difficulty of finding candidates for
separating the Frege and extended Frege proof systems [1].

8

classes PPA and PPP introduced in [35]. Thus, all problems in those classes are
reducible to LLIlog.

On the other hand the bijective pigeonhole principle, called OntoPIGEON
in the search problem literature, is a complete problem for the class PPAD [8]
which is contained in both PPA and PPP. Standard proof-complexity lower
bound arguments for the pigeonhole principle [27, 39] show that this problem is
not provably total in any theory T k2 and not reducible to any GIk.

Finally let us mention the search problem class PWPP [22], based on the
injective weak pigeonhole principle search problem WEAKPIGEON, which is
contained in GI2 and PPP but not in PLS [30, 25]. We will discuss this and two
other search problems, RAMSEY and HOP, in Section 2.

It is open whether the hierarchy GI2 ⊆ GI3 ⊆ . . . is strict. This is essentially
the same problem as the separation of ∀Σb1(T i+1

2) from ∀Σb1(T i2) discussed above.

1.3 True and provable reductions

In the previous section, we did not explicitly say what it means for a search
problem class to correspond to a theory T . The obvious meaning, that the class
is precisely ∀Σb1(T), potentially has a problem. Namely, such a class does not
have the desirable property of being closed under many-one reductions, unless
the reductions work provably in T . There may even be two PV formulas R1

and R2 which “semantically” define the same relation on N, and thus the same
search problem by the usual complexity-theoretic definition, but are such that T
proves that one is total but not the other.

There are two natural ways around this issue. One is to define our class
as the closure of ∀Σb1(T) under many-one reductions. The other is to stick to
theories T that contain the set ∀PV(N) of all true ∀PV sentences, and exploit
the fact that the statement that a reduction works is such a sentence.

The next lemma shows that, for theories of the kind we consider, these two
approaches have the same result. In this paper we prefer the second one.

Lemma 4 (folklore, see also [18]). Let Q(x, y) be an NP search problem. Let T
be a bounded arithmetic theory containing PV and with axioms closed under
substituting polynomial-time relations for oracles. Then (1) and (2) below are
equivalent. If T contains S1

2 , then (3) is also equivalent.

1. Q is provably total in T + ∀PV(N).

2. Q ≤ R for some TFNP problem R provably total in T .

3. Q is Turing reducible to a TFNP problem R provably total in T .

Proof. Suppose (1) holds. We have that T+∀z ϕ(z) ` ∀x∃y Q(x, y) for some PV
formula ϕ such that ∀z ϕ(z) ∈ ∀PV(N). Hence T ` ∀x [∃z ¬ϕ(z) ∨ ∃y Q(x, y)].
Since T is a bounded theory, by Parikh’s theorem [36] we may add some term
t(x) bounding both existential quantifiers. Therefore T ` ∀x∃y < t(x)R(x, y)
where R(x, y) is the formula ¬ϕ(y)∨Q(x, y). Now R is an NP search problem,

9

provably total in T , and Q is reducible to R in N using the identity function,
since ϕ(y) is true for every y and every oracle. Hence (2) holds.

Now suppose (2) holds. Then (3) is immediate. For (1), from the definition
of a reduction, there are PV function symbols f, g and a relation symbol P such
that, for every oracle A,

〈N, A〉 � ∀x ∀y′ [R(f(x), y′;P (x, ·))→ Q(x, g(x, y′);A)].

Now define the search problem R∗(x′, y′;α) := R(x′, y′;P (x, ·)). Then ∀PV(N)
proves ∀x′ ∃y′R∗(x′, y′) → ∀x∃y Q(x, y), and by the property of closure under
subsitution for the oracle, T proves that R∗ is total. Hence we have (1).

Lastly we show that (3) implies (1) under the stronger assumption. Turing
reducibility means that there is a polynomial-time oracle machine M which, on
input x, makes oracle queries to R and, if the replies are correct, outputs y such
that Q(x, y). Formally, for every A, 〈N, A〉 � ∀x∀wϕ(x,w) for a PV relation
ϕ(x,w) expressing that: if w is a computation of M on input x, and every oracle
query x′ in w has a reply y′ in w such that P (x′, y′), then Q(x, output(w)).
But T proves that, for all x, such a w exists, since Σb1-LIND is enough to
construct w query by query. Hence T + ∀PV(N) ` ∀x ∃y Q(x, y).

2 Main definitions and results

2.1 Coloured polynomial local search

We study a search problem introduced in [28]. We will need several results
about it from [42], so we take the definition verbatim from there.

Let a, b, c be parameters. Consider a levelled directed graph whose nodes
consist of all pairs (i, x) from [0, a) × [0, b). We refer to (i, x) as node x on
level i. If i < a − 1, this node has a single neighbour in the graph, node fi(x)
on level i + 1. Every node in the graph is coloured with some set of colours
from [0, c). The principle CPLS, coloured polynomial local search, says that the
following three statements cannot all be true:

(i) Node 0 on level 0 has no colours.

(ii) For every node x on every level i < a − 1, and for every colour y, if the
neighbour fi(x) of x on level i+ 1 has colour y, then x also has colour y.

(iii) Every node x on the bottom level a− 1 has at least one colour, u(x).

When the parameters a, b, c are universally quantified, CPLS is expressed as a
∀Σb1 sentence about an oracle α encoding the functions fi and u and a predi-
cate G, where Gi(x, y) means “node x on level i has colour y”.

To describe it explicitly as a search problem: the inputs are the param-
eters a, b, c and a solution is a witness that one of items (i)-(iii) above fails.
That is, a colour y such that G0(0, y); or a node (i, x) and a colour y such that
Gi+1(fi(x), y) ∧ ¬Gi(x, y); or a node (a− 1, x) such that ¬Ga−1(x, u(x)).

10

To see that the principle is true, or equivalently that the search problem is
total, suppose that (i)-(iii) hold simultaneously. Then we can reach a contra-
diction by arguing inductively on i that for all i, some node on level i has no
colours. This argument can be formalized as a proof of CPLS in T 2

2 . Moreover,
this has a kind of converse, in that it is shown in [28] that CPLS is complete
for the search-problem class ∀Σb1(T 2

2) with respect to many-one reductions.
It is worth pointing out that CPLS is a generalization of PLS in the sense

that it simplifies to a PLS-complete problem if the parameters are restricted
in a certain way, for instance if we fix the number of colours c to 1. In that
situation, given a, b, we define the domain F of the PLS problem by putting
(i, x) ∈ F if and only if ¬Gi(x, 0) holds, that is, if x does not have the unique
possible colour 0 on level i. For (i, x) ∈ F , let N(i, x) := (i + 1, fi(x)) and
C(i, x) := a− i.

Thus, one way of looking at CPLS is that the parameter a is a bound on
possible costs, b is a bound on the number of potential neighbours of a given
element, and c is a bound on the number of potential reasons why an element
could fail to be in the domain. It can be shown that CPLS becomes a PLS
problem whenever one of the three parameters is constrained to be is at most
polylogarithmic in the maximum of the two others.

2.2 Retraction WPHP and Σp
2 search problems

The retraction weak pigeonhole principle [21] asserts that, for n > 0, given
two functions f : n → 2n and g : 2n → n there must be some v < 2n such that
f(g(v)) 6= v. It is true, because otherwise simultaneously f would be a surjection
and g an injection. If f and g are polynomial time, this principle naturally gives
rise to a problem in TFNP. We will be in a situation where f and g are PNP,
and for this we will define a more complex kind of search problem.

Definition 5. A Σp2 search problem is specified by a coNP relation R(x, y) and
a polynomial bound q such that ∀x∃y < 2q(|x|) R(x, y). We will often assume
that the bound q is implicit in R and will not write it. The problem represents
the search-task of finding such a y, given x.

As this definition makes sense outside the context of bounded arithmetic,
we have written it in standard complexity-theory notation. But we could alter-
natively define a Σp2 search problem as a true ∀Σb2 sentence, in the style of our
syntactical definition of TFNP problems.

A basic example of such a search problem is: for a fixed PNP machine M ,
given an input, find a computation of M on this input. Here we assume that
a computation includes witnesses for all NP queries that get the answer YES,
so that the property of being a (correct) computation is thus coNP. We specify
precisely what we mean, as it will be important in what follows.

Definition 6. We define a Πb
1 formula “w is a computation of M on in-

put v”. The formula interprets w as a sequence q̄, r̄, ȳ of respectively NP queries,
YES/NO replies and witnesses to replies. It expresses that

11

1. For each i, qi is the i-th query asked by M in a computation on input v,
assuming the previous replies were r1, . . . , ri−1,

2. For each i, if reply ri is YES then yi witnesses this,

3. For all sequences z̄ of possible counterexamples, for each i, if reply ri is
NO then zi is not a counterexample to this.

The machine only accesses the oracle α via the NP queries. We say that w is a
precomputation of M on input v if it satisfies 1. and 2. above.

Note that being a precomputation of M on a given input is a PV formula, so
it makes sense to speak of precomputations also when α is only partially defined
(as long as the defined part is large enough to verify 2. above). Note also that it
is implicit in clause 1. of the definition that each query asked in a computation
of M depends only on the input and the previous YES/NO replies to queries,
not on the witnesses to the previous replies.

We now give our main definitions.

Definition 7. rWPHP2 is a class of Σp2 search problems. A problem in the class
is specified by PNP machines computing functions fx(u) and gx(v), where we
treat one argument x as a parameter. The functions fx and gx are constrained
to take values less than 2x and x respectively. An input to the problem is a size
parameter x. A solution is a pair 〈v, w〉 such that v < 2x, w is a computation
of fx(gx(v)) in the sense of Definition 6, and the output of w is not v.

Definition 8. An NP search problem Q(x, y) is PLS counterexample reducible
to a Σp2 search problem R(x′, y′) if there is a PLS problem P (x′′, y′′) and poly-
nomial time functions d and e with the following property: for any x, y′, y′′ such
that P (〈x, y′〉, y′′), either

1. d(x, y′′) witnesses that R(e(x), y′) is false, or

2. Q(x, d(x, y′′)).

As in Definition 2, the oracle called by R is allowed to be a polynomial-time
variant of the oracle α called by Q. Precisely, there is a polynomial-time rela-
tion A querying α such that, in the description above, R queries A(x, ·) as its
oracle rather than α.

Definition 9. The search problem class APPROX consists of all NP search
problems which are PLS counterexample reducible to an rWPHP2 problem.

The definition of PLS counterexample reducibility should be understood as
follows. We are given x and want to find y such that Q(x, y). We create an
input e(x) to R and are given a purported solution y′ for which it is claimed
that R(e(x), y′) – since R is a Σp2 search problem, this is a coNP claim which
we cannot check directly. We then use 〈x, y′〉 as input for our PLS problem P ,
and find a solution y′′. Then either 1. or 2. above holds, that is, either the

12

coNP claim about R was false and d(x, y′′) is a counterexample, or d(x, y′′) is a
solution to our original problem.

As far as we know, this notion of reducibility has not been studied before.
We give some examples. Unfortunately, in the examples we know which are
relatively simple, one part or another of the definition becomes trivial.

Firstly, every PLS problem Q(x, y) is PLS counterexample reducible to the
trivial Σp2 search problem defined by letting R(x′, y′) hold for all y′ < 2|x

′|. In
the reduction, both d and e are the identity mapping and P (〈x, y′〉, y′′) holds
exactly if Q(x, y′′) does.

Now consider four search problems:

1. The Σp2 problem TOURNAMENT: given x and a binary oracle α repre-
senting a tournament on the set of vertices [0, x), find y coding a set of
at most dlog xe vertices which dominates the tournament, that is, coding
vertices y1, . . . , yk such that for all z < x we have α(yi, z) for some i.

2. The TFNP problem HOP (the Herbrandized ordering principle5 [11]):
given x and oracles for a binary relation 4 and a unary function h, find
either a witness that 4 restricted to [0, x) is not a total ordering, or a
witness that h is not the 4-immediate predecessor function on [0, x).

3. The TFNP problem RAMSEY: given x and an oracle R for a graph
on [0, x), find y encoding a set s ⊆ [0, x) of cardinality blog x/2c such
that [s]2 is homogeneous with respect to R.

4. The TFNP problem WEAKPIGEON6: given x and an oracle g for a func-
tion from [0, 2x) to [0, x), find v, v′ < 2x such that v 6= v and g(v) = g(v′).
The class of problems that are reducible to WEAKPIGEON was given the
name PWPP in [22].

HOP is reducible to TOURNAMENT in the following sense. We are given
a size x and a binary relation 4 on [0, x) for which we want to solve HOP.
Consider 4 as a tournament on [0, x) and give it as input to TOURNAMENT.
Suppose s = {y1, . . . , yk} is a purported solution to TOURNAMENT, with k
polylogarithmic in x. By polynomial-time search we can find either a witness
in s that 4 is not a total ordering (thus solving HOP), or a 4-least element yi
of s. In the second case, compute y′ := h(yi). If y′ < yi, then yi is a solution
to HOP. Otherwise, comparing y′ to each yj ∈ s will either give us a witness
that 4 is not a total ordering or reveal that y′ witnesses that s is not a correct
solution to TOURNAMENT.

The above is a description of a PLS counterexample reduction of HOP to
TOURNAMENT. The function e translating input to HOP into input to TOUR-
NAMENT is the identity. We then compute from s either a solution to HOP

5Herbrandized refers to the presence of the predecessor function h which turns the task of
finding the 4-smallest element of [0, x), which is naturally a Σp

2 problem, into a TFNP problem.
The generalized iteration principle of [14] is similar in spirit, as is the graph ordering principle
in the propositional proof complexity literature.

6This is different in a non-essential way from how this problem is defined in [22], where it
takes as input a circuit for the function g.

13

or a witness that s is not a solution to TOURNAMENT. However we can do
this computation in polynomial time, while Definition 8 more generally allows
it to be done by a call to a PLS problem P (assisted by a polynomial time
“decoding” function d).

Our final examples of PLS counterexample reducibility are related to the
class APPROX. We will show in Theorem 12 below that this class coincides
with the class of NP search problems that are provably total using approximate
counting. This has the following consequence.

Corollary 10 (of Theorem 12). The NP search problems HOP, RAMSEY
and WEAKPIGEON are in APPROX. Therefore they are PLS counterexample
reducible to rWPHP2 problems.

Proof. The problems RAMSEY [40, 21], HOP [11] and WEAKPIGEON are all
provably total in APC2. (This is also true for a stronger version of HOP in
which � is only required to be a partial ordering, not a total ordering [11].)

We are only aware of a simple direct proof of the reduction in the case of
WEAKPIGEON. Suppose we are given a polynomial-time function g and a
parameter x as input. To solve WEAKPIGEON we want to find a collision
in g, which we interpret as a function from 2x to x. Let a function f be given
by a PNP machine inverting g, as follows. On input u < x, f queries whether
∃v<2x (g(v) = u). If the answer is NO, f gives up and outputs 0. If the answer
is YES, f outputs the maximal such v, found by binary search. Consider the
problem in rWPHP2 specified by f , g and the parameter x. Recall that a
solution is a pair 〈v, w〉 such that v < 2x, w is a computation of f(g(v)) in the
sense of Definition 6, and the output of w is not v.

In the PLS counterexample reduction of WEAKPIGEON to this rWPHP2

problem, the auxiliary functions d and e will be the identity. The reduction
procedure P will once again be polynomial-time. To describe it, suppose we are
given v and a precomputation w of f on input u = g(v), with output v′ 6= v (we
can ignore the computation of g(v), since g is polynomial time). We want to
either find a collision in g, or a witness that w is not a computation of f , that
is, that some NO reply recorded in w is wrong.

First suppose that v′ = 0 and was output by f because the reply to the
first query “∃z < 2x (g(z) = u)?” was NO. Then v is a witness that this reply
is wrong. Otherwise, v′ was found by binary search. In this case, we follow w
until the first place where the binary search interval excludes v. Then, if the
interval is strictly below v, we can use v to witness that the most recent NO
reply was wrong. If it is above v, then this has to be the result of a YES
answer, with a witness v′′ > v recorded in w. Thus we have found a collision,
since g(v′′) = g(v) = u.

Finally let us record here a fact which appears in Figure 1.

Proposition 11. Relative to an oracle, HOP is not reducible to WEAKPIGEON
and therefore is not in PWPP.

14

This is implicit in the proof in [11] that T 1
2 +iWPHP does not prove HOP

is total. It explicitly follows from [33], which generalizes this result and works
over the stronger base theory ∀PV(N).

2.3 Results

Recall that APPROX was defined in the last subsection as the set of NP search
problems which are PLS counterexample reducible to an rWPHP2 problem.

Theorem 12. ∀Σb1(APC2 + ∀PV(N)) = APPROX.

In other words, APPROX captures the class of TFNP problems which are
provably total using approximate counting. This is proved in Lemmas 18 and 20
in Section 3, by applying standard witnessing techniques from bounded arith-
metic to the definition of the theory APC2.

Theorem 13. CPLS is not in APPROX.

This is proved in Section 5, using a lemma about random oracles proved
in Section 4. We briefly sketch the proof. We first fix an alleged PLS coun-
terexample reduction of CPLS to a problem from rWPHP2 specified by a pair
of PNP functions f and g, then choose a large size parameter n and use it to
set suitable values for the parameters a, b, c of CPLS. We define a notion of
a “legal” partial oracle, which in particular is one which does not contain any
witness to CPLS. We adapt a lemma on random restrictions from [42] to show
that with high probability a random partial oracle ρ from a certain distribution
will “fix” YES or NO replies to all NP queries made in a PNP computation, in
the sense that these replies will never become wrong in any legal extension of ρ
(Lemma 30). It follows that most partial oracles ρ from this distribution will
fix computations of (f ◦ g)(v) in this sense on most inputs v. This is enough
for ρ to determine a solution 〈v, w〉 to our instance of rWPHP2 for which it is
difficult to find a counterexample (Lemma 31). Finally we again adapt a proof
from [42] to show, by an Adversary argument in which the Adversary’s strategy
uses only legal extensions of ρ, that our PLS reduction is not able to find a
witness to CPLS from 〈v, w〉.

Our main result about bounded arithmetic, answering the question posed
in [11], is an immediate consequence of Theorems 12 and 13:

Corollary 14. The principle CPLS is not provable in APC2. Since it is prov-
able in T 2

2 , it follows that, in the relativized setting, APC2 does not prove all
∀Σb1 consequences of full bounded arithmetic T2.

This naturally also limits the strength of theories that are provable in APC2,
such as the following one based on the usual (non-Herbrandized) ordering prin-
ciple.

Corollary 15. Consider the theory consisting of T 1
2 together with axioms stat-

ing that for every PV formula R(x, y) and every a, if R is a partial ordering
on [0, a) then [0, a) contains an R-minimal element. This theory, in the rela-
tivized setting, is strictly weaker than T 2

2 .

15

Proof. This theory is provable in T 2
2 by straightforward induction on a. It is

also provable in APC2 by an entirely different proof involving a reduction to the
tournament principle, as is shown in [11] (by an argument due to Jeřábek). By
Corollary 14, the theory does not prove CPLS, hence is weaker than T 2

2 .

Both CPLS and the ordering principle have short proofs in the resolution
propositional proof system, and the argument above could also be used to show
that the ordering principle is not “complete” for resolution, in the sense that
there are things with short proofs in resolution which do not follow from it. But
it is not clear what the most suitable notion of “follow from” is here.

Corollary 16. CPLS is not polynomial-time Turing reducible to RAMSEY
or HOP.

Proof. RAMSEY and HOP are in APPROX by Corollary 10. If CPLS were
polynomial-time Turing reducible to either of these problems, then Lemma 4
would imply that CPLS is provable in APC2 + ∀PV(N), contradicting Theo-
rem 12 and Theorem 13.

3 Witnessing and definability

This section contains our main technical work in logic: a proof of Theorem 12
via two lemmas corresponding to the two containments in the statement of the
theorem. The proofs assume some familiarity with bounded arithmetic.

Intuitively, APC2 is a combination of T 1
2 and the weak pigeonhole principle,

and what we show is that the NP search problems provably total in APC2 arise
as a combination of PLS (which is known to correspond to T 1

2 [13]) and the
weak pigeonhole principle, with an important difference that, while a proof can
make many “calls” to WPHP, our reductions only allow one call. We also
introduce the following technical condition on reductions, which we will need in
our non-reducibility proof in Section 5.

Definition 17. We say that a NP search problem Q is cleanly PLS coun-
terexample reducible to a Σp2 search problem R, if Q is PLS counterexample
reducible to R as in Definition 8 with the extra condition that the function e,
which produces inputs to R from inputs to Q, does not make any oracle calls.

It may be helpful to think of such an e as a translation between size param-
eters, for which the structure of the oracle does not matter.

Lemma 18. Every NP search problem provably total in APC2 + ∀PV(N) is
cleanly PLS counterexample reducible to an rWPHP2 problem.

Proof. Let Q(x, y) be an NP search problem. Assume that

APC2 + ∀z ϕ(z) ` ∀x∃y Q(x, y),

where ϕ(z) is a PV formula such that N � ∀z ϕ(z) for all oracles. Thus we have

APC2 ` ∃y Q(x, y) ∨ ∃z ¬ϕ(z).

16

Writing out the definition of APC2, this means

T 1
2 + ∀b, c∃v<2b∀u<b e(c, u) 6= v ` ∃y Q(x, y) ∨ ∃z ¬ϕ(z)

where the formula on the left is sWPHP for a universal PNP machine e(c, u)
running code c on input u with time bound |c|. The quantifier ∀b, . . . should
strictly speaking be ∀b 6=0, . . . but we suppress this here and below for the sake
of readability. Replacing T 1

2 with the stronger theory S2
2 and moving sWPHP

to the right hand side gives

S2
2 ` [∃b, c<s′(x) ∀v<2b∃u<b e(c, u) = v] ∨ ∃y Q(x, y) ∨ ∃z ¬ϕ(z), (3)

where we have also used Parikh’s theorem [36] to bound b and c by some

term s′(x). We may assume s′(x) has the form 2|x|
k

+x for some k ∈ N, where
“+x” is included to make it possible to recover x from s′(x) as required below.

The formula in square brackets asserts that sWPHP fails for e for parame-
ters b, c less than s′. By a standard technical fact stated and proved below as
Lemma 19, we can amplify this failure to a PNP function F which is a surjec-
tion from (s′)5 to 2(s′)5, with no parameters. This lets us remove one block of
existential quantifiers from (3) to give, setting the term s to be (s′)5,

S2
2 ` [∀v<2s∃u<s F (u) = v] ∨ ∃y Q(x, y) ∨ ∃z ¬ϕ(z). (4)

To match the definition of rWPHP2, we define a PNP function of two argu-
ments a, u by fa(u) = min(F (u), 2a− 1). Then (4) is equivalent to

S2
2 ` [∀v<2s∃u<s fs(u) = v] ∨ ∃y Q(x, y) ∨ ∃z ¬ϕ(z). (5)

The sentence in (5) is ∀Σb2, so by Buss’ witnessing theorem for S2
2 ([9]) there is a

PNP machine which, provably in T 1
2 , maps the input parameters x, v to a triple

〈u, y, z〉 witnessing one of the three existential quantifiers. Let g be defined so
that gs(x)(v) first computes x from s(x) and then outputs the first component
u of this witnessing function applied to 〈x, v〉, as long as u < s; otherwise, g
outputs 0. We have

T 1
2 ` [∀v<2s fs(gs(v)) = v] ∨ ∃y Q(x, y) ∨ ∃z ¬ϕ(z).

Now, fs(gs(v)) = v can be written as a Πb
2 formula:

∀w [w is a computation of fs(gs(v))→ output(w) = v],

where w is suitably bounded by a term in x, and “w is a computation of
fs(gs(v))” is a Πb

1 formula as in Definition 6, describing the PNP machine that
first computes g and then computes f on the output.

So we have

T 1
2 ` ∀v<2s∀w [w is not a computation of fs(gs(v)) ∨ output(w) = v]

∨ ∃y Q(x, y) ∨ ∃z ¬ϕ(z).

17

The formula in square brackets is now Σb1, so by the PLS witnessing theorem
for T 1

2 ([13]) there is a PLS problem P (x′′, y′′) witnessing this whole sentence.
That is, if we solve P on input x′′ = 〈x, v, w〉 and find y′′ such that P (x′′, y′′),
then one of the following holds:

1. w is not a precomputation of fs(gs(v)), or has output v,

2. y′′ is a tuple containing a witness that some NO reply in w is wrong,

3. y′′ is a tuple containing a witness to ∃y Q(x, y).

We know that y′′ cannot contain a witness to the last disjunct ∃z ¬ϕ(z) as by
assumption N � ∀z ϕ(z).

Using the notation of Definition 8, letting d be the function that outputs the
witness of incorrectness in case 2., and the witness to ∃y Q(x, y) in case 3., and
setting e(x) = s(x), we see that Q is cleanly PLS counterexample reducible to
the rWPHP2 problem given by f and g.

To complete the proof of Lemma 18 we need a technical lemma from [45,
Section 2] about “amplifying” failures of WPHP.

Lemma 19. Let e be a PNP function. There is a PNP function F such that
provably in S2

2 , if e(c, ·) is a surjection b → 2b then F (a, b, c, ·) is a surjection
b → 2|a|b. Furthermore there is a PNP function F ′ such that provably in S2

2 ,
if e(c, ·) is a surjection b → 2b for some 0 < b, c < s, then F ′ is a surjection
s5 → 2s5 (with no parameters).

Proof. Let h(a, b, c, u) be the function that, assuming u < 2|a|b, interprets u as
a pair 〈u0, u1〉 with u0 < b, u1 < 2|a|, and outputs the number e(c, u0)2|a| + u1.
If e(c, ·) is a surjection from b onto 2b, then h(a, b, c, ·) is a surjection from 2|a|b
onto 2|a|+1b. Consider now the function F (a, b, c, u) which, given u < b, applies
the composition of e(c, ·), h(1, b, c, ·), h(2, b, c, ·), h(4, b, c, ·), . . . , h(2|a|−1, b, c, ·),
to u, in the order shown. If e(c, ·) is a surjection from b onto 2b, then F (a, b, c, ·)
is a surjection from b onto 2|a|b. To prove this, we consider any fixed number
v < 2|a|b and show by reverse induction on i < |a| − 1 that v can be obtained
by applying the composition of h(2i, b, c, ·), h(2i+1, b, c, ·), . . . , h(2|a|−1, b, c, ·) to
some argument u below 2ib. This is where we need the scheme Σb2-LIND, which
is available in S2

2 .
For the last claim, we note that if we code quadruples as 〈〈·, ·〉, 〈·, ·〉〉 where

〈·, ·〉 is Cantor’s pairing function, then for each k larger than a fixed nat-
ural number any quadruple of numbers less than k has code less than k5.
We treat the argument x < s5 of F ′ as a quadruple 〈a′, b′, c′, u′〉 and set
F ′(〈a′, b′, c′, u′〉) := F ((a′ + 1)6, b′, c′, u′). Since such arguments x will cover
all quadruples of numbers below s, it follows from the properties of F that
F ′ contains every number less than 26|s|b in its range, and in particular every
number less than 2s5.

The next lemma is the converse to Lemma 18.

18

Lemma 20. If Q is an NP search problem PLS counterexample reducible to an
rWPHP2 problem, then Q is provably total in APC2 + ∀PV(N).

Proof. Let Q be an NP search problem that is PLS counterexample reducible to
the rWPHP2 problem given by the functions f and g. Let P (x′′, y′′), d, e be as
in the definition of PLS counterexample reducibility. Consider the PV formula
ξ(x, v, w, y, y′′) defined by

v < 2e(x) ∧ P (〈x, 〈v, w〉〉, y′′) ∧ y = d(x, y′′)

∧ [y does not witness that w is not a computation of fe(ge(v)) 6= v],

with y′′ suitably bounded. We view ξ as defining an NP search problem with
input x and output 〈v, w, y, y′′〉. Notice that ξ(x, v, w, y, y′′) implies thatQ(x, y),
so we have Q ≤ ξ.

We claim that APC2 proves that ξ is total. To see this, work in APC2

and consider some input x. By sWPHP(PV2), there is some v < 2e(x) which
is outside of the range of fe(x) on inputs below e(x). By T 1

2 , there is some
computation of fe(x)(ge(x)(v)), say w, which by the choice of v must produce an
output different from v. Again by T 1

2 , there is a solution to P on input 〈x, 〈v, w〉〉,
say y′′. Clearly, y = d(x, y′′) cannot witness that w is not a computation
of fe(x)(ge(x)(v)) with output different from v, so ξ(x, v, w, y, y′′) holds. This
proves the claim.

We have shown that Q is reducible to a problem provably total in APC2. It
follows from Lemma 4 that Q is provably total in APC2 + ∀PV(N).

Lemmas 18 and 20 have the following additional consequence.

Corollary 21. The class APPROX can equivalently be defined as the set of NP
search problems which are cleanly PLS counterexample reducible to an rWPHP2

problem.

4 Fixing lemma

This section contains our main technical result in complexity, Lemma 27, which
is an extension of the “fixing lemma” from [42]. There, the fixing lemma is a
limited switching lemma which says the following: given suitable parameters
a, b, c for CPLS, for a well-chosen probability distribution on partial restric-
tions to an oracle α encoding (fi)i<a−1, u, (Gi)i<a, a random restriction has a
relatively high probability of determining the value of a narrow CNF in propo-
sitional variables standing for bits of α. Importantly, the restriction does not
reveal a witness to CPLS; in particular, the (unsatisfiable) CNF asserting that
there is no witness to CPLS has to be determined to be true.

In our application in the proof of Theorem 13, we want to fix answers to the
NP queries made in a PNP computation. Each query is (the negation of) a CNF,
but now there are many of them, and they are made adaptively depending on
earlier replies. So we cannot use the lemma from [42] directly. Instead we adapt

19

the proof to show that given a low-depth decision tree labelled with CNFs, with
high probability a random restriction fixes the truth values of all CNFs along
some branch. This is the basic content of Lemma 27 below.

Our definitions are essentially as the same as in [42], and so is one of the
proofs. We will repeat some definitions almost verbatim, but will only give
high-level descriptions of some other definitions and of the unchanged proof
details.

We think of the bits of the oracle as propositional variables. So, for ex-
ample, for each node (i, x) there are log b variables (fi(x))0, . . . , (fi(x))log b−1

expressing the value of fi(x). A total oracle is defined by a total assignment to
all variables. We will be working with partial oracles, which we will also call
partial assignments or restrictions.

We copy in full the definition of a random restriction from [42]. First, a path
in a partial assignment β is a maximal sequence (i, x0), . . . , (i+ k, xk) of nodes
such that fi+j(xj) = xj+1 in β for each j ∈ [0, k). Note that a path may consist
of a single node (i, x) if x is neither in the domain of fi nor in the range of fi−1.
If all functions fi are partial injections, then every node is on some unique path.

Definition 22. ([42, Definition 5.7]) Fix parameters 0 < p, q < 1. Let Rp,q be
the distribution of random restrictions chosen as follows.

R1. For each pair i < a and x < b, with probability (1 − p) include (i, x) in
a set Z. For each i < a, choose fi uniformly at random from the partial
injections from the domain {x < b : (i, x) ∈ Z} into b.

R2. Set colours on the path beginning at (0, 0) so that Gi(x, y) = 0 for all y
for all nodes (i, x) on that path.

R3. For every other path π, with probability (1 − q) colour π randomly with
one colour. That is, choose uniformly at random a colour y and, for every
node (i, x) on π, set Gi(x, y) = 1 and then set Gi(x, y

′) = 0 for all y′ 6= y.

R4. Finally consider each node (a − 1, x) on the bottom level. It is on some
path π. If π was coloured at step R3, then set u(x) = y where y is the
unique colour assigned to π (that is, Ga−1(x, y) = 1). Otherwise leave u(x)
undefined.

We will also use Rp,q to denote the support of this distribution.

We take the definitions of legal restrictions and good restrictions from [42,
Definition 5.4 and Lemma 5.8]. Legal restrictions are those that meet a minimal
standard of “niceness” – on every path either no colour variables are set, or they
are all set in one of a few particular ways which do not immediately witness
CPLS. Among restrictions ρ ∈ Rp,q, the only ones that are not legal are those
that contain a path connecting (0, 0) with some node of the form (a−1, x). Our
lower bound in the next section will make use of a game played between a Prover,
who is trying to witness CPLS by making oracle queries, and an Adversary who
is trying to answer queries in a way that does not witness CPLS. It will turn

20

out that the Adversary can restrict herself to answers that come from legal
restrictions. In effect, we do not have to worry about the evaluation of formulas
under restrictions which are not legal.

A good restriction is a legal one which is of typical size, measured in various
ways – in particular no path is very long, and there is a reasonable fraction of
variables unset at every level. A bad restriction is one which is not good.

It may be useful to keep in mind what the analogous definitions would be
if we were dealing with the more familiar pigeonhole principle PHP instead
of CPLS. A legal restriction would be any restriction representing a partial
injection. With probability parameter p, a random restriction would choose
holes independently with probability 1−p, and then randomly map some pigeons
to the chosen holes. A good restriction would be a legal one that leaves at least,
say, a fraction p/2 of holes unset.

We choose a suitable large n and fix our parameters as a = b = n, c = bn1/7c,
p = n−4/7 and q = n−2/7, where b and c are powers of 2.

Lemma 23. ([42, Lemma 5.8]) The probability that a random restriction is bad
is exponentially small in n.

Definition 24. Let ρ be a restriction. We say that a CNF B is:

• fixed to 0 by ρ if ρ falsifies B, that is, if for some conjunct in B each literal
in the conjunct is set to 0 by ρ,

• fixed to 1 by ρ if it is not fixed to 0 by any legal extension of ρ.

Note that a legal restriction can fix a CNF to at most one truth value. The
following proposition is therefore obvious.

Proposition 25. If ρ fixes a CNF B then every extension of ρ also fixes B to
the same value.

It follows from the proof of the “fixing lemma” [42, Lemma 5.9] that, for k
reasonably small compared to n, the probability that a given k-CNF is fixed by
a random restriction is relatively high – in fact, the probability that it is not
fixed is O(kn−1/7). We need a slightly more general version that also bounds
some conditional probabilities.

Lemma 26 (conditional fixing lemma). Let A1, . . . , Am be a sequence of k-
CNFs and e1, . . . , em be a sequence of 0/1 values such that

Pr[ρ is bad | ρ fixes each Ai to ei] < 1/2.

Let B be a k-CNF. Then

Pr[ρ does not fix B | ρ is good and ρ fixes each Ai to ei] < 12kn−1/7.

Proof. If we remove the CNFs Ai, this is essentially the “fixing lemma” of [42,
Lemma 5.9] and our proof is almost identical. Define

F = {ρ ∈ Rp,q : ρ fixes each Ai to ei}
G = {ρ ∈ Rp,q : ρ is good}

S = {ρ ∈ F ∩G : ρ does not fix B}

21

so that our S is the intersection with F of the set S defined in [42]. The
assumption gives us that Pr[F ∩ G]/Pr[F] ≥ 1/2 and our goal is to show that
Pr[S]/Pr[F ∩G] is small.

Every ρ ∈ S does not falsify B but does have some legal extension which
falsifies B. Exactly as in [42] we define a function θ on S by θ(ρ) = σ′, where σ′

is a certain minimal legal extension of ρ. We have, over ρ ∈ S,

1. Pr[θ(ρ)]/Pr[ρ] ≥ 1
2n

1/7

2. θ is at most 3k-to-one

3. θ(ρ) ∈ F (although it may happen that θ(ρ) /∈ F ∩G).

Items 1 and 2 are proved as in [42]. Item 3 is immediate from Proposition 25.
Now partition S as S0, . . . , S3k−1 where Si = {ρ ∈ S : ρ is the ith preimage

of θ(ρ)}. Then

Pr[Si] =
∑
ρ∈Si

Pr[ρ] =
∑
ρ∈Si

Pr[θ(ρ)]
Pr[ρ]

Pr[θ(ρ)]
≤ 2n−1/7

∑
ρ∈Si

Pr[θ(ρ)]

≤ 2n−1/7 Pr[F]

where for the last inequality we use that
∑
ρ∈Si

Pr[θ(ρ)] ≤ Pr[F], since θ is
an injection from Si to F . This step is the main difference from [42], which
uses only that θ is an injection from Si to Rp,q, giving the weaker bound∑
ρ∈Si

Pr[θ(ρ)] ≤ Pr[Rp,q] = 1.

It follows that Pr[S] = Pr[S0] + · · · + Pr[S3k−1] ≤ 6kn−1/7 Pr[F]. Hence
Pr[S]/Pr[F ∩G] ≤ 12kn−1/7 as required.

Lemma 27. Consider a complete binary decision tree in which each internal
node is labelled with a k-CNF and has outgoing edges for NO and YES answers.
A node z and a restriction ρ are compatible if ρ is good and, for every CNF B
on the path down from the root to z, ρ fixes B to the value specified by the
outgoing edge along the path.

Let ε = Pr[ρ is bad]. A node z is big if Pr[ρ is compatible with z] > ε. Let
Sd be the set of good restrictions ρ which are compatible with some big node at
depth d. Then

Pr[Sd] ≥ 1− d · 12kn−1/7 − 2d+1ε.

This will be used in the next section, where the decision tree will model a
computation of a PNP machine. In particular d and k will be polylogarithmic
in n and ε will be exponentially small in n. It follows from the lemma that at
least one node on the bottom level, and thus at least one computation of the
machine, is compatible with some ρ.

Proof. We use induction on d. For the base case d = 0, first observe that every
good restriction is compatible with the root. It follows that the root is big, as
thanks to Lemma 23 we may assume that ε < 1/2. Hence S0 is just the set of
good restrictions.

22

At depth d in the tree, by the definition of compatibility each restriction
in Sd is compatible with exactly one big node. Consider any such big node z. It
is labelled with a k-CNF B and has a NO child z0 and a YES child z1. Define Pz
as

Pr[ρ is not compatible with either z0 or z1 | ρ is compatible with z]

This is equal to the probability that ρ does not fix B, under the condition that
ρ is good and ρ ∈ Cz, where Cz is the set of restrictions which correctly fix all
CNFs above z. Notice that Pr[ρ is bad] = ε, so in particular Pr[ρ is bad and
ρ ∈ Cz] ≤ ε. On the other hand Pr[ρ is good and ρ ∈ Cz] > ε, since z is big.
Hence of restrictions ρ ∈ Cz, the fraction which are good is at least 1/2. This
is the condition we need to apply Lemma 26, which gives Pz < 12kn−1/7.

Hence, summing over big nodes at level d, the probability that ρ is compat-
ible with some (not necessarily big) node at depth d+ 1 is at least∑

z∈{0,1}d, z big

(1− Pz) Pr[ρ is compatible with z] ≥ (1− 12kn−1/7) Pr[Sd].

To obtain Sd+1 we must finally remove the restrictions which are compatible
with non-big nodes at depth d + 1. But there are at most 2d+1 such nodes,
so the probability of being compatible with any of them is at most 2d+1ε. A
straightforward calculation shows that

(1−12kn−1/7)(1−d ·12kn−1/7−2d+1ε)−2d+1ε ≥ 1−(d+1) ·12kn−1/7−2d+2ε,

which completes the inductive step.

5 Non-reducibility

Consider a restriction ρ and a Σb1 formula ∃y<t θ(a, y), where θ is a PV formula
and a is some number. We say that this formula is witnessed in ρ if there is
some b < t such that θ(a, b) holds in ρ. That is, if you run the computation
verifying θ(a, b) and answer queries to α with values from ρ, these values are all
defined and the computation is accepting.

Recall from Definition 6 that a precomputation of a PNP machine contains
a correct witness for every YES reply, but may be wrong about NO replies.

Definition 28. Let ρ be a restriction. A precomputation w of a PNP machineM
is fixed by ρ if both of the following hold.

1. For every NP query in w with a YES reply, the witness provided by w is
correct in ρ.

2. No NP query in w with a NO reply is witnessed in any legal σ ⊇ ρ.

We say that ρ fixes a precomputation of M on input v if there is some such w.
For a function f computed by a PNP machine, we write ρ w : f(x) = y if ρ fixes
a precomputation w of f on input x that outputs y, and we write ρ f(x) = y
if ρ fixes some such w.

23

If w is fixed by ρ then ρ fixes, in the sense of Definition 24, each DNF
representing an NP query made in w. Note that w does not have to be a
computation of M relative to any complete oracle α extending ρ. In fact, if ρ is
legal and w contains a query like “is there a witness to CPLS?”, then w cannot
be a computation of M relative to any complete α, because α will contain a
witness to a YES answer, but the answer given in w will be NO.

The symbol is intentionally chosen to be the same one as in forcing. In
fact, one could formulate the concept of fixing in terms of a forcing relation,
with the restrictions as forcing conditions. However, attempting to preserve
all the trappings of forcing in the context of finite combinatorics leads to some
annoying issues, so in this paper we do not explore this possibility further.

Lemma 29. For a PNP function f , a restriction ρ and an input x, there is at
most one y such that ρ f(x) = y.

Proof. The progress of a PNP precomputation depends only on the YES/NO
replies to NP queries, not on the witnesses chosen. In all precomputations of
f(x) fixed by ρ these replies are necessarily the same.

Below a “suitable” n is one for which n1/7 is a power of two.

Lemma 30. Let M be a PNP machine, running on inputs x with |x| polyloga-
rithmic in n. For all suitable large enough n, for every such input x,

Prρ∼Rp,q
[ρ fixes a precomputation of M on x] ≥ 1− n−1/6.

Proof. We can model a run of M on v as a decision tree TM . The height d
of TM is bounded by the running time of M . At each node the tree makes
an NP query; by negating the reply, we can view this as a query to a k-CNF,
where k is some obvious syntactic upper bound on the time needed to verify a
witness to the query. Since M is a PNP machine, k can be chosen polynomial
in the running time of M . So we can apply Lemma 27 with k = d = |n|c for
some c ∈ N. This gives the lower bound

1− |n|2cn−1/7 − 2|n|
c+1ε (6)

on the probability that ρ is compatible with one of the leaves of TM . By
Lemma 23 the probability ε that ρ is bad is exponentially small in n, so the
bound in (6) is at least 1− n−1/6 for n sufficiently large.

Finally, suppose ρ is compatible with a leaf of TM . We form a precompu-
tation w by answering queries with the replies given on the path from the root
to the leaf. For each YES reply, it follows from the definition of fixing a DNF
to 1 (that is, fixing a CNF to 0) that ρ provides enough information to verify
at least one witness to the reply; we make some such witness part of w.

Lemma 31. Let a search problem in rWPHP2 be given by PNP functions
fx(u) and gx(v). Let s(n) be quasipolynomial in n. Then for all suitable large
enough n,

Prρ∼Rp,q
[there exist v 6= v′ such that ρ fs(gs(v)) = v′] ≥ 1− 3n−1/6.

24

Proof. Choose n sufficiently large. Let M be the PNP machine which takes
input n, v and computes fs(gs(v)) by first computing g and then f . As s
is quasipolynomial in n, we may assume that M satisfies the assumption of
Lemma 30 on input size. We will write just f and g below, suppressing the
parameter s.

Consider the machine M running on inputs v < 2s. By Lemma 30, for
any fixed v, a random ρ fixes a precomputation of M on v with probability at
least 1− n−1/6. It follows that with probability at least 1− 3n−1/6 a random ρ
simultaneously fixes precomputations for at least 2/3 of all inputs v (as otherwise
the fraction of pairs (ρ, v) in which ρ does not fix a precomputation on v would
be more than n−1/6). Fix such a ρ. In particular, there are at least s+ 1 many
distinct inputs v0, . . . , vs for which ρ fixes precomputations w0, . . . , ws.

The machine M first computes u = g(v), which is necessarily less than s,
and then computes f(u). Hence, by the pigeonhole principle, there is some u for
which there exist distinct i, j such that ρ wi : g(vi) = u and ρ wj : g(vj) = u.
(Here and below we are abusing our notation slightly, as wi and wj are really
precomputations of g followed by f .)

But, by Lemma 29, there must be a single v′ such that ρ wi : f(u) = v′

and ρ wj : f(u) = v′. At least one of vi and vj is distinct from v′; with-
out loss of generality suppose vi is. Let v = vi and w = wi. Thus we have
ρ w : f(g(v)) = v′ and v′ 6= v, as required.

Now consider the following Prover-Adversary game, given by an NP search
problem Q(x, y) and a Σp2 search problem R(x′, y′). At the start of the game,
the Prover queries R for some input x′, with |x′| polynomial in |x|, and the Ad-
versary gives a reply y′. Then the Prover repeatedly queries bits of the oracle α,
and the Adversary replies. The Prover is limited in the number of bits of α he
can remember at once, and can also forget bits to save memory. The Prover
wins when the partial oracle in his memory either witnesses Q(x, y) for some y,
or witnesses that R(x′, y′) is false. This game models PLS counterexample
reducibility, in the following sense.

Lemma 32. Suppose an NP search problem Q(x, y) is cleanly PLS counterex-
ample reducible to a Σp2 search problem R(x′, y′). Then for all inputs x the
Prover can win the game using only polynomially many (in |x|) bits of memory.

Proof. This is an immediate consequence of the definitions of PLS counterexam-
ple reducibility (Definition 8) and PLS. Using the notation of Definition 8, the
Prover first asks for y′ such that R(e(x), y′). Since the reduction is clean, the
value of e(x) does not depend on any oracle queries (Definition 17). He then
sets x′′ = 〈x, y′〉 and simulates the (exponential time, but polynomial mem-
ory) task of solving the PLS problem P (x′′, y′′) by starting with y′′ = 0 and
then repeatedly setting y′′ to Nx′′(y′′), finding domain elements of smaller and
smaller cost, until either the costs stop decreasing or y′′ leaves the domain Fx′′ .
Once y′′ satisfying P (x′′, y′′) is found, the Prover simulates the polynomial-time
computation of y := d(x, y′′). Then he simulates two additional polynomial-time
computations in order to check whether Q(x, y) holds and whether y witnesses

25

that R(x′, y′) is false. By the definition of PLS counterexample reducibility, one
of the two possibilities must hold, thus allowing the Prover to win the game.

During the entire game, the Prover never needs to remember more bits of
the oracle than are necessary to fix simultaneously the cost and membership of
the domain of one candidate solution to P , the computation of its neighbour,
the cost of the neighbour, and possibly computations of d and the witnessing
for Q and R.

We can now prove Theorem 13, that CPLS is not in the class APPROX.

Proof of Theorem 13. Assume that CPLS is in APPROX. Then by Corol-
lary 21 it is cleanly PLS counterexample reducible to an instance of rWPHP2

given by some functions f and g. This means that, by Lemma 32, the Prover
can win the Prover-Adversary game in which Q is CPLS and R is rWPHP2,
using only polynomially many bits of memory. We obtain a contradiction by
describing a strategy for the Adversary that defeats any Prover with small mem-
ory.

The Prover first makes his query x′ to rWPHP2. The Adversary then picks
a restriction ρ from Rp,q for which there exist a precomputation w and numbers
v, v′ < 2x′ with v 6= v′ such that ρ w : fx′(gx′(v)) = v′. By Lemma 31
such a ρ exists, and by Lemma 23 we may further assume that it is good. The
Adversary replies with 〈v, w〉.

Then, using the goodness of ρ and the limited size of the Prover’s memory,
the Adversary is able to have in hand throughout the game a legal σ ⊇ ρ which
contains all bits in the Prover’s current memory. Such a σ can never witness
CPLS, because it is legal. However, a legal σ also cannot witness that 〈v, w〉 is
not a solution to rWPHP2, because the only way to do this would be to witness
that one of the NO replies in w is wrong, which is impossible by the choice of ρ.
The details of the strategy are as in the proof of [42, Theorem 5.10].

6 Reformulation in propositional logic

In this section we sketch another way of presenting our main result about
bounded arithmetic, that CPLS, considered as a ∀Σb1 principle, is not prov-
able in APC2. We will use propositional proof complexity and in particular
the well-known Paris-Wilkie translation of relativized bounded arithmetic into
propositional logic [37].

Suppose ϕ is bounded formula of LPV, and that we have specified values n̄
for all free variables in ϕ. We can write a propositional formula 〈ϕ〉 with the
same semantics as ϕ, if we interpret propositional variables xn as bits α(n) of
the oracle. Below we will use narrow to mean “of width polylogarithmic in n̄”.

If ϕ does not mention the oracle α, then its translation 〈ϕ〉 is the propo-
sitional constant > or ⊥, depending on whether ϕ is true or false in N. If ϕ
is α(n), then 〈ϕ〉 is the propositional variable xn. If ϕ is a PV formula, then
〈ϕ〉 is a narrow CNF — we can take it to be the conjunction of clauses express-
ing “some oracle reply in w is false” over all possible rejecting computations w

26

of the polynomial-time machine deciding ϕ. If ϕ is a Πb
1 formula ∀x< n θ(x),

then again 〈ϕ〉 is a narrow CNF, namely the conjunction, over m < n, of the
translations 〈θ(x)〉 with x 7→ m.

The translation theorem we will use follows from the translation of T 1
2

into treelike Res(log) refutations from [26] and the connection between treelike
Res(log) and narrow resolution [29]. It can also be shown via PLS witnessing,
as described in [11].

Theorem 33. Let ϕ(n̄) be a Πb
1 formula and suppose T 1

2 ` ∀n̄¬ϕ(n̄). Then the
translations 〈ϕ〉 have narrow resolution refutations.

Now suppose for a contradiction that APC2 ` CPLS. Consider CPLS as
described in Section 4, with parameters a = b = n and c = bn1/7c and the
structure of the problem given entirely by the oracle. Let Q(n, y) assert that y
is a solution to CPLS on input n. We may bound y by some term t(n), such
that APC2 ` ∀n∃y < tQ(n, y). By the proof of Lemma 18, there exist PNP

machines f, g defining an instance of rWPHP2, and a term s(n), such that

T 1
2 ` ∀n∀v<2s∀w [w is not a computation of fs(gs(v)) ∨ output(w) = v

∨ ∃y<tQ(n, y)].

Let M be the PNP machine which takes input n, v and computes fs(gs(v)) by
first computing g and then f . We think of v as the “real input” to M and of n
as a parameter, and write CompM (v, w) for the Πb

1 formula from Definition 6
expressing that w is a computation of M on input v. Noting that the expression
on the right above is ∀Σb1, we can apply Theorem 33 to conclude that the family
of narrow CNFs

Φn,v,w := 〈v < 2s〉 ∧ 〈CompM (v, w)〉 ∧ 〈output(w) 6= v〉 ∧
∧
y<t

〈¬Q(n, y)〉

has narrow resolution refutations, that is, of width polylogarithmic in n, v, w.
Fix a suitable large n. By definition, no legal restriction σ can falsify any

clause in the last conjunct
∧
y<t〈¬Q(n, y)〉, as otherwise for some y there is an

accepting computation of Q(n, y) over σ, so σ witnesses CPLS.
By Lemma 31, with high probability for a random ρ from Rp,q there exist

v < 2s and a precomputation w of M on s with output(w) 6= v such that w is
fixed by ρ, meaning that all witnesses in w to YES answers are correct in ρ and
no query with a NO answer has a witness in any legal extension of ρ. It follows
that for such v, w, no clause in the first three conjuncts of Φn,v,w is false in any
legal extension of ρ. By Lemma 23 we can pick a good ρ for which such v, w
exist.

By the Prover-Adversary construction in the proof of [42, Theorem 5.10], we
can exploit the limited width of the refutation of Φn,v,w to find a legal extension
of ρ which falsifies one of the conjuncts of Φn,v,w. This is a contradiction.

27

7 Open problems

The random resolution propositional proof system was introduced in [11]. Very
roughly speaking, a refutation of a CNF F in this system is a refutation of
F ∧A, where A is any CNF which is true with high probability.

Suppose a sentence ∀nϕ(n), with ϕ a Σb1 formula, is provable in the sub-
theory of APC2 consisting of T 1

2 together with the surjective WPHP only for
polynomial time functions. It was shown in [11] that this implies that the trans-
lations 〈¬ϕ(n)〉 have narrow refutations in random resolution.

Open Problem 1. Is there a natural propositional proof system which captures,
in a similar way, the ∀Σb1 consequences of full APC2?

Ideally, one would want to show not only that APC2 proofs translate into
the system, but also something in the opposite direction, for example, that if
〈¬ϕ(n)〉 has small, suitably uniform refutations in the system, then ∀nϕ(n) is
provable in APC2. Some system with these properties could be constructed
using the Paris-Wilkie translation and our arguments in Section 6, but it would
be rather unnatural and awkward.

It is consistent with what we know that narrow random resolution, or pos-
sibly random resolution with no width restriction, already provides a positive
answer to Open Problem 1. So, we can ask:

Open Problem 2. Is there a ∀Σb1 sentence which is provable in APC2 but whose
propositional translations do not have narrow random resolution refutations?

A candidate is the Herbrandized ordering principle HOP, which is provable
in APC2 [11] but not in the subtheory mentioned above [2].

What makes this problem interesting is that, so far, our only tool for proving
lower bounds on random resolution is the fixing lemma of [42]. For a typical
random restriction, it is a small step from proving this to proving our condi-
tional fixing lemma from Section 4, which implies unprovability in APC2. But
showing a separation seems to require finding a principle and a random restric-
tion for which one lemma holds, but not the other. The restrictions used to
show unprovability of HOP in [2] may be useful here.

Finally we mention a rather obvious question: is every problem in APPROX
reducible to CPLS? This is subsumed in the old open problem, discussed in the
introduction, of separating the classes GIk or the theories T k2 : it is possible that
every search problem reducible to any GIk is already reducible to CPLS.

References

[1] James Aisenberg, Maria Luisa Bonet, Sam Buss, Adrian Crăciun and
Gabriel Istrate. Short Proofs of the Kneser-Lovász Coloring Principle. In-
formation and Computation 261:2, pp. 296-310, 2019.

[2] Albert Atserias and Neil Thapen. The Ordering Principle in a Fragment of
Approximate Counting. ACM Transactions on Computational Logic 15:4,
article 29, 2014.

28

[3] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo and To-
niann Pitassi. The relative complexity of NP search problems. Journal of
Computer and System Sciences 57:1, pp. 3-19, 1998.

[4] Arnold Beckmann. A Characterisation of Definable NP Search Problems in
Peano Arithmetic. Proceedings of WoLLIC 2009, pp. 1-12, 2009.

[5] Arnold Beckmann and Samuel Buss. Polynomial Local Search in the Poly-
nomial Hierarchy and Witnessing in Fragments of Bounded Arithmetic.
Journal of Mathematical Logic 9:1, pp. 103-138, 2009.

[6] Arnold Beckmann and Samuel Buss. Characterizing Definable Search Prob-
lems in Bounded Arithmetic via Proof Notations. In Ways of Proof Theory,
ONTOS Series in Mathematical Logic, pp. 65-134, 2010.

[7] Arnold Beckmann and Samuel Buss. Improved Witnessing and Local Im-
provement Principle for Second-Order Bounded Arithmetic. ACM Trans-
actions on Computational Logic 15:1, article 2, 2014.

[8] Joshua Buresh-Oppenheim and Tsuyoshi Morioka. Relativized NP search
problems and propositional proof systems. Proceedings of the 19th IEEE
Conference on Computational Complexity (CCC), pp. 54-67, 2004.

[9] Samuel Buss. Bounded Arithmetic. Bibliopolis, 1986.

[10] Samuel Buss and Alan Johnson. Propositional Proofs and Reductions be-
tween NP Search Problems. Annals of Pure and Applied Logic 163’:9, pp.
1163-1182, 2012.

[11] Samuel Buss, Leszek Aleksander Ko lodziejczyk and Neil Thapen. Frag-
ments of approximate counting. Journal of Symbolic Logic 79:2, pp. 496-
525, 2014.

[12] Samuel Buss, Leszek Aleksander Ko lodziejczyk and Konrad Zdanowski.
Collapsing modular counting in bounded arithmetic and constant depth
propositional proofs. Transactions of the AMS 367, pp. 7517-7563, 2015.

[13] Samuel Buss and Jan Kraj́ıček. An application of Boolean complexity to sep-
aration problems in bounded arithmetic. Proceedings of the London Math-
ematical Society 3:1, pp. 1-21, 1994.

[14] Mario Chiari and Jan Kraj́ıček. Witnessing functions in bounded arithmetic
and search problems. Journal of Symbolic Logic 63:3, pp. 1095-1115, 1998.

[15] Alan Cobham. The intrinsic computational difficulty of functions. In Logic,
Methodology and Philosophy of Science, Proceedings of the Second Inter-
national Congress, Y. Bar-Hillel, ed., pp. 24-30, 1965.

[16] Stephen Cook. Feasibly Constructive Proofs and the Propositional Calcu-
lus. Proceedings of the Seventh Annual ACM Symposium on Theory of
Computing, pp. 83-97, 1975.

29

[17] Paul Goldberg and Christos Papadimitriou. Towards a Unified Complexity
Theory of Total Functions. Journal of Computer and System Sciences 94,
pp. 167-192, 2018.

[18] Jǐŕı Hanika. Herbrandizing search problems in Bounded Arithmetic. Math-
ematical Logic Quarterly 50:6, pp. 577-586, 2004.

[19] Johan H̊astad. Computational limitations for small depth circuits. Ph.D.
thesis, MIT, 1986.

[20] Emil Jeřábek. Approximate counting in bounded arithmetic. Journal of
Symbolic Logic 72:3, pp. 959-993, 2007.

[21] Emil Jeřábek. Approximate counting by hashing in bounded arithmetic.
Journal of Symbolic Logic 74:3, pp. 829-860, 2009.

[22] Emil Jeřábek. Integer factoring and modular square roots. Journal of Com-
puter and System Sciences 82:2, pp. 380-394, 2016.

[23] David Johnson, Christos Papadimitriou and Mihalis Yannakakis. How easy
is local search? Journal of Computer and System Sciences 37:1, pp. 79-100,
1988.

[24] Leszek Aleksander Ko lodziejczyk, Phuong Nguyen and Neil Thapen. The
provably total NP search problems of weak second-order bounded arithmetic.
Annals of Pure and Applied Logic 162:2, pp. 419-446, 2011.

[25] Jan Kraj́ıček. No Counter-Example Interpretation and Interactive Compu-
tation. Logic from Computer Science, MSRI volume 21, pp. 287-293, 1992.

[26] Jan Kraj́ıček. On the weak pigeonhole principle. Fundamenta Mathematicae
170, pp. 123-140, 2001.

[27] Jan Kraj́ıček, Pavel Pudlák and Alan Woods. An exponential lower bound to
the size of bounded depth Frege proofs of the pigeonhole principle. Random
Structures and Algorithms 7:1, pp. 15-39, 1995.

[28] Jan Kraj́ıček, Alan Skelley and Neil Thapen. NP search problems in low
fragments of bounded arithmetic. Journal of Symbolic Logic 72:2, pp. 649-
672, 2007.

[29] Massimo Lauria. A note about k-DNF resolution. Information Processing
Letters 137, pp. 33-39, 2018.

[30] Alexis Maciel, Toniann Pitassi and Alan Woods. A new proof of the weak
pigeonhole principle. Journal of Computer and System Sciences 64:4, pp.
843-872, 2002.

[31] Nimrod Megiddo and Christos Papadimitriou. On total functions, exis-
tence theorems and computational complexity. Theoretical Computer Sci-
ence 81:2, pp. 317-324, 1991.

30

[32] Tsuyoshi Morioka. Classification of Search Problems and Their Definability
in Bounded Arithmetic. Master’s thesis, University of Toronto, 2001.

[33] Moritz Müller. Typical forcings, NP search problems and an extension of a
theorem of Riis. Annals of Pure and Applied Logic 172:4, article 102930,
2021.

[34] Moritz Müller and Ján Pich. Feasibly constructive proofs of succinct weak
circuit lower bounds. Annals of Pure and Applied Logic 171:2, article
102735, 2020.

[35] Christos Papadimitriou. On the complexity of the parity argument and
other inefficient proofs of existence. Journal of Computer and system Sci-
ences 48:3, pp. 498-532, 1994.

[36] Rohit Parikh. Existence and Feasibility in Arithmetic. Journal of Symbolic
Logic 36:3, pp. 494-508, 1971.

[37] Jeff Paris and Alex Wilkie. Counting problems in bounded arithmetic. Meth-
ods in mathematical logic, Springer Lecture Notes in Mathematics 1130,
pp. 317-340, 1985.

[38] Ján Pich. Logical strength of complexity theory and a formalization of the
PCP theorem in bounded arithmetic. Logical Methods in Computer Sci-
ence 11:2, 2015.

[39] Toniann Pitassi, Paul Beame and Russell Impagliazzo. Exponential lower
bounds for the pigeonhole principle. Computational complexity 3:2, pp. 97-
140, 1993.

[40] Pavel Pudlák. Ramsey’s theorem in bounded arithmetic. Proceedings of
Computer Science Logic ’90, Lecture Notes in Computer Science vol. 533,
Springer, 1991, pp. 308-317.

[41] Pavel Pudlák and Neil Thapen. Alternating Minima and Maxima, Nash
Equilibria and Bounded Arithmetic. Annals of Pure and Applied Logic 163,
pp. 604-614, 2012.

[42] Pavel Pudlák and Neil Thapen. Random resolution refutations. Computa-
tional Complexity 28:2, 185-239, 2019.

[43] Alan Skelley and Neil Thapen. The provably total search problems of
bounded arithmetic. Proceedings of the London Mathematical Society
103:1, pp. 106-138, 2011.

[44] Amirhossein Tabatabai. Computational Flows in Arithmetic. arXiv
preprint 1711.01735, 2017.

[45] Neil Thapen. A model-theoretic characterization of the weak pigeonhole
principle. Annals of Pure and Applied Logic, vol 118, pages 175-195, 2002.

31

