
Multicast Trees for Collaborative Applications
Krzysztof Rzadca

School of Computer Engineering
Nanyang Technological University

Singapore
Email: krz@ntu.edu.sg

Jackson Tan Teck Yong
School of Computer Engineering

Nanyang Technological University
Singapore

Email: jacktty@ntu.edu.sg

Anwitaman Datta
School of Computer Engineering

Nanyang Technological University
Singapore

Email: anwitaman@ntu.edu.sg

Abstract—Current implementations of real-time collaborative
applications rely on a dedicated infrastructure to carry out
all synchronizing and communication functions, and require
all end nodes to communicate directly with and through the
central server. In this paper, we investigate an architecture, in
which the most resource intensive functionality of continuous
communication among collaborators to disseminate changes is
decentralized, utilizing the end users as relays. We observe that
communication characteristics of real-time collaboration makes
use of existing multicast mechanisms unsuitable. As collaborative
editing sessions are typically long, we are able to gather and
then use additional parameters of nodes (their instabilities and
frequency of sending updates) and communication links (latencies
and average costs). We identify several criteria to determine
the quality of a multicast tree: cost, latency and instability. We
analyze the complexity of these problems and propose algorithms
to optimize the communication topology. We also consider the
multiobjective problem in which we search for a tree that
results in a good trade-off between these measures. Validation
of algorithms on numerous graphs shows that it is important
to consider the multiobjective problem, as optimal solutions for
one performance measure can be far from optimal values of the
others.
Index Terms—communication topology, collaborative applica-
tions, multi-objective optimization

Complex projects are carried out in a collaborative manner
involving multiple participants. There are numerous manners
in which such collaborative work can be carried out, depending
both on the application need as well as how consistency of
shared objects is maintained. While some consistency main-
tenance mechanisms allow asynchronous collaboration (for
example, cvs/svn) others like operational transformation [1],
[2] significantly simplify collaboration tasks by facilitating real
time group editing. Furthermore, techniques like transparent
adaptation [3] facilitate adoption of diverse traditionally single
user applications – from text editors like Word [4] to multime-
dia content creation tools like Maya [5] – into groupwares for
real time collaborative editing. Such real-time collaboration
groupware systems require four logical functions, namely a
repository manager to store the shared content, a session
manager to keep track of the members involved at any time
(session) in the collaborative editing activities, a centralized
synchronizer to carry out the operational transformations, and
a communication mechanism among the users (and the central
synchronizer). Current implementations of such groupware [4],
[5] rely on a dedicated infrastructure to carry out all these

The project is funded by A-STAR grant no: 072 134 0055

functions, and require all end nodes to communicate directly
with and through the central server.

There are several motivations to move to a more decen-
tralized approach. However, such a move brings about new
challenges. In particular, real time collaborative editing is
communication intensive. During a session when an object
is being edited, all the members involved in the session need
to communicate their updates to all the other users. If there
are many object sessions and users using the infrastructure, it
can generate heavy communication load at the server if all the
communication messages need to go through such a server,
as is the case with current implementations [4], [5]. However,
such an overload is not only undesirable but also easy to avoid.
What is essential is that each session at any time instant has a
logically central synchronizer, taking care of consistency. But
any member of the session itself can play the role of such a
synchronizer, thus there is no fundamental need to burden the
central infrastructure. All update related communication can
likewise be confined within just the members of the session,
without involving and overloading a central infrastructure.

The current implementations also assume that end users
have reliable and fast connection, and membership changes
in a session are infrequent. However, geographic distribution
of groups, increased mobility of knowledge workers as well
as proliferation of diverse portable devices like Ultra Mobile
PCs (UMPC) require a more flexible support for nomadic col-
laboration. Such a flexible paradigm should take into account
users’ limited connectivity and other constraints. For instance,
UMPCs typically have various connectivity options (bluetooth,
wi-fi, GPRS, Ethernet). Wireless networks are much more
varied than corporate LANs in availability, performance and
costs.

Fig. 1. Approximate physical network structure with peers grouped in two
physical locations. Two groups of peers are behind firewalls.

Fig. 2. Connectivity graph for the physical network structure presented in
Figure 1. The values next to a node are its workload ρ (higher values denoting
more frequent updates) and instability λ (higher values denoting more frequent
disconnections). The values next to an edge are its latency l and its cost c.

These considerations motivate to design a more flexible
communication mechanism, where a suitable topology can be
chosen for communication within session members, where the
optimality is determined by various considerations including
the overall performance and cost.

In order to model the process of collaborative editing in a
more accurate way, we propose to measure additional charac-
teristics of nodes and edges (formally defined in Section I).
Firstly, typically, some of the users contribute to a shared
document more than others. The structure of the connectivity
tree should take this into account by proposing an architecture
that in which updates from frequent contributors have lower
latency. We model the frequency of edits of node v by
workload ρ(v) ∈ [0, 1], with higher values denoting more
frequent contributions. Secondly, nodes disconnect from the
network with different rates, that depend e.g. on the quality
of network connection (Ethernet vs. GPRS) or the type of
the node (standard PC vs. smart phone). A disconnection of
a node will force the nodes connected through that node to
reorganize. We model the disconnection rate by nodes’ insta-
bility λ, with higher values corresponding to more frequent
disconnections. Thirdly, a communication channel between
two nodes is characterized by the observed latency. As high
latencies worsen the user experience of collaborative editing,
nodes should use channels with low latencies. Finally, in a
heterogeneous network infrastructure, some of the links (such
as GPRS/3G) can have significant monetary cost, while others
are free (local Ethernet or local wireless).

Consider for instance a geographically distributed team
working at two physical locations P and S (Figure 1). The
typical collaborative editing application uses a dedicated server

Fig. 3. A multicast tree in which, by using intermediate nodes, data on the
backbone link is not replicated.

as the hub of a logically star topology for communication.
However, this would exclude the mobile node S4 from col-
laboration.

In a more dynamic collaboration scenario, one of the nodes
takes also the role of the server (that can be delegated
to another node, should the current server fail). Figure 2
presents all the possible connections at the application layer.
Additionally, we present workload and instability for each
node and latency and cost for each edge. Using this data,
an alternative multicast tree (Figure 3) can be constructed, in
which only one copy of data (instead of four) is sent over
the cross geographic S-P link, which optimizes the usage of
potentially costly connection. However, care should be taken
in determining a good topology. For instance, in the example
scenario, S1, the local root in S, uses a potentially unreliable
wireless link, which is undesirable. Another problem may be
that observed latency can be high, as node S2 is the source
of a majority of the update operations.

In this paper, we consider the problem of building an
optimal multicast tree for disseminating update information in
collaborative applications. We take into account heterogeneous
network structure and failing nodes.

We model the problem as a multi-objective optimization
problem (Section I) that optimizes the stability, the latency and
the cost of the multicast tree. We model the (in)stability as the
average number of disconnections of a node in a unit of time.
The latency takes into account both the uplink latency (on the
path from a node to the synchronizing server) and the downlink
latency (the maximum latency between the synchronizer and a
node). Similarly, the cost considers both the cost of sending an
update to the server and the cost of disseminating this update
by the server to the nodes. Users’ latencies and costs are
weighted by the average participation of the user in the editing
process. We analyze the boundary, monocriterion problems
and propose exact algorithms (Section II). We validate the
performance of our algorithms by simulation (Section III).

There is substantial research effort devoted to application
level multicast, both in one-to-many and in many-to-many
scenarios. One-to-many multicast typically models transmis-
sions of contents that cannot be modified by the group (such
as, e.g., Internet radio). Many-to-many multicast models more
interactive applications, such as teleconferences. Collaborative
applications are similar to many-to-many multicast. However,
the main difference is that the messages must be validated
(and, perhaps, modified by operational transformation) by a
central synchronizer before other members can receive them,
to guarantee consistency. Multicast trees for collaborative ap-
plications must thus optimize both the information collection
and the dissemination. Another difference, thankfully to our
advantage, is that a session to edit an object is typically small
in realistic groupwares, for instance CoWord [4] supports a
maximum of sixteen simultaneous users editing an instance of
a document. We discuss related work and differentiate them
from our work in Section IV before drawing our conclusions
and identifying future research agenda in Section V.

I. PROBLEM DEFINITION

The connectivity graph G = (V,E) represents all the
possible logical connections (u, v) ∈ E between peers (or
nodes) V = {v}. If (u, v) ∈ E, peers u and v can establish
a connection. We assume that (u, v) ∈ E ⇔ (v, u) ∈ E.
However, if both peers are firewalled, or too far, there is no
edge in G. We assume that the graph is connected.

We define the following cost functions over E:
• c : E → R+: c(u, v) is the monetary cost associated with

sending a unit of data (e.g., 1kB) from u to v;
• l : L → R+: l(u, v) is the latency (in time units) over

the edge (u, v).
In the most general model, the price and the latency of the
link are not symmetric.

The amount of communication messages generated by a
user of a collaborative application varies, depending on the
type of the application and the usage pattern. In a boundary
case, a very fast typist can generate about 30kB/s on CoWord
configured to send one message for each pressed key. How-
ever, other applications do not produce as many messages, and
CoWord can be reconfigured to group neighboring edits before
sending them. Nevertheless, bandwidth limit can be introduced
as a limit degmax(v) over the number of immediate children of
a node v (with a simplifying assumption that all the children
share the same communication channel).

Each node v has the following characteristics:
• disconnection rate λ(vi) = λi: the average number of

disconnections from the network in the unit of time;
• sending rate ρ(vi) = ρi ∈ [0, 1]: expresses the fraction

of transmission time in which v sends data. ρ(vi) is
normalized (we take into account only the time when
there is at least one sender), so that

∑
ρ(vi) = 1. If

more than one sender sends in parallel, we compute ρ as
if all the sending operations were sequential.

In collaborative editing, the peers are well-identified and
the collaboration sessions are long. Consequently, it is easy to
collect the aforementioned parameters.

The objective is to build a spanning tree T = (V,Et) for G,
with Et ⊆ E. The tree corresponds to the data dissemination
pattern in multicast scenario. We assume that the root root(T)
of the tree acts as a synchronizer.

When a peer v modifies the shared data (by modifying
the local copy), the modification notification is sent to its
parent u : (u, v) ∈ Et, who forwards it to its parent, etc.,
until it reaches the root. However, the nodes along such a
path do not consume the notification on the application level.
The root accepts the modification (perhaps re-ordering it with
other, concurrent modifications originating from other peers or
marking it as a conflicting one). Then, the notification is mul-
ticasted to all the other nodes. The root sends the notification
to its children. The children consume the notification and, in
parallel, forward it further downstream to their children, etc.,
until the notification reaches all the nodes in the tree.

Note that this scenario is different from the usual multicast
with multiple senders, like in e.g., peer to peer video confer-

ences. Usually, it is assumed that neighbors of a sending peer
can use the information as soon as they receive it. However,
the collaboration framework we use requires a centralized
repository, that also acts as a synchronizer and a mechanism
to avoid and to resolve conflicts. For this reason remote peers
(i.e., the peers who do not produce the modification) can
accept messages only after they have been accepted and pre-
processed by the root.

We assume that the tree used for collecting the updates is
the same as the multicast tree. Alternatively, the update tree
could have different topology. However, this would put the
further burden on tree construction and maintenance.

We introduce the following notation that will simplify the
formulation of the optimization criteria. The degree of a node
deg(u) is the number of (immediate) children node u has
(deg(u) = |{vi : (u, vi) ∈ Et}|). A path π(u, v) in T is an
ordered sequence of nodes (v0, v1, . . . , vn) such that v0 = u,
vn = v and {(v0, v1), (v1, v2), . . . , (vn−1, vn)} ⊆ Et. The
total latency Lπ = L(u, v) over path π(u, v) is the sum of
latencies of edges in the path, Lπ =

∑
i=0,...,n−1 l(vi, vi+1).

The total cost Cπ is similarly defined as Cπ = C(u, v) =∑
i=0,...,n−1 c(vi, vi+1).

A. Optimization Criteria
We define the following optimization criteria over T :
1) tree’s weighted end-to-end latency L: This criterion

expresses the latency between the moment any of the peers
sends an update and the moment when this update is received
by the furthest peer in the network. The latency is averaged
over all peers with weights equal to the sending rates ρ(vi)
(so that the peers that send updates more frequently have more
influence over the criterion). Thus,

L =
∑
i

ρ(vi)
(
L(vi, root) + max

j 6=i
L(root, vj)

)
. (1)

In the tree in Fig 3, L equals to:
L = 0.08

(
0 + (45 + 8 + 12)

)
+ 0.06 · 70 + 0.06 · 72+

+ 0.05 · 110 + 0.6 · 112 + 0.1 · 118 + 0.05
(
65 + (45 + 8)

)
.

The first element computes the observed latency of node
P1 as its workload (0.08) multiplied by the cost of the path
to the root (0, as root is the highest node) and the latency to
the furthest node (65). The following lines add the latency for
nodes P2, P3, S1, S2, S3, S4. For S4, the downlink latency
is the latency to the next furthest node (S3).

2) tree’s aggregated cost C: The aggregated cost expresses
the weighted cost of sending and receiving updates through
the multicast tree. For each node v, the cost of sending the
update is C(v, root). Then, this update is multicasted to all the
other nodes in the tree. Each edge in the tree is used, except
(parent(v), v) if v is a leaf node. By aggregating these costs
over all the nodes and weighting it by ρ(v), we obtain:

C =
∑
v∈V

ρ(v)C(v, root) +
∑
v∈V

c(parent(v), v)

−
∑
u:leaf

ρ(u)c(parent(u), u). (2)

In the tree in Fig 3, C equals to:
C =

(
0.05 · 10 + 0.6 · 10 + 0.1 · 10 + 0.05 · 10

)
+
(
0 + 0 + 10 + 0 + 0

)
+

−
(
0.06 · 0 + 0.06 · 0 + 0.6 · 0 + 0.05 · 0

)
.

The first line computes the uplink cost of nodes S1 to S4
as the product of their workload (0.05 for S1) multiplied by
the total uplink cost (10 for S1). The second line adds the
costs of all the edges. The last line subtracts the costs of leaf
nodes, for instance for P2 its participation 0.06 is multiplied
by the cost of the link to its parent, 0.

3) tree’s instability Λ: a disconnection of a node u affects
its children {vi : (u, vi) ∈ Et} that must find the new parent
node. For the sake of the theoretical analysis, we make a usual
assumption that nodes’ failures are independent, and thus with
high probability no two nodes disconnect at the same time.
Thus, the instability of the tree can be computed as the average
number of nodes affected by disconnection in a unit of time:

Λ =
∑
v∈V

λ(v)deg(v). (3)

In the tree in Fig 3, Λ equals to: Λ = 0.2 ·3+0.6 ·2+0.1 ·1.
Node’s P1 impact on instability is its λ (0.2) multiplied by
the total number of children (3). The formula also takes into
account nodes S1 and S3.

B. Multiobjective Problem

The multiobjective optimization problem is defined as find-
ing a spanning tree T ∗ on G that minimizes the latency Lmax,
minimizes the cost C and minimizes the instability Λ:

(minL,minC,min Λ), (4)

subject to:
∀v deg(v) ≤ degmax(v) (5)

Note that the notation (minL,minC,min Λ) specifies only
that the three functions are to be simultaneously minimized.
However, it leaves open the meaning of the multiobjective
minimization, and the kind of solution, or solutions, that are
to be returned [6]. For instance, one possibility would be to
return any Pareto optimal solution (i.e., a solution y = (l, c, λ)
such that there is no solution y′ = (l′, c′, λ′) with values better
for all the criteria l′ < l, c′ < c, λ′ < λ). The other possi-
bility is to return all the Pareto-optimal solutions. However,
many multi-criteria combinatorial optimization problems are
intractable, that is the number of all Pareto-optimal solutions
is exponential. It is also possible to return a certain Pareto-
optimal solution, being, for instance, the weighted average of
the criteria.

C. Special Case Considered

In the rest of the paper, we restrict the general problem
defined in the previous section to a class of problems that is
realistic enough to model most of the real world scenarios
and, at the same time, has boundary problems that can be
solved by exact algorithms. We assume that all the latencies

are symmetric (l(u, v) = l(v, u)). While symmetric latencies
can be easily measured by measuring the round-trip time
between nodes, it is hard to measure one-way latency. Simi-
larly, costs are symmetric (c(u, v) = c(v, u)), which reflects
usual network providers’ charging schemes. We also assume
that the collaborative application does not require significant
bandwidth, thus there are no limits over the maximal degree
of nodes degmax(v) =∞.

II. PROBLEM ANALYSIS AND PROPOSED ALGORITHMS

A. Individual Subproblems

This section analyzes the complexity and the optimality for
individual monocriteria subproblems, that is minimizing the
maximal weighted end-to-end latency Lmax, minimizing the
aggregated cost C and the stability Λ.

1) Instability: min Λ problem is equal to the directed min-
imum spanning tree in a graph G = (V,E), in which the cost
λ(v, w) of the edge (v, w) is equal to the disconnection rate
λ(v) of node v. Recall that Λ =

∑
v∈V λ(v)deg(v), which,

in such a spanning tree corresponds to
∑

(v,w)∈T λ(v, w) =∑
(v,w)∈T λ(v). Given a root r, such a tree can be found by

Chu-Liu/Edmonds [7] algorithm in O(|V |2) for dense graphs.
Moreover, as the following lemma states, the tree must be
rooted at the most reliable node.

Lemma 1. The instability is minimized by a spanning tree TΛ

rooted at the most reliable node rΛ = arg minv λ(v).

Proof: The proof is by contradiction. Assume that tree T ,
different than TΛ is is optimal for Λ. Consequently, T must
have a different root r′ than TΛ. Consider path π(r′, rΛ) in T .
Let us modify T into T ′ so that rΛ becomes the new root and
π is reversed. In T ′, the number of children of rΛ increases by
one and that of r′ decreases by one. The number of children
of all the other nodes is the same. Thus, the instability in T ′

changes by λ(rΛ)−λ(r′) < 0, which leads to a contradiction
with the assumption that T is optimal for Λ.

Note that if the maximum degree of some nodes is bounded,
this model becomes NP-hard ([8, ND3]).

2) Latency: The main difficulty in analyzing minL is
caused by the fact that the same tree is used for upstream
and downstream messages. minL problem is a special case of
the optimal communication spanning tree (OCT) problem [9].
In OCT, given communication requirements ρ(u, v) for each
pair of nodes, the task is to find a spanning tree such that∑
u,v∈V ρ(u, v)L(u, v) is minimized. OCT is NP-hard, even

for restricted cases when only some fixed number of senders
S ⊂ V (|S| > 1) communicate (i.e., ρ(u, v) 6= 0 only for
u ∈ S ⊂ V). The combinatorial complexity is caused by the
fact that senders communicate with all the other nodes.

In our problem, however, the set of communicating pairs
is more limited. Using u′ as the furthest node (u′ =
arg maxL(root, v)) and u′′ as the second furthest, L can be

rewritten as:

L =
∑
i

ρ(vi)
(
L(vi, root)

)
+ (1− ρ(u′))L(root, u′)

+ ρ(u′)L(root, u′′). (6)

The first element represent the upstream latency from node
vi to the root, the second one is the downstream latency
between the root and the furthest node and the third one is
an adjustment when u′ is the source of the message (as it
does not have to be informed). This OCT has a particular
structure of requirements with only non-zero requirements
being ρ(u, v) = ρ(u) for v = root, ρ(u, v) = 1 − ρ(u′) for
u = root, v = u′ and ρ(u, v) = ρ(u′) for u = root, v = u′′.
However, in our problem the nodes u′ and u′′ are identified
only after the tree is constructed.

Even in the case of symmetric latencies, the problem is still
different from the usual Shortest Path Tree (SPT) problem,
because of max element and non equal weights ρ. However,
the following lemma shows that a SPT spanning tree is
optimal.

Lemma 2. If the latencies are symmetric (l(vi, vj) =
l(vj , vi)), the SPT spanning tree with minimal L among all
SPT spanning trees is optimal for the weighted end-to-end
latency L.

Proof: The proof is by contradiction. Let us denote as
r∗ the root node of the SPT spanning three T ∗ with minimal
L = L∗. Assume that L′ < L∗ for some spanning tree T ′

rooted at r′.
Denoting as k the furthest node from r (k =

arg maxi L(r, vi)) , we rewrite L as follows:

L =
∑
i

ρ(vi)
(
L(vi, r) + max

j 6=i
L(r, vj)

)
=
∑
i 6=k

ρ(vi)L(vi, r) + (1− ρ(vk))L(vk, r)+

ρ(vk)
(
L(vk, r) + max

i 6=k
L(vi, r)

)
If the root of both trees is the same (r∗ = r′), L′ < L∗ implies
that there is some node vj , for which L(vj , r′) < L(vj , r∗),
which means that L′ has shorter path to vj , which contradicts
the assumption that the tree is an SPT tree. If the root is
different, compare T ′ with a SPT TSPT

′
rooted at r′. By the

same argument, it is not possible that the distance L(vj , r′)
in T ′ is less than the same distance in TSPT

′
. Furthermore,

LSPT
′ ≥ L∗, as T ∗ has the optimal latency among all the

SPT trees.
When the maximum degree of the tree is limited, this model

becomes NP-hard (even with symmetric latencies), as SPT
with bounded degree is NP-hard [10].

3) Cost: Equation (2) denoting the cost of a tree is
composed of three components. min

∑
v ρ(v)C(v, root) is a

weighted shortest path between v and r, optimized by shortest
path spanning tree. min

∑
v c(parent(v), v) is the total cost of

all the edges, optimized by the usual minimal spanning tree.

Finally, max
∑
u:leaf ρ(u)c(parent(u), u) (denoted as Maxi-

mum Weighted Leaf Spanning Tree Problem, MWLSPT) is,
itself, NP-hard, as it generalizes the Maximum Leaf Spanning
Tree Problem (MLSPT) [8, problem ND4].

Lemma 3. The decision version of∑
u:leaf ρ(u)c(parent(u), u) is NP-complete.

Proof: We reduce the MLSPT to MWLSPT. From an
instance of MLSPT GMLSPT = (VMLSPT , EMLSPT) we
construct an instance of MWLSPT G = (V,E); c; ρ as follows.
The set of vertexes and edges are the same (G = GMLSPT .
The costs of all edges are equal to 1. The participation rates
ρ of all the vertexes are equal to 1/|V |.

If there is a spanning tree with∑
u:leaf

ρ(u)c(parent(u), u) ≥ k

|V |
,

the same tree also solves MLSPT with at least k leafs, as∑
u:leaf

ρ(u)c(parent(u), u) =
1
|V |

∑
u:leaf

1.

min
∑
v ρ(v)C(v, root) +

∑
v c(parent(v), v) problem is

related to the NP-complete Minimum Diameter Spanning
Subgraph [8, problem ND6], in which graph’s diameter is
minimized, given a budget on the spanning tree’s cost. An-
other, similar problem is the problem of finding a tree that
balances the total weight of the edges and the length of
paths [11] (called LAST, Light Approximate Spanning Tree).
In this problem, the goal is to find a tree with total weight
of at most β times the total weight of the minimum spanning
tree and which extends the length of path between the root
and each vertex by at most α. [11] proposes a polynomial
algorithm that adjusts Minimum Spanning Tree (MST). The
algorithm does a depth-first search. For each vertex v, if the
current path length breaks the shortest path requirement, the
vertex is switched to its SPT path (by adding all the missing
edges on SPT path between v and root). The algorithm is
(α, 1 + 2

α−1) approximation of, accordingly, the length of
each SPT path and the total weight of the minimum spanning
tree. The main difference between LAST and minC is that
minC optimizes the weighted sum of shortest paths and MST.
Another related algorithm is MENTOR [12], a heuristics that
combines Prim’s MST and Dijkstra’s SPT by modifying the
edge scoring function. In Prim’s MST, edge’s (v, w) score is
c(v, w). In MENTOR, the scoring function adds the distance
between the root node and the vertex multiplied by a constant
α ∈ [0, 1], so the score is c(v, w) + αC(r, v).

The problem of finding a polynomial algorithm optimizing
C (or even min

∑
v ρ(v)C(v, root) +

∑
v c(parent(v), v)) is

still open. Currently, we use a heuristics that is a variant of
LAST [11]. Our algorithm builds a MST and starts a depth-first
search. Each vertex v is tentatively switched to its SPT path.
For each vertex w on the SPT path between v and root, its
parent on the SPT path replaces the current parent. Then, if the
resulting tree has lower C, the tentative switch is accepted and

the current tree is modified; otherwise the process continues
with the original tree. Finally, after visiting child w (and,
thus, all its descendants), if w switched to its SPT parent,
the original parent v tentatively becomes w’s child (but only
if it does not cause a cycle in the tree). If the resulting tree
has lower C, such a change is accepted and the current tree
is modified.

When the maximum degree of the tree is limited, this model
also becomes NP-hard, as it involves both the spanning tree
and the shortest path problems with bounded degree.

B. Multiobjective Problem

In order to solve the general multiobjective problem
(minL,minC,min Λ), two issues must be addressed. Firstly,
the meaning of multiobjective minimization and the kind of
solutions we want to obtain. We propose to return a solution
that is the closest to the ideal solution, constructed from
the optimal values of monocriterion problems. Secondly, the
problem of finding an algorithm that produce that solution.
Currently, we propose to use exhaustive search over all pos-
sible spanning trees.

1) Approximating the ideal solution: We expect that the
number of Pareto-optimal solutions is exponential, as the
multiobjective problem involves bi-criteria versions of shortest
paths and minimum spanning trees, which are intractable [6].
Thus, we chose only one Pareto-optimal solution as the
solution to the general problem. This solution is defined
as a solution minimizing the distance to the ideal solution
yI = (L∗, C∗,Λ∗), where L∗ is the optimal latency (L∗ =
minT L(T)), C∗ is the optimal cost and Λ∗ is the optimal
stability.

Ranges of possible values of L, C and Λ can differ
significantly. For instance, assume that Λ∗ = 0.1 and the
worst value of Λ for some tree is 10, whereas C∗ = 100
and the worst cost is 1000. When using normal, euclidean
distance over unscaled values, the distance from the ideal point
(C,Λ) = (100, 0.1) to (100, 10) is 9.9, whereas to (1000, 0.1)
is 900. Thus, such a measure is much more sensible to changes
in the function that has larger numerical values. However, the
distance to these two solutions should be the same – the first
point represents the solution minimal for C and maximal for
Λ, whereas the second the opposite.

To make the distance measure unaffected by numerical
values of functions, we scale the value of each function by
the boundary values. However, in general case, the problem
of determining the maximal value of some of the considered
functions is hard (for instance, the longest path problem is
NP-hard). That is why we scale each function y ∈ {L,C,Λ}
between its optimal value y∗ and its approximated nadir ỹN .
We define ỹN as the maximal value of y observed in the op-
timal solutions for other functions [6]. For instance, denoting
TC as the tree minimizing C, and TΛ as the tree minimizing
Λ, the approximated nadir of the latency L̃N is the maximum
from the latencies of TC and TΛ, L̃N = max

(
L(TC), L(TΛ)

)
.

Note that it is possible that for some tree T , L(T) > L̃N .

After determining the approximated nadirs for each func-
tion, we scale functions to:

y′(T) =
y(t)− y∗

ỹN − y∗
. (7)

Observe that, for the optimal tree T ∗ for y, the value of the
scaled function is y′(T ∗) = 0.

Thus, the function to minimize is:

dist(T) =
√((

L′(T)
)2 +

(
C ′(T)

)2 +
(
Λ′(T)

)2)
. (8)

2) Producing the approximated ideal solution: We propose
to find a tree minimizing dist(T) by an exhaustive search
over all spanning trees. The number of spanning trees is
exponential and equal to nn−2 [9] in the worst case of a fully-
connected graph. Thus, the exhaustive search is clearly not
efficient, especially for larger graphs. However, a session of
collaborative editing usually has a few, rather than many, users.
Consequently, exhaustive search is an acceptable algorithm for
most of the scenarios of collaborative work.

III. EXPERIMENTAL EVALUATION

We evaluated the algorithms on randomly-constructed con-
nectivity graphs of n ∈ [5, 10] vertexes. The graph models the
logical, and not physical, connectivity between nodes, which
makes most of the topology generators unfit for the task.

We group nodes into s ∼ U(2, 4) sites, that model dif-
ferent physical locations. Within each site, latencies are low
(∼ U(5, 20)) and costs are negligible (0). There are two classes
of nodes in a site: peers (at least one), that model standard
PCs, and leafs that model mobile devices such as UMPCs or
smart phones. A peer is able to connect to every other peer in
its site. A leaf can connect only to its peer. Additionally, each
peer is firewalled with probability of 0.8. Two firewalled peers
from different sites cannot directly connect. We assumed that
in the network there is at least one peer that is not firewalled.
Connections between sites have non-zero costs (∼ U(10, 20))
and considerably higher latencies (∼ U(100, 500)). Cost and
latencies between all pairs of peers from any two sites are
similar. Instabilities λ(v) are generated with U(0, 1). Finally,
sending rates ρ(v) are generated with normalized zeta dis-
tribution, as we assume that users’ contributions to a shared
document vary substantially.

The results of experiments are summarized in Table I.
In order to obtain meaningful comparisons between random
graphs with different n, we present scaled values of each
function (Eq. 7). Consequently, for each graph and each
measure, 0 is the optimal value and 1 is the approximated
nadir (corresponding to the maximum value of the measure
on T ∗L, T ∗C and T ∗Λ for the graph). The table presents av-
erages and standard deviations computed over 100 random
graphs with the specified number of nodes n. T ∗L is the tree
returned by optimal latency algorithm (Section II-A2), T ∗C –
by adjusted LAST (Section II-A3), T ∗Λ – by MST on stability
graph (Section II-A1). multiobjective is the solution chosen
by the multiobjective algorithm (Section II-B). A number of
phenomena can be observed.

TABLE I
RESULTS OF EXPERIMENTAL EVALUATION. THE TABLE PRESENTS SCALED PERFORMANCE MEASURES (EQ. 7) AVERAGED OVER 100 RANDOM GRAPHS
FOR EACH n. T ∗L IS THE TREE RETURNED BY OPTIMAL LATENCY ALGORITHM (SECTION II-A2), T ∗C –BY ADJUSTED LAST (SECTION II-A3), T ∗Λ – BY

MST ON STABILITY GRAPH (SECTION II-A1). multiobjective IS THE SOLUTION CHOSEN BY THE MULTIOBJECTIVE ALGORITHM (SECTION II-B).

T ∗L T ∗C T ∗Λ multiobjective
C(T) Λ(T) L(T) Λ(T) L(T) C(T) L(T) C(T) Λ(T)

n x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ
5 0.49 0.41 0.72 0.38 0.65 0.40 0.80 0.29 0.73 0.37 0.85 0.33 0.23 0.25 0.27 0.28 0.35 0.27
6 0.54 0.41 0.72 0.37 0.75 0.36 0.79 0.28 0.62 0.39 0.84 0.33 0.24 0.25 0.28 0.29 0.28 0.24
7 0.46 0.38 0.74 0.30 0.72 0.37 0.79 0.30 0.79 0.30 0.83 0.35 0.24 0.24 0.25 0.25 0.30 0.21
8 0.47 0.35 0.75 0.34 0.72 0.36 0.84 0.24 0.74 0.33 0.89 0.28 0.21 0.20 0.27 0.24 0.32 0.22
9 0.51 0.35 0.80 0.30 0.72 0.33 0.82 0.27 0.83 0.26 0.89 0.26 0.26 0.23 0.24 0.17 0.30 0.16

10 0.48 0.32 0.79 0.25 0.73 0.33 0.86 0.23 0.81 0.28 0.95 0.19 0.19 0.15 0.24 0.18 0.30 0.15

Firstly, the trees efficient for one objective tend to be ineffi-
cient for other objectives. Algorithms optimizing one objective
have, on the average, score of 0.73 for the other objectives.
The difference is especially visible when the absolute, and not
rescaled, values of Λ are analysed (note that we do not present
full results in the paper because of space constraints). On the
average, Λ in trees optimal for L and C is 5.43 times worse
than the optimal value, compared with 2.00 performance drop
for L and 2.23 for C (averaged over trees optimal for C, Λ
and L,Λ, respectively).

Secondly, the solutions returned by the multiobjective algo-
rithm have a good trade-off between all the objectives. The
average performance is better than the mono-objective opti-
mization for all the objectives. Moreover, standard deviations
are also lower, which denotes a more stable behavior of the
algorithm.

Thirdly, the instability seems to be the hardest objective to
optimize. The algorithms for C and L tend to be inefficient on
Λ (0.78). Similarly, the trees optimal for Λ result in inefficient
C and L (0.81). Additionally, the multiobjective algorithm has
the worst average performance for Λ (0.31, compared with
0.23 for L′ and 0.26 for C ′).

Additionally, we checked how far are the costs of trees
produced by LAST to the best trees in terms of C found by
the exact algorithm (Table II). The table shows that LAST is
suboptimal only in about 1% of instances. Additionally, even
in these instances, the cost of the LAST tree is less than 5%
from the optimal cost.

IV. RELATED WORK

Early approaches proposed to extend the Internet Protocol
(IP) [13] for multicast. However, as the IP multicast has never
been widely deployed and adopted, the only way to send the
data to multiple receivers is to extend the application layer. We

TABLE II
EVALUATION OF LAST FOR minC PROBLEM: PERCENTAGE OF

INSTANCES IN WHICH LAST WAS NOT OPTIMAL AND THE AVERAGE
RELATIVE ERROR TO THE OPTIMAL SOLUTION.

n instances [%] error [%]
5 0 0
6 1 4
7 3 3
8 0 0
9 1 0.2
10 2 2

summarize some of the application layer multicast approaches
below (see also [14] for comparison).

The most straightforward way to construct a application-
layer multicast tree is to optimize the latency in a greedy
manner. In Yoid [15], a node connecting to a multicast tree
chooses a random subset of nodes that are in the tree and
connects to the one with minimal latency. Periodically, each
node switches its parent, if the switch reduces the latency. In
Overcast [16], a newly connecting node probes the latency to
the root of the multicast tree and all of its immediate children.
If the latency to one of the children is lower than to the root,
the algorithm recursively probes that child’s children, until
either a leaf node is reached, or no child results in a lower
latency. Fastcast [17] is similar, but considers the end-to-end
latency over the whole path between the root and the newly
connected node, not just the latency to any node in the tree.

In contrast, Narada [18] relies on a constantly-updated
mesh, similar to what we define as a connectivity graph. Each
node periodically adds links to other, randomly chosen nodes
and drops existing, inefficient links. The data dissemination
paths are produced by a standard, distance-vector algorithm.

Some other application-layer multicast methods are specific
to a certain peer-to-peer overlay. For instance, Scribe [19]
builds multicast trees based on reverse path forwarding in
Pastry overlay. Bayeux [20] uses forward path forwarding, and
Borg [21] combines the two approaches.

There are a number of differences between the aforemen-
tioned approaches and our proposal. Firstly, the way in which
collaborative applications communicate differs significantly
both from one-to-many and from many-to-many multicast. In
one-to-many multicast, there is only one source of data. In
the typical many-to-many multicast, many nodes can update
the data, but the messages can be consumed by nodes that
lie on the dissemination path. In collaborative applications,
however, the messages must be firstly send to the node acting
as a synchronization server, and only then multicasted to the
group. Secondly, as collaborative sessions are long and peers
can be well identified, we are able to collect and take into
account more data on peers’ behavior. Thus, we can explicitly
take into account not only the latency, but also the cost of the
links and the observed participation levels and disconnection
rates.

On the theoretical level, the alternative to the spanning tree

is to model multicast as a Steiner tree. These approaches
assume that some nodes only pass on the information. For
instance [22] considers the problem of asymmetric latencies
and [23] proposes a heuristics for bi-criteria optimization of
latencies and costs.

V. CONCLUSIONS AND FUTURE WORK

The paper models and proposes solutions to the problem
of the network design to collect and disseminate updates to
a shared document in the context of interactive collaborative
applications. Collaborative applications require a central server
that synchronizes users’ actions. Consequently, messages con-
taining updates are first aggregated at the synchronizer and
then multicasted to other users.

We proposed to build a spanning tree to collect and dissem-
inate the updates. We measure the performance of the tree by
three metrics. The latency L expresses the delay between the
moment a user updates her local copy of data and the change
is propagated through the network. The cost C represents the
(monetary) cost of sending information in the tree. Finally, the
instability Λ represents the average number of nodes affected
by disconnections from the network. The cost and the latency
are weighted by the observed average participation of users in
collaborative editing. The goal is to optimize the infrastructure
so that the users who update the document more often have
more influence over the performance measure.

We analyzed the boundary problems of minimizing latency,
instability and cost, provided the complexity results and pro-
posed exact, polynomial algorithms for the first two measures.
We solved the general, multiobjective problem by producing
a solution closest to the ideal solution, composed from the
optimum values of all three functions. We performed an
experimental evaluation of the algorithms that showed that it
is important to consider the multiobjective problem, as optimal
solutions for one performance measure can be far from optimal
values of the other ones.

The paper summarizes the initial stage of the research.
We considered static (steady-state) problem and proposed
centralized algorithms. Clearly, there are many immediate
extensions of this work.

In our subsequent work, we have implemented a Simulated
Annealing algorithm for the multiobjective problem, which
efficiently optimizes larger graphs. We are currently working
on an implementation of the communication library that we
plan to deploy in a real network environment. The prototype
uses dynamic algorithms that locally adjust the spanning tree
when a node connects or disconnects. Once the multiobjective
performance of the tree becomes too far from the optimum,
the original algorithm can be used to rebuild the whole tree.

Another interesting problem is the equity of the produced
tree for individual users. Currently, the tree is biased towards
heavy contributors, which may cause unacceptable perfor-
mance for some users. In our implementation, we plan to
address this issue by guarantees on the minimum performance
for each user.

Acknowledgements Authors thank prof. C. Sun for his in-
sightful remarks which we hope will help refine and make the
current model more realistic in future.

REFERENCES

[1] C. Sun and C. Ellis, “Operational transformation in real-time group
editors: issues, algorithms, and achievements,” in CSCW, Proceedings.
ACM Press, 1998, pp. 59–68.

[2] M. Suleiman, M. Cart, and J. Ferrié, “Concurrent operations in a dis-
tributed and mobile collaborative environment,” in ICDE, Proceedings,
1998.

[3] C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, and W. Cai, “Transparent
adaptation of single-user applications for multi-user real-time collabo-
ration,” ACM TOCHI, vol. 13, no. 4, pp. 531–582, 2006.

[4] S. Xia, D. Sun, C. Sun, D. Chen, and H. Shen, “Leveraging single-
user applications for multi-user collaboration: The coword approach,”
in ACM CSCW, Proceedings, 2004.

[5] A. Agustina, F. Liu, S. Xia, H. Shen, and C. Sun, “Comaya: Incorpo-
rating advanced collaboration capabilities into 3d digital media design
tools,” in ACM CSCW, Proceedings, 2008.

[6] M. Ehrgott, Multicriteria Optimization. Springer, 2005.
[7] Y. Chu and L. Tseng-hong, “On the shortest arborescence of a directed

graph,” Sci. Sin., vol. 14, pp. 1396–1400, 1965.
[8] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-

Spaccamela, and M. Potasi, Complexity and Approximation. Springer,
1999.

[9] B. Wu and K. Chao, Spanning Trees and Optimization Problems.
Chapman & Hall/CRC, 2004.

[10] P. Jurcik and Z. Hanzalek, “Construction of the Bounded Application-
layer Multicast Tree in the Overlay Network Model by the Integer Linear
Programming,” in IEEE ETFA, Proceedings, vol. 2, 2005.

[11] S. Khuller, B. Raghavachari, and N. Young, “Balancing minimum
spanning trees and shortest-path trees,” Algorithmica, vol. 14, no. 4,
pp. 305–321, 1995.

[12] A. Kershenbaum, P. Kermani, and G. Grover, “MENTOR: an algorithm
for mesh network topological optimization and routing,” Communica-
tions, IEEE Transactions on, vol. 39, no. 4, pp. 503–513, 1991.

[13] S. Deering and D. Cheriton, “Multicast routing in datagram internet-
works and extended LANs,” ACM Transactions on Computer Systems
(TOCS), vol. 8, no. 2, pp. 85–110, 1990.

[14] M. Castro, M. Jones, A. Kermarrec, A. Rowstron, M. Theimer, H. Wang,
and A. Wolman, “An evaluation of scalable application-level multicast
built using peer-to-peer overlays,” in INFOCOM, Proceedings, 2003.

[15] P. Francis, Y. Pryadkin, P. Radoslavov, R. Govindan, and B. Lindell,
“Yoid: Your Own Internet Distribution,” Technical Report, ACIRI, 2000.

[16] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O’Toole Jr,
“Overcast: reliable multicasting with an overlay network,” in USENIX,
Proceedings, 2000.

[17] A. Wierzbicki, R. Szczepaniak, and M. Buszka, “Application Layer
Multicast for Efficient Peer-to-Peer Application,” in Proc. of IEEE
WIAPP, 2003, pp. 126–130.

[18] Y. Chu, S. Rao, S. Seshan, and H. Zhang, “A case for end system
multicast,” Selected Areas in Communications, IEEE Journal on, vol. 20,
no. 8, pp. 1456–1471, 2002.

[19] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “Scribe: a
large-scale and decentralized application-level multicast infrastructure,”
Selected Areas in Communications, IEEE Journal on, vol. 20, no. 8, pp.
1489–1499, 2002.

[20] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz, “Bayeux:
An Architecture for Scalable and Fault-tolerant Wide-area Data Dissem-
ination,” in NOSSDAV, Proceedings, 2001.

[21] R. Zhang and Y. Hu, “Borg: a hybrid protocol for scalable application-
level multicast in peer-to-peer networks,” in NOSSDAV, Proceedings.
ACM Press, 2003, pp. 172–179.

[22] S. Ramanathan, “Multicast tree generation in networks with asymmetric
links,” Networking, IEEE/ACM Transactions on, vol. 4, no. 4, pp. 558–
568, 1996.

[23] V. Kompella, J. Pasquale, and G. Polyzos, “Multicast routing for
multimedia communication,” Networking IEEE/ACM Transactions on),
vol. 1, no. 3, pp. 286–292, 1993.

